

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA-FREE ASYMPTOTICS-INFORMED OPERATOR NET- WORKS FOR SINGULARLY PERTURBED PDES

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advancements in machine learning (ML) have shown promise in solving partial differential equations (PDEs), but significant challenges remain, particularly in handling complex scenarios. Singularly perturbed differential equations present unique computational difficulties due to rapid transitions within thin boundary or interior layers, where ML methods often struggle. Moreover, these problems require massive adaptive mesh refinement, making dataset generation computationally expensive. In this paper, we introduce eFEONet, an enriched Finite Element Operator Network designed to overcome these challenges. By leveraging singular perturbation analysis from PDE theory, eFEONet incorporates special basis functions that capture the asymptotic behavior of solutions, enabling accurate modeling of sharp transitions. Our approach is highly data-efficient, requiring minimal training data or even functioning without a dataset. Furthermore, we provide a rigorous convergence analysis and empirically validate eFEONet across various boundary and interior layer problems.

1 INTRODUCTION

The use of machine learning (ML) to solve partial differential equations (PDEs) has made significant advancements in recent years, offering innovative approaches to tackle longstanding challenges in scientific computing (Lagaris et al., 1998; Lu et al., 2021b; Yu et al., 2018; Ainsworth & Dong, 2021). Among these methods, operator networks have emerged as a practical and efficient tool due to their ability to infer solutions quickly after training (Lu et al., 2021a; Li et al., 2021a). Unlike classical numerical methods that iteratively solve PDEs for each parameter setting, operator networks learn the solution operator itself, enabling rapid prediction and establishing a new paradigm for parametric PDEs. Their application, however, faces key challenges. Training typically requires precomputed datasets generated by conventional numerical solvers, a process that is computationally costly for complex PDEs. Singularly perturbed equations are particularly difficult, as sharp transitions within thin boundary or interior layers demand expensive, high-fidelity datasets and often degrade operator network performance due to their reliance on smooth priors (Lu et al., 2022).

Boundary and interior layer phenomena are of paramount importance in many scientific and engineering disciplines, including fluid dynamics, biology, and chemical reactions (Schlichting & Gersten,

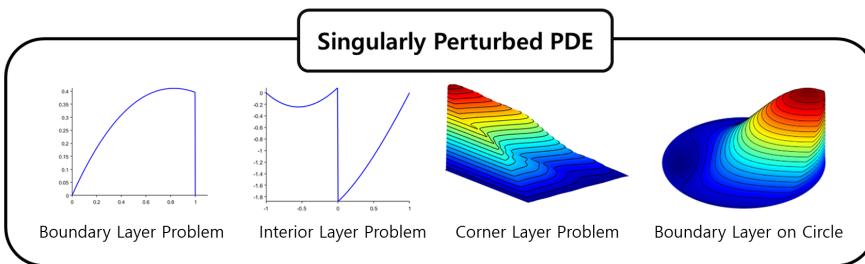


Figure 1: Representative solution profiles for singularly perturbed PDEs, illustrating the inherent stiffness of boundary and interior layers across various domains. The sharp gradients and rapid transitions depicted here highlight the intrinsic stiffness and associated computational challenges.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952

108
 109
 110
 111

- The proposed eFEONet is supported by rigorous theoretical foundations through finite element approximation and asymptotic analysis. This robust framework enables a formal convergence analysis, ensuring both reliability and explainability.

112 **2 RELATED WORKS**

113
 114 **Neural Operators.** Operator learning trains models to approximate PDE solution operators using
 115 datasets of input-output pairs from numerical solvers (Bhatnagar et al., 2019; Guo et al., 2016; Khoo
 116 et al., 2017; Zhu & Zabaras, 2018), enabling efficient and real-time predictions for varying inputs
 117 (Li et al., 2020). Notable architectures include the Fourier Neural Operator (FNO) (Kovachki et al.,
 118 2021) and DeepONet (Lu et al., 2021a). Recent advances also explore message-passing frameworks
 119 to accommodate complex problem structures (Brandstetter et al., 2022; Lienen & G  nnemann, 2022;
 120 Pfaff et al., 2021; Boussif et al., 2022). In addition, transformer-based architectures have been
 121 introduced (Cao, 2021; Wang et al., 2025; Hao et al., 2024), along with emerging foundation models
 122 tailored for PDEs (Herde et al., 2024; Ye et al., 2024). Despite these developments, operator learning
 123 still faces challenges in generalization, data efficiency, and resolving sharp solution features.

124
 125 **Unsupervised Physics-based Operator Networks.** Unsupervised physics-based operator networks
 126 incorporate governing equations directly into neural operator architectures, minimizing or completely
 127 removing the need for labeled training data. Variational frameworks such as FEO嫵 (Lee et al.,
 128 2025) and SCION (Choi et al., 2024) use PDE residuals in weak form to achieve accurate predictions
 129 without explicit simulation data. Similarly, physics-informed neural operator approaches like PINNs
 130 (Lu et al., 2021b; Han et al., 2018), PINO (Li et al., 2021b), and PIDeepONet (Wang et al., 2021)
 131 can also be formulated to rely entirely on PDE constraints and boundary conditions. Despite recent
 132 progress, accurately capturing multiscale phenomena and sharp gradients without labeled data remains
 133 challenging, highlighting the need for more robust unsupervised approaches.

134
 135 **Neural networks for boundary layers** Deep learning has emerged as a promising approach for
 136 solving singularly perturbed PDEs, with physics-informed methods also contributing to this effort
 137 (Arzani et al., 2023; Tawfiq & Al-Abraheme, 2014). However, these approaches often lack scalability
 138 and remain effective only in limited scenarios. The study on stiff chemical kinetics (Goswami
 139 et al., 2024) utilizes deep neural operators specifically for reaction-diffusion stiffness, limiting its
 140 applicability compared to our method, which addresses a broader class of singularly perturbed
 141 PDEs, including boundary and interior layers, particularly in data-scarce scenarios. Recently, a
 142 homotopy-based approach to learn the singularly perturbed problems was proposed by CHEN et al.
 143 (2025) for specific PDE instances rather than operator learning approaches. ComFNO (Li et al.,
 144 2024) incorporates asymptotic expansions to better handle singular perturbations. Nonetheless,
 145 challenges persist, including the need for large training datasets, difficulty in accurately capturing
 146 sharp transitions, and a lack of rigorous theoretical foundations to ensure broader reliability.

147 **3 ENRICHED FEONET**

148 In this section, we shall describe our proposed method, eFEONet, designed for solving singularly
 149 perturbed parametric PDEs. We start by giving a brief overview of the FEMs, which form the core of
 150 our approach. Then, we will explain eFEONet, the main method we propose in this paper.

151 For the description, we will focus on the following PDE:

152

$$-\varepsilon \operatorname{div}(\mathbf{a}(\mathbf{x}) \nabla u_\varepsilon) + \mathbf{b}(\mathbf{x}) \cdot \nabla u_\varepsilon = f \quad \text{in } D. \quad (1)$$

$$u_\varepsilon = 0 \quad \text{on } \partial D.$$

153 Here we assume that the singular perturbation parameter $\varepsilon > 0$ is very small so that the boundary
 154 layer phenomenon occurs. Furthermore, to highlight that the shape of a solution depends on $\varepsilon > 0$,
 155 we will denote the solution as u_ε .

156 As we will explain in more detail later, we propose an operator-learning approach for the singular
 157 perturbation problem that enables real-time solution predictions whenever the input data of the PDE
 158 varies. As a prototype model, we set the external force f as an input of neural networks, and train the
 159 model so that the neural networks can learn the operator $\mathcal{G} : f \mapsto u_\varepsilon$. Note, however, that our method

162 can be easily extended to various forms of input functions, including boundary conditions, variable
 163 coefficients, or initial conditions (see, e.g., (Lee et al., 2025)).
 164

165 **3.1 FINITE ELEMENT METHOD**
 166

167 The finite element method (FEM) is a technique for the numerical solution of PDEs and is based on
 168 the weak formulation of the PDE equation 1, which seeks to find a function $u_\varepsilon \in V$ satisfying

$$169 \quad B[u_\varepsilon, v] := \varepsilon \int_D \mathbf{a}(\mathbf{x}) \nabla u_\varepsilon \cdot \nabla v \, d\mathbf{x} + \int_D \mathbf{b}(\mathbf{x}) \cdot \nabla u_\varepsilon v \, d\mathbf{x} = \int_D f v \, d\mathbf{x} =: \ell(v) \quad \text{for all } v \in V, \quad (2)$$

171 where V is typically an infinite-dimensional function space for the solution and test functions. The
 172 first step in finite element method (FEM) theory is to discretize the domain $D \subset \mathbb{R}^d$, known as a
 173 *triangulation*. For $d = 1$ and $D = [a, b]$, this involves points $a = x_0 < x_1 < \dots < x_K = b$, with
 174 each interval $[x_{i-1}, x_i]$ forming a 1-simplex. For $d = 2$, the triangulation consists of closed triangles
 175 T_i (2-simplexes), $i = 1, \dots, K$, whose interiors are disjoint. If $i \neq j$ and $T_i \cap T_j \neq \emptyset$, then the
 176 intersection is either a shared vertex or edge. For $d \geq 3$, elements are d -simplexes. Let h_T denote the
 177 longest edge of a triangle T , and define the global mesh size as $h = \max_T h_T$. Let S_h be the space
 178 of continuous functions v_h on D such that the restriction of v_h to each element is a polynomial. The
 179 finite-dimensional ansatz space is then defined as $V_h = S_h \cap V$. Let $\{\mathbf{x}_i\}$ denote the triangulation
 180 vertices, and $\{\phi_j\}$ the *nodal basis* for V_h , where $\phi_j(\mathbf{x}_i) = \delta_{ij}$. Using piecewise linear basis functions
 181 defines the P1-element method; using piecewise quadratic polynomials gives the P2-element method.
 182 The dimension of V_h depends on the triangulation and hence on the mesh parameter h .
 183

183 The FEM aims to approximate the infinite-dimensional space V by a finite-dimensional subspace V_h
 184 defined by $V_h = \text{span}\{\phi_1, \phi_2, \dots, \phi_{N(h)}\}$. This makes the problem numerically solvable. Motivated
 185 from equation 2, we seek to compute the approximate solution $u_{\varepsilon,h} \in V_h$ using the so-called *Galerkin*
 186 *approximation*, which is given by the equation $B[u_{\varepsilon,h}, v_h] = \ell(v_h)$ for all $v_h \in V_h$. Writing the
 187 finite element solution as $u_{\varepsilon,h}(\mathbf{x}) = \sum_{k=1}^{N(h)} \alpha_k \phi_k(\mathbf{x})$ with $\alpha_i \in \mathbb{R}$, the Galerkin approximation
 188 transforms into the linear algebraic system $A\alpha = F$ with $A_{ik} := B[\phi_k, \phi_i]$ and $F_i := \ell(\phi_i)$. Here,
 189 A is invertible, assuming the underlying PDE has an appropriate structure. The coefficients $\{\alpha_k\}_{k=1}^{N(h)}$
 190 is then determined, thus yielding the approximate solution $u_{\varepsilon,h}$.
 191

192 **3.2 ENRICHED FEONET WITH A CORRECTOR BASIS**
 193

193 Now we are ready to introduce our main method, the enriched FEONet (eFEONet). One key novelty
 194 of the eFEONet is to utilize extra basis functions derived from theoretical arguments (see, e.g.,
 195 Appendix B). For a clear illustration of the proposed method, we shall explain it through a simple
 196 example of the following form:

$$197 \quad -\varepsilon u_\varepsilon'' - u_\varepsilon' = f(x), \quad x \in (-1, 1), \quad (3)$$

$$198 \quad u_\varepsilon(-1) = u_\varepsilon(1) = 0,$$

199 where $0 < \varepsilon \ll 1$. As we can see from Figure 2, when $\varepsilon > 0$ is small, it is difficult to expect the
 200 classical FEM or the original FEONet to achieve good performance due to the sharp transitions near
 201 the boundary. To accurately capture the boundary layer, we incorporate an additional basis function,
 202 commonly referred to as the *corrector function* in mathematical analysis, for example in this case,
 203 defined as: $\phi_{\text{cor}}(x) := e^{-(1+x)/\varepsilon} - (1 - (1 - e^{-2/\varepsilon})(x + 1)/2)$. Such a basis function reflects
 204 the boundary layer properties of the given equation and is derived from theoretical arguments. The
 205 derivation of various corrector basis functions will be addressed in Appendix B. The corrector basis
 206 is added to the standard nodal basis functions of FEM to construct an enriched Galerkin space. In
 207 other words, for enriched FEONet for the singularly-perturbed problems, we now replace the original
 208 ansatz space V_h by the enriched Galerkin space $\bar{V}_h = \{\phi_{\text{cor}}, \phi_1, \phi_2, \dots, \phi_{N(h)}\}$, where the corrector
 209 basis ϕ_{cor} has been added to V_h . It is noteworthy that no significant additional computational cost
 210 occurs, as the enriched basis is only restricted to boundary elements. In general, neural networks
 211 assume a smooth prior, which makes them less effective in handling boundary layers. This can lead to
 212 unstable training due to the direct calculation of the PDE residual. In contrast, the eFEONet leverages
 213 theory-guided basis functions, allowing its predicted solution to precisely capture the sharp transitions
 214 near the boundary. Encapsulating the above discussion, the enriched FEM for the boundary layer
 215 problem can be written as follows: we seek $u_{\varepsilon,h}^{\text{en}} \in \bar{V}_h$ satisfying

$$216 \quad B[u_{\varepsilon,h}^{\text{en}}, v_h] = \ell(v_h) \quad \text{for all } v_h \in \bar{V}_h. \quad (4)$$

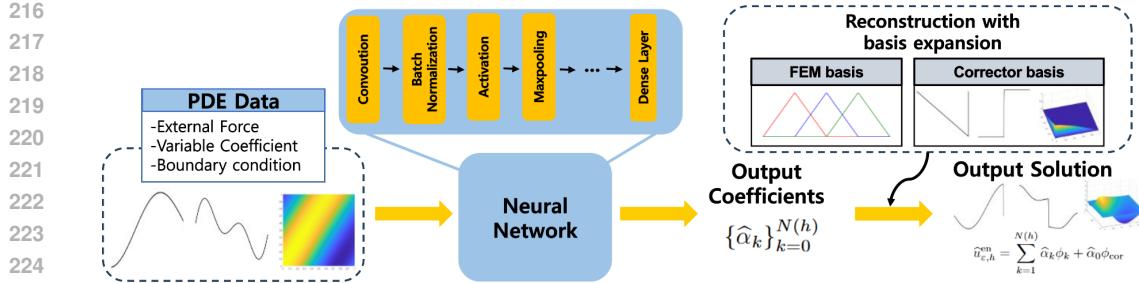


Figure 3: Schematic illustration of eFEONet.

In our eFEONet approach, the input to the neural network consists of data related to the given PDE problems, which is parameterized by $\omega \in \Omega$, while the output consists of the coefficients of a basis expansion. To be more specific, we incorporate this into a deep learning framework to construct the eFEONet, whose solution prediction is written as

$$\hat{u}_{\epsilon,h}^{en}(\mathbf{x}; \omega) = \sum_{k=1}^{N(h)} \hat{\alpha}_k(\omega) \phi_k(\mathbf{x}) + \hat{\alpha}_0(\omega) \phi_{cor}, \quad (5)$$

where the dimension of the output of the neural network has increased by one to handle the added corrector basis. By writing $\phi_0 := \phi_{cor}$, the loss function for the eFEONet is defined as

$$\mathcal{L}^M(\hat{u}_{\epsilon,h}^{en}) = \frac{1}{M} \sum_{m=1}^M \sum_{i=0}^{N(h)} |B[\hat{u}_{\epsilon,h}^{en}(\mathbf{x}; \omega_m), \phi_i(\mathbf{x})] - \ell(\phi_i(\mathbf{x}); \omega_m)|^2, \quad (6)$$

for randomly drawn parameters $\omega_1, \dots, \omega_M \in \Omega$. A schematic diagram of the eFEONet algorithm is shown in Figure 3.

Remark 3.1. Our framework employs corrector functions tailored to specific problem classes, yet they are not confined to individual instances. For families of PDEs with analogous singular behavior, the same correctors can often be applied effectively. In convection–diffusion equations, for example, the boundary layer typically has a thickness proportional to ϵ with an exponential profile, a structure preserved even with additional reaction terms.

Remark 3.2. Some preliminary results show that one could attempt to learn the corrector bases using data (see, e.g., Appendix E.5). In contrast, our approach constructs them via classical numerical analysis, which not only requires no data but also achieves substantially better performance. This integration of analytical methods into an operator learning framework constitutes the main novelty of our work, highlighting how analytic knowledge can maximize the efficiency of operator learning.

3.3 CONVERGENCE OF ENRICHED FEONET

In this section, we investigate the convergence result for eFEONet, providing a theoretical foundation for the proposed approach. Let us denote the solution of equation 3 by u_ϵ corresponding to a given parameter $0 < \epsilon \ll 1$. Since our method is built upon the enriched FEM, the enriched finite element approximation $u_{\epsilon,h}^{en}$ in equation 4 serves as an intermediate step between the exact solution u_ϵ and the approximate solution $\hat{u}_{\epsilon,h}^{en}$ obtained from eFEONet equation 5. Therefore, for the purpose of error analysis, the error $u_\epsilon - \hat{u}_{\epsilon,h}^{en}$ is decomposed into two components, specifically $u_\epsilon - \hat{u}_{\epsilon,h}^{en} = (u_\epsilon - u_{\epsilon,h}^{en}) + (u_{\epsilon,h}^{en} - \hat{u}_{\epsilon,h}^{en}) =: (I) + (II)$. The error analysis for the first term (I) is well investigated in the previous literature on singular perturbation analysis. For example, in (Cheng & Temam, 2002), the following error estimate was derived for the enriched FEM equation 4:

$$\|u_\epsilon - u_{\epsilon,h}^{en}\|_{H^1} \leq C \left(h + \frac{h^2}{\epsilon} \right), \quad (7)$$

where $C > 0$ is a constant independent of h and ϵ . This result is especially highlighted as it provides a satisfactory convergence result even in the under-resolved case for $h > \epsilon$. More general results can be found in various papers, e.g., from (Jung, 2005; Gie et al., 2018). The second error (II) represents

270
271 Table 1: Mean relative L^2 test errors ($\times 10^{-3}$) for FNO, ComFNO, DeepONet, PINN, and eFEONet
272 by varying the number of training input-output data pairs. Here, we set $\varepsilon = 10^{-3}$ for all experiments.

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323											
Model	Exp1. ODE w/ boundary layer				Exp2. ODE w/ interior layer				Exp3. PDE on square			
	# of training data				# of training data				# of training data			
	900	90	9	None	900	90	9	None	900	90	9	None
FNO	36.0	68.3	382	-	84.2	153	961	-	10.3	1e+03	1e+05	-
ComFNO	3.88	51.1	347	-	8.21	126	876	-	15.1	1320	1e+05	-
DeepONet	23.9	101	286	-	7.40	6.80	240	-	2300	1780	1590	-
PINN	-	-	-	970	-	-	-	800	-	-	-	1174
eFEONet (Ours)	0.01	0.07	0.03	0.06	1.79	1.99	4.23	3.17	2.26	1.83	5.38	8.53

280
281 a critical aspect that requires novel theoretical analysis. The parameters of $\hat{u}_{\varepsilon,h}^{\text{en}} =: \hat{u}_{\varepsilon,h,n,M}^{\text{en}}$ relevant
282 to convergence include the neural network architecture and the number of sampling points $\omega \in \Omega$,
283 denoted by $n \in \mathbb{N}$ and $M \in \mathbb{N}$, respectively. A larger $n \in \mathbb{N}$ indicates a greater approximation
284 capacity of the neural networks. We will establish the following theorem addressing the second error
285 (II), ensuring the reliability of our method and providing the theoretical underpinning of the proposed
286 numerical scheme. The detailed mathematical formulation and proof are presented in Theorem C.7.

287 **Theorem 3.3.** *Let $u_{\varepsilon,h}^{\text{en}}$ be the enriched finite element approximation equation 4 of the true solution
288 u_{ε} and $\hat{u}_{\varepsilon,h,n,M}^{\text{en}}$ be the approximate solution computed by the eFEONet. Then there holds*

$$289 \quad \mathbb{E} \left[\|u_{\varepsilon,h} - \hat{u}_{\varepsilon,h,n,M}^{\text{en}}\|_{L^2(D)}^2 \right] \rightarrow 0 \quad \text{as } n, M \rightarrow \infty, \quad (8)$$

290 where the expectation is taken over random samples $\omega \in \Omega$.

291 **Remark 3.4.** The main difference in our convergence analysis from the original FEONet lies in the
292 singular perturbation analysis, which governs equation 7, while the approximation and generalization
293 errors retain a similar structure. Unlike FEONet, however, the associated constants in our setting
294 depend implicitly on the perturbation parameter ε . Making this dependence explicit and establishing a
295 unified error estimate in terms of the mesh size h , perturbation parameter ε , approximation parameter
296 n , and number of samples M remains an interesting research direction to be addressed in future work.

300 4 EXPERIMENTS

301 In this section, we evaluate the performance of eFEONet on four distinct types of singularly perturbed
302 differential equations, including both ordinary and partial differential equations. For ordinary differential
303 equations (ODEs), we examine scenarios with and without turning points, highlighting eFEONet's
304 adaptability to varying problems. For PDEs, we test the eFEONet over domains with square and
305 circle geometries to assess its robustness across different spatial configurations. Furthermore, we
306 conduct a comparison of the experimental results with those obtained using FNO (Kovachki et al.,
307 2021) and ComFNO (Li et al., 2024), a neural operator model specifically designed to address the
308 challenges of singularly perturbed differential equations.

309 The high-precision numerical solutions are denoted as u_{ε} , while the predictions are represented as \hat{u}_{ε} .
310 The training dataset consists of 900 load vectors generated from independently sampled functions
311 f , with inputs discretized at a resolution of 201 for both 1D and 2D cases (see Appendix D.1).
312 High-precision numerical solutions on the Shishkin mesh (see, e.g., (Li et al., 2024)) are used to
313 compute the corresponding outputs u_{ε} , which serve as the ground truth during training. Additionally,
314 for all ODE experiments, the input-output resolution is set to 201, ensuring consistency across the
315 comparative evaluations of FNO, ComFNO, and our method. In 2D PDE experiments, the resolution
316 is fixed at 51 for $\varepsilon = 10^{-3}$ and for $\varepsilon = 10^{-4}$ in the rectangular domain. For the circle domain, an
317 input-output resolution of 960 is used for the irregular geometry.

319 4.1 ORDINARY DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

320 We begin with the following problem:

$$321 \quad -\varepsilon u_{\varepsilon}'' + (x+1)u_{\varepsilon}' = f(x), x \in (0, 1), \quad (9)$$

$$322 \quad u_{\varepsilon}(0) = u_{\varepsilon}(1) = 0.$$

324
325 Table 2: Mean relative L^2 test errors ($\times 10^{-3}$) for FNO, ComFNO, and eFEONet across different
326 values of ε for ODEs with boundary layers. FNO and ComFNO are trained with 900 samples,
327 whereas eFEONet uses no pre-computed training data.

Model	Varying ε			
	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$	$\varepsilon = 10^{-6}$
FNO (w/ 900 train data)	36	36.8	36.9	36.9
ComFNO (w/ 900 train data)	3.88	5.7	7.60	5.66
Standard FEM	98.1	382	3.04e+03	6.80e+03
Ours (eFEONet) (w/o train data)	0.07	0.03	0.07	0.03

334
335 As shown in Figure 4, the solution exhibits an exponential boundary layer near $x = 1$, making it an
336 excellent test case for evaluating the ability of eFEONet to capture sharp boundary layers effectively.
337 To address this challenge for equation 9, eFEONet utilizes the corrector $\phi_0(x) = \exp(-2(1-x)/\varepsilon)$
338 to capture the boundary layer more effectively (see Appendix D for further details).

339 As shown in the second column of Table 1, when sufficient training
340 data is available, both FNO and ComFNO achieved reasonable accuracy,
341 but our eFEONet outperforms them. Moreover, as the amount
342 of training data decreases, the error for ComFNO increases significantly,
343 whereas eFEONet maintains higher accuracy even with limited data. Table
344 2 presents the relative L^2 test errors for FNO, ComFNO, and eFEONet
345 across different values of ε . The results demonstrate that eFEONet
346 consistently outperforms the benchmark models, achieving significantly lower
347 errors even without using any training
348 data. Note that the error trends for FNO and ComFNO remain relatively stable across different
349 ε values, but eFEONet maintains even higher accuracy across all tested cases, demonstrating its
350 effectiveness in capturing boundary layer phenomena without requiring extensive training datasets.

351 Figure 4 further compares the predicted solution \hat{u}_ε for one of the test samples using FNO, ComFNO,
352 and eFEONet with $\varepsilon = 10^{-4}$. FNO shows substantial errors, particularly near the boundary layer,
353 while ComFNO achieves relatively better accuracy but struggles to fully resolve the sharp transitions.
354 In contrast, eFEONet, leveraging the corrector function as an additional basis function, achieves the
355 highest accuracy, effectively capturing the boundary layer with minimal error.

363 4.2 ORDINARY DIFFERENTIAL EQUATIONS WITH INTERIOR LAYER

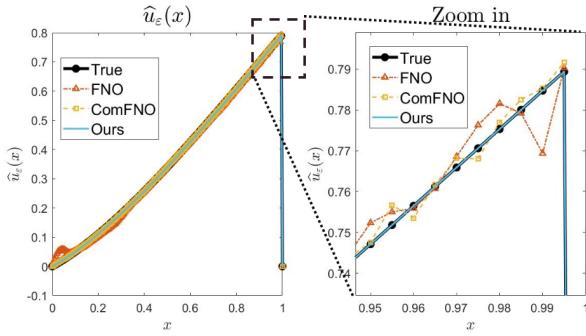
364 We consider the following ordinary differential equation with a turning point at $x = 0$:

$$365 \quad -\varepsilon u_\varepsilon'' - xu_\varepsilon' = f(x), \quad x \in (-1, 1), \quad (10)$$

$$366 \quad u_\varepsilon(-1) = u_\varepsilon(1) = 0,$$

367 with the corrector function $\phi_0(x) = \text{erf}(\sqrt{1/(2\varepsilon)}x)$. As shown in the third column of Table 1,
368 eFEONet achieves better accuracy than both FNO and ComFNO, with a larger performance gap
369 emerging as the number of training samples decreases. This highlights the robustness of eFEONet in
370 data-scarce scenarios. Table 3 shows the relative L^2 test errors for FNO, ComFNO, and eFEONet
371 across different values of ε for ODEs with interior layers. The results demonstrate that eFEONet
372 consistently achieves superior accuracy compared to FNO and ComFNO, even in the absence of
373 training data. Notably, as ε decreases, the performance gap between eFEONet and the benchmark
374 models significantly widens, indicating eFEONet's ability to accurately capture sharp interior layers.

375 Figure 5 compares the predicted solutions \hat{u}_ε for two test samples using FNO, ComFNO, and
376 eFEONet with $\varepsilon = 10^{-8}$. Notably, eFEONet demonstrates superior accuracy, particularly around the



377 Figure 4: Comparison of predicted solutions \hat{u}_ε using FNO, ComFNO, and eFEONet with $\varepsilon = 10^{-4}$ for the boundary
378 layer problem. The external force input function is given by
379 $f(x) = 1.81 \sin(1.68x) + 0.09 \cos(-1.78x)$.

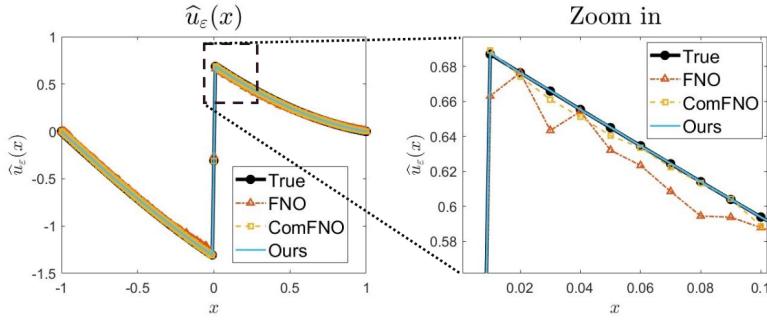


Figure 5: Comparison of predicted solutions \hat{u}_ε using FNO, ComFNO, and eFEONet with $\varepsilon = 10^{-8}$. The external forcing input is given by $f(x) = x(-0.58 \sin(0.44x) + 1.61 \cos(1.05x))$.

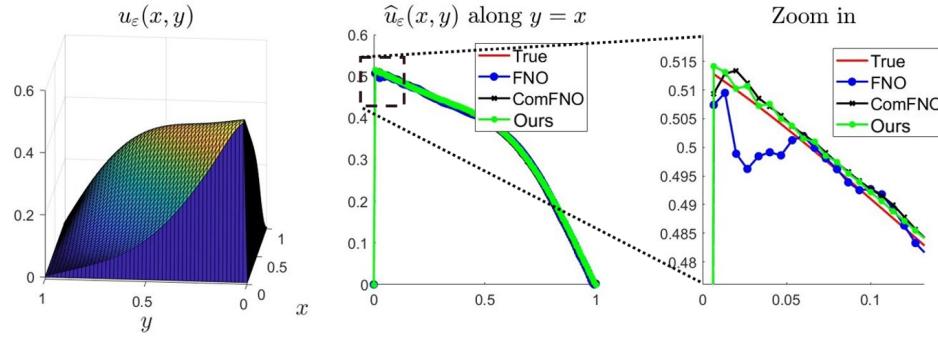


Figure 6: Comparison of the reference solution $u_\varepsilon(x, y)$ (left) and the predicted solutions \hat{u}_ε along the diagonal $y = x$ for ComFNO and eFEONet (middle and right) with $\varepsilon = 10^{-4}$. The results highlight the superior accuracy of eFEONet in capturing sharp boundary layers along $x = 0$, whereas ComFNO exhibits noticeable errors near the boundary regions.

singular region near the turning point at $x = 0$. This result underscores the capability of eFEONet to effectively handle the challenges posed by singularities and turning points in differential equations, delivering reliable predictions even in complex scenarios.

4.3 PARTIAL DIFFERENTIAL EQUATIONS ON SQUARE

For a boundary-value problem of an elliptic PDE in the spatial domain $D = [0, 1]^2$, we consider

$$\begin{aligned} -\varepsilon \Delta u_\varepsilon - (1, 1) \cdot \nabla u_\varepsilon &= f(x, y) \text{ in } D, \\ u_\varepsilon(x, y) &= 0 \text{ on } \partial D, \end{aligned} \quad (11)$$

where the solution exhibits a boundary layer along the edge at $x = 0$ and $y = 0$, as illustrated in Figure 14.

Table 3: Mean relative L^2 test errors ($\times 10^{-3}$) for FNO, ComFNO, and eFEONet across different values of ε for ODEs with interior layers. The results highlight the performance of each model when trained with 900 data samples (FNO, ComFNO) and without training data (eFEONet).

Model	Varying ε			
	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$	$\varepsilon = 10^{-6}$
FNOw/ 900 train data	84.2	86.9	81.5	86.9
ComFNOw/ 900 train data	8.21	8.97	19.6	15.5
Standard FEMw/o train data	0.74	4.3	22.2	75.4
Ours(eFEONet)w/o train data	3.17	5.21	0.66	0.19

As shown in the fourth column of Table 1, the accuracy gap between eFEONet and benchmark models becomes even more pronounced for this problem. This highlights the capability of eFEONet to effectively resolve boundary layers in complex spatial domains. Furthermore, as seen in Figure 6, ComFNO shows large errors, whereas eFEONet achieves consistently low errors across the entire domain, demonstrating its robustness and superior accuracy in handling such challenging scenarios.

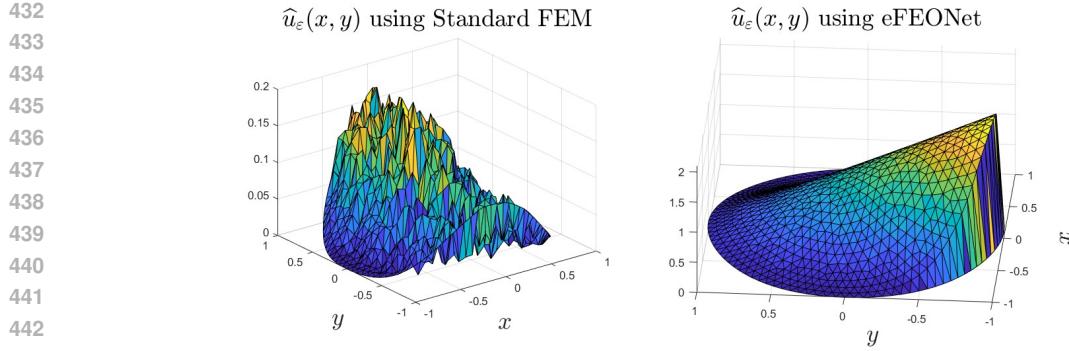


Figure 7: Numerical results comparing standard FEM (left) and eFEONet with a corrector function (right) for $\varepsilon = 10^{-3}$. The standard FEM solution exhibits significant numerical oscillations, failing to capture the sharp transition accurately, whereas eFEONet effectively approximates the true solution.

4.4 PARTIAL DIFFERENTIAL EQUATIONS ON CIRCLE

We consider a singularly perturbed differential equation in a circular domain D , which is a circle centered at $(0, 0)$ with a radius of 1, given by

$$\begin{aligned} -\varepsilon \Delta u_\varepsilon - (u_\varepsilon)_y &= f(x, y) && \text{in } D, \\ u_\varepsilon(x, y) &= 0 && \text{on } \partial D. \end{aligned} \tag{12}$$

A boundary layer forms only along the outflow boundary, which corresponds to the lower semicircle. Moreover, the boundary layer thickness is non-uniform, becoming thicker near $(\pm 1, 0)$. These properties make the problem analytically challenging. Hence, conventional numerical methods struggle to handle this problem, necessitating a scheme based on singular perturbation analysis to achieve accurate solutions (Gie et al., 2018; Hong et al., 2014). The corrector function is given by

$$\theta^0(\eta, \xi) = -u^0(\cos \eta, \sin \eta) \exp\left(\frac{\sin \eta}{\varepsilon} \xi\right) \chi_{[\pi, 2\pi]}(\eta),$$

where η represents the tangential direction, ξ denotes the normal direction in a boundary-fitted coordinate system and χ is the characteristic function. From the form of this corrector, it is evident that the boundary layer thickness varies with η and exhibits degeneracy at $(\pm 1, 0)$. Specifically, the exponential term shows that the thickness is proportional to $\sin \eta$, meaning that it becomes significantly larger near $\eta = \pm\pi/2$ (corresponding to $(\pm 1, 0)$). This non-uniform behavior complicates the analysis and requires a careful treatment of the singular perturbation structure.

As shown in Figure 16 and Figure 17, the sharp transition occurs near $(0, -1)$. Problems with non-square geometries pose a significant challenge for existing neural operator models in learning the solution operator. However, eFEONet demonstrates robust performance, even in such complex geometry settings, achieving high accuracy even with limited training data as shown in Figure 7.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced eFEONet, designed for singularly perturbed differential equations. By integrating boundary layer theory into the finite element framework, eFEONet captures sharp transitions using theory-guided basis functions, eliminating the need for extensive training datasets. Experimental results demonstrate the robustness of eFEONet across various PDEs with boundary and interior layers in different geometries. Compared to FNO and ComFNO, eFEONet consistently achieves superior accuracy, particularly in data-scarce scenarios. Additionally, our method is supported by convergence analysis, validating its reliability. Despite its strong performance, certain limitations remain. First, the choice of parameters, such as the number of basis functions and network hyperparameters, significantly affects the learning dynamics and overall performance of eFEONet. A systematic analysis of these parameters is still an open research question. Second, while our study presents a unique method for solving singularly perturbed problems with boundary and interior layers using minimal or even no training data, future research should extend eFEONet to handle more challenging problems, such as corner singularities and other intricate geometrical effects.

486 REFERENCES
487

488 Mark Ainsworth and Justin Dong. Galerkin neural networks: A framework for approximating
489 variational equations with error control. *SIAM Journal on Scientific Computing*, 43(4):A2474–
490 A2501, 2021.

491 Amirhossein Arzani, Kevin W Cassel, and Roshan M D’Souza. Theory-guided physics-informed
492 neural networks for boundary layer problems with singular perturbation. *Journal of Computational
493 Physics*, 473:111768, 2023.

494 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
495 discretizations for partial differential equations. *Proceedings of the National Academy of Sciences*,
496 116(31):15344–15349, 2019.

497 Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: risk bounds and
498 structural results. *J. Mach. Learn. Res.*, 3(Spec. Issue Comput. Learn. Theory):463–482, 2002.
500 ISSN 1532-4435. doi: 10.1162/153244303321897690. URL <https://doi.org/10.1162/153244303321897690>.

502 George Keith Batchelor. *An introduction to fluid dynamics*. Cambridge university press, 2000.
503

504 Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Prediction
505 of aerodynamic flow fields using convolutional neural networks. *Computational Mechanics*,
506 64(2):525–545, 2019.

507 Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. MAgnet: Mesh Agnostic
508 Neural PDE Solver. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
509 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=bx2roi8hca8>.

510

512 Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message Passing Neural PDE Solvers.
513 In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=vSix3HPYKSu>.

514

515 Shuhao Cao. Choose a transformer: Fourier or galerkin. In A. Beygelzimer, Y. Dauphin, P. Liang,
516 and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021.

517

518 Mickaël D. Chekroun, Youngjoon Hong, and Roger Temam. Enriched numerical scheme for
519 singularly perturbed barotropic quasi-geostrophic equations. *Journal of Computational Physics*,
520 416:109493, 2020.

521 Chuqi CHEN, Yahong Yang, Yang Xiang, and Wenrui Hao. Learn singularly perturbed solutions via
522 homotopy dynamics. In *Forty-second International Conference on Machine Learning*, 2025. URL
523 <https://openreview.net/forum?id=OqutBNEEjz>.

524

525 Wenfang Cheng and Roger Temam. Numerical approximation of one-dimensional stationary diffusion
526 equations with boundary layers. *Computers & Fluids*, 31(4):453–466, 2002. ISSN 0045-7930.
527 doi: [https://doi.org/10.1016/S0045-7930\(01\)00060-3](https://doi.org/10.1016/S0045-7930(01)00060-3). URL <https://www.sciencedirect.com/science/article/pii/S0045793001000603>.

528

529 Junho Choi, Taehyun Yun, Namjung Kim, and Youngjoon Hong. Spectral operator learning for para-
530 metric pdes without data reliance. *Computer Methods in Applied Mechanics and Engineering*, 420:
531 116678, 2024. ISSN 0045-7825. doi: <https://doi.org/10.1016/j.cma.2023.116678>. URL <https://www.sciencedirect.com/science/article/pii/S0045782523008010>.

533

534 G. Cybenko. Approximation by superpositions of a sigmoidal function. *Math. Control Signals
535 Systems*, 2(4):303–314, 1989. ISSN 0932-4194. doi: 10.1007/BF02551274. URL <https://doi.org/10.1007/BF02551274>.

536

537 Gung-Min Gie, Makram Hamouda, Chang-Yeol Jung, and Roger M. Temam. *Singular perturbations
538 and boundary layers*, volume 200 of *Applied Mathematical Sciences*. Springer, Cham, 2018.
539 ISBN 978-3-030-00637-2; 978-3-030-00638-9. doi: 10.1007/978-3-030-00638-9. URL <https://doi-org-ssl.openlink.inha.ac.kr/10.1007/978-3-030-00638-9>.

540 Giorgio Gnecco and Marcello Sanguineti. Approximation error bounds via Rademacher’s complexity.
 541 *Appl. Math. Sci. (Ruse)*, 2(1-4):153–176, 2008. ISSN 1312-885X.

542

543 Somdatta Goswami, Ameya D. Jagtap, Hessam Babaee, Bryan T. Susi, and George Em Karniadakis.
 544 Learning stiff chemical kinetics using extended deep neural operators. *Computer Methods in*
 545 *Applied Mechanics and Engineering*, 419:116674, 2024. ISSN 0045-7825. doi: <https://doi.org/10.1016/j.cma.2023.116674>. URL <https://www.sciencedirect.com/science/article/pii/S0045782523007971>.

546

547

548 Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
 549 proximation. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge*
 550 *discovery and data mining*, pp. 481–490, 2016.

551

552 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 553 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018.

554

555 Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima
 556 Anandkumar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator trans-
 557 former for large-scale PDE pre-training. In Ruslan Salakhutdinov, Zico Kolter, Katherine
 558 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Pro-
 559 ceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
 560 ceedings of Machine Learning Research*, pp. 17616–17635. PMLR, 21–27 Jul 2024. URL
 561 <https://proceedings.mlr.press/v235/hao24d.html>.

562

563 Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
 564 de Bezenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for PDEs. In *The*
 565 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=JC1VKK3UXk>.

566

567 Youngjoon Hong, Chang-Yeol Jung, and Roger Temam. On the numerical approximations of stiff
 568 convection–diffusion equations in a circle. *Numerische Mathematik*, 127(2):291–313, 2014.

569

570 Youngjoon Hong, Seungchan Ko, and Jaeyong Lee. Error analysis for finite element operator learning
 571 methods for solving parametric second-order elliptic pdes. *arXiv preprint arXiv:2404.17868*, 2024.

572

573 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural Net-
 574 works*, 4(2):251–257, 1991. ISSN 0893-6080. doi: [https://doi.org/10.1016/0893-6080\(91\)90009-T](https://doi.org/10.1016/0893-6080(91)90009-T). URL <https://www.sciencedirect.com/science/article/pii/089360809190009T>.

575

576 Thomas J. R. Hughes. *The Finite Element Method: Linear Static and Dynamic Finite Element*
 577 *Analysis*. Dover Publications, 2000.

578

579 Chang-Yeol Jung. Numerical approximation of two-dimensional convection-diffusion equations with
 580 boundary layers. *Numerical Methods for Partial Differential Equations*, 21(3):623–648, 2005. doi:
 581 <https://doi.org/10.1002/num.20054>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/num.20054>.

582

583 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 584 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

585

586 Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial neural
 587 networks. *arXiv preprint arXiv:1707.03351*, 2017.

588

589 Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow Networks. In Jacob
 590 Abernethy and Shivani Agarwal (eds.), *Proceedings of Thirty Third Conference on Learning*
 591 *Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 2306–2327. PMLR, 09–12
 592 Jul 2020. URL <https://proceedings.mlr.press/v125/kidger20a.html>.

593

594 Seungchan Ko, Seok-Bae Yun, and Youngjoon Hong. Convergence analysis of unsupervised legendre-
 595 galerkin neural networks for linear second-order elliptic pdes. 2022. URL <https://arxiv.org/abs/2211.08900>.

594 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 595 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. *arXiv*
 596 *preprint arXiv:2108.08481*, 2021.

597

598 Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
 599 ordinary and partial differential equations. *IEEE transactions on neural networks*, 9(5):987–1000,
 600 1998.

601 Jae Yong Lee, Seungchan Ko, and Youngjoon Hong. Finite element operator network for solving
 602 elliptic-type parametric pdes. *SIAM Journal on Scientific Computing*, 47(2):C501–C528, 2025.
 603 doi: 10.1137/23M1623707. URL <https://doi.org/10.1137/23M1623707>.

604

605 Ye Li, Ting Du, Yiwen Pang, and Zhongyi Huang. Component fourier neural operator for singularly
 606 perturbed differential equations. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38
 607 (12):13691–13699, Mar. 2024. doi: 10.1609/aaai.v38i12.29274. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29274>.

608

609 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
 610 Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
 611 differential equations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
 612 *Advances in Neural Information Processing Systems*, volume 33, pp. 6755–6766. Curran Asso-
 613 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf.

614

615 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 616 charya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial
 617 Differential Equations. In *International Conference on Learning Representations*, 2021a. URL
 618 <https://openreview.net/forum?id=c8P9NQVtmnO>.

619

620 Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
 621 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
 622 differential equations. *CoRR*, abs/2111.03794, 2021b. URL <https://arxiv.org/abs/2111.03794>.

623

624 Marten Lienen and Stephan Günnemann. Learning the Dynamics of Physical Systems from Sparse
 625 Observations with Finite Element Networks. In *International Conference on Learning Representa-
 626 tions*, 2022. URL <https://openreview.net/forum?id=HFmAukZ-k-2>.

627

628 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 629 nonlinear operators via DeepONet based on the universal approximation theorem of operators.
 630 *Nature Machine Intelligence*, 3(3):218–229, 2021a.

631

632 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
 633 for solving differential equations. *SIAM Review*, 63(1):208–228, 2021b.

634

635 Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
 636 George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
 637 practical extensions) based on fair data. *Computer Methods in Applied Mechanics and Engineering*,
 393:114778, 2022.

638

639 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 640 simulation with graph networks. In *International Conference on Learning Representations*, 2021.
 URL https://openreview.net/forum?id=roNqYL0_XP.

641

642 Allan Pinkus. Approximation theory of the MLP model in neural networks. In *Acta numerica*, 1999,
 643 volume 8 of *Acta Numer.*, pp. 143–195. Cambridge Univ. Press, Cambridge, 1999. doi: 10.1017/
 644 S0962492900002919. URL <https://doi.org/10.1017/S0962492900002919>.

645

646 Hermann Schlichting and Klaus Gersten. *Boundary-layer theory*. Springer, 2016.

647

648 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning - From Theory to
 649 Algorithms*. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

648 Martin Stynes. Steady-state convection-diffusion problems. *Acta Numerica*, 14:445–508, 2005. doi:
 649 10.1017/S0962492904000261.
 650

651 LNM Tawfiq and KMM Al-Abraheme. Design neural network to solve singular perturbation problems.
 652 *J. of Applied & Computational Mathematics*, 3:1–5, 2014.

653 Martin J. Wainwright. *High-dimensional statistics*, volume 48 of *Cambridge Series in Statis-
 654 tical and Probabilistic Mathematics*. Cambridge University Press, Cambridge, 2019. ISBN
 655 978-1-108-49802-9. doi: 10.1017/9781108627771. URL <https://doi.org/10.1017/9781108627771>. A non-asymptotic viewpoint.
 656

657 Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
 658 differential equations with physics-informed DeepONets. *Science Advances*, 7(40):eabi8605, 2021.
 659

660 Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris
 661 Perdikaris. CVit: Continuous vision transformer for operator learning. In *The Thirteenth Interna-
 662 tional Conference on Learning Representations*, 2025.

663 Zhanhong Ye, Xiang Huang, Leheng Chen, Hongsheng Liu, Zidong Wang, and Bin Dong. PDEformer:
 664 Towards a foundation model for one-dimensional partial differential equations. In *ICLR 2024
 665 Workshop on AI4DifferentialEquations In Science*, 2024. URL [https://openreview.net/
 666 forum?id=GLDMCwdhTK](https://openreview.net/forum?id=GLDMCwdhTK).
 667

668 Bing Yu et al. The deep Ritz method: a deep learning-based numerical algorithm for solving
 669 variational problems. *Communications in Mathematics and Statistics*, 6(1):1–12, 2018.
 670

671 Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
 672 surrogate modeling and uncertainty quantification. *Journal of Computational Physics*, 366:415–
 673 447, 2018.

674 Olek C Zienkiewicz and Robert L Taylor. *The Finite Element Method: Its Basis and Fundamentals*.
 675 Butterworth-Heinemann, 2000.
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A USE OF LARGE LANGUAGE MODELS (LLMs)

703
 704 We acknowledge the use of a large language model (OpenAI ChatGPT) as a general-purpose assist
 705 tool during the preparation of this work. The LLM was used to improve clarity, grammar, and style
 706 in the abstract, introduction, and related work sections. The authors take full responsibility for all
 707 scientific content presented in this paper.

709 B DERIVATION OF CORRECTOR BASIS FUNCTIONS

710
 711 We have focused on the numerical treatment of the following singularly perturbed convection-
 712 dominated problem

$$714 \quad -\varepsilon \Delta u_\varepsilon - \mathbf{b} \cdot \nabla u_\varepsilon + cu_\varepsilon = f \quad \text{in } D, \\ 715 \quad u_\varepsilon = 0 \quad \text{on } \partial D,$$

716 where $0 < \varepsilon \ll 1$, and $\mathbf{b} = \mathbf{b}(\mathbf{x})$, $c = c(\mathbf{x})$ and $f = f(\mathbf{x})$ are given smooth functions defined
 717 over the domain D . This formulation represents a general convection-diffusion-reaction equation
 718 with singular perturbation. For this problem, we considered both 1D and 2D settings, addressing
 719 critical challenges such as boundary layers and interior layers that arise due to the small parameter
 720 $\varepsilon > 0$. From this point onward, our analysis follows the singular perturbation analysis stated in (Gie
 721 et al., 2018). The theoretical foundations and techniques presented here are based on this approach,
 722 providing a rigorous framework for handling boundary and interior layers in singularly perturbed
 723 problems. For further details on related studies and extensions, we refer the reader to (Gie et al.,
 724 2018).

725 **(Boundary layer case)** While our ultimate goal is to solve the above problem in 2D, we first simplify
 726 the analysis and explanation by considering a one-dimensional paradigm problem. The 1D problem
 727 is defined as

$$728 \quad -\varepsilon u_\varepsilon'' - u_\varepsilon' = f \quad \text{in } (0, 1), \\ 729 \quad u_\varepsilon(0) = u_\varepsilon(1) = 0.$$

730 This 1D model provides a clear framework for understanding boundary layer phenomena and allows
 731 us to systematically develop the necessary mathematical and computational tools before extending
 732 the approach to higher dimensions. The corresponding limit problem is obtained by formally setting
 733 $\varepsilon = 0$:

$$735 \quad -u_0' = f \quad \text{in } (0, 1), \\ 736 \quad u_0(1) = 0.$$

737 Treating this as a transport equation, we supplement the limit problem with the inflow boundary
 738 condition at $x = 0$, namely

$$739 \quad u_0(0) = 0.$$

740 Solving this equation with the given condition yields

$$741 \quad u_0 = - \int_x^1 f(s) \, ds.$$

742 At this stage, the choice of the inflow boundary condition $u_0(0) = 0$ is an assumption motivated by
 743 the structure of the transport equation. To address the boundary layer near $x = 0$, we introduce a
 744 stretched variable $\bar{x} = x/\varepsilon^\alpha$, with $\alpha > 0$. Substituting \bar{x} into the original problem with $f = 0$, we
 745 derive

$$746 \quad -\varepsilon^{1-2\alpha} \frac{d^2 u_\varepsilon}{d\bar{x}^2} - \varepsilon^{-\alpha} \frac{du_\varepsilon}{d\bar{x}} = 0.$$

747 Here, f is omitted because it is accounted for in the inviscid equation $-u_0' = f$. To define a corrector
 748 from this equation, we observe that the corrector must balance the difference between u_ε and u_0 at
 749 $x = 0$ and decay rapidly as x moves away from 0. By setting $1 - 2\alpha = -\alpha$, we find $\alpha = 1$, resulting
 750 in the following boundary layer equation

$$751 \quad -\frac{d^2 \bar{\theta}_\varepsilon}{d\bar{x}^2} - \frac{d\bar{\theta}_\varepsilon}{d\bar{x}} = 0.$$

756 The boundary conditions for this equation are
 757

$$758 \bar{\theta}_\varepsilon(0) = -u_0(0), \quad \bar{\theta}_\varepsilon \rightarrow 0 \quad \text{as } \bar{x} \rightarrow \infty.$$

759 The explicit solution for $\bar{\theta}_\varepsilon$, the approximate corrector, is given as
 760

$$761 \bar{\theta}_\varepsilon = -u_0(0)e^{-\bar{x}} = -u_0(0)e^{-x/\varepsilon}.$$

762 As discussed earlier, we want to add this boundary layer function into our finite element ansatz space.
 763 However, note that this boundary layer function does not satisfy the appropriate boundary conditions.
 764 This is easily handled by introducing the boundary layer basis function of the form
 765

$$766 \phi_0(x) = e^{-x/\varepsilon} + (1 - e^{-1/\varepsilon})x + 1.$$

767 **(Interior layer case):** For convection–diffusion equations with an interior layer, we consider the
 768 problem
 769

$$770 -\varepsilon u_\varepsilon'' - b(x)u_\varepsilon' = f \quad \text{in } (-1, 1), \\ 771 u_\varepsilon(-1) = u_\varepsilon(1) = 0,$$

772 where $b(x)$ satisfies $b < 0$ for $x < 0$, $b(0) = 0$, $b > 0$ for $x > 0$, and $b'(x) > 0$. The turning point at
 773 $x = 0$ introduces an interior layer due to the change in sign of $b(x)$, where characteristics collide.
 774 For the formal limit problem, setting $\varepsilon = 0$ leads to:
 775

$$776 -b(x)u_0' = f,$$

777 but this may not be well-defined at $x = 0$ since $b(0) = 0$. Therefore, we split the solution into left
 778 and right parts, u_0^l and u_0^r , corresponding to $x < 0$ and $x > 0$, respectively
 779

$$780 -b(x)(u_0^l)' = f \quad \text{for } x < 0 \quad \text{and} \quad -b(x)(u_0^r)' = f \quad \text{for } x > 0.$$

781 The inflow boundary conditions are then supplemented as
 782

$$783 u_0^l(-1) = 0, \quad u_0^r(1) = 0.$$

784 The discrepancy at $x = 0$ between u_0^l and u_0^r produces an interior layer. If $f(0) = 0$, the correctors
 785 introduced below can effectively capture the sharpness of this layer. However, if $f(0) \neq 0$, the limit
 786 problem

$$787 -b(x)u_0' = f$$

788 has an inconsistency at $x = 0$ because $b(0) = 0$. This implies that u_0' diverges near $x = 0$, and the
 789 interior layer cannot be fully captured by standard corrector functions. To address this issue, the data
 790 may need to be adjusted to ensure compatibility, as described in related perturbation analyses. To
 791 analyze the interior layer, we introduce the stretched variable $\bar{x} = x/\sqrt{\varepsilon}$ and approximate $b(x)$ as
 792 $b(x) = b'(0)x + \frac{1}{2}b''(\xi)x^2 \approx b'(0)\sqrt{\varepsilon}\bar{x}$. Substituting these into the original equation with $f = 0$,
 793 we obtain the leading-order differential equation

$$794 -\frac{d^2\theta}{d\bar{x}^2} - b'(0)\bar{x}\frac{d\theta}{d\bar{x}} = 0,$$

795 subject to the boundary conditions
 796

$$797 \theta \rightarrow \text{constant as } \bar{x} \rightarrow \pm\infty.$$

798 The solution of this equation, written explicitly, is
 799

$$800 \theta = \frac{2}{\sqrt{\pi}} \int_0^{\bar{x}\sqrt{b'(0)/2}} e^{-\tau^2} d\tau = \text{erf}\left(\bar{x}\sqrt{\frac{b'(0)}{2}}\right) = \text{erf}\left(x\sqrt{\frac{b'(0)}{2\varepsilon}}\right),$$

801 where erf denotes an error function. This serves as a corrector for the interior layer.
 802

803 **(2D circular domain case):** We now investigate singularly perturbed differential equations of the
 804 form
 805

$$806 -\varepsilon\Delta u_\varepsilon - (u_\varepsilon)_y = f(x, y) \quad \text{in } D, \\ 807 u_\varepsilon = 0 \quad \text{on } \partial D,$$

810 where $0 < \varepsilon \ll 1$, D represents the unit disk centered at $(0, 0)$, and $f(x, y)$ is a smooth function
 811 defined over D . To analyze the asymptotic behavior as $\varepsilon \rightarrow 0$, we consider the corresponding limit
 812 problem, obtained by formally setting $\varepsilon = 0$:

$$813 \quad -u_y^0 = f(x, y) \quad \text{in } D, \\ 814 \quad u^0 = 0 \quad \text{on } \Gamma_u,$$

816 where Γ_u is the upper semicircle, defined as $\Gamma_u = \{(x, y) \mid x^2 + y^2 = 1, y > 0\}$. While the equation
 817 itself is straightforward, the justification of the boundary condition on Γ_u requires careful analysis.
 818 The explicit solution for $u^0(x, y)$ can be derived as

$$819 \quad u^0(x, y) = \int_y^{C_u(x)} f(x, s) \, ds, \quad (x, y) \in D,$$

822 where $C_u(x) = \sqrt{1 - x^2}$. Notably, if $f(x, y)$ does not vanish at the characteristic points $(\pm 1, 0)$,
 823 the solution becomes incompatible, leading to singularities in the derivatives of u^0 . To ensure
 824 well-posedness, we impose compatibility conditions of the form

$$825 \quad \frac{\partial^{p_1+p_2} f}{\partial x^{p_1} \partial y^{p_2}} = 0 \quad \text{at } (\pm 1, 0),$$

828 for non-negative integers p_1, p_2 with $0 \leq 2p_1 + p_2 \leq 2$. This ensures smoothness at the characteristic
 829 points and prevents singularities from arising in the derivatives of u^0 .

830 To analyze the singularly perturbed problem, we introduce a boundary-fitted coordinate system
 831 defined as

$$832 \quad x = (1 - \xi) \cos \eta, \quad y = (1 - \xi) \sin \eta,$$

833 where $\xi = 1 - r$ represents the normal distance to the boundary, and η is the polar angle measured
 834 from the x -axis. Using this transformation, we redefine the computational domain in terms of (η, ξ)
 835 coordinates

$$836 \quad D^* = \{(\eta, \xi) \in (0, 2\pi) \times (0, 1)\}, \quad D_{\frac{1}{2}} = \{(\eta, \xi) \in D^* : \xi \leq \frac{1}{2}\}.$$

838 Applying this change of variables, the partial derivatives transform as follows

$$840 \quad \frac{\partial}{\partial x} = -\cos \eta \frac{\partial}{\partial \xi} - \frac{\sin \eta}{1 - \xi} \frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial y} = -\sin \eta \frac{\partial}{\partial \xi} + \frac{\cos \eta}{1 - \xi} \frac{\partial}{\partial \eta}.$$

842 Rewriting the differential operator in terms of (η, ξ) , we obtain

$$844 \quad -\varepsilon \Delta u_\varepsilon - (u_\varepsilon)_y = -\frac{\varepsilon}{(1 - \xi)^2} \frac{\partial^2 u_\varepsilon}{\partial \eta^2} + \frac{\varepsilon}{1 - \xi} \frac{\partial u_\varepsilon}{\partial \xi} - \varepsilon \frac{\partial^2 u_\varepsilon}{\partial \xi^2} + \sin \eta \frac{\partial u_\varepsilon}{\partial \xi} - \frac{\cos \eta}{1 - \xi} \frac{\partial u_\varepsilon}{\partial \eta}.$$

846 To systematically analyze the singular perturbation, we seek an asymptotic expansion of u_ε in the
 847 form

$$848 \quad u_\varepsilon \sim \sum_{j=0}^{\infty} (\varepsilon^j u^j + \varepsilon^j \theta^j),$$

850 where u^j corresponds to the outer expansion (valid away from the boundary layers), and θ^j represents
 851 the inner expansion (boundary layer correction). First, considering only the outer expansion, we
 852 assume

$$853 \quad u_\varepsilon \sim \sum_{j=0}^{\infty} \varepsilon^j u^j.$$

856 Substituting this expansion into the governing equation at each order of ε , we obtain the leading-order
 857 equation for all $j \geq 0$:

$$858 \quad -u^j = \Delta u^{j-1} \quad \text{in } D, \\ 859 \quad u^j = 0 \quad \text{on } \Gamma_u.$$

861 Here, we set $\Delta u^{-1} = f(x, y)$ for simplicity. The justification of the boundary condition is nontrivial
 862 and follows from convergence theorems. To analyze the boundary layer, we introduce a stretched
 863 variable

$$\bar{\xi} = \xi^\alpha \bar{\xi},$$

864 where the appropriate choice of α will be determined by asymptotic analysis. Setting $f = 0$ in the
 865 original equation and substituting the new variables, we obtain the transformed equation
 866

$$867 -\frac{\varepsilon}{(1-\varepsilon^\alpha\bar{\xi})^2}\frac{\partial^2 u_\varepsilon}{\partial\eta^2} + \frac{\varepsilon^{1-\alpha}}{1-\varepsilon^\alpha\bar{\xi}}\frac{\partial u_\varepsilon}{\partial\bar{\xi}} - \varepsilon^{1-2\alpha}\frac{\partial^2 u_\varepsilon}{\partial\bar{\xi}^2} + \varepsilon^{-\alpha}\sin\eta\frac{\partial u_\varepsilon}{\partial\bar{\xi}} - \frac{\cos\eta}{1-\varepsilon^\alpha\bar{\xi}}\frac{\partial u_\varepsilon}{\partial\eta} = 0.$$

869 By extracting the leading-order terms, we obtain
 870

$$871 -\varepsilon^{1-2\alpha}\frac{\partial^2 u_\varepsilon}{\partial\bar{\xi}^2} + \varepsilon^{-\alpha}\sin\eta\frac{\partial u_\varepsilon}{\partial\bar{\xi}} = 0.$$

873 Setting $\alpha = 1$ yields a boundary layer equation of Prandtl's type,
 874

$$875 -\frac{\partial^2 \theta^0}{\partial\bar{\xi}^2} + \sin\eta\frac{\partial\theta^0}{\partial\bar{\xi}} = 0, \quad \text{for } 0 < \bar{\xi} < \infty, \quad \pi < \eta < 2\pi,$$

877 with boundary conditions

$$879 \theta^0(\eta, \bar{\xi}) = -u^0(\cos\eta, \sin\eta) \quad \text{at } \bar{\xi} = 0, \\ 880 \\ 881 \theta^0(\eta, \bar{\xi}) \rightarrow 0 \quad \text{as } \bar{\xi} \rightarrow \infty.$$

882 Solving this equation, we obtain the explicit corrector function:
 883

$$884 \theta^0(\eta, \xi) = -u^0(\cos\eta, \sin\eta) \exp\left(\frac{\sin\eta}{\varepsilon}\xi\right) \chi_{[\pi, 2\pi]}(\eta).$$

886 This corrector accounts for the boundary layer effects, showing that the thickness of the boundary
 887 layer varies with η and exhibits degeneracy at $(\pm 1, 0)$. This highlights the necessity of singular
 888 perturbation analysis to correctly model such behavior.
 889

890 C CONVERGENCE ANALYSIS OF ENRICHED FEONET

893 In this section, we will conduct a convergence analysis of the original FEONet to provide theoretical
 894 justification for the proposed numerical method. To present the proof clearly, we will restrict our
 895 focus to self-adjoint equations with homogeneous Dirichlet boundary conditions:

$$896 -\varepsilon \operatorname{div}(\mathbf{a}(\mathbf{x}) \nabla u_\varepsilon) + c(\mathbf{x}) u_\varepsilon = f(\mathbf{x}) \quad \text{in } D, \\ 897 \quad u_\varepsilon = 0 \quad \text{on } \partial D, \quad (13)$$

899 where $\mathbf{a}(\mathbf{x})$ is a uniformly elliptic coefficient and $c(\mathbf{x}) \geq 0$, which guarantees the well-posedness of
 900 the problem. It is noteworthy that the analysis can be easily extended to more general cases (see, e.g.,
 901 (Hong et al., 2024)).

902 As described earlier, we let an external forcing term f as the input of neural networks, that is
 903 parametrized by ω in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. In the convergence analysis, we shall interpret
 904 $f(\mathbf{x}; \omega)$ as a bivariate function defined on $D \times \Omega$. Moreover, we will assume that
 905

$$906 f(\mathbf{x}; \omega) \in C(\Omega; L^1(D)) := \left\{ f : \Omega \rightarrow L^1(D) : \sup_{\omega \in \Omega} \int_D |f(\mathbf{x}; \omega)| d\mathbf{x} < \infty \right\}. \quad (14)$$

908 For each $\omega \in \Omega$, the external force $f(\mathbf{x}; \omega)$ is specified, and the corresponding weak solution is
 909 denoted by $u_\varepsilon(\mathbf{x}; \omega)$, which satisfies the variational formulation:
 910

$$911 B[u_\varepsilon, v] := \varepsilon \int_D [\mathbf{a}(\mathbf{x}) \nabla u_\varepsilon \cdot \nabla v + c(\mathbf{x}) u_\varepsilon v] d\mathbf{x} = \int_D f(\mathbf{x}) v d\mathbf{x} =: \ell(v) \quad \forall v \in H_0^1(D). \quad (15)$$

914 For given mesh size $h > 0$, let $\bar{V}_h \subset H_0^1(D)$ be a finite-dimensional space spanned by the basis
 915 functions $\{\phi_k\}_{k=0}^{N(h)}$ including the corrector basis function $\phi_0 = \phi_{\text{cor}}$, and $u_{\varepsilon, h}^{\text{en}} \in \bar{V}_h$ be an enriched
 916 finite element approximation of u_ε which satisfies the enriched Galerkin approximation
 917

$$918 B[u_{\varepsilon, h}^{\text{en}}, v_h] = \ell(v_h) \quad \forall v_h \in \bar{V}_h. \quad (16)$$

918 We write

919

$$920 u_{\varepsilon,h}^{\text{en}}(\mathbf{x}, \boldsymbol{\omega}) = \sum_{k=0}^{N(h)} \alpha_k^*(\boldsymbol{\omega}) \phi_k(\mathbf{x}), \quad (17)$$

921

922 where α^* is the finite element coefficients obtained from the linear algebraic system

923

$$924 A\alpha^* = F, \quad (18)$$

925

926 with

927

$$928 A_{ik} = B[\phi_k, \phi_i] \quad \text{and} \quad F_i = \ell(\phi_i). \quad (19)$$

929

930 Note that α^* can also be characterized in an alternative way:

931

$$932 \alpha^* = \arg \min_{\alpha \in C(\Omega, \mathbb{R}^{N(h)+1})} \mathcal{L}(\alpha), \quad (20)$$

933

934 where \mathcal{L} is the population risk

935

$$936 \mathcal{L}(\alpha) = \mathbb{E}_{\boldsymbol{\omega} \sim \mathbb{P}_\Omega} \left[\sum_{i=0}^{N(h)} |B[\hat{u}(\boldsymbol{\omega}), \phi_i] - \ell(\phi_i; (\boldsymbol{\omega}))|^2 \right] = \|A\alpha(\boldsymbol{\omega}) - F(\boldsymbol{\omega})\|_{L^2(\Omega)}^2. \quad (21)$$

937

938 Next, we define the class of feed-forward neural networks as \mathcal{N}_n , where the subscript n denotes
939 the network architecture. We assume that \mathcal{N}_{n_2} is more expressive than \mathcal{N}_{n_1} when $n_1 \leq n_2$. For
940 instance, n could represent the number of layers with bounded width, or the number of neurons when
941 the number of layers is fixed. Neural networks are known to be an appropriate choice for nonlinear
942 approximation, supported by the universal approximation theorem (see, for example, (Cybenko,
943 1989; Hornik, 1991; Pinkus, 1999; Kidger & Lyons, 2020)). For our analysis in this section, we
944 assume that all neural networks under consideration have a bounded activation function in the final
945 layer (e.g., sigmoid, tanh, etc.), ensuring that the resulting networks are uniformly bounded. Using a
946 straightforward scaling argument, we can show that the universal approximation theorem still applies
947 to this modified class of networks, as discussed in Theorem 2.2 in (Ko et al., 2022).

948 Now for a neural-network approximation of α^* , we mean that $\hat{\alpha}(n) : \Omega \rightarrow \mathbb{R}^{N(h)+1}$, which solves
949 the following minimization problem

950

$$951 \hat{\alpha}(n) = \arg \min_{\alpha \in \mathcal{N}_n} \mathcal{L}(\alpha), \quad (22)$$

952

953 and we write the corresponding solution prediction by

954

$$955 \hat{u}_{\varepsilon,h,n}^{\text{en}}(\mathbf{x}; \boldsymbol{\omega}) = \sum_{k=0}^{N(h)} \hat{\alpha}(n)_k(\boldsymbol{\omega}) \phi_k(\mathbf{x}). \quad (23)$$

956

957 Note here that for the neural network $\alpha \in \mathcal{N}_n$, the input is $\boldsymbol{\omega} \in \Omega$ that specifies the external forcing
958 term $f(\mathbf{x}; \boldsymbol{\omega})$ and the output is the coefficient vector in $\mathbb{R}^{N(h)+1}$.

959 Finally, we define the solution of the following discrete minimization problem:

960

$$961 \hat{\alpha}(n, M) = \arg \min_{\alpha \in \mathcal{N}_n} \mathcal{L}^M(\alpha). \quad (24)$$

962

963 Here \mathcal{L}^M is the empirical risk, which is the Monte–Carlo integration of the population risk $\mathcal{L}(\alpha)$:

964

$$965 \mathcal{L}^M(\alpha) = \frac{|\Omega|}{M} \sum_{m=1}^M \sum_{i=0}^{N(h)} |B[\hat{u}(\boldsymbol{\omega}_m), \phi_i] - \ell(\phi_i; (\boldsymbol{\omega}_m))|^2 = \frac{|\Omega|}{M} \sum_{m=1}^M |A\alpha(\boldsymbol{\omega}_m) - F(\boldsymbol{\omega}_m)|^2, \quad (25)$$

966

967 where $\{\boldsymbol{\omega}_m\}_{m=1}^M$ is an i.i.d. random variables following \mathbb{P}_Ω . We then write the associated solution as

968

969

$$970 \hat{u}_{\varepsilon,h,n,M}^{\text{en}}(\mathbf{x}; \boldsymbol{\omega}) = \sum_{k=0}^{N(h)} \hat{\alpha}(n, M)_k(\boldsymbol{\omega}) \phi_k(\mathbf{x}), \quad (26)$$

971

972 which is the actual solution prediction by eFEONet. In the present paper, we assume that we can
973 always find the exact minimizers for the problems equation 22 and equation 24, and the optimization
974 error is ignorable.

To establish suitable theoretical backgrounds for the eFEONet, it is reasonable to prove that the true solution is close enough to the solution prediction computed by the proposed method for various external forces, as the index $n, M \in \mathbb{N}$ goes to infinity. It can be formally written as

$$\|u_\varepsilon - \hat{u}_{\varepsilon,h,n,M}^{\text{en}}\|_{L^2(\Omega; L^2(D))} \rightarrow 0 \quad \text{as } h \rightarrow 0 \text{ and } n, M \rightarrow \infty. \quad (27)$$

The above total error is divided into three parts:

$$u_\varepsilon - \hat{u}_{\varepsilon,h,n,M}^{\text{en}} = (u_\varepsilon - u_{\varepsilon,h}^{\text{en}}) + (u_{\varepsilon,h}^{\text{en}} - \hat{u}_{\varepsilon,h,n}^{\text{en}}) + (\hat{u}_{\varepsilon,h,n}^{\text{en}} - \hat{u}_{\varepsilon,h,n,M}^{\text{en}}). \quad (28)$$

The first error arises from the finite element approximation, which we assume to be negligible when $h > 0$ is sufficiently small. In fact, based on the estimate equation 7, we can reduce this error to any desired level by selecting a suitable $h > 0$. Therefore, we assume that h has been chosen so that the finite element approximation error is small enough. The second error, known as the *approximation error*, occurs when we use a class of neural networks to approximate the target (finite element) coefficients. The third error, often referred to as the *generalization error*, measures how well our approximation performs on unseen data. Our focus will be on proving that, with fixed $h > 0$ and $\varepsilon > 0$, as the index $n \in \mathbb{N}$ for neural network architectures becomes larger and the number of input samples $M \in \mathbb{N}$ increases, our approximate solution $\hat{u}_{\varepsilon,h,n,M}^{\text{en}}$ converges to the finite element solution $u_{\varepsilon,h}^{\text{en}}$ which is assumed to be the true solution here.

C.1 APPROXIMATION ERROR

First, from equation 21 and equation 25, we observe that the matrix A defined in equation 17 and equation 18 plays a key role in determining the structure of the loss functions. Hence, it would be beneficial for us to analyze these loss functions by understanding more about the matrix. The matrix A is determined by various factors such as the structure of the differential equations, the choice of basis functions, and the boundary conditions. Thus, achieving a characterization of A that is useful for analyzing the loss function and applicable across a wide variety of PDE scenarios is important. The next lemma, quoted from (Ko et al., 2022), addresses this point.

Lemma C.1. *Let $A \in \mathbb{R}^{(N(h)+1) \times (N(h)+1)}$ be symmetric and invertible, and we write $\rho_{\min} = \min_i \{|\lambda_i|\}$, $\rho_{\max} = \max_i \{|\lambda_i|\}$ where $\{\lambda_i\}$ is the set of eigenvalues of A . Then there holds for any $\mathbf{x} \in \mathbb{R}^{N(h)+1}$ that*

$$\rho_{\min}|\mathbf{x}| \leq |A\mathbf{x}| \leq \rho_{\max}|\mathbf{x}|. \quad (29)$$

Since the equation 13 is self-adjoint, the associated bilinear form $B[\cdot, \cdot]$ defined in equation 15 is symmetric, which ensures that the matrix A is also symmetric. Additionally, because the coefficient $\mathbf{a}(\cdot)$ is uniformly elliptic and $c(\cdot)$ is non-negative, the bilinear form $B[\cdot, \cdot]$ is coercive, meaning that A is positive-definite. As a result, we can apply Lemma C.1 to our enriched finite element matrix A .

With this, we are now ready to prove that the approximation error for neural networks converges to zero, as stated in the following theorem.

Theorem C.2. *Suppose that the assumption equation 14 holds. Then there holds that*

$$\|\alpha^* - \hat{\alpha}(n)\|_{L^2(\Omega)} \rightarrow 0 \quad \text{as } n \rightarrow \infty. \quad (30)$$

Proof. Since A is symmetric and positive-definite (and hence invertible), from Proposition C.1, we have that

$$\begin{aligned} \|\alpha^* - \hat{\alpha}(n)\|_2^2 &\lesssim \|A\alpha^* - A\hat{\alpha}(n)\|_2^2 \lesssim \|A\alpha^* - F\|_2^2 + \|A\hat{\alpha}(n) - F\|_2^2 = \mathcal{L}(\hat{\alpha}(n)) \leq \inf_{\alpha \in \mathcal{N}_n} \mathcal{L}(\alpha) \\ &= \inf_{\alpha \in \mathcal{N}_n} \|A\alpha - F\|_2^2 \lesssim \inf_{\alpha \in \mathcal{N}_n} (\|A\alpha - A\alpha^*\|_2^2 + \|A\alpha^* - F\|_2^2) = \inf_{\alpha \in \mathcal{N}_n} \|\alpha - \alpha^*\|_2^2. \end{aligned}$$

Note that the implicit constants in the above inequalities may depend on $\varepsilon > 0$ and $h > 0$, but are independent of $n \in \mathbb{N}$. As a final step, from the universal approximation property, the last term $\inf_{\alpha \in \mathcal{N}_n} \|\alpha - \alpha^*\|_2^2$ converges to zero as $n \rightarrow \infty$. \square

C.2 GENERALIZATION ERROR

We begin with the definition of *Rademacher complexity*, which measures how the given function class can fit random noise (Gnecco & Sanguineti, 2008; Wainwright, 2019; Bartlett & Mendelson, 2002; Shalev-Shwartz & Ben-David, 2014).

1026 For a family $\{X_i\}_{i=1}^M$ of i.i.d. random variables, the Rademacher complexity of the
 1027 function class \mathcal{G} is defined by
 1028

$$1029 R_M(\mathcal{G}) = \mathbb{E}_{\{X_i, \varepsilon_i\}_{i=1}^M} \left[\sup_{f \in \mathcal{G}} \left| \frac{1}{M} \sum_{i=1}^M \varepsilon_i f(X_i) \right| \right],$$

1031 where ε_i 's are i.i.d. Bernoulli random variables meaning that $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = \frac{1}{2}$ for all
 1032 $i = 1, \dots, M$.
 1033

1034 Next, we will establish the relationship between the generalization error and the Rademacher com-
 1035 plexity for the uniformly bounded function class \mathcal{G} . In the following theorem, we assume that the
 1036 function class is b -uniformly bounded, meaning that for any function $f \in \mathcal{G}$, we have $\|f\|_\infty \leq b$.
 1037

1038 **Theorem C.4.** [Theorem 4.10 in (Wainwright, 2019)] *Suppose that the family of functions \mathcal{G} is
 b-uniformly bounded. Then for arbitrary small $\delta > 0$, there holds*

$$1040 \sup_{f \in \mathcal{G}} \left| \frac{1}{M} \sum_{i=1}^M f(X_i) - \mathbb{E}[f(X)] \right| \leq 2R_M(\mathcal{G}) + \delta,$$

1042 with probability at least $1 - \exp(-\frac{M\delta^2}{2b^2})$.
 1043

1044 Next, let us define the following function class:

$$1045 \mathcal{G}_n := \{|A\alpha - F|^2 : \alpha \in \mathcal{N}_n\}, \quad (31)$$

1046 where A and F were defined in equation 19. Then from Lemma C.1, we obtain that
 1047

$$1048 \|A\alpha - F\|_{L^\infty(\Omega)} \leq \|A\alpha\|_{L^\infty(\Omega)} + \|F\|_{L^\infty(\Omega)} \lesssim \|\alpha\|_{L^\infty(\Omega)} + \|f\|_{C(\Omega; L^1(D))}.$$

1049 Since the class of neural networks we are considering is uniformly bounded and equation 14 holds,
 1050 it follows that for any $n \in \mathbb{N}$, the class \mathcal{G}_n is \tilde{b} -uniformly bounded for some constant $\tilde{b} > 0$. The
 1051 following lemma directly follows from Theorem C.4 in our context.

1052 **Lemma C.5.** *Assume that $\{\omega_m\}_{m=1}^M$ is a set of i.i.d. random samples selected from the distribution
 1053 \mathbb{P}_Ω . Then for any small $\delta > 0$, we have with probability at least $1 - 2 \exp(-\frac{M\delta^2}{32\tilde{b}^2})$ that*

$$1055 \sup_{\alpha \in \mathcal{N}_n} |\mathcal{L}^M(\alpha) - \mathcal{L}(\alpha)| \leq 2R_M(\mathcal{G}_n) + \frac{\delta}{2}. \quad (32)$$

1057 Using Lemma C.5, we now establish the following convergence result for the generalization error.
 1058 Note here that we assume the Rademacher complexity of \mathcal{G}_n tends to zero as $M \rightarrow \infty$, which holds
 1059 true in many cases (Gnecco & Sanguineti, 2008; Wainwright, 2019; Bartlett & Mendelson, 2002;
 1060 Shalev-Shwartz & Ben-David, 2014).

1061 **Theorem C.6.** *Assume that equation 14 holds and for any $n \in \mathbb{N}$, $\lim_{M \rightarrow \infty} R_M(\mathcal{G}_n) = 0$. Then
 1062 with probability 1, we have that*

$$1064 \lim_{n \rightarrow \infty} \lim_{M \rightarrow \infty} \|\hat{\alpha}(n, M) - \hat{\alpha}(n)\|_{L^2(\Omega)} = 0.$$

1066 *Proof.* From equation 22 and Proposition C.1, we have

$$1067 \|\hat{\alpha}(n) - \hat{\alpha}(n, M)\|_2^2 \lesssim \|A\hat{\alpha}(n) - A\hat{\alpha}(n, M)\|_2^2 \lesssim (\|A\hat{\alpha}(n) - F\|_2^2 + \|A\hat{\alpha}(n, M) - F\|_2^2) \quad (33)$$

$$1068 = \mathcal{L}(\hat{\alpha}(n)) + \mathcal{L}(\hat{\alpha}(n, M)) \lesssim \mathcal{L}(\hat{\alpha}(n, M)).$$

1070 We next use Lemma C.5 for $\delta = 2M^{-\frac{1}{2}+\varepsilon}$ with $0 < \varepsilon < \frac{1}{2}$. Then with probability at least
 1071 $1 - 2 \exp(-\frac{M^{2\varepsilon}}{8\tilde{b}^2})$, we obtain that
 1072

$$1073 \mathcal{L}(\hat{\alpha}(n, M)) \leq \mathcal{L}^M(\hat{\alpha}(n, M)) + 2R_M(\mathcal{G}_n) + M^{-\frac{1}{2}+\varepsilon} \leq \mathcal{L}^M(\hat{\alpha}(n)) + 2R_M(\mathcal{G}_n) + M^{-\frac{1}{2}+\varepsilon}.$$

1074 By applying Lemma C.5 once more, we have that

$$1076 \mathcal{L}(\hat{\alpha}(n, M)) \leq \mathcal{L}(\hat{\alpha}(n)) + 4R_M(\mathcal{G}_n) + 2M^{-\frac{1}{2}+\varepsilon}.$$

1077 With the argument used for the approximation error analysis before, we finally conclude that

$$1078 \lim_{n \rightarrow \infty} \lim_{M \rightarrow \infty} \|\hat{\alpha}(n, M) - \hat{\alpha}(n)\|_2^2 \lesssim \lim_{n \rightarrow \infty} \mathcal{L}(\hat{\alpha}(n)) \lesssim \lim_{n \rightarrow \infty} \inf_{\alpha \in \mathcal{N}_n} \|\alpha - \alpha^*\|_2^2 = 0.$$

1079 \square

1080 C.3 MAIN THEORETICAL RESULT ON THE CONVERGENCE OF EFEONET
10811082 Combining Theorem C.2 and Theorem C.6, we see that
1083

1084
$$\lim_{n \rightarrow \infty} \lim_{M \rightarrow \infty} \|\alpha^* - \hat{\alpha}(n, M)\|_{L^2(\Omega)} = 0. \quad (34)$$

1085

1086 Now we state and prove the main convergence result.
10871088 **Theorem C.7** (Convergence of eFEONet). *Assume that equation 14 holds and for any $n \in \mathbb{N}$,
1089 $R_M(\tilde{\mathcal{G}}_n) \rightarrow 0$ as $M \rightarrow \infty$, where $\tilde{\mathcal{G}}_n := \{|A\alpha - F|^2 : \alpha \in \mathcal{N}_n\}$. Then for given $\varepsilon > 0$ and $h > 0$,
1090 with probability 1, we have that*

1091
$$\lim_{n \rightarrow \infty} \lim_{M \rightarrow \infty} \|u_{\varepsilon, h}^{\text{en}} - \hat{u}_{\varepsilon, h, n, M}^{\text{en}}\|_{L^2(\Omega; L^2(D))} = 0. \quad (35)$$

1092

1093 *Proof.* By Theorem C.2, Theorem C.6, there holds for fixed $\varepsilon > 0$ and $h > 0$ that
1094

1095
$$\begin{aligned} \|u_{\varepsilon, h}^{\text{en}} - \hat{u}_{\varepsilon, h, n, M}^{\text{en}}\|_{L^2(\Omega; L^2(D))}^2 &= \int_{\Omega} \int_D \left| \sum_{i=0}^{N(h)} (\alpha_i^* - \hat{\alpha}(n, M)_i) \phi_i \right|^2 d\mathbf{x} d\omega \\ 1096 &\leq \int_{\Omega} \int_D \sum_{i,j=0}^{N(h)} |\alpha_i^* - \hat{\alpha}(n, M)_i|^2 |\phi_i|^2 d\mathbf{x} d\omega \\ 1097 &\quad + \int_{\Omega} \int_D \sum_{i,j=0}^{N(h)} |\alpha_j^* - \hat{\alpha}(n, M)_j|^2 |\phi_j|^2 d\mathbf{x} d\omega \\ 1098 &\leq \int_{\Omega} \int_D 2N(h) \sum_{k=0}^{N(h)} |\alpha_k^* - \hat{\alpha}(n, M)_k|^2 |\phi_k|^2 d\mathbf{x} d\omega \\ 1099 &\lesssim \|\alpha^* - \hat{\alpha}(n, M)\|_{L^2(\Omega)}^2, \end{aligned}$$

1100

1101 where all the implicit constants above are independent of $n, M \in \mathbb{N}$. Taking $n, M \rightarrow \infty$, we
1102 complete the proof. \square
11031104 *Remark C.8.* It is noteworthy that the convergence in Theorem C.7 is not uniform with respect to
1105 $h \rightarrow 0$. Indeed, this issue aligns precisely with the main theme of reference (Hong et al., 2024),
1106 where the authors rigorously demonstrated that both the approximation error and generalization
1107 error depend on the condition number $\kappa(A)$ of the finite element matrix A . Typically, $\kappa(A) \sim h^{-2}$,
1108 meaning that as h becomes smaller, both the approximation and generalization errors increase due to
1109 this adverse dependence. To summarize, the total error can be characterized as:
1110

1111
$$(\text{Total Error}) \lesssim h^\alpha + \frac{h^{-\beta}}{\sqrt{n}} + \frac{h^{-\gamma}}{\sqrt{M}},$$

1112

1113 for some positive constants α, β and γ . In the regime where h is not too small, the first term dominates,
1114 and the total error decreases with decreasing h . However, beyond a certain threshold, the last two
1115 terms begin to dominate, causing the total error to increase. One can mitigate this phenomenon
1116 by utilizing several strategies. For instance, employing higher-order FEM increases α , thereby
1117 reducing the approximation error. Alternatively, increasing n and M reduces the generalization error.
1118 Most importantly, one can use the preconditioning techniques to reduce $\kappa(A)$, thereby significantly
1119 diminishing the last two components. While this analysis was originally developed in the context of
1120 FEO Net, it applies directly to eFEONet as well, since in eFEONet we solve equations with a fixed
1121 small ε . More precisely, the only part of the analysis in (Hong et al., 2024) where ε could potentially
1122 affect the results is in the condition number estimates (Eq. (2.11) and (2.12) on page 6 of (Hong et al.,
1123 2024)). If we explicitly characterize the dependency on ε in these equations, then we can likewise
1124 make the ε -dependence explicit in the final error estimate (Theorem 4.10 on page 18). In doing so,
1125 we can obtain a complete error analysis for eFEONet that incorporates both singular perturbation
1126 asymptotic analysis and the general framework from (Hong et al., 2024), which will be addressed in
1127 the forthcoming paper.
1128

1134 **D EXPERIMENT DETAILS**
11351136 **D.1 RANDOM GENERATION OF INPUT FUNCTIONS FOR EXTERNAL FORCE**
11371138 In order to train neural networks, we need to generate random external forcing functions. Inspired by
1139 Bar-Sinai et al. (2019), we created a random signal $f(\mathbf{x}; \boldsymbol{\omega})$ as a linear combination of sine functions
1140 and cosine functions. More precisely, we set

1141
$$f(x) = m_0 \sin(n_0 x) + m_1 \cos(n_1 x) \quad (36)$$

1142

1143 for 1D cases and

1144
$$f(x, y) = m_0 \sin(n_0 x + n_1 y) + m_1 \cos(n_2 x + n_3 y) \quad (37)$$

1145

1146 for 2D cases where m_i for $i = 1, 2$ and n_j for $j = 0, 1, 2, 3$ are drawn independently from the uniform
1147 distributions. It is worth noting that even when considering different random input functions, such as
1148 those generated by Gaussian random fields, we consistently observe similar results. This robustness
1149 indicates the reliability and stability of the eFEO Net approach across various input scenarios.1150 For Section 4.4, we randomly sample the external force as $f(x, y) = (1 - x^2)^2 [m_0 \sin(n_0 x) +$
1151 $m_1 \cos(n_1 y)]$.1152 **D.2 EXPERIMENT SETTINGS**
11531154 In this section, we outline the experimental setup. For the problems under consideration, we used the
1155 neural network, which consists of 6 convolutional layers with swish activation, followed by a fully
1156 connected layer flattening the output. For the 1D problems, we used Conv1D, while Conv2D was
1157 used for 2D problems. The eFEO Net was trained with the LBFGS optimizer along with the following
1158 hyperparameters.1159

- 1160 • Maximal number of iterations per optimization step: 100;
- 1161 • Learning rate : 0.1
- 1162 • Update history size: 100.

1163

1164 We used the Intel Xeon Gold 6226R processor and NVIDIA RTX A6000 48GB GPU.

1165 For the 1D problems, the training dataset for FNO and ComFNO includes 900×201 tuples (f, u) ,
1166 while the 2D scenarios encompass $900 \times 51 \times 51$ tuples (f, u) as described in the paper (Li et al.,
1167 2024). In all conducted experiments, we utilized the mean-square loss functions. For FNO and
1168 ComFNO, we used the Adam optimizer for all minimization problems, accompanied by the consistent
1169 utilization of the GELU activation function. Further details concerning the remaining parameters for
1170 our result can be found in Table 4 and Table 5.1171

Experiment/FNO	depth	LR	epoch	batch size
1D (no turning point)	4	0.001	500	50
1D (turning point)	6	0.001	500	50
2D	5	0.001	1000	50

11721173 Table 4: Experimental parameters for FNO investigations. The term “depth” denotes the quantity
1174 of Fourier layers implemented within the architecture. “LR” designates the learning rate employed,
1175 while “epoch” signifies the count of training iterations performed.1176

Experiment/ComFNO	blockNum	LR	epoch	batch size
1D (no turning point)	1	0.001	500	30
1D (turning point)	2	0.001	500	30
2D	2	0.001	1000	20

11771178 Table 5: Experimental parameters for ComFNO investigations. The term “blockNum” denotes the
1179 quantity of layer blocks implemented within the architecture. “LR” designates the learning rate
1180 employed, while “epoch” signifies the count of training iterations performed.

1188 D.3 RUNTIME AND EFFICIENCY ANALYSIS
11891190 We report the training and inference costs for the 2D convection–diffusion problem, averaging results
1191 over 10 independent runs with different random seeds.

- **FNO:**
 - Inference time per sample: 3.951 ms
- **ComFNO:**
 - Inference time per sample: 4.885 ms
- **Our method (eFEONet):**
 - Inference time per sample (ms): Mean 3.81, Std 3.98, 95% CI [0.961, 6.657]
 - Relative L^2 error: Mean 2.26×10^{-3} , Std 2.92×10^{-4} , 95% CI [1.69×10^{-3} , 2.83×10^{-3}]

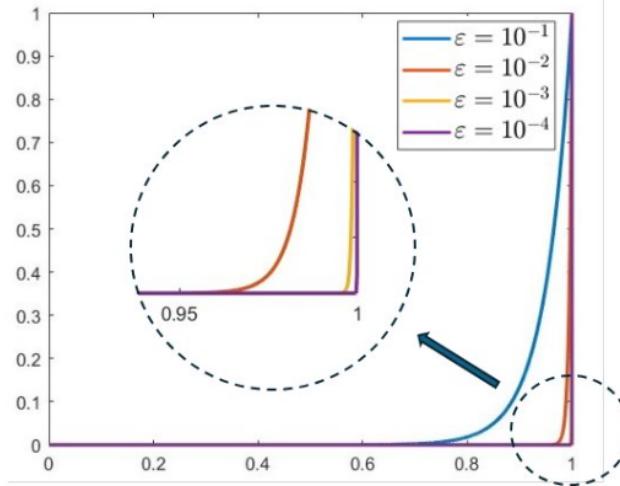
1202 E FURTHER EXPERIMENTS
12031204 E.1 ORDINARY DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER
1205

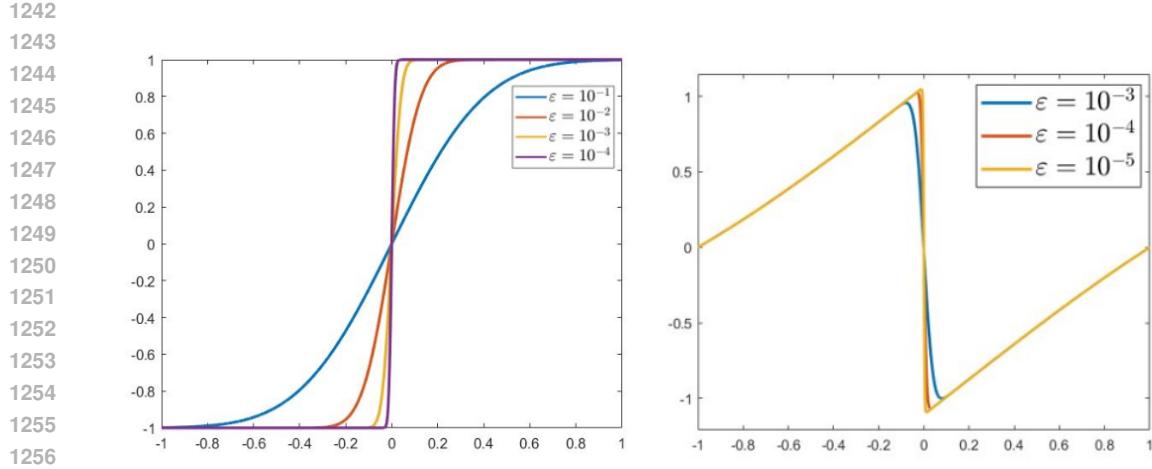
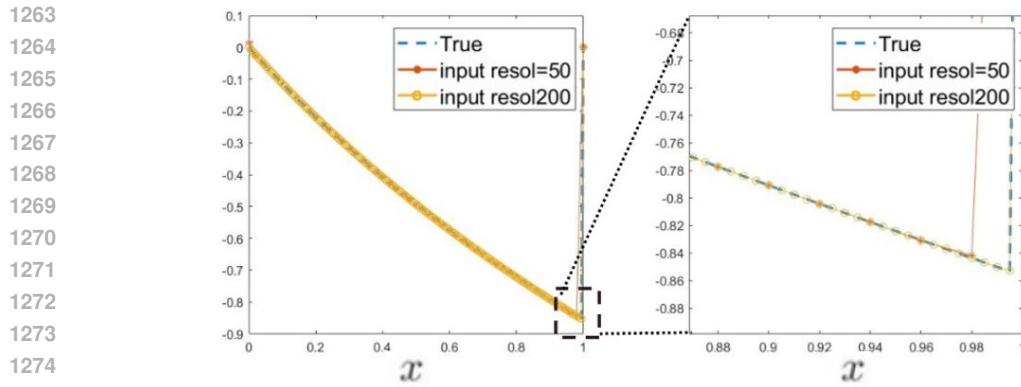
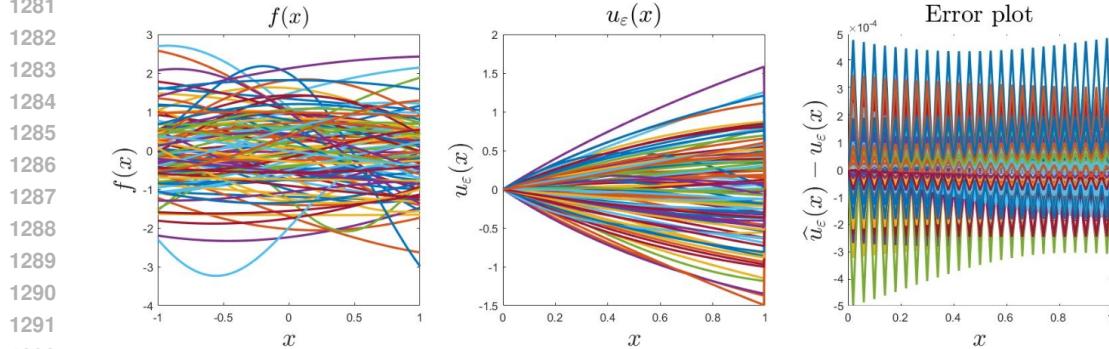
1206 We consider the 1D singularly perturbed differential equation given by:

$$1207 \begin{aligned} -\varepsilon u''_\varepsilon + (x+1)u'_\varepsilon &= f(x), \quad x \in (0, 1), \\ 1208 u_\varepsilon(0) &= u_\varepsilon(1) = 0. \end{aligned} \quad (38)$$

1209 The exact solution u_ε for equation 38 is approximately given by:

$$1210 u(x) \approx u_0(x) - u_0(1) \exp\left(-2\frac{1-x}{\varepsilon}\right), \quad (39)$$

1211 where $u_0(x)$ is the reduced solution, and $\exp(-2\frac{1-x}{\varepsilon})$ represents the corrector function. Figure 8
1212 illustrates the corrector function for the equation equation 38 as ε varies from 10^{-1} to 10^{-4} .
12131214 Figure 8: Corrector functions for the equation equation 9 with varying values of ε from 10^{-1} to 10^{-4} .
12151216 As depicted in Figure 8, the solution displays an exponential boundary layer at $x = 1$. An example of
1217 the solution to equation 38 is depicted in Figure 10. We evaluate different input-output resolutions,
1218 specifically 50 and 200, comparing our predictions with the ground truth obtained from the upwind
1219 scheme on the Shishkin mesh. The eFEONet predictions for different resolutions are illustrated in
1220 Figure 10. Notably, the results remain consistent even at lower resolutions. The performance of our
1221 method for $\varepsilon = 10^{-5}$ with 100 test function f samples is shown in Figure 11. The figure on the left
1222 shows the input function f , the middle figure shows the ground truth corresponding to the 100 test
1223 f samples, and the figure on the right shows the residuals produced by our method for these 100 f
1224 samples.
1225



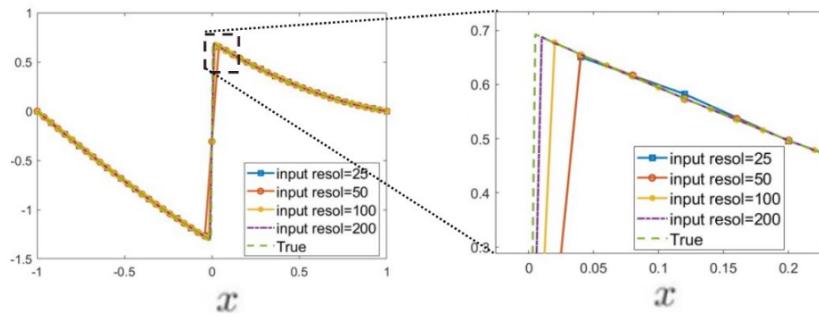
1296 E.2 ORDINARY DIFFERENTIAL EQUATIONS WITH INTERIOR LAYER
1297

1298 When the coefficient of u' vanishes at certain points, we refer to this as a turning point problem. We
1299 now consider an example with a single turning point at $x = 0$ over the interval $[-1, 1]$:

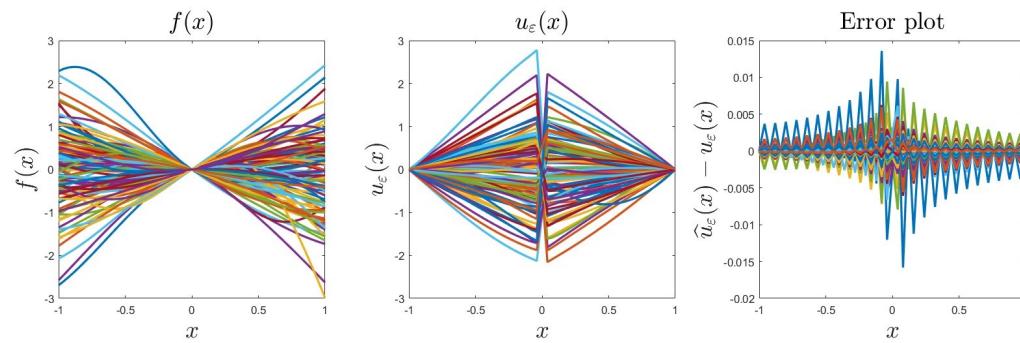
$$1300 \quad -\varepsilon u''_\varepsilon - xu'_\varepsilon = f(x), \quad x \in (-1, 1), \quad (40)$$

$$1301 \quad u_\varepsilon(-1) = u_\varepsilon(1) = 0.$$

1302 The corrector function is shown in Figure 9. As depicted in Figure 9, the interior layer structure near
1303 $x = 0$ becomes steeper as ε decreases. Figure 12 presents an example of turning point problems
1304 for input-output resolutions of 25, 50, 100, and 200. The results are consistent with the previous
1305 case. The performance of our method for $\varepsilon = 10^{-5}$ with 100 test function f samples is shown in
1306 Figure 13. The figure on the left shows the input function f , the middle figure shows the ground truth
1307 corresponding to the 100 test f samples, and the figure on the right shows the residuals produced by
1308 our method for these 100 f samples.



1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321 Figure 12: Comparison of the predicted solution \hat{u}_ε for each input-output resolution =
1322 25, 50, 100, 200 and true solution u_ε



1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349 Figure 13: Visualization of 100 input functions f (left), corresponding reference solutions (middle),
and error plots (right) for Section 4.2 with $\varepsilon = 10^{-5}$, input-output resolution = 51.

E.3 PARTIAL DIFFERENTIAL EQUATIONS ON SQUARE

We examine a boundary value problem for an elliptic PDE over the spatial domain $D = [0, 1]^2$:

$$1343 \quad -\varepsilon \Delta u_\varepsilon - (1, 1) \cdot \nabla u_\varepsilon = f(x, y) \quad \text{in } D, \quad (41)$$

$$1344 \quad u_\varepsilon(x, y) = 0 \quad \text{on } \partial D,$$

For this PDE problem, the asymptotic expansion of $u(x, y)$ is formulated as:

$$u(x, y) = u_0(x, y) - u_0(0, y)e^{-x/\varepsilon} - u_0(x, 0)e^{-y/\varepsilon} + u_0(0, 0)e^{(-x-y)/\varepsilon}.$$

The solution exhibits a boundary layer along $x = 0$ and $y = 0$, with a corner layer forming at $(0, 0)$, as illustrated in Figure 14. To solve the equation equation 41, we employ both FNO, ComFNO, and eFEONet. Residuals for 100 randomly chosen f sample with $\varepsilon = 10^{-4}$ are presented in Figure 15.

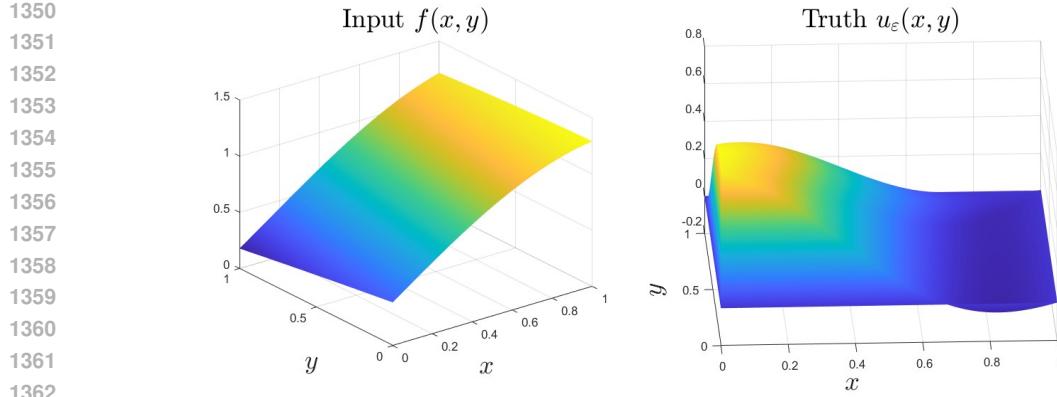
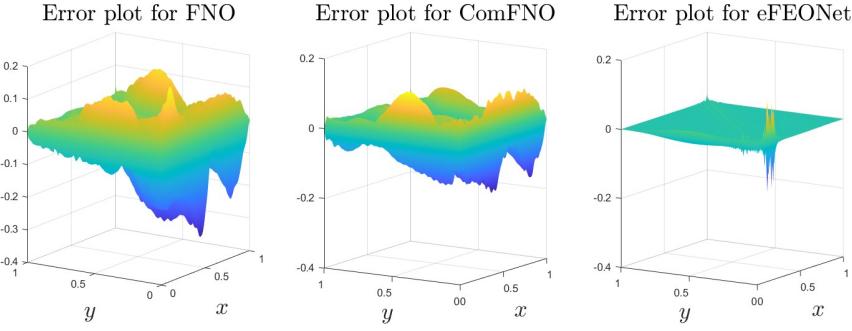


Figure 14: Solution profiles for the PDE problem on a square domain.

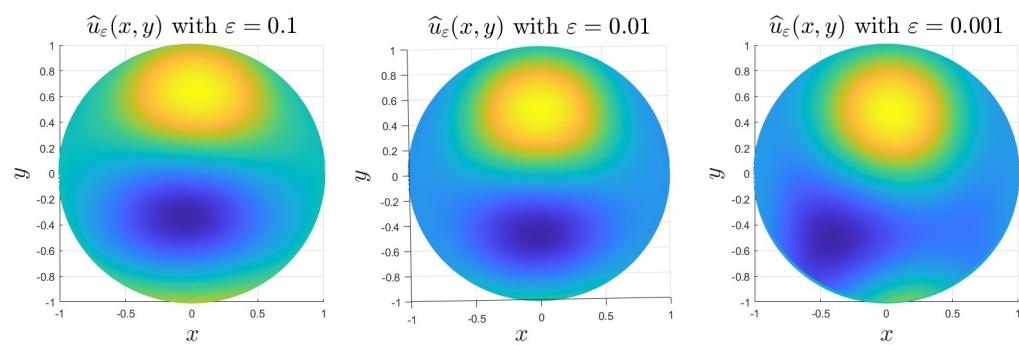
Figure 15: Visualization of error plots from FNO for 100 test function(left), ComFNO(middle) and eFEONet(right) for Section 4.3 with $\varepsilon = 10^{-4}$, input-output resolution = 51.

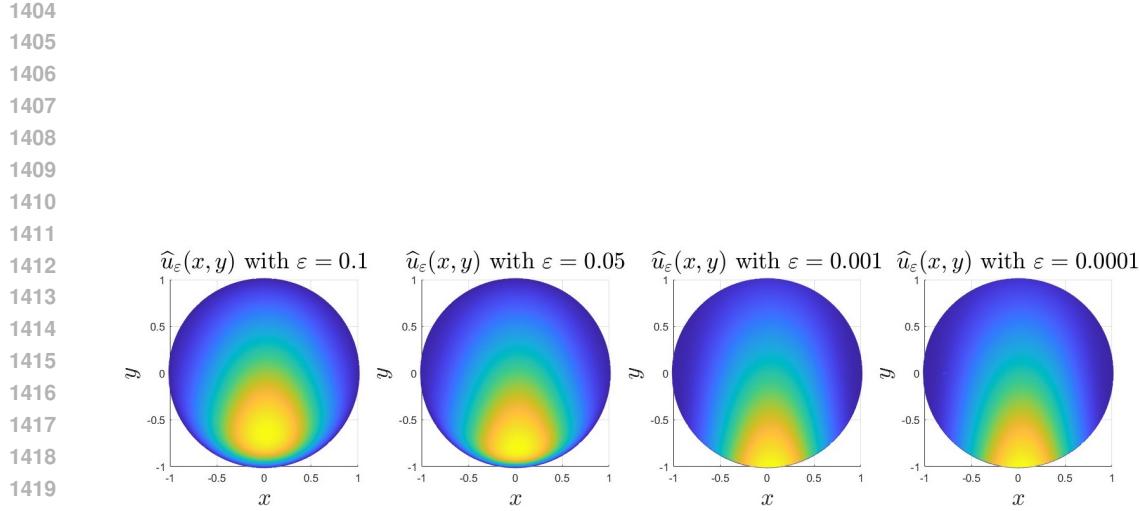
E.4 PARTIAL DIFFERENTIAL EQUATIONS ON CIRCLE

Finally, we investigate singularly perturbed differential equations in various geometries. As a first case, we consider the equation over the unit circle D , given by

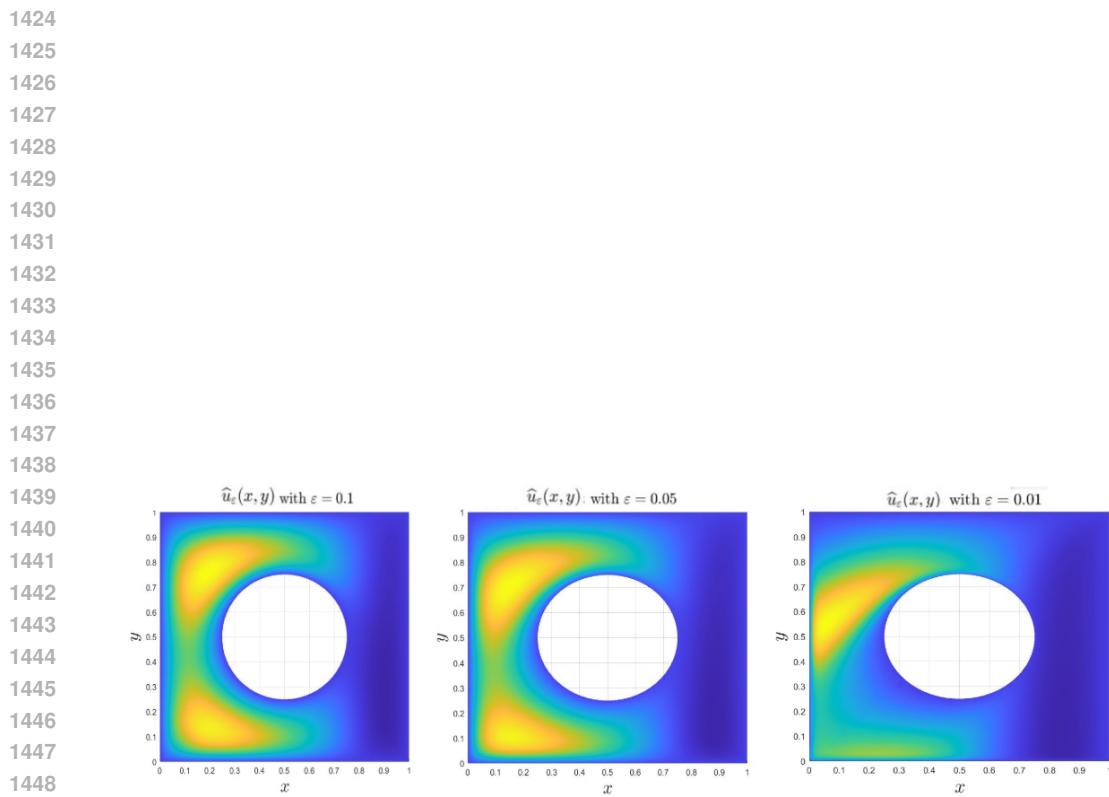
$$\begin{aligned} -\varepsilon \Delta u_\varepsilon - (u_\varepsilon)_y &= f(x, y) && \text{in } D, \\ u_\varepsilon &= 0 && \text{on } \partial D, \end{aligned}$$

where $0 < \varepsilon \ll 1$, D represents the unit disk centered at $(0, 0)$, and $f(x, y)$ is a smooth function defined over D . Figures 16 and 17 illustrate the solution profiles for different values of ε . Furthermore, our approach can be extended to more complex geometries, as demonstrated in Figure 18.

Figure 16: Solution profiles for a circular domain with varying $\varepsilon > 0$ when the source term is given by $f(x, y) = (1 - x^2)^2(-0.194 \sin(-1.696x) - 1.12 \cos(4.052y))$



1421 Figure 17: Solution profiles for a circular domain with different $\varepsilon > 0$, where the source term is
 1422 given by $f(x, y) = (1 - x^2)^2(0.49 \sin(1.03x) + 0.727 \cos(-0.303y))$
 1423



1449 Figure 18: Results for square with a hole with different $\varepsilon > 0$.
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
1459

E.5 GENERALIZABILITY OF CORRECTOR FUNCTIONS

1460
1461
1462
1463
1464
1465

We propose the eFEONet for solving singularly perturbed PDEs without requiring data. Our approach uses a corrector function derived from asymptotic analysis to obtain an accurate solution. Additionally, we present a data-driven approach that simultaneously learns the corrector function and the solution coefficients. We conducted two experiments to validate our methods. Our method integrates a specialized corrector function, ϕ_{cor} , into the standard Finite Element Method (FEM) framework. The final solution is represented as a linear combination of basis functions and the corrector function.

1466
1467
1468

- **Experiment 1: Approximating corrector function.** In the first experiment, we attempted to approximate the solution function of a 1D boundary layer problem using a corrector function:

1469

$$\phi_{\text{cor}}(x) := e^{-(1+x)/\varepsilon} - (1 - (1 - e^{-2/\varepsilon})(x + 1)/2)$$

1470
1471
1472

This function was approximated by a linear combination of basis functions, $\sum_{i=1}^N c_i^c \phi_i$. The goal was to use this approximation to generate the weak formulation.

The approximation error, measured by the l^∞ norm, was relatively small:

1473
1474
1475

$$\|\phi_{\text{cor}} - \sum_{i=1}^N c_i^c \phi_i\|_{l^\infty} \approx 3 \times 10^{-3}$$

1476
1477
1478

However, this approach failed because the derivative of the corrector function, ϕ'_{cor} , scales with $1/\varepsilon$, leading to large errors in the weak formulation due to the approximation's inability to accurately capture this behavior.

1479
1480
1481
1482
1483

- **Experiment 2: Simultaneous prediction of corrector function and coefficients.** In the second experiment, we used a data-driven approach to simultaneously predict the coefficients and the corrector function. The coefficients were predicted as $c_i + c_i^c \exp(\xi_\theta)$, where the network outputted c_i , c_i^c , and ξ_θ . The results, summarized in Table 6, demonstrate a significant improvement in accuracy.

1484

1485
1486
1487
1488
1489

Table 6: Comparison of Solution Accuracy

Method	Error
Learnable corrector (data-driven)	3.2×10^{-3}
eFEONet	1×10^{-5}

1490
1491
1492
1493
1494

The results of the second experiment clearly indicate that our data-driven approach, which simultaneously predicts the corrector function and coefficients, is highly effective. It successfully addresses the limitations of simply approximating a theoretically derived corrector function. The significant reduction in error from 3.2×10^{-3} to 1×10^{-5} demonstrates the superiority of our proposed method.

1495
1496

E.6 COMPARISON WITH THE ORIGINAL FEONET

1497
1498
1499

The original FEONet does not incorporate a corrector function, and therefore, its performance is comparable to the standard FEM without any enhancement. In contrast, our proposed eFEONet achieves significantly lower errors in both boundary and interior layer regions, as shown in Table 7.

1500
1501
1502
1503

Model	Boundary Layer	Interior Layer
FEONet	3.04	0.0222
Ours (eFEONet)	7.0e-05	6.6e-04

1504
1505
1506
1507Table 7: Comparison of FEONet and eFEONet for $\varepsilon = 10^{-5}$. Errors are reported for the boundary layer and interior layer regions.1508
1509

F BROADER IMPACT DISCUSSION

1510
1511

Our proposed model, eFEONet, is designed to solve partial differential equations (PDEs) efficiently, which has significant potential for positive societal impacts. By providing rapid and accurate computational predictions, our approach can accelerate scientific discovery and engineering advancements

1512 in various fields such as climate modeling, fluid dynamics, and structural engineering. Improved com-
1513 putational efficiency can also contribute to reduced energy consumption and enhanced sustainability
1514 in high-performance computing contexts.

1515 However, we recognize potential negative societal impacts arising from inappropriate reliance on
1516 model predictions. Specifically, inaccurate or overly confident reliance on model outputs without
1517 sufficient validation could lead to erroneous conclusions or misguided decision-making in safety-
1518 critical applications. To mitigate these risks, we strongly advocate for rigorous verification and
1519 validation processes, transparency in model limitations, and cautious interpretation of the results
1520 when deploying computational models in practical scenarios.

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565