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ABSTRACT

Image and video autoregressive generative models are limited by their reliance
on the language-based framework, and converging evidence points to their dis-
crete representation as the bottleneck. Recent work addresses this bottleneck by
constraining representational capacity via latent binarization and by scaling code-
books, yielding measurable generation gains. However, binarizing the codes de-
stroys metric structure, coarsens the latent manifold, and degrades reconstruction
under the same token budget. We propose an efficient tokenizer that induces a
continuous latent manifold on par with continuous representations, without ad-
ditional GAN refinements or iterative sampling strategies. Our tokenizer learns
a discrete vocabulary aligned to a frozen continuous latent geometry, preserving
metric structure and delivering competitive reconstruction quality with a scalable
codebook. While naively scaling the codebook increases compute and memory
demand, we overcome this limitation by decomposing tokens into bits. On top of
this, we train a masked-language-model (MLM) generator with bit-wise predic-
tion, and find that the bit-wise strategy yields better likelihood and faster conver-
gence against alternative subgrouping schemes. This work substantially narrows
the performance gap between discrete and continuous representations, bringing
discrete approaches close to parity with continuous variants in both reconstruc-
tion and generation quality.

1 INTRODUCTION

Motivated by the remarkable breakthroughs of autoregressive generation in natural language pro-
cessing, the computer vision community has devoted significant effort to adapting these language
style frameworks to image and video generation (Yu et al., 2023c} [Kondratyuk et al.l [2024; Chang
et al.|, |2022; |Yu et al.|, 2023a)). Natural language possesses an inherently discrete structure, where
each unit (e.g. a single token) can be represented as categorical latents. This discrete nature pro-
vides a significant advantage: it yields a well-behaved cross-entropy objective and enables exact
likelihood computation with calibrated sampling.

Visual data is fundamentally different in that pixels are intended to represent a continuous spectrum
or scene, creating an inherent mismatch with discrete language frameworks. To address this chal-
lenge, the computer vision community has pursued two primary approaches: employing continuous
generation frameworks, such as diffusion models (Ho et al., 2020; [Dhariwal & Nichol, 2021), that
naturally handle continuous pixel values, or developing methods (Van Den Oord et al., 2017} [Esser
et all [2021) to discretize visual data into token-like representations to leverage existing discrete
generation frameworks.

A critical limitation of the discretization approach is that converting continuous visual data to dis-
crete tokens inevitably introduces information loss. Vector quantization (VQ) has become a popular
tokenization method, which maps visual features to discrete indices in a learned codebook. Unfor-
tunately, VQ-based approaches exhibit poor scaling behavior due to training instabilities caused by
the quantization process and the limited representational capacity of fixed-size codebooks. Even
when codebooks are scaled up, they suffer from under-utilization, a phenomenon known as code-
book collapse, where only a small subset of codes are actively used during training. Addressing this
issue requires nontrivial solutions such as probabilistic code reassignment or carefully pre-seeded
code initialization (Yu et al.,[2023b)).
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Lookup-free quantizers (LFQ) (Yu et al.l 2023b; [Zhao et al, [2024; Mentzer et al.l 2023} |[Weber
et al.,[2024) were proposed to address these issues by constraining code capacity via sign-based bi-
narization of the latent dimensions and then hashing the resulting bit vectors. While this design im-
proves scaling by limiting per-code capacity, it amplifies the discontinuity of the non-differentiable
quantization step, making gradient-based optimization more challenging. Moreover, the extreme
binarization collapses magnitudes and destroys metric structure, producing coarse latents whose
reconstructions lag behind continuous VAEs. The practical consequence is that decoder capacity
and computational resources are redirected toward repairing quantization-induced artifacts, often
requiring larger decoders (Xiong et al., | 2025) or sampling the lost information via iterative diffusion
heads (Sargent et al., 2025} |Birodkar et al., [2024).

Continuous latent generators (e.g., diffusion in VAE space) achieve high perceptual quality but do
not provide tractable token-level likelihoods or truly parallel decoding, and make token-granular
editing and retrieval less natural. Discrete modeling exposes a language-like interface with exact
token probabilities, calibrated scoring, and compositional conditioning. In this work, our goal is
to bridge discrete and continuous representations, keeping the advantages of discrete tokens with-
out sacrificing the fidelity and geometry of the continuous latent space. We achieve this with an
improved discrete tokenization approach that leverages pretrained VAEs to significantly reduce the
gap between discrete tokenizers and continuous VAEs. Concretely, we insert additional trainable
transformer layers and a quantization layer within the bottleneck of a pre-trained continuous VAE.
This simple yet effective approach dramatically reduces the performance gap between discrete and
continuous tokenizers while maintaining the advantages of discrete representations.

The benefits of our approach are twofold: (i) by building on continuous pretrained models, the tok-
enizer allocates its quantization budget to reconstruct the VAE’s latent geometry, maximizing code-
book utilization and representational fidelity; (ii) the training is stable and fast to converge without
auxiliary objectives (e.g., GAN refinement), simplifying the pipeline while achieving state-of-the-
art reconstruction quality. Empirically, the resulting discrete tokens close most of the reconstruction
gap to the underlying continuous VAE while preserving single-pass decoding and compatibility with
language-style generators.

Leveraging this tokenizer, we introduce Bitwise MaskGIT, a novel MaskGIT-style generation frame-
work that operates with binary codebooks. It delivers substantial improvements over the original
MaskGIT approach by casting token prediction into bit-planes and replacing single-index predic-
tions with tractable binary decisions.

In summary, the contributions of this work include:

1. Discrete tokens, continuous fidelity. We show that a learned discrete tokenizer on top of
frozen VAE bottleneck can recover the reconstruction quality of the underlying continu-
ous VAE, enabling language-style modeling in token space without sacrificing perceptual
fidelity, effectively bridging a previously open gap between discrete generative models and
continuous VAESs. In particular, our tokenizer achieves state-of-the-art performance in both
image and video reconstruction and generation tasks.

2. Efficient ViT tokenizer for images & video. Building on our first contribution, we in-
troduce a unified, efficient ViT-based tokenizer that operates on frozen continuous VAE
latents. We benchmark against previously published baselines and provide extensive abla-
tions showing favorable rate—distortion and scaling behavior.

3. Bitwise MaskGIT for large-vocabulary token generation. We cast token prediction into
D = [log, K| bit-planes and train a MaskGIT-style token predictor at the bit level, replac-
ing single-index K -way predictions with binary decisions. This yields tractable training
and inference in large discrete spaces. We evaluate the quality of MaskGIT bitwise gener-
ation in spatial and spatio-temporal domains.

2 METHOD

We present a binary video tokenizer that eliminates codebook overhead while maintaining recon-
struction quality competitive with continuous representations. Our key insight is that learned trans-
forms can map VAE latents to a binary space where simple sign quantization suffices, avoiding the
memory and optimization challenges of large codebooks. From a rate-distortion perspective, at a
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Figure 1: Overview of the proposed tokenizer with a frozen VAE encoder—decoder and the learnable
ViT tokenizer at the bottleneck. The VAE encodes video to z, where the latent is processed by
the ViT tokenizer. At the innermost bottleneck Q quantizes latents, to produce binary codes. A
symmetric path is subsequently set to decode the frames to pixel space.

fixed bitrate, continuous latents set a performance upper bound, while discretization introduces ad-
ditional constraints. We therefore study how far a binary, lookup-free quantizer (LFQ) can approach
this bound when paired with a lightweight learned transform.

2.1 FROM CONTINUOUS LATENTS TO BINARY CODES

We target high-fidelity image and video reconstruction with a discrete bottleneck. Let x €
RT>*3XHXW denote an input video with 7' frames at resolution H x . Images are treated as
single frame videos in the tokenizer and T is set to 1. We use z for continuous latents, zv;t for pre-
quantization embeddings, and b for binary codes. Spatial and temporal stride factors are denoted

(Sh) Sw 8t)°

We employ a pretrained VAE (specifically WAN 2.1 (Wan et al., [2025)) with encoder and decoder,
kept frozen during training (denoted Fonyy and Gonn in Figure |I[) This choice enables fair
comparison with continuous baselines and reduces computational requirements by approximately
3x compared to end-to-end training. The encoder maps an input video into a compressed latent
representation z € RT=XC=XH-xW= "\where T, = T/sy, H, = H/s},, W, = W/s,, with typical
strides (8¢, sp, Sw) = (4, 8, 8) and latent channels C, = 16.

Our tokenizer is based on a ViT architecture placed at the bottleneck of the frozen VAE, such that
it observes the latent tensor z and produces a compact sequence of discrete tokens. In particular,
we partition z into non-overlapping 3D patches of size (k¢, kn, k), treating boundary conditions
with zero padding to maintain temporal coherence. This yields N = [T /k; ]| JH (W, /kw]
patches, each flattened to dimension dpyecn = C,kikpky,. Let P : RT xCzX = —> R N Dy
denote the patchification operator and I/ its inverse. The patchified latent is then processed by the
ViT encoder Ev;r to produce our innermost bottleneck zy;r € RV *P,

zvir = EviT(P(2)). (D

While our bottleneck is quantizer-agnostic, in practice we instantiate it with a lookup-free binary
quantizer (LFQ) for its codebook-free scalability and low latency: LFQ removes table lookups and
memory-bound codebooks, keeping complexity linear in the bottleneck width. This choice is es-
pecially attractive at video scales, yet remains compatible with our interface and can be swapped
for alternative quantizers at matched bitrate. In particular, our binary codes b are obtained as
Q(Zvir) = sign(Zvir). A symmetric transformer decoder Gy maps binary codes back to the
patch space, which we then unpatchify to get the reconstructed continuous latent,

z = U(Gvir(b)). )

Crucially, we reconstruct in the continuous latent space (z) before VAE decoding, which will gener-
ate the final frames.

The tokenizer is optimized under the standard evidence lower bound omitting the KL regularization
term. This objective is enforced through a pixel reconstruction term £,., and a perceptual loss ob-
tained from VGG network £,,. We observe a natural code utilization behaviour in the models with
smaller number of learnable parameters, hence we omit the entropy objective adopted in prior works
Yu et al.| (2023b));|Zhao et al.|(2024). Furthermore, we find the original commitment loss (Esser et al.,
2021)) yields consistent gains, so we retain it in our objective.
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Figure 2: Proposed bitwise MaskGIT framework where (a) We encode the sequence and mask
selected tokens (shown in red). (b) Index-based methods predict a single codebook index in [0, 2 —
1]. (¢) In contrast bitwise MaskGIT predicts D binary bits for each masked token.

2.2  GENERATION

Directly generating tokens over the tokenizer’s full codebook is memory-prohibitive. With a 32-bit
latent index from FEv;t, the discrete space spans =~ 4B classes, each requiring an embedding and a
dense connection to the output head. Prior work mitigates this by partitioning the index into sub-
groups (Yu et al.| [ 2023b;[Zhao et al.|[2024); in the limit, one predicts individual bits, as in autoregres-
sive next-scale prediction (Han et al., | 2025)). We extend this bitwise factorization to MaskGIT-style
parallel generation and refer to it as maximal subgrouping. In contrast to bit-masking (Weber et al.|
2024), our approach keeps the MaskGIT token masking intact and replaces the token head with a
bitwise classifier that composes the final index. Let b = (by,...,by) denote the bits within the
token sequence emitted by the tokenizer, where each b; is a binary code. We define a mask as a
subset M C {1,..., N} indicating masked positions, over the sequence and use a learned mask
embedding, en,sk, to construct the masked sequence (see Figure |Zka)):

Bi _ {emaska 1€ Ma

bi, i¢ M. ®

At training time, the model receives the masked sequence b and is trained to predict the original bi-
nary codes at the masked positions. Unlike index-based token prediction over a |C|-sized codebook,
we instead perform bitwise classification. Specifically, let b; = (b; 1,...,b;p) € {—1,+1}7
denote the D-dimensional binary code at position <. The model outputs probabilities.

p9(bi,j|l~))7 jil,...,D,

interpreted as independent Bernoulli distributions over each bit. The masked prediction loss is then

D
Lok (0) =Ep B | Y > —logpo(biy | b)| - 4)

iEM j=1
At inference time, we follow the iterative parallel decoding strategy of MaskGIT (Chang et al.,
2022). The process begins with all tokens masked and proceeds in a fixed number of steps, where

at each step the model predicts the masked positions conditioned on the visible context and progres-
sively unmasks the most confident predictions.

3 EXPERIMENTS

This section provides a detailed empirical comparison with established baseline methods, as well as
ablation of specific design and training choices.

Training Datasets. The image tokenizer in this work is trained on the ImageNet-1K (Russakovsky
et al., [2015) and MS-COCO (Dosovitskiy et al., 2020) training sets. We train this tokenizer at a
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Table 1: Performance comparison of different image compression methods on ImageNet and COCO
datasets. We highlight best performance in bold, and the second best with underline. Our upper
bound is set to WAN-VAE and is highlighted in blue.

bpp  Method Dim  Size | ImageNet ‘ coco
| LPIPS| rFID| PSNR{ SSIMf | LPIPS| rFID, PSNRt SSIM{
0.039  VQGAN|Esser et al.|(2021) 256 1024 - 8.30 1951 0614 - 1695 19.08 0613
0.055 VQGAN Esser et al.|(2021) 256 16384 - 4.99 2000  0.629 - 1229 1957  0.630
0.039  MaskGIT[Chang et al.[(2022) 256 1024 - 228 - - - - - -
0.219  VQGAN|Esser et al.|(2021) 4 256 - 1.44 2263 0.737 - 6.58 2229 0744
0.219  VQGAN [Esser et al.|(2021) 4 16384 - 1.19 2338  0.762 - 5.89 23.08 0771
0.201  ViT-VQGAN[Yu et al.|(2021) 32 8192 - 1.28 - - - - - -
0.218  LlamaGen[Sun et al.|(2024] 8 16384 - 0.59 2445 0813 - 4.19 2420  0.822
0.070  Flowmo-Lo|Sargent et al. |(2025) 18 218 0.113 0.95 22.07 0.649 - - - -
0.219  Flowmo-Hil[Sargent et al.|(2025) 14 ot4 0.073 0.56 24.93 0.785 - - - -
0.281 BSQ-18Zhao et al.|(2024) 18 218 0.076 1.14 2536 0.759 0.074 5.81 2508  0.766
0.562  BSQ-36/Zhao et al.|(2024) 36 236 0.043 0.41 2788 0.841 0.041 342 27.64  0.848
0218  Ours 14 o4 0.103 321 2541 0.753 0.102  10.20 25.06  0.760
0.500 Ours 32 232 0.055 1.77 2841  0.848 0.052 5.83 2807  0.853
0.562  Ours 36 236 0.049 133 2929  0.860 0.046 5.00 2891  0.867
0.562  Ours-L 36 236 0.048 1.40 2952  0.863 0.041 4.98 2924 0.871
4 WAN-VAE|Wan et al.|(2025) 16 - 0.032 1.03 3142 0.889 0.027 3.49 3124 0.896
1 SD-VAE[Rombach et al.|(2022} 4 - 0.098 1.35 2199  0.627 0.099 5.94 21.68  0.638
1 SDXL-VAE[Podell et al. |(2023 4 - 0.066 0.72 2538 0.727 - 4.07 2576  0.845

256 x 256 spatial resolution obtained by bilinear interpolation. For videos, we train a dedicated
video tokenizer on the PANDA dataset (Chen et al.,|2024)) to encourage broad generalization, rather
than adapting an image tokenizer to video as in prior work (Zhao et al.,2024). For a fair comparison
with baselines, we resize all videos to 128 x 128 using bilinear interpolation and train and evaluate
our video tokenizer at this resolution, reporting evaluation results on UCF-101 (Soomro et al.,[2012).

Implementation and Training. We follow the implementation of WAN to initialize the pretrained
continuous VAE. This includes a CNN based encoder with three 2x spatial, and two 2 x temporal
downsampling blocks followed by a symmetric decoder upsampling to the original image/video
dimensions (Wan et al., [2025). The tokenizer follows a standard ViT-VQGAN (Yu et al.| 2021)),
with the internal quantization bottleneck being replaced by LFQ, following the details provided
in (Yu et al.} 2023b), and the BSQ implementation (Zhao et al., [2024)). Generation is done using a
standard bi-directional transformer under MaskGIT modelling assumption, and bitwise classification
described in section The architecture for generation is a standard Bert model. We run all our
experiments on 32 NVIDIA A100 GPUs.

3.1 IMAGE AND VIDEO COMPRESSION

Table |I| reports ImageNet-1K and MS-COCO validation performance, comparing our method
against state of the art image tokenization baselines. To facilitate a fair comparison we conduct
the image compression evaluations on 256 x 256 spatial resolution similar to the baselines (Zhao
et al., [2024; |Sargent et al., |2025). Furthermore evaluations are done under the same number of to-
kens per image obtained from the x8 spatial downsampling of WAN-VAE. We keep the ViT patch
size at 1 in order to achieve the same number of tokens as our most competitive baselines BSQ(Zhao
et al., 2024), and FlowMo (Sargent et al., 2025). This allows us to modify the bits per pixel (bpp),
based on the latent dimension. At equivalent bpp our tokenizer attains competitive results across
PSNR, MS-SSIM, and LPIPS, with the largest gains in the high-rate regime, where capacity suffices
to faithfully reconstruct the WAN-VAE latent space. Importantly, the discrete tokenization closely
tracks the reconstruction quality of the continuous VAE upper bound (frozen encoder/decoder with-
out discretization), supporting our claim of discrete tokens with continuous fidelity. By default, we
report results with a small model (~ 28M parameters); we also present a large variant (~ 300M
parameters, “Ours-L”) to quantify the effect of capacity. We show the best and second-best results
with bold and underline, respectively.

In the high-rate setting (>0.50 bpp), our models deliver state-of-the-art distortion performance with
competitive perceptual quality across both benchmarks. At 0.562 bpp, our larger model (Ours-L)
attains 29.52 dB PSNR /0.863 SSIM on ImageNet and 29.24 dB / 0.871 on COCO, exceeding BSQ-
36 by +1.64 dB / +0.022 (ImageNet) and +1.60 dB / +0.023 (COCO). Perceptually (LPIPS), Ours-L
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(a) Original (b) BSQ (c) Ours

Figure 3: Qualitative comparison between our image tokenizer and the competitive baseline BSQ.
The bottom row highlights the presence of jitter artifacts in BSQ reconstructions, which are not well
captured by FID despite being perceptually evident.

matches BSQ on COCO and is a very close second on ImageNet, while retaining clear advantages
in PSNR/SSIM. Notably, even at 0.50 bpp, the 32-dim variant reaches 28.41 dB / 0.848 (ImageNet)
and 28.07 dB / 0.853 (COCO), surpassing BSQ-36 on distortion while using fewer bits, indicating
that our rate—distortion efficiency persists across models. Our rFID on the other hand, performs
weaker than the strongest competitive baseline, while still outperforming most other tokenizers. We
trace this to slight, spatially smooth color shifts arising from imperfect recovery of the WAN-VAE
latent space due to the small number of available bits.

Table [2| compares reconstruction on UCF-101 (split 1) at 128 x128. In video reconstruction our
video tokenizer sets a new state of the art on the fidelity and perceptual similarity among dis-
crete baselines. Compared to prior tokenizers such as MaskGIT, TATS, MAGVIT/MAGVIT-v2, and
LARP, our method attains higher PSNR/SSIM with markedly lower LPIPS, yielding visibly crisper
frames and fewer compression artifacts. While competitive, our rFVD trails the best by a small mar-
gin. Similar to image reconstruction, subtle color drift and softened high-frequency textures from
quantization account for most of this difference.

3.2 IMAGE GENERATION

We train a bitwise MaskGIT decoder on ImageNet-1K tokens, following the masked modeling and
sampling schedule of the reference implementation [Chang et al.| (2022). MaskGIT is chosen for its
parallel decoding and favorable speed—quality trade-off. Our aim here is to assess the tokenization
procedure and the viability of bitwise factorization. We evaluate the Fréchet Inception Distance
(FID) on ImageNet-1K and compare with recent baselines under their recommended evaluation
protocols; our results are reported in Table[3] We show a set of uncurated samples generated by our
model in Figure ]
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Table 2: Performance comparison of video compression against other competitive baselines.

Method Dim  Size | UCF-101
| LPIPS, PSNRT SSIM{ rFVD]

MaskGIT Chang et al.| (2022) 256 1024 0.114 21.5 0.685 216
TATS [Ge et al[(2022) 256 16384 - - - 162
MAGVIT-L Yu et al[(20233) 256 16384 0.099 22.0 0.701 25
MAGVIT-v2 Yu et al.| (2023al) 18 218 0.069 - - 16.12
MAGVIT-v2 [Yu et al|(2023a) 18 218 0.054 - - 8.62
LARP-B [Wang et al.|(2024al)) 8 8192 0.086 27.88 - 31
LARP-LWang et al. (2024a) 8 8192 - - - 24
Ours 36 236 0.031 30.38  0.923 26.5
WAN Wan et al | (2025)) 4 -] 0019 35.69  0.959 -

Table 3: Image generation results on ImageNet-1K (256x256)

Category Method #steps FID |
Diffusion ADM 1,000 10.94
Improved DDPM - 1226
AR DCTransformer - 3651
VQVAE-2 - 3111
VQ-based VQGAN - 1578
VQGAN* - 18.65
vQ 12 9.40
Masked LM ¢ 32 112

3.3 ABLATION

This section provides an ablation study of the key components of the tokenizer and the adopted
bitwise MaskGIT strategy. Given the resource-intensive nature of training these models, ablations
are reported only for selected datasets, as specified in the caption of the provided tables.

Tokenizer. The tokenizer presented comprises of multiple key choices, and objectives. First, we
investigate the effect of size of the tokenizer on reconstruction fidelity. We perform the image train-
ing at a dimension of 36 on a small model of 50M parameters, and a larger model with 300M
parameters. These findings are presented in Table #a] We find that regardless of the tokenizer size,
our model is bounded to the performance of the backbone. In this case, our ablation in |4al demon-
strates the superior performance of the smaller models that can be achieved in fewer training steps
compared to the larger model. As a result, our final tokenizer follows the small model. Furthermore,
we ablate the effect of axillary objectives namely commitment loss, and the entropy loss. The ab-
lated commitment loss follows the standard objective of VQGAN (Esser et al.,[2021). Empirically,
adding a standard entropy penalty degrades tokenizer performance; by contrast, a commitment loss
weighted at 0.25 yields improved perceptual fidelity and rFID. Consequently we opt for a com-
mitment loss for both image and video tokenizers. Furthermore we evaluate the model with both
decoders set as learnable. For this setting, we first train the tokenizer following the procedure in
Section[2] We then freeze the encoders and fine-tune the decoders for additional steps. As shown in
Table ] joint decoder fine-tuning diminishes the advantage of our framework and further degrades
the reconstruction quality.

4 RELATED WORKS

Vector-quantized VAEs (VQ-VAE) have long been used as the backbone for visual tokenizers(Van
Den Oord et al.l 2017). Building on the VQ-VAE, GAN-regularized variant was introduced by
Esser et al.|(2021) demonstrating the tokenizer as a primary driver of generative quality. Since then,
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Table 4: Tokenizer ablation conducted on full COCO validation set.

(a) Decoder joint fine-tuning (b) Objective effect
Model LPIPS| rFID| PSNR? Model LPIPS| rFID] PSNR Y
Base 0.046 5.000 28.912 None 0.054 5.580 28.422
Joint finetuned 0.053 6.474 28.295 L. 0.059 5.830 28.090
WAN 0.027 3.490 31.242 L. 0.046 5 28.912

the “vanilla” VQGAN tokenizer has been adopted across autoregressive (AR) and MaskGIT-style
decoders, as well as next-scale predictors for images and video generation (Chang et al.| 2022} Tian
et al., 2024; |Yu et al., 2023a). Many works retain this tokenizer while swapping backbones (e.g.,
CNN—VIiT) (Cao et al., 2023} [Yu et al., 2021). Yet, irrespective of such architectural changes,
vanilla VQGAN exhibits poor codebook utilization and is prone to collapse, ultimately limiting
scale.

A concurrent line retains the VQGAN tokenizer and augments training with auxiliary losses or
mechanisms to promote codebook usage; Reg-VQ (Zhang et al.,[2023)), for example, places a prior
over discrete codes and mixes stochastic with deterministic quantization to encourage broader uti-
lization. LARP (Wang et al.l [2024b)) interprets cosine similarities as logits to enable stochastic
sampling at commit time. Such stochasticity can raise utilization statistics, but it does not uniformly
improve reconstruction and may burden the decoder with noisy assignments. In contrast, VQGAN-
LCP (Zhu et al., 2024) removes stochasticity and scales the codebook beyond 99k by seeding entries
with frozen CLIP (Radford et al., 2021) embeddings. However, subsequent work (Yu et al.,|2023b)
report diminishing returns as codebooks grow, suggesting a scaling ceiling that is not resolved by
increasing vocabulary size alone.

This observation is made explicit by LFQ (Yu et al.,[2023b) which shows that merely enlarging the
codebook stalls generative quality. LFQ break this barrier by capping per-code representational ca-
pacity while scaling the codebook size, effectively disentangling capacity from size. Binary Spheri-
cal Quantization (BSQ) Zhao et al.| (2024])) replaces vector quantization with a projection to a hyper-
sphere followed by binary quantization, yielding a scalable codebook-free tokenizer that scales to ar-
bitrary token dimensions. While their method establishes a compelling compression/reconstruction
point, its reliance on spherical binary projections differs from our objective of aligning discrete rep-
resentations to an underlying continuous metric space, and its AR prior is tailored to entropy coding
rather than parallel generative decoding.

On a different line of works, MAR (Li et al., 2024) trains autoregressive transformers over con-
tinuous token values by replacing categorical cross-entropy with a diffusion-based per-token loss.
Diffusion Tokenizers (DiTo) (Chen et al., [2025) argue that the diffusion objective suffices to learn
compact visual representations at scale. These works recasts the decoder as a denoiser or scales
the tokenizer to compensate for quantization loss. We take a complementary route and train the
tokenizer to naturally recover the VAE’s continuous latent space, we can maintain the benefits and
simplicity of autoregressive modeling while achieving continuous-grade generation without special-
ized training procedure, diffusion objectives or scaling the tokenizer.

Driven by the same goal of marrying continuos fidelity with discrete modeling, TokenBridge (Wang
et al., [2025) discretizes a frozen VAE post hoc via training-free, per-channel quantization and pre-
dicts the resulting indices with a channel-wise autoregressive head. This creates two core bottle-
necks: the discretizer is not learned (bins cannot adapt to latent geometry or task semantics), and
decoding incurs intra-token sequential dependencies proportional to the VAE’s channel count. By
contrast, we learn the discrete bottleneck to align with the frozen continuous latent and decode with
bitwise MaskGIT in parallel across masked positions and bit-planes, removing channel-wise AR
and large K-way heads with complexity linear in bits.

In summary, our approach differs from prior bit-token or binary quantization methods in two ways:
(1) we align the discrete bottleneck to a frozen continuous VAE and show that this preserves metric
structure and reconstruction quality close to the continuous upper bound, and (ii) we replace large
K-way heads with bitwise parallel MaskGIT, which scales output complexity linearly in the number
of bits and improves convergence without iterative diffusion refinements. Prior works either rely
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Figure 4: Uncurated results on ImageNet-1k.

on large codebooks, bitwise autoregression, or diffusion-style decoders; we demonstrate a parallel,
codebook-free path that remains compatible with language-style training and inference.

5 DISCUSSION & CONCLUSION

In this work, we address the long-standing gap between discrete and continuous tokenizers. We in-
troduced a codebook-free discrete tokenizer aligned to a frozen continuous VAE and paired it with a
bitwise MaskGIT decoder. This design preserves the practical advantages of discrete modeling, ex-
act token likelihoods, composability, and parallel decoding, while maintaining the metric structure
typically associated with continuous latents. By predicting bit-planes rather than a large K-way vo-
cabulary, the decoding head scales with the number of planes instead of the codebook size, reducing
parameters and memory, and enabling efficient deployment across images and videos. Our tokenizer
tracks a continuous upper bound closely while avoiding axillary GAN losses, or iterative refinement.
We demonstrate competitive image reconstruction, and state of the art video reconstruction through

Looking ahead, we see value in multi-resolution extensions that organize bit-planes across spatial
scales and in resolution-agnostic training/inference strategies that generalize across sizes without
retraining; we also aim to model temporal structure via multi-frame tokens with lightweight condi-
tioners for inter-plane dependencies, and to explore modest backbone adaptation or latent calibration
to mitigate residual artifacts and clarify scaling at higher resolutions and frame rates.

Limitations Our method inherits the representational capacity of the frozen VAE, which limits our
reconstruction capacity to the VAE as the upper bound. Furthermore, Our approach is still fragile at
very low bitrates, where small latent mismatches can be amplified by the VAE decoder. Although
medium to high bitrate yields alignment, extreme compression remains challenging.
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