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ABSTRACT

Recent advancements in machine learning (ML) have shown promise in solving
partial differential equations (PDEs), but significant challenges remain, particularly
in handling complex scenarios. Singularly perturbed differential equations present
unique computational difficulties due to rapid transitions within thin boundary
or interior layers, where ML methods often struggle. Moreover, these problems
require massive adaptive mesh refinement, making dataset generation computation-
ally expensive. In this paper, we introduce eFEONet, an enriched Finite Element
Operator Network designed to overcome these challenges. By leveraging singular
perturbation analysis from PDE theory, eFEONet incorporates special basis func-
tions that capture the asymptotic behavior of solutions, enabling accurate modeling
of sharp transitions. Our approach is highly data-efficient, requiring minimal train-
ing data or even functioning without a dataset. Furthermore, we provide a rigorous
convergence analysis and empirically validate eFEONet across various boundary
and interior layer problems.

1 INTRODUCTION

The use of machine learning (ML) to solve partial differential equations (PDEs) has made significant
advancements in recent years, offering innovative approaches to tackle longstanding challenges in
scientific computing (Lagaris et al., 1998; Lu et al., 2021b; Yu et al., 2018; Ainsworth & Dong, 2021).
Among these methods, operator networks have emerged as a practical and efficient tool due to their
ability to infer solutions quickly after training (Lu et al., 2021a; Li et al., 2021a). Unlike classical
numerical methods that iteratively solve PDEs for each parameter setting, operator networks learn
the solution operator itself, enabling rapid prediction and establishing a new paradigm for parametric
PDEs. Their application, however, faces key challenges. Training typically requires precomputed
datasets generated by conventional numerical solvers, a process that is computationally costly for
complex PDEs. Singularly perturbed equations are particularly difficult, as sharp transitions within
thin boundary or interior layers demand expensive, high-fidelity datasets and often degrade operator
network performance due to their reliance on smooth priors (Lu et al., 2022).

Boundary and interior layer phenomena are of paramount importance in many scientific and engineer-
ing disciplines, including fluid dynamics, biology, and chemical reactions (Schlichting & Gersten,

Figure 1: Representative solution profiles for singularly perturbed PDEs, illustrating the inherent
stiffness of boundary and interior layers across various domains. The sharp gradients and rapid
transitions depicted here highlight the intrinsic stiffness and associated computational challenges.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2016; Batchelor, 2000). These problems are characterized by sharp changes in solution profiles within
thin layers, making them notoriously difficult to handle even with advanced numerical methods. The
challenge arises from the small diffusive parameter ε > 0 in these equations, which leads to steep
gradients over small spatial regions. See Figure 2 where the examples of interior layer phenomena
are presented. Developing methods to accurately and efficiently solve such problems remains a
challenging task in scientific computing (Zienkiewicz & Taylor, 2000; Hughes, 2000). Machine
learning-based approaches face additional challenges because they are inherently better at learning
smooth functions but struggle to accurately capture sharp transitions. Neural networks, for instance,
are often designed to approximate solutions that vary gradually, making it difficult to capture the
steep gradients and sharp transitions characteristic of boundary or interior layers (Karniadakis et al.,
2021). These boundary and interior layer problems require computationally expensive massive mesh
refinement to obtain accurate solutions. Moreover, as ε > 0 decreases, the mesh size must become
finer, following an approximate scaling of adaptive mesh size ≃ ε. This results in a significant
drawback, as data generation can become prohibitively expensive in many cases. This limitation
highlights the need for new architectures and methodologies that can handle these complexities
without compromising accuracy or efficiency.

Figure 2: Comparison of the reference solu-
tion (True) and the predicted solutions using
Standard FEM, PINN, and eFEONet (Ours)
for the interior layer problem with ε = 10−5.

In this paper, we propose an enriched Finite Element
Operator Network (eFEONet), specifically designed
to address these challenges. eFEONet builds upon
the FEONet framework (Lee et al., 2025), a highly
data-efficient operator learning method that requires
minimal training data or no dataset at all. Unlike
traditional operator networks, eFEONet leverages the
structure of finite element methods (FEMs), where
the solution is expressed as a linear combination of
nodal coefficients and basis functions. This design
not only eliminates the need for large datasets but also
ensures the exact satisfaction of boundary conditions.
By incorporating insights from singular perturbation
analysis in PDE theory, we design special basis func-
tions within the finite element framework that capture
the asymptotic behavior of solutions in boundary or
interior layers (Gie et al., 2018). This approach en-
ables accurate modeling of sharp transitions while
maintaining computational efficiency. Recently, Component Fourier Neural Operator (ComFNO)
(Li et al., 2024), a modified version of FNO, attempted to incorporate asymptotic behavior into its
methodology. However, these approaches did not rigorously consider singular perturbation analysis,
leading to suboptimal accuracy in capturing sharp layer structures. Moreover, as we can see in
Section 4, despite utilizing 900 training samples, ComFNO exhibited an error that was two orders
of magnitude higher than our eFEONet, which required no training data at all. We validate our ap-
proach through theoretical convergence analysis and empirical results on various singularly perturbed
problems, including both boundary and interior layers (Chekroun et al., 2020; Gie et al., 2018). The
results demonstrate that eFEONet achieves high accuracy and efficiency, even for problems with
strong boundary or interior layer phenomena such as convection-dominated PDEs (Stynes, 2005)

The main contributions of the paper are summarized as follows:

• We propose eFEONet, which integrates singular perturbation analysis into the FEONet
framework. This incorporation enables superior accuracy in solving singularly perturbed
PDEs, effectively capturing sharp transitions in both boundary and interior layers.

• Singular perturbation problems typically require increasingly finer meshes as the parameter
ε > 0 decreases, making dataset generation computationally very expensive. Our approach
overcomes this limitation by being highly data-efficient, requiring minimal training data, or
even operating without any training dataset.

• We demonstrate the effectiveness of eFEONet through comprehensive experiments on
challenging convection-diffusion PDEs, including problems with boundary and interior
layers in both 1D and 2D. The results show that eFEONet achieves error reductions of two
orders of magnitude compared to existing approaches, even when no training data is used.
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• The proposed eFEONet is supported by rigorous theoretical foundations through finite
element approximation and asymptotic analysis. This robust framework enables a formal
convergence analysis, ensuring both reliability and explainability.

2 RELATED WORKS

Neural Operators. Operator learning trains models to approximate PDE solution operators using
datasets of input-output pairs from numerical solvers (Bhatnagar et al., 2019; Guo et al., 2016; Khoo
et al., 2017; Zhu & Zabaras, 2018), enabling efficient and real-time predictions for varying inputs
(Li et al., 2020). Notable architectures include the Fourier Neural Operator (FNO) (Kovachki et al.,
2021) and DeepONet (Lu et al., 2021a). Recent advances also explore message-passing frameworks
to accommodate complex problem structures (Brandstetter et al., 2022; Lienen & Günnemann, 2022;
Pfaff et al., 2021; Boussif et al., 2022). In addition, transformer-based architectures have been
introduced (Cao, 2021; Wang et al., 2025; Hao et al., 2024), along with emerging foundation models
tailored for PDEs(Herde et al., 2024; Ye et al., 2024). Despite these developments, operator learning
still faces challenges in generalization, data efficiency, and resolving sharp solution features.

Unsupervised Physics-based Operator Networks. Unsupervised physics-based operator networks
incorporate governing equations directly into neural operator architectures, minimizing or completely
removing the need for labeled training data. Variational frameworks such as FEONet (Lee et al.,
2025) and SCLON (Choi et al., 2024) use PDE residuals in weak form to achieve accurate predictions
without explicit simulation data. Similarly, physics-informed neural operator approaches like PINNs
(Lu et al., 2021b; Han et al., 2018), PINO (Li et al., 2021b), and PIDeepONet (Wang et al., 2021)
can also be formulated to rely entirely on PDE constraints and boundary conditions. Despite recent
progress, accurately capturing multiscale phenomena and sharp gradients without labeled data remains
challenging, highlighting the need for more robust unsupervised approaches.

Neural networks for boundary layers Deep learning has emerged as a promising approach for
solving singularly perturbed PDEs, with physics-informed methods also contributing to this effort
(Arzani et al., 2023; Tawfiq & Al-Abrahemee, 2014). However, these approaches often lack scalability
and remain effective only in limited scenarios. The study on stiff chemical kinetics (Goswami
et al., 2024) utilizes deep neural operators specifically for reaction-diffusion stiffness, limiting its
applicability compared to our method, which addresses a broader class of singularly perturbed
PDEs, including boundary and interior layers, particularly in data-scarce scenarios. Recently, a
homotopy-based approach to learn the singularly perturbed problems was proposed by CHEN et al.
(2025) for specific PDE instances rather than operator learning approaches. ComFNO (Li et al.,
2024) incorporates asymptotic expansions to better handle singular perturbations. Nonetheless,
challenges persist, including the need for large training datasets, difficulty in accurately capturing
sharp transitions, and a lack of rigorous theoretical foundations to ensure broader reliability.

3 ENRICHED FEONET

In this section, we shall describe our proposed method, eFEONet, designed for solving singularly
perturbed parametric PDEs. We start by giving a brief overview of the FEMs, which form the core of
our approach. Then, we will explain eFEONet, the main method we propose in this paper.

For the description, we will focus on the following PDE:

−εdiv (a(x)∇uε) + b(x) · ∇uε = f in D.

uε = 0 on ∂D.
(1)

Here we assume that the singular perturbation parameter ε > 0 is very small so that the boundary
layer phenomenon occurs. Furthermore, to highlight that the shape of a solution depends on ε > 0,
we will denote the solution as uε.

As we will explain in more detail later, we propose an operator-learning approach for the singular
perturbation problem that enables real-time solution predictions whenever the input data of the PDE
varies. As a prototype model, we set the external force f as an input of neural networks, and train the
model so that the neural networks can learn the operator G : f 7→ uε. Note, however, that our method
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can be easily extended to various forms of input functions, including boundary conditions, variable
coefficients, or initial conditions (see, e.g., (Lee et al., 2025)).

3.1 FINITE ELEMENT METHOD

The finite element method (FEM) is a technique for the numerical solution of PDEs and is based on
the weak formulation of the PDE equation 1, which seeks to find a function uε ∈ V satisfying

B[uε, v] := ε

∫
D

a(x)∇uε ·∇v dx+

∫
D

b(x) ·∇uεv dx =

∫
D

fv dx =: ℓ(v) for all v ∈ V, (2)

where V is typically an infinite-dimensional function space for the solution and test functions. The
first step in finite element method (FEM) theory is to discretize the domain D ⊂ Rd, known as a
triangulation. For d = 1 and D = [a, b], this involves points a = x0 < x1 < · · · < xK = b, with
each interval [xi−1, xi] forming a 1-simplex. For d = 2, the triangulation consists of closed triangles
Ti (2-simplexes), i = 1, . . . ,K, whose interiors are disjoint. If i ̸= j and Ti ∩ Tj ̸= ∅, then the
intersection is either a shared vertex or edge. For d ≥ 3, elements are d-simplexes. Let hT denote the
longest edge of a triangle T , and define the global mesh size as h = maxT hT . Let Sh be the space
of continuous functions vh on D such that the restriction of vh to each element is a polynomial. The
finite-dimensional ansatz space is then defined as Vh = Sh ∩ V . Let {xi} denote the triangulation
vertices, and {ϕj} the nodal basis for Vh, where ϕj(xi) = δij . Using piecewise linear basis functions
defines the P1-element method; using piecewise quadratic polynomials gives the P2-element method.
The dimension of Vh depends on the triangulation and hence on the mesh parameter h.

The FEM aims to approximate the infinite-dimensional space V by a finite-dimensional subspace Vh

defined by Vh = span{ϕ1, ϕ2, · · · , ϕN(h)}. This makes the problem numerically solvable. Motivated
from equation 2, we seek to compute the approximate solution uε,h ∈ Vh using the so-called Galerkin
approximation, which is given by the equation B[uε,h, vh] = ℓ(vh) for all vh ∈ Vh. Writing the
finite element solution as uε,h(x) =

∑N(h)
k=1 αkϕk(x) with αi ∈ R, the Galerkin approximation

transforms into the linear algebraic system Aα = F with Aik := B[ϕk, ϕi] and Fi := ℓ(ϕi). Here,
A is invertible, assuming the underlying PDE has an appropriate structure. The coefficients {αk}N(h)

k=1
is then determined, thus yielding the approximate solution uε,h.

3.2 ENRICHED FEONET WITH A CORRECTOR BASIS

Now we are ready to introduce our main method, the enriched FEONet (eFEONet). One key novelty
of the eFEONet is to utilize extra basis functions derived from theoretical arguments (see, e.g.,
Appendix B). For a clear illustration of the proposed method, we shall explain it through a simple
example of the following form:

−εu′′
ε − u′

ε = f(x), x ∈ (−1, 1),

uε(−1) = uε(1) = 0,
(3)

where 0 < ε ≪ 1. As we can see from Figure 2, when ε > 0 is small, it is difficult to expect the
classical FEM or the original FEONet to achieve good performance due to the sharp transitions near
the boundary. To accurately capture the boundary layer, we incorporate an additional basis function,
commonly referred to as the corrector function in mathematical analysis, for example in this case,
defined as: ϕcor(x) := e−(1+x)/ε − (1 − (1 − e−2/ε)(x + 1)/2). Such a basis function reflects
the boundary layer properties of the given equation and is derived from theoretical arguments. The
derivation of various corrector basis functions will be addressed in Appendix B. The corrector basis
is added to the standard nodal basis functions of FEM to construct an enriched Galerkin space. In
other words, for enriched FEONet for the singularly-perturbed problems, we now replace the original
ansatz space Vh by the enriched Galerkin space V h = {ϕcor, ϕ1, ϕ2, · · · , ϕN(h)}, where the corrector
basis ϕcor has been added to Vh. It is noteworthy that no significant additional computational cost
occurs, as the enriched basis is only restricted to boundary elements. In general, neural networks
assume a smooth prior, which makes them less effective in handling boundary layers. This can lead to
unstable training due to the direct calculation of the PDE residual. In contrast, the eFEONet leverages
theory-guided basis functions, allowing its predicted solution to precisely capture the sharp transitions
near the boundary. Encapsulating the above discussion, the enriched FEM for the boundary layer
problem can be written as follows: we seek uen

ε,h ∈ V h satisfying

B[uen
ε,h, vh] = ℓ(vh) for all vh ∈ V h. (4)
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Figure 3: Schematic illustration of eFEONet.

In our eFEONet approach, the input to the neural network consists of data related to the given PDE
problems, which is parameterized by ω ∈ Ω, while the output consists of the coefficients of a basis
expansion. To be more specific, we incorporate this into a deep learning framework to construct the
eFEONet, whose solution prediction is written as

ûen
ε,h(x;ω) =

N(h)∑
k=1

α̂k(ω)ϕk(x) + α̂0(ω)ϕcor, (5)

where the dimension of the output of the neural network has increased by one to handle the added
corrector basis. By writing ϕ0 := ϕcor, the loss function for the eFEONet is defined as

LM (ûen
ε,h) =

1

M

M∑
m=1

N(h)∑
i=0

|B[ûen
ε,h(x;ωm), ϕi(x)]− ℓ(ϕi(x);ωm)|2, (6)

for randomly drawn parameters ω1, · · · ,ωM ∈ Ω. A schematic diagram of the eFEONet algorithm
is shown in Figure 3.
Remark 3.1. Our framework employs corrector functions tailored to specific problem classes, yet
they are not confined to individual instances. For families of PDEs with analogous singular behavior,
the same correctors can often be applied effectively. In convection–diffusion equations, for example,
the boundary layer typically has a thickness proportional to ε with an exponential profile, a structure
preserved even with additional reaction terms.
Remark 3.2. Some preliminary results show that one could attempt to learn the corrector bases using
data (see, e.g., Appendix E.5). In contrast, our approach constructs them via classical numerical
analysis, which not only requires no data but also achieves substantially better performance. This
integration of analytical methods into an operator learning framework constitutes the main novelty of
our work, highlighting how analytic knowledge can maximize the efficiency of operator learning.

3.3 CONVERGENCE OF ENRICHED FEONET

In this section, we investigate the convergence result for eFEONet, providing a theoretical foundation
for the proposed approach. Let us denote the solution of equation 3 by uε corresponding to a
given parameter 0 < ε ≪ 1. Since our method is built upon the enriched FEM, the enriched
finite element approximation uen

ε,h in equation 4 serves as an intermediate step between the exact
solution uε and the approximate solution ûen

ε,h obtained from eFEONet equation 5. Therefore, for
the purpose of error analysis, the error uε − ûen

ε,h is decomposed into two components, specifically
uε − ûen

ε,h = (uε − uen
ε,h) + (uen

ε,h − ûen
ε,h) =: (I) + (II). The error analysis for the first term (I) is

well investigated in the previous literature on singular perturbation analysis. For example, in (Cheng
& Temam, 2002), the following error estimate was derived for the enriched FEM equation 4:

∥uε − uen
ε,h∥H1 ≤ C

(
h+

h2

ε

)
, (7)

where C > 0 is a constant independent of h and ε. This result is especially highlighted as it provides
a satisfactory convergence result even in the under-resolved case for h > ε. More general results can
be found in various papers, e.g., from (Jung, 2005; Gie et al., 2018). The second error (II) represents
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Table 1: Mean relative L2 test errors (×10−3) for FNO, ComFNO, DeepONet, PINN, and eFEONet
by varying the number of training input-output data pairs. Here, we set ε = 10−3 for all experiments.

Model
Exp1. ODE w/ boundary layer Exp2. ODE w/ interior layer Exp3. PDE on square

# of training data # of training data # of training data
900 90 9 None 900 90 9 None 900 90 9 None

FNO 36.0 68.3 382 - 84.2 153 961 - 10.3 1e+03 1e+05 -
ComFNO 3.88 51.1 347 - 8.21 126 876 - 15.1 1320 1e+05 -
DeepONet 23.9 101 286 - 7.40 6.80 240 - 2300 1780 1590 -

PINN - - - 970 - - - 800 - - - 1174
eFEONet (Ours) 0.01 0.07 0.03 0.06 1.79 1.99 4.23 3.17 2.26 1.83 5.38 8.53

a critical aspect that requires novel theoretical analysis. The parameters of ûen
ε,h =: ûen

ε,h,n,M relevant
to convergence include the neural network architecture and the number of sampling points ω ∈ Ω,
denoted by n ∈ N and M ∈ N, respectively. A larger n ∈ N indicates a greater approximation
capacity of the neural networks. We will establish the following theorem addressing the second error
(II), ensuring the reliability of our method and providing the theoretical underpinning of the proposed
numerical scheme. The detailed mathematical formulation and proof are presented in Theorem C.7.
Theorem 3.3. Let uen

ε,h be the enriched finite element approximation equation 4 of the true solution
uε and ûen

ε,h,n,M be the approximate solution computed by the eFEONet. Then there holds

E
[
∥uε,h − ûen

ε,h,n,M∥2L2(D)

]
→ 0 as n, M → ∞, (8)

where the expectation is taken over random samples ω ∈ Ω.

Remark 3.4. The main difference in our convergence analysis from the original FEONet lies in the
singular perturbation analysis, which governs equation 7, while the approximation and generalization
errors retain a similar structure. Unlike FEONet, however, the associated constants in our setting
depend implicitly on the perturbation parameter ε. Making this dependence explicit and establishing a
unified error estimate in terms of the mesh size h, perturbation parameter ε, approximation parameter
n, and number of samples M remains an interesting research direction to be addressed in future work.

4 EXPERIMENTS

In this section, we evaluate the performance of eFEONet on four distinct types of singularly perturbed
differential equations, including both ordinary and partial differential equations. For ordinary differen-
tial equations (ODEs), we examine scenarios with and without turning points, highlighting eFEONet’s
adaptability to varying problems. For PDEs, we test the eFEONet over domains with square and
circle geometries to assess its robustness across different spatial configurations. Furthermore, we
conduct a comparison of the experimental results with those obtained using FNO (Kovachki et al.,
2021) and ComFNO (Li et al., 2024), a neural operator model specifically designed to address the
challenges of singularly perturbed differential equations.

The high-precision numerical solutions are denoted as uε, while the predictions are represented as ûε.
The training dataset consists of 900 load vectors generated from independently sampled functions
f , with inputs discretized at a resolution of 201 for both 1D and 2D cases (see Appendix D.1).
High-precision numerical solutions on the Shishkin mesh (see, e.g., (Li et al., 2024)) are used to
compute the corresponding outputs uε, which serve as the ground truth during training. Additionally,
for all ODE experiments, the input-output resolution is set to 201, ensuring consistency across the
comparative evaluations of FNO, ComFNO, and our method. In 2D PDE experiments, the resolution
is fixed at 51 for ε = 10−3 and for ε = 10−4 in the rectangular domain. For the circle domain, an
input-output resolution of 960 is used for the irregular geometry.

4.1 ORDINARY DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

We begin with the following problem:

−εu′′
ε + (x+ 1)u′

ε = f(x), x ∈ (0, 1),

uε(0) = uε(1) = 0.
(9)
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Table 2: Mean relative L2 test errors(×10−3) for FNO, ComFNO, and eFEONet across different
values of ε for ODEs with boundary layers. FNO and ComFNO are trained with 900 samples,
whereas eFEONet uses no pre-computed training data.

Model Varying ε
ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

FNO (w/ 900 train data) 36 36.8 36.9 36.9
ComFNO (w/ 900 train data) 3.88 5.7 7.60 5.66

Standard FEM 98.1 382 3.04e+03 6.80e+03
Ours (eFEONet) (w/o train data) 0.07 0.03 0.07 0.03

As shown in Figure 4, the solution exhibits an exponential boundary layer near x = 1, making it an
excellent test case for evaluating the ability of eFEONet to capture sharp boundary layers effectively.
To address this challenge for equation 9, eFEONet utilizes the corrector ϕ0(x) = exp(−2(1− x)/ε)
to capture the boundary layer more effectively (see Appendix D for further details).

Figure 4: Comparison of predicted solutions ûε using FNO,
ComFNO, and eFEONet with ε = 10−4 for the boundary
layer problem. The external force input function is given by
f(x) = 1.81 sin(1.68x) + 0.09 cos(−1.78x).

As shown in the second column
of Table 1, when sufficient train-
ing data is available, both FNO and
ComFNO achieved reasonable accu-
racy, but our eFEONet outperforms
them. Moreover, as the amount
of training data decreases, the error
for ComFNO increases significantly,
whereas eFEONet maintains higher
accuracy even with limited data. Table
2 presents the relative L2 test errors
for FNO, ComFNO, and eFEONet
across different values of ε. The re-
sults demonstrate that eFEONet con-
sistently outperforms the benchmark
models, achieving significantly lower
errors even without using any training
data. Note that the error trends for FNO and ComFNO remain relatively stable across different
ε values, but eFEONet maintains even higher accuracy across all tested cases, demonstrating its
effectiveness in capturing boundary layer phenomena without requiring extensive training datasets.

Figure 4 further compares the predicted solution ûε for one of the test samples using FNO, ComFNO,
and eFEONet with ε = 10−4. FNO shows substantial errors, particularly near the boundary layer,
while ComFNO achieves relatively better accuracy but struggles to fully resolve the sharp transitions.
In contrast, eFEONet, leveraging the corrector function as an additional basis function, achieves the
highest accuracy, effectively capturing the boundary layer with minimal error.

4.2 ORDINARY DIFFERENTIAL EQUATIONS WITH INTERIOR LAYER

We consider the following ordinary differential equation with a turning point at x = 0:
−εu′′

ε − xu′
ε = f(x), x ∈ (−1, 1),

uε(−1) = uε(1) = 0,
(10)

with the corrector function ϕ0(x) = erf(
√

1/(2ε)x). As shown in the third column of Table 1,
eFEONet achieves better accuracy than both FNO and ComFNO, with a larger performance gap
emerging as the number of training samples decreases. This highlights the robustness of eFEONet in
data-scarce scenarios. Table 3 shows the relative L2 test errors for FNO, ComFNO, and eFEONet
across different values of ε for ODEs with interior layers. The results demonstrate that eFEONet
consistently achieves superior accuracy compared to FNO and ComFNO, even in the absence of
training data. Notably, as ε decreases, the performance gap between eFEONet and the benchmark
models significantly widens, indicating eFEONet’s ability to accurately capture sharp interior layers.

Figure 5 compares the predicted solutions ûε for two test samples using FNO, ComFNO, and
eFEONet with ε = 10−8. Notably, eFEONet demonstrates superior accuracy, particularly around the

7
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Figure 5: Comparison of predicted solutions ûε using FNO, ComFNO, and eFEONet with ε = 10−8.
The external forcing input is given by f(x) = x(−0.58 sin(0.44x) + 1.61 cos(1.05x)).

Figure 6: Comparison of the reference solution uε(x, y) (left) and the predicted solutions ûε along
the diagonal y = x for ComFNO and eFEONet (middle and right) with ε = 10−4. The results
highlight the superior accuracy of eFEONet in capturing sharp boundary layers along x = 0, whereas
ComFNO exhibits noticeable errors near the boundary regions.

singular region near the turning point at x = 0. This result underscores the capability of eFEONet to
effectively handle the challenges posed by singularities and turning points in differential equations,
delivering reliable predictions even in complex scenarios.

4.3 PARTIAL DIFFERENTIAL EQUATIONS ON SQUARE

Table 3: Mean relative L2 test errors(×10−3) for FNO,
ComFNO, and eFEONet across different values of ε for
ODEs with interior layers. The results highlight the perfor-
mance of each model when trained with 900 data samples
(FNO, ComFNO) and without training data (eFEONet).

Model Varying ε
ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

FNOw/ 900 train data 84.2 86.9 81.5 86.9
ComFNOw/ 900 train data 8.21 8.97 19.6 15.5

Standard FEMw/o train data 0.74 4.3 22.2 75.4
Ours(eFEONet)w/o train data 3.17 5.21 0.66 0.19

For a boundary-value problem of an
elliptic PDE in the spatial domain
D = [0, 1]2, we consider

−ε∆uε − (1, 1) · ∇uε = f(x, y) in D,

uε(x, y) = 0 on ∂D,
(11)

where the solution exhibits a boundary
layer along the edge at x = 0 and
y = 0, as illustrated in Figure 14.

As shown in the fourth column of Table 1, the accuracy gap between eFEONet and benchmark
models becomes even more pronounced for this problem. This highlights the capability of eFEONet
to effectively resolve boundary layers in complex spatial domains. Furthermore, as seen in Figure 6,
ComFNO shows large errors, whereas eFEONet achieves consistently low errors across the entire
domain, demonstrating its robustness and superior accuracy in handling such challenging scenarios.
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Figure 7: Numerical results comparing standard FEM (left) and eFEONet with a corrector function
(right) for ε = 10−3. The standard FEM solution exhibits significant numerical oscillations, failing to
capture the sharp transition accurately, whereas eFEONet effectively approximates the true solution.

4.4 PARTIAL DIFFERENTIAL EQUATIONS ON CIRCLE

We consider a singularly perturbed differential equation in a circular domain D, which is a circle
centered at (0, 0) with a radius of 1, given by

−ε∆uε − (uε)y = f(x, y) in D,

uε(x, y) = 0 on ∂D.
(12)

A boundary layer forms only along the outflow boundary, which corresponds to the lower semicircle.
Moreover, the boundary layer thickness is non-uniform, becoming thicker near (±1, 0). These
properties make the problem analytically challenging. Hence, conventional numerical methods
struggle to handle this problem, necessitating a scheme based on singular perturbation analysis to
achieve accurate solutions (Gie et al., 2018; Hong et al., 2014). The corrector function is given by

θ0(η, ξ) = −u0(cos η, sin η) exp

(
sin η

ε
ξ

)
χ[π,2π](η),

where η represents the tangential direction, ξ denotes the normal direction in a boundary-fitted
coordinate system and χ is the characteristic function. From the form of this corrector, it is evident
that the boundary layer thickness varies with η and exhibits degeneracy at (±1, 0). Specifically, the
exponential term shows that the thickness is proportional to sin η, meaning that it becomes signifi-
cantly larger near η = ±π/2 (corresponding to (±1, 0)). This non-uniform behavior complicates the
analysis and requires a careful treatment of the singular perturbation structure.

As shown in Figure 16 and Figure 17, the sharp transition occurs near (0,−1). Problems with
non-square geometries pose a significant challenge for existing neural operator models in learning
the solution operator. However, eFEONet demonstrates robust performance, even in such complex
geometry settings, achieving high accuracy even with limited training data as shown in Figure 7.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced eFEONet, designed for singularly perturbed differential equations.
By integrating boundary layer theory into the finite element framework, eFEONet captures sharp
transitions using theory-guided basis functions, eliminating the need for extensive training datasets.
Experimental results demonstrate the robustness of eFEONet across various PDEs with boundary
and interior layers in different geometries. Compared to FNO and ComFNO, eFEONet consistently
achieves superior accuracy, particularly in data-scarce scenarios. Additionally, our method is sup-
ported by convergence analysis, validating its reliability. Despite its strong performance, certain
limitations remain. First, the choice of parameters, such as the number of basis functions and network
hyperparameters, significantly affects the learning dynamics and overall performance of eFEONet. A
systematic analysis of these parameters is still an open research question. Second, while our study
presents a unique method for solving singularly perturbed problems with boundary and interior layers
using minimal or even no training data, future research should extend eFEONet to handle more
challenging problems, such as corner singularities and other intricate geometrical effects.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of a large language model (OpenAI ChatGPT) as a general-purpose assist
tool during the preparation of this work. The LLM was used to improve clarity, grammar, and style
in the abstract, introduction, and related work sections. The authors take full responsibility for all
scientific content presented in this paper.

B DERIVATION OF CORRECTOR BASIS FUNCTIONS

We have focused on the numerical treatment of the following singularly perturbed convection-
dominated problem

−ε∆uε − b · ∇uε + cuε = f in D,

uε = 0 on ∂D,

where 0 < ε ≪ 1, and b = b(x), c = c(x) and f = f(x) are given smooth functions defined
over the domain D. This formulation represents a general convection-diffusion-reaction equation
with singular perturbation. For this problem, we considered both 1D and 2D settings, addressing
critical challenges such as boundary layers and interior layers that arise due to the small parameter
ε > 0. From this point onward, our analysis follows the singular perturbation analysis stated in (Gie
et al., 2018). The theoretical foundations and techniques presented here are based on this approach,
providing a rigorous framework for handling boundary and interior layers in singularly perturbed
problems. For further details on related studies and extensions, we refer the reader to (Gie et al.,
2018).

(Boundary layer case) While our ultimate goal is to solve the above problem in 2D, we first simplify
the analysis and explanation by considering a one-dimensional paradigm problem. The 1D problem
is defined as

−εu′′
ε − u′

ε = f in (0, 1),

uε(0) = uε(1) = 0.

This 1D model provides a clear framework for understanding boundary layer phenomena and allows
us to systematically develop the necessary mathematical and computational tools before extending
the approach to higher dimensions. The corresponding limit problem is obtained by formally setting
ε = 0:

−u′
0 = f in (0, 1),

u0(1) = 0.

Treating this as a transport equation, we supplement the limit problem with the inflow boundary
condition at x = 1, namely

u0(1) = 0.

Solving this equation with the given condition yields

u0 = −
∫ 1

x

f(s) ds.

At this stage, the choice of the inflow boundary condition u0(1) = 0 is an assumption motivated by
the structure of the transport equation. To address the boundary layer near x = 0, we introduce a
stretched variable x̄ = x/εα, with α > 0. Substituting x̄ into the original problem with f = 0, we
derive

−ε1−2α d
2uε

dx̄2
− ε−α duε

dx̄
= 0.

Here, f is omitted because it is accounted for in the inviscid equation −u′
0 = f . To define a corrector

from this equation, we observe that the corrector must balance the difference between uε and u0 at
x = 0 and decay rapidly as x moves away from 0. By setting 1− 2α = −α, we find α = 1, resulting
in the following boundary layer equation

−d2θ̄ε
dx̄2

− dθ̄ε
dx̄

= 0.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The boundary conditions for this equation are

θ̄ε(0) = −u0(0), θ̄ε → 0 as x̄ → ∞.

The explicit solution for θ̄ε, the approximate corrector, is given as

θ̄ε = −u0(0)e
−x̄ = −u0(0)e

−x/ε.

As discussed earlier, we want to add this boundary layer function into our finite element ansatz space.
However, note that this boundary layer function does not satisfy the appropriate boundary conditions.
This is easily handled by introducing the boundary layer basis function of the form

ϕ0(x) = e−x/ε + (1− e−1/ε)x+ 1.

(Interior layer case): For convection–diffusion equations with an interior layer, we consider the
problem

−ε u′′
ε − b(x)u′

ε = f in (−1, 1),

uε(−1) = uε(1) = 0,

where b(x) satisfies b < 0 for x < 0, b(0) = 0, b > 0 for x > 0, and b′(x) > 0. The turning point at
x = 0 introduces an interior layer due to the change in sign of b(x), where characteristics collide.
For the formal limit problem, setting ε = 0 leads to:

−b(x)u′
0 = f,

but this may not be well-defined at x = 0 since b(0) = 0. Therefore, we split the solution into left
and right parts, ul

0 and ur
0, corresponding to x < 0 and x > 0, respectively

−b(x)(ul
0)

′ = f for x < 0 and − b(x)(ur
0)

′ = f for x > 0.

The inflow boundary conditions are then supplemented as

ul
0(−1) = 0, ur

0(1) = 0.

The discrepancy at x = 0 between ul
0 and ur

0 produces an interior layer. If f(0) = 0, the correctors
introduced below can effectively capture the sharpness of this layer. However, if f(0) ̸= 0, the limit
problem

−b(x)u′
0 = f

has an inconsistency at x = 0 because b(0) = 0. This implies that u′
0 diverges near x = 0, and the

interior layer cannot be fully captured by standard corrector functions. To address this issue, the data
may need to be adjusted to ensure compatibility, as described in related perturbation analyses. To
analyze the interior layer, we introduce the stretched variable x̄ = x/

√
ε and approximate b(x) as

b(x) = b′(0)x + 1
2b

′′(ξ)x2 ≈ b′(0)
√
εx̄. Substituting these into the original equation with f = 0,

we obtain the leading-order differential equation

−d2θ

dx̄2
− b′(0)x̄

dθ

dx̄
= 0,

subject to the boundary conditions

θ → constant as x̄ → ±∞.

The solution of this equation, written explicitly, is

θ =
2√
π

∫ x̄
√

b′(0)/2

0

e−τ2

dτ = erf

(
x̄

√
b′(0)

2

)
= erf

(
x

√
b′(0)

2ε

)
,

where erf denotes an error function. This serves as a corrector for the interior layer.

(2D circular domain case): We now investigate singularly perturbed differential equations of the
form

−ε∆uε − (uε)y = f(x, y) in D,

uε = 0 on ∂D,
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where 0 < ε ≪ 1, D represents the unit disk centered at (0, 0), and f(x, y) is a smooth function
defined over D. To analyze the asymptotic behavior as ε → 0, we consider the corresponding limit
problem, obtained by formally setting ε = 0:

−u0
y = f(x, y) in D,

u0 = 0 on Γu,

where Γu is the upper semicircle, defined as Γu = {(x, y) | x2+ y2 = 1, y > 0}. While the equation
itself is straightforward, the justification of the boundary condition on Γu requires careful analysis.
The explicit solution for u0(x, y) can be derived as

u0(x, y) =

∫ Cu(x)

y

f(x, s) ds, (x, y) ∈ D,

where Cu(x) =
√
1− x2. Notably, if f(x, y) does not vanish at the characteristic points (±1, 0),

the solution becomes incompatible, leading to singularities in the derivatives of u0. To ensure
well-posedness, we impose compatibility conditions of the form

∂p1+p2f

∂xp1∂yp2
= 0 at (±1, 0),

for non-negative integers p1, p2 with 0 ≤ 2p1+p2 ≤ 2. This ensures smoothness at the characteristic
points and prevents singularities from arising in the derivatives of u0.

To analyze the singularly perturbed problem, we introduce a boundary-fitted coordinate system
defined as

x = (1− ξ) cos η, y = (1− ξ) sin η,

where ξ = 1− r represents the normal distance to the boundary, and η is the polar angle measured
from the x-axis. Using this transformation, we redefine the computational domain in terms of (η, ξ)
coordinates

D∗ = {(η, ξ) ∈ (0, 2π)× (0, 1)}, D 1
2
= {(η, ξ) ∈ D∗ : ξ ≤ 1

2
}.

Applying this change of variables, the partial derivatives transform as follows

∂

∂x
= − cos η

∂

∂ξ
− sin η

1− ξ

∂

∂η
,

∂

∂y
= − sin η

∂

∂ξ
+

cos η

1− ξ

∂

∂η
.

Rewriting the differential operator in terms of (η, ξ), we obtain

−ε∆uε − (uε)y,= − ε

(1− ξ)2
∂2uε

∂η2
+

ε

1− ξ

∂uε

∂ξ
− ε

∂2uε

∂ξ2
+ sin η

∂uε

∂ξ
− cos η

1− ξ

∂uε

∂η
.

To systematically analyze the singular perturbation, we seek an asymptotic expansion of uε in the
form

uε ∼
∞∑
j=0

(
εjuj + εjθj

)
,

where uj corresponds to the outer expansion (valid away from the boundary layers), and θj represents
the inner expansion (boundary layer correction). First, considering only the outer expansion, we
assume

uε ∼
∞∑
j=0

εjuj .

Substituting this expansion into the governing equation at each order of ε, we obtain the leading-order
equation for all j ≥ 0:

−uj = ∆uj−1 in D,

uj = 0 on Γu.

Here, we set ∆u−1 = f(x, y) for simplicity. The justification of the boundary condition is nontrivial
and follows from convergence theorems. To analyze the boundary layer, we introduce a stretched
variable

ξ̄ = ξαξ̄,

16
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where the appropriate choice of α will be determined by asymptotic analysis. Setting f = 0 in the
original equation and substituting the new variables, we obtain the transformed equation

− ε

(1− εαξ̄)2
∂2uε

∂η2
+

ε1−α

1− εαξ̄

∂uε

∂ξ̄
− ε1−2α ∂

2uε

∂ξ̄2
+ ε−α sin η

∂uε

∂ξ̄
− cos η

1− εαξ̄

∂uε

∂η
= 0.

By extracting the leading-order terms, we obtain

−ε1−2α ∂
2uε

∂ξ̄2
+ ε−α sin η

∂uε

∂ξ̄
= 0.

Setting α = 1 yields a boundary layer equation of Prandtl’s type,

−∂2θ0

∂ξ̄2
+ sin η

∂θ0

∂ξ̄
= 0, for 0 < ξ̄ < ∞, π < η < 2π,

with boundary conditions

θ0(η, ξ̄) = −u0(cos η, sin η) at ξ̄ = 0,

θ0(η, ξ̄) → 0 as ξ̄ → ∞.

Solving this equation, we obtain the explicit corrector function:

θ0(η, ξ) = −u0(cos η, sin η) exp

(
sin η

ε
ξ

)
χ[π,2π](η).

This corrector accounts for the boundary layer effects, showing that the thickness of the boundary
layer varies with η and exhibits degeneracy at (±1, 0). This highlights the necessity of singular
perturbation analysis to correctly model such behavior.

C CONVERGENCE ANALYSIS OF ENRICHED FEONET

In this section, we will conduct a convergence analysis of the original FEONet to provide theoretical
justification for the proposed numerical method. To present the proof clearly, we will restrict our
focus to self-adjoint equations with homogeneous Dirichlet boundary conditions:

−εdiv(a(x)∇uε) + c(x)uε = f(x) in D,

uε = 0 on ∂D,
(13)

where a(x) is a uniformly elliptic coefficient and c(x) ≥ 0, which guarantees the well-posedness of
the problem. It is noteworthy that the analysis can be easily extended to more general cases (see, e.g.,
(Hong et al., 2024)).

As described earlier, we let an external forcing term f as the input of neural networks, that is
parametrized by ω in the probability space (Ω,F ,P). In the convergence analysis, we shall interpret
f(x;ω) as a bivariate function defined on D × Ω. Moreover, we will assume that

f(x;ω) ∈ C(Ω;L1(D)) :=

{
f : Ω → L1(D) : sup

ω∈Ω

∫
D

|f(x;ω)|dx < ∞
}
. (14)

For each ω ∈ Ω, the external force f(x;ω) is specified, and the corresponding weak solution is
denoted by uε(x;ω), which satisfies the variational formulation:

B[uε, v] := ε

∫
D

[a(x)∇uε · ∇v + c(x)uεv] dx =

∫
D

f(x)v dx =: ℓ(v) ∀v ∈ H1
0 (D). (15)

For given mesh size h > 0, let V h ⊂ H1
0 (D) be a finite-dimensional space spanned by the basis

functions {ϕk}N(h)
k=0 including the corrector basis function ϕ0 = ϕcor, and uen

ε,h ∈ V h be an enriched
finite element approximation of uε which satisfies the enriched Galerkin approximation

B[uen
ε,h, vh] = ℓ(vh) ∀vh ∈ V h. (16)

17
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We write

uen
ε,h(x,ω) =

N(h)∑
k=0

α∗
k(ω)ϕk(x), (17)

where α∗ is the finite element coefficients obtained from the linear algebraic system

Aα∗ = F, (18)

with
Aik = B[ϕk, ϕi] and Fi = ℓ(ϕi). (19)

Note that α∗ can also be characterized in an alternative way:

α∗ = argmin
α∈C(Ω,RN(h)+1)

L(α), (20)

where L is the population risk

L(α) = Eω∼PΩ

[N(h)∑
i=0

|B[û(ω), ϕi]− ℓ(ϕi; (ω))|2
]
= ∥Aα(ω)− F (ω)∥2L2(Ω). (21)

Next, we define the class of feed-forward neural networks as Nn, where the subscript n denotes
the network architecture. We assume that Nn2

is more expressive than Nn1
when n1 ≤ n2. For

instance, n could represent the number of layers with bounded width, or the number of neurons when
the number of layers is fixed. Neural networks are known to be an appropriate choice for nonlinear
approximation, supported by the universal approximation theorem (see, for example, (Cybenko,
1989; Hornik, 1991; Pinkus, 1999; Kidger & Lyons, 2020)). For our analysis in this section, we
assume that all neural networks under consideration have a bounded activation function in the final
layer (e.g., sigmoid, tanh, etc.), ensuring that the resulting networks are uniformly bounded. Using a
straightforward scaling argument, we can show that the universal approximation theorem still applies
to this modified class of networks, as discussed in Theorem 2.2 in (Ko et al., 2022).

Now for a neural-network approximation of α∗, we mean that α̂(n) : Ω → RN(h)+1, which solves
the following minimization problem

α̂(n) = argmin
α∈Nn

L(α), (22)

and we write the corresponding solution prediction by

ûen
ε,h,n(x;ω) =

N(h)∑
k=0

α̂(n)k(ω)ϕk(x). (23)

Note here that for the neural network α ∈ Nn, the input is ω ∈ Ω that specifies the external forcing
term f(x;ω) and the output is the coefficient vector in RN(h)+1.

Finally, we define the solution of the following discrete minimization problem:

α̂(n,M) = argmin
α∈Nn

LM (α). (24)

Here LM is the empirical risk, which is the Monte–Carlo integration of the population risk L(α):

LM (α) =
|Ω|
M

M∑
m=1

N(h)∑
i=0

|B[û(ωm), ϕi]− ℓ(ϕi; (ωm))|2 =
|Ω|
M

M∑
m=1

|Aα(ωm)− F (ωm)|2, (25)

where {ωn}Mm=1 is an i.i.d. random variables following PΩ. We then write the associated solution as

ûen
ε,h,n,M (x;ω) =

N(h)∑
k=0

α̂(n,M)k(ω)ϕk(x), (26)

which is the actual solution prediction by eFEONet. In the present paper, we assume that we can
always find the exact minimizers for the problems equation 22 and equation 24, and the optimization
error is ignorable.

18
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To establish suitable theoretical backgrounds for the eFEONet, it is reasonable to prove that the true
solution is close enough to the solution prediction computed by the proposed method for various
external forces, as the index n,M ∈ N goes to infinity. It can be formally written as

∥uε − ûen
ε,h,n,M∥L2(Ω;L2(D)) → 0 as h → 0 and n,M → ∞. (27)

The above total error is divided into three parts:

uε − ûen
ε,h,n,M = (uε − uen

ε,h) + (uen
ε,h − ûen

ε,h,n) + (ûen
ε,h,n − ûen

ε,h,n,M ). (28)

The first error arises from the finite element approximation, which we assume to be negligible when
h > 0 is sufficiently small. In fact, based on the estimate equation 7, we can reduce this error to any
desired level by selecting a suitable h > 0. Therefore, we assume that h has been chosen so that the
finite element approximation error is small enough. The second error, known as the approximation
error, occurs when we use a class of neural networks to approximate the target (finite element)
coefficients. The third error, often referred to as the generalization error, measures how well our
approximation performs on unseen data. Our focus will be on proving that, with fixed h > 0 and
ε > 0, as the index n ∈ N for neural network architectures becomes larger and the number of input
samples M ∈ N increases, our approximate solution ûen

ε,h,n,M converges to the finite element solution
uen
ε,h which is assumed to be the true solution here.

C.1 APPROXIMATION ERROR

First, from equation 21 and equation 25, we observe that the matrix A defined in equation 17 and
equation 18 plays a key role in determining the structure of the loss functions. Hence, it would be
beneficial for us to analyze these loss functions by understanding more about the matrix. The matrix
A is determined by various factors such as the structure of the differential equations, the choice of
basis functions, and the boundary conditions. Thus, achieving a characterization of A that is useful
for analyzing the loss function and applicable across a wide variety of PDE scenarios is important.
The next lemma, quoted from (Ko et al., 2022), addresses this point.

Lemma C.1. Let A ∈ R(N(h)+1)×(N(h)+1) be symmetric and invertible, and we write ρmin =
mini{|λi|}, ρmax = maxi{|λi|} where {λi} is the set of eigenvalues of A. Then there holds for any
x ∈ RN(h)+1 that

ρmin|x| ≤ |Ax| ≤ ρmax|x|. (29)

Since the equation 13 is self-adjoint, the associated bilinear form B[·, ·] defined in equation 15 is
symmetric, which ensures that the matrix A is also symmetric. Additionally, because the coefficient
a(·) is uniformly elliptic and c(·) is non-negative, the bilinear form B[·, ·] is coercive, meaning that
A is positive-definite. As a result, we can apply Lemma C.1 to our enriched finite element matrix A.

With this, we are now ready to prove that the approximation error for neural networks converges to
zero, as stated in the following theorem.
Theorem C.2. Suppose that the assumption equation 14 holds. Then there holds that

∥α∗ − α̂(n)∥L2(Ω) → 0 as n → ∞. (30)

Proof. Since A is symmetric and positive-definite (and hence invertible), from Proposition C.1, we
have that

∥α∗ − α̂(n)∥22 ≲ ∥Aα∗ −Aα̂(n)∥22 ≲ ∥Aα∗ − F∥22 + ∥Aα̂(n)− F∥22 = L(α̂(n)) ≤ inf
α∈Nn

L(α)

= inf
α∈Nn

∥Aα− F∥22 ≲ inf
α∈Nn

(
∥Aα−Aα∗∥22 + ∥Aα∗ − F∥22

)
= inf

α∈Nn

∥α− α∗∥22.

Note that the implicit constants in the above inequalities may depend on ε > 0 and h > 0, but are
independent of n ∈ N. As a final step, from the universal approximation property, the last term
infα∈Nn

∥α− α∗∥22 converges to zero as n → ∞.

C.2 GENERALIZATION ERROR

We begin with the definition of Rademacher complexity, which measures how the given function
class can fit random noise (Gnecco & Sanguineti, 2008; Wainwright, 2019; Bartlett & Mendelson,
2002; Shalev-Shwartz & Ben-David, 2014).
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Definition C.3. For a family {Xi}Mi=1 of i.i.d. random variables, the Rademacher complexity of the
function class G is defined by

RM (G) = E{Xi,εi}M
i=1

[
sup
f∈G

∣∣∣∣ 1M
M∑
i=1

εif(Xi)

∣∣∣∣],
where εi’s are i.i.d. Bernoulli random variables meaning that P(εi = 1) = P(εi = −1) = 1

2 for all
i = 1, . . . ,M .

Next, we will establish the relationship between the generalization error and the Rademacher com-
plexity for the uniformly bounded function class G. In the following theorem, we assume that the
function class is b-uniformly bounded, meaning that for any function f ∈ G, we have ∥f∥∞ ≤ b.
Theorem C.4. [Theorem 4.10 in (Wainwright, 2019)] Suppose that the family of functions G is
b-uniformly bounded. Then for arbitrary small δ > 0, there holds

sup
f∈G

∣∣∣∣ 1M
M∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣ ≤ 2RM (G) + δ,

with probability at least 1− exp(−Mδ2

2b2 ).

Next, let us define the following function class:
Gn := {|Aα− F |2 : α ∈ Nn}, (31)

where A and F were defined in equation 19. Then from Lemma C.1, we obtain that
∥Aα− F∥L∞(Ω) ≤ ∥Aα∥L∞(Ω) + ∥F∥L∞(Ω) ≲ ∥α∥L∞(Ω) + ∥f∥C(Ω;L1(D)).

Since the class of neural networks we are considering is uniformly bounded and equation 14 holds,
it follows that for any n ∈ N, the class Gn is b̃-uniformly bounded for some constant b̃ > 0. The
following lemma directly follows from Theorem C.4 in our context.
Lemma C.5. Assume that {ωm}Mm=1 is a set of i.i.d. random samples selected from the distribution
PΩ. Then for any small δ > 0, we have with probability at least 1− 2 exp(−Mδ2

32b̃2
) that

sup
α∈Nn

∣∣LM (α)− L(α)
∣∣ ≤ 2RM (Gn) +

δ

2
. (32)

Using Lemma C.5, we now establish the following convergence result for the generalization error.
Note here that we assume the Rademacher complexity of Gn tends to zero as M → ∞, which holds
true in many cases (Gnecco & Sanguineti, 2008; Wainwright, 2019; Bartlett & Mendelson, 2002;
Shalev-Shwartz & Ben-David, 2014).
Theorem C.6. Assume that equation 14 holds and for any n ∈ N, limM→∞ RM (Gn) = 0. Then
with probability 1, we have that

lim
n→∞

lim
M→∞

∥α̂(n,M)− α̂(n)∥L2(Ω) = 0.

Proof. From equation 22 and Proposition C.1, we have

∥α̂(n)− α̂(n,M)∥22 ≲ ∥Aα̂(n)−Aα̂(n,M)∥22 ≲
(
∥Aα̂(n)− F∥22 + ∥Aα̂(n,M)− F∥22

)
= L(α̂(n)) + L(α̂(n,M)) ≲ L(α̂(n,M)).

(33)

We next use Lemma C.5 for δ = 2M− 1
2+ε with 0 < ε < 1

2 . Then with probability at least
1− 2 exp(−M2ε

8b̃2
), we obtain that

L(α̂(n,M)) ≤ LM (α̂(n,M)) + 2RM (Gn) +M− 1
2+ε ≤ LM (α̂(n)) + 2RM (Gn) +M− 1

2+ε.

By applying Lemma C.5 once more, we have that

L(α̂(n,M)) ≤ L(α̂(n)) + 4RM (Gn) + 2M− 1
2+ε.

With the argument used for the approximation error analysis before, we finally conclude that
lim

n→∞
lim

M→∞
∥α̂(n,M)− α̂(n)∥22 ≲ lim

n→∞
L(α̂(n)) ≲ lim

n→∞
inf

α∈Nn

∥α− α∗∥22 = 0.
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C.3 MAIN THEORETICAL RESULT ON THE CONVERGENCE OF EFEONET

Combining Theorem C.2 and Theorem C.6, we see that

lim
n→∞

lim
M→∞

∥α∗ − α̂(n,M)∥L2(Ω) = 0. (34)

Now we state and prove the main convergence result.

Theorem C.7 (Convergence of eFEONet). Assume that equation 14 holds and for any n ∈ N,
RM (G̃n) → 0 as M → ∞, where G̃n := {|Aα− F |2 : α ∈ Nn}. Then for given ε > 0 and h > 0,
with probability 1, we have that

lim
n→∞

lim
M→∞

∥uen
ε,h − ûen

ε,h,n,M∥L2(Ω;L2(D)) = 0. (35)

Proof. By Theorem C.2, Theorem C.6, there holds for fixed ε > 0 and h > 0 that

∥uen
ε,h − ûen

ε,h,n,M∥2L2(Ω;L2(D)) =

∫
Ω

∫
D

∣∣∣∣N(h)∑
i=0

(α∗
i − α̂(n,M)i)ϕi

∣∣∣∣2 dx dω

≤
∫
Ω

∫
D

N(h)∑
i,j=0

|α∗
i − α̂(n,M)i|2|ϕi|2 dx dω

+

∫
Ω

∫
D

N(h)∑
i,j=0

|α∗
j − α̂(n,M)j |2|ϕj |2 dx dω

≤
∫
Ω

∫
D

2N(h)

N(h)∑
k=0

|α∗
k − α̂(n,M)k|2|ϕk|2 dx dω

≲ ∥α∗ − α̂(n,M)∥2L2(Ω),

where all the implicit constants above are independent of n, M ∈ N. Taking n,M → ∞, we
complete the proof.

Remark C.8. It is noteworthy that the convergence in Theorem C.7 is not uniform with respect to
h → 0. Indeed, this issue aligns precisely with the main theme of reference (Hong et al., 2024),
where the authors rigorously demonstrated that both the approximation error and generalization
error depend on the condition number κ(A) of the finite element matrix A. Typically, κ(A) ∼ h−2,
meaning that as h becomes smaller, both the approximation and generalization errors increase due to
this adverse dependence. To summarize, the total error can be characterized as:

(Total Error) ≲ hα +
h−β

√
n

+
h−γ

√
M

,

for some positive constants α, β and γ. In the regime where h is not too small, the first term dominates,
and the total error decreases with decreasing h. However, beyond a certain threshold, the last two
terms begin to dominate, causing the total error to increase. One can mitigate this phenomenon
by utilizing several strategies. For instance, employing higher-order FEM increases α, thereby
reducing the approximation error. Alternatively, increasing n and M reduces the generalization error.
Most importantly, one can use the preconditioning techniques to reduce κ(A), thereby significantly
diminishing the last two components. While this analysis was originally developed in the context of
FEONet, it applies directly to eFEONet as well, since in eFEONet we solve equations with a fixed
small ε. More precisely, the only part of the analysis in (Hong et al., 2024) where ε could potentially
affect the results is in the condition number estimates (Eq. (2.11) and (2.12) on page 6 of (Hong et al.,
2024)). If we explicitly characterize the dependency on ε in these equations, then we can likewise
make the ε -dependence explicit in the final error estimate (Theorem 4.10 on page 18). In doing so,
we can obtain a complete error analysis for eFEONet that incorporates both singular perturbation
asymptotic analysis and the general framework from (Hong et al., 2024), which will be addressed in
the forthcoming paper.
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D EXPERIMENT DETAILS

D.1 RANDOM GENERATION OF INPUT FUNCTIONS FOR EXTERNAL FORCE

In order to train neural networks, we need to generate random external forcing functions. Inspired by
Bar-Sinai et al. (2019), we created a random signal f(x;ω) as a linear combination of sine functions
and cosine functions. More precisely, we set

f(x) = m0 sin(n0x) +m1 cos(n1x) (36)

for 1D cases and
f(x, y) = m0 sin(n0x+ n1y) +m1 cos(n2x+ n3y) (37)

for 2D cases where mi for i = 1, 2 and nj for j = 0, 1, 2, 3 are drawn independently from the uniform
distributions. It is worth noting that even when considering different random input functions, such as
those generated by Gaussian random fields, we consistently observe similar results. This robustness
indicates the reliability and stability of the eFEONet approach across various input scenarios.

For Section 4.4, we randomly sample the external force as f(x, y) = (1 − x2)2
[
m0 sin(n0x) +

m1 cos(n1y)
]
.

D.2 EXPERIMENT SETTINGS

In this section, we outline the experimental setup. For the problems under consideration, we used the
neural network, which consists of 6 convolutional layers with swish activation, followed by a fully
connected layer flattening the output. For the 1D problems, we used Conv1D, while Conv2D was
used for 2D problems. The eFEONet was trained with the LBFGS optimizer along with the following
hyperparameters.

• Maximal number of iterations per optimization step: 100;

• Learning rate : 0.1

• Update history size: 100.

We used the Intel Xeon Gold 6226R processor and NVIDIA RTX A6000 48GB GPU.

For the 1D problems, the training dataset for FNO and ComFNO includes 900× 201 tuples (f, u),
while the 2D scenarios encompass 900× 51× 51 tuples (f, u) as described in the paper (Li et al.,
2024). In all conducted experiments, we utilized the mean-square loss functions. For FNO and
ComFNO, we used the Adam optimizer for all minimization problems, accompanied by the consistent
utilization of the GELU activation function. Further details concerning the remaining parameters for
our result can be found in Table 4 and Table 5.

Experiment/FNO depth LR epoch batch size
1D (no turning point) 4 0.001 500 50

1D (turning point) 6 0.001 500 50
2D 5 0.001 1000 50

Table 4: Experimental parameters for FNO investigations. The term “depth” denotes the quantity
of Fourier layers implemented within the architecture. “LR” designates the learning rate employed,
while “epoch” signifies the count of training iterations performed.

Experiment/ComFNO blockNum LR epoch batch size
1D (no turning point) 1 0.001 500 30

1D (turning point) 2 0.001 500 30
2D 2 0.001 1000 20

Table 5: Experimental parameters for ComFNO investigations. The term “blockNum” denotes the
quantity of layer blocks implemented within the architecture. “LR” designates the learning rate
employed, while “epoch” signifies the count of training iterations performed.
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D.3 RUNTIME AND EFFICIENCY ANALYSIS

We report the training and inference costs for the 2D convection–diffusion problem, averaging results
over 10 independent runs with different random seeds.

• FNO:
– Inference time per sample: 3.951 ms

• ComFNO:
– Inference time per sample: 4.885 ms

• Our method (eFEONet):
– Inference time per sample (ms): Mean 3.81, Std 3.98, 95% CI [0.961, 6.657]
– Relative L2 error: Mean 2.26× 10−3, Std 2.92× 10−4, 95% CI [1.69× 10−3, 2.83×
10−3]

E FURTHER EXPERIMENTS

E.1 ORDINARY DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

We consider the 1D singularly perturbed differential equation given by:
−εu′′

ε + (x+ 1)u′
ε = f(x), x ∈ (0, 1),

uε(0) = uε(1) = 0.
(38)

The exact solution uε for equation 38 is approximately given by:

u(x) ≈ u0(x)− u0(1) exp

(
−2

1− x

ε

)
, (39)

where u0(x) is the reduced solution, and exp(−2 1−x
ε ) represents the corrector function. Figure 8

illustrates the corrector function for the equation equation 38 as ε varies from 10−1 to 10−4.

Figure 8: Corrector functions for the equation equation 9 with varying values of ε from 10−1 to 10−4.

As depicted in Figure 8, the solution displays an exponential boundary layer at x = 1. An example of
the solution to equation 38 is depicted in Figure 10. We evaluate different input-output resolutions,
specifically 50 and 200, comparing our predictions with the ground truth obtained from the upwind
scheme on the Shishkin mesh. The eFEONet predictions for different resolutions are illustrated in
Figure 10. Notably, the results remain consistent even at lower resolutions. The performance of our
method for ε = 10−5 with 100 test function f samples is shown in Figure 11. The figure on the left
shows the input function f , the middle figure shows the ground truth corresponding to the 100 test
f samples, and the figure on the right shows the residuals produced by our method for these 100 f
samples.
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Figure 9: Corrector function for equation 10 with ε varying from 10−1 to 10−4 (left) and the
corresponding interior layer structures with ε changing from 10−3 to 10−5 (right).

Figure 10: Comparison of the predicted solution ûε for each input-output resolution = 50, 200 and
true solution uε

Figure 11: Visualization of 100 input functions f (left), corresponding reference solutions (middle),
and error plots (right) for Section 4.1 with ε = 10−5, input-output resolution = 51.
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E.2 ORDINARY DIFFERENTIAL EQUATIONS WITH INTERIOR LAYER

When the coefficient of u′ vanishes at certain points, we refer to this as a turning point problem. We
now consider an example with a single turning point at x = 0 over the interval [−1, 1]:

−εu′′
ε − xu′

ε = f(x), x ∈ (−1, 1),

uε(−1) = uε(1) = 0.
(40)

The corrector function is shown in Figure 9. As depicted in Figure 9, the interior layer structure near
x = 0 becomes steeper as ε decreases. Figure 12 presents an example of turning point problems
for input-output resolutions of 25, 50, 100, and 200. The results are consistent with the previous
case. The performance of our method for ε = 10−5 with 100 test function f samples is shown in
Figure 13. The figure on the left shows the input function f , the middle figure shows the ground truth
corresponding to the 100 test f samples, and the figure on the right shows the residuals produced by
our method for these 100 f samples.

Figure 12: Comparison of the predicted solution ûε for each input-output resolution =
25, 50, 100, 200 and true solution uε

Figure 13: Visualization of 100 input functions f (left), corresponding reference solutions (middle),
and error plots (right) for Section 4.2 with ε = 10−5, input-output resolution = 51.

E.3 PARTIAL DIFFERENTIAL EQUATIONS ON SQUARE

We examine a boundary value problem for an elliptic PDE over the spatial domain D = [0, 1]2:
−ε∆uε − (1, 1) · ∇uε = f(x, y) in D,

uε(x, y) = 0 on ∂D,
(41)

For this PDE problem, the asymptotic expansion of u(x, y) is formulated as:

u(x, y) = u0(x, y)− u0(0, y)e
−x/ε − u0(x, 0)e

−y/ε + u0(0, 0)e
(−x−y)/ε.

The solution exhibits a boundary layer along x = 0 and y = 0, with a corner layer forming at (0, 0),
as illustrated in Figure 14. To solve the equation equation 41, we employ both FNO, ComFNO, and
eFEONet. Residuals for 100 randomly chosen f sample with ε = 10−4 are presented in Figure 15.
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Figure 14: Solution profiles for the PDE problem on a square domain.

Figure 15: Visualization of error plots from FNO for 100 test function(left), ComFNO(middle) and
eFEONet(right) for Section 4.3 with ε = 10−4, input-output resolution = 51.

E.4 PARTIAL DIFFERENTIAL EQUATIONS ON CIRCLE

Finally, we investigate singularly perturbed differential equations in various geometries. As a first
case, we consider the equation over the unit circle D, given by

−ε∆uε − (uε)y = f(x, y) in D,

uε = 0 on ∂D,

where 0 < ε ≪ 1, D represents the unit disk centered at (0, 0), and f(x, y) is a smooth function
defined over D. Figures 16 and 17 illustrate the solution profiles for different values of ε. Furthermore,
our approach can be extended to more complex geometries, as demonstrated in Figure 18.

Figure 16: Solution profiles for a circular domain with varying ε > 0 when the source term is given
by f(x, y) = (1− x2)2(−0.194 sin(−1.696x)− 1.12 cos(4.052y))
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Figure 17: Solution profiles for a circular domain with different ε > 0, where the source term is
given by f(x, y) = (1− x2)2(0.49 sin(1.03x) + 0.727 cos(−0.303y))

Figure 18: Results for square with a hole with different ε > 0.
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E.5 GENERALIZABILITY OF CORRECTOR FUNCTIONS

We propose the eFEONet for solving singularly perturbed PDEs without requiring data. Our approach
uses a corrector function derived from asymptotic analysis to obtain an accurate solution. Additionally,
we present a data-driven approach that simultaneously learns the corrector function and the solution
coefficients. We conducted two experiments to validate our methods. Our method integrates a
specialized corrector function, ϕcor, into the standard Finite Element Method (FEM) framework. The
final solution is represented as a linear combination of basis functions and the corrector function.

• Experiment 1: Approximating corrector function. In the first experiment, we attempted
to approximate the solution function of a 1D boundary layer problem using a corrector
function:

ϕcor(x) := e−(1+x)/ε − (1− (1− e−2/ε)(x+ 1)/2)

This function was approximated by a linear combination of basis functions,
∑N

i=1 c
c
iϕi. The

goal was to use this approximation to generate the weak formulation.
The approximation error, measured by the l∞ norm, was relatively small:

∥ϕcor −
N∑
i=1

cciϕi∥l∞ ≈ 3× 10−3

However, this approach failed because the derivative of the corrector function, ϕ′
cor, scales

with 1/ε, leading to large errors in the weak formulation due to the approximation’s inability
to accurately capture this behavior.

• Experiment 2: Simultaneous prediction of corrector function and coefficients. In the
second experiment, we used a data-driven approach to simultaneously predict the coefficients
and the corrector function. The coefficients were predicted as ci + cci exp(ξθ), where the
network outputted ci, cci , and ξθ. The results, summarized in Table 6, demonstrate a
significant improvement in accuracy.

Table 6: Comparison of Solution Accuracy
Method Error

Learnable corrector (data-driven) 3.2× 10−3

eFEONet 1× 10−5

The results of the second experiment clearly indicate that our data-driven approach, which simultane-
ously predicts the corrector function and coefficients, is highly effective. It successfully addresses
the limitations of simply approximating a theoretically derived corrector function. The significant
reduction in error from 3.2× 10−3 to 1× 10−5 demonstrates the superiority of our proposed method.

E.6 COMPARISON WITH THE ORIGINAL FEONET

The original FEONet does not incorporate a corrector function, and therefore, its performance is
comparable to the standard FEM without any enhancement. In contrast, our proposed eFEONet
achieves significantly lower errors in both boundary and interior layer regions, as shown in Table 7.

Model Boundary Layer Interior Layer
FEONet 3.04 0.0222
Ours (eFEONet) 7.0e-05 6.6e-04

Table 7: Comparison of FEONet and eFEONet for ε = 10−5. Errors are reported for the boundary
layer and interior layer regions.

F BROADER IMPACT DISCUSSION

Our proposed model, eFEONet, is designed to solve partial differential equations (PDEs) efficiently,
which has significant potential for positive societal impacts. By providing rapid and accurate compu-
tational predictions, our approach can accelerate scientific discovery and engineering advancements
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in various fields such as climate modeling, fluid dynamics, and structural engineering. Improved com-
putational efficiency can also contribute to reduced energy consumption and enhanced sustainability
in high-performance computing contexts.

However, we recognize potential negative societal impacts arising from inappropriate reliance on
model predictions. Specifically, inaccurate or overly confident reliance on model outputs without
sufficient validation could lead to erroneous conclusions or misguided decision-making in safety-
critical applications. To mitigate these risks, we strongly advocate for rigorous verification and
validation processes, transparency in model limitations, and cautious interpretation of the results
when deploying computational models in practical scenarios.
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