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ABSTRACT

Graph Neural Networks (GNNs) have shown strong performance on structured
data, but they often suffer from poor calibration and limited generalisation under
out-of-distribution (OOD) data, which poses a critical challenge for trustworthy
graph learning in real-world applications. In contrast, spiking neural networks
(SNNs) and predictive coding (PC) provide biologically grounded mechanisms
for event-driven computation and local error correction, which naturally promote
robustness and calibrated uncertainty. Inspired by these principles, we propose
SpIking GrapH predicTive coding (SIGHT), a framework that integrates PC dy-
namics with spiking computation for graph learning. SIGHT preserves the archi-
tectural flexibility of modern GNNs while replacing global backpropagation with
local, spike-driven error correction, yielding learning dynamics that are inherently
robust to distribution shifts. Experiments on five graph datasets with two types of
OOD scenarios show that SIGHT delivers competitive predictive accuracy, better-
calibrated uncertainty, and stronger OOD detection than standard GNNs. Beyond
accuracy, the error-driven spiking dynamics provide natural explanations for un-
certainty, and the event-driven computation makes SIGHT attractive for deploy-
ment on power-constrained hardware, highlighting its potential as a principled
and efficient alternative for robust graph learning. Source code is available at:
https://anonymous.4open.science/r/SGPC_ood-B9E4.

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated strong performance across a wide range of
safety-critical and high-stakes applications, including domains such as healthcare, finance, trans-
portation, and cybersecurity, where reliable decision-making under uncertainty is of paramount im-
portance (Xia et al., 2021; Liu et al., 2022; Khoshraftar & An, 2024; Han et al., 2025; Chen &
Li, 2025). However, conventional GNNs often exhibit poor uncertainty calibration and degraded
out-of-distribution (OOD) generalisation when the test distribution deviates from the training distri-
bution (Wu et al., 2022; Yang et al., 2022; Wu et al., 2024; Wang et al., 2025; Li et al., 2025a). These
shortcomings can lead to critical failures in practice. For example, a GNN used for drug discovery
may output high confidence in a molecule with unseen chemical structures, while in autonomous
navigation, a perception model may misclassify rare obstacles with undue certainty. Such risks un-
derscore why unreliable uncertainty estimation hinders the deployment of GNNs in safety-critical
applications where trustworthy confidence assessments are indispensable (Kaur et al., 2022; Liang
et al., 2022; Fuchsgruber et al., 2025).

To mitigate these risks, several approaches have recently been proposed to explicitly address the
non-IID characteristics of node classification tasks (Hsu et al., 2022; Wang et al., 2021). While
effective for aligning predicted probabilities with empirical correctness on in-distribution (ID) data,
these methods often fail to transfer calibration gains to shifted distributions (Ovadia et al., 2019;
Wiles et al., 2022). This highlights the need for training strategies that endow models with stronger
intrinsic uncertainty estimation, yielding more reliable ID and OOD estimates out of the box while
still allowing further refinement through post-hoc calibration (Trivedi et al., 2024).

The recently proposed Graph Predictive Coding Networks (GPCN) (Byiringiro et al., 2022) show
improved calibration on node classification tasks and robustness against adversarial attacks by learn-
ing through local error feedback and iterative inference of predictive coding (PC) (Rao & Ballard,
1999). Besides offering a scalable alternative to backpropagation, PC aligns with biological prin-
ciples of neural processing, making it a compelling foundation for uncertainty estimation in graph
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learning. However, directly integrating PC with traditional GNNs is challenging, as conventional
GNNs rely on dense, synchronous updates that conflict with the iterative and event-driven dynam-
ics of PC. To address this limitation, we introduce spiking neural networks (SNNs) (Rathi et al.,
2023; Yin et al., 2024), enabling graph predictive coding to operate with sparse and asynchronous
spikes that align more naturally with local error correction and the biologically inspired principles
of predictive coding.

Contributions. In summary, this work makes the following contributions:

• We propose SpIking GrapH predicTive coding (SIGHT), a biologically plausible paradigm
that replaces global backpropagation with local Hebbian-style learning to improve OOD
uncertainty estimation. Its predictive coding strategies capture mismatches between pre-
dictions and observations, naturally explaining model confidence.

• We present a theoretical analysis that establishes the convergence dynamics and uncer-
tainty quantification properties of SIGHT. These results offer formal guarantees that sup-
port model robustness and explain its improved generalisation under distribution shifts.

• Experiments show that SIGHT achieves superior OOD generalisation and more cali-
brated uncertainty estimates than traditional GNNs across multiple benchmarks. More-
over, SIGHT complements post-hoc calibration models, delivering consistent improve-
ments with both GCN and GAT backbones.

2 RELATED WORK

OOD Generalisation and Uncertainty Estimation in Graphs. OOD generalisation and uncer-
tainty estimation have gained increasing attention in graph representation learning, as real-world
graph data often exhibit significant distribution shifts across tasks or domains (Bazhenov et al.,
2023; Liu et al., 2023a;b; Li et al., 2025b). These shifts can arise from changes in node features,
graph structure, or even concept drift that alters the label–feature correspondence, all of which may
severely degrade model reliability. Traditional GNNs, however, remain vulnerable to such shifts
because they are typically optimised to fit the training distribution and lack mechanisms to quantify
or adapt to uncertainty (Yehudai et al., 2021; Wu et al., 2022; Yang et al., 2022; Yu et al., 2023;
Yuan et al., 2025). As a result, their predictions tend to be overconfident and poorly calibrated when
deployed on unseen distributions, limiting their applicability in safety-critical scenarios such as drug
discovery, fraud detection, and recommender systems.

Model Calibration in Graphs. Existing approaches largely fall into two categories: post-hoc cal-
ibration (Guo et al., 2017; Kull et al., 2019; Wang et al., 2021; Hsu et al., 2022), which adjusts
confidence after training, and intrinsic enhancement techniques (Trivedi et al., 2024; Thiagarajan
et al., 2022), which modify training to yield better-calibrated predictions. Post-hoc calibration mod-
els, such as temperature scaling (Guo et al., 2017), Bayesian graph models (Gal & Ghahramani,
2016), and deep ensembles (Lakshminarayanan et al., 2017), improve the alignment between pre-
dicted probabilities and empirical correctness by adjusting model confidence after training, but they
often fail under distribution shifts. By contrast, Trivedi et al. (2024) propose an intrinsic method,
G-∆UQ, which modifies the training process to produce calibrated predictions. However, these ap-
proaches fail to explain the sources of uncertainty, although such interpretability is vital for building
trustworthy models. Moreover, current models lack the adaptability and energy efficiency charac-
teristic of brain-like inference.

Predictive Coding. Predictive coding is a neurobiological theory proposing that the brain contin-
ually generates top-down predictions of sensory input, while bottom-up signals convey only the
prediction errors, thereby driving perception and learning (Hebb, 1949; Rao & Ballard, 1999). This
biologically inspired alternative to backpropagation (Friston, 2018; Salvatori et al., 2023) has been
applied in generative modeling (Ororbia & Kifer, 2022), continual learning (Ororbia et al., 2020),
reinforcement learning (Ororbia & Mali, 2023), graph learning (Byiringiro et al., 2022), and arbi-
trary network learning (Salvatori et al., 2022). Moreover, Byiringiro et al. (2022) find that replacing
traditional BP in GNNs with PC can achieve better calibration than traditional GNNs in ID settings.
However, predictive coding has not yet been explored in the context of OOD generalization and
calibration, particularly when combined with spiking GNNs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) SIGHT (b) Predictive Coding Unit

Figure 1: (a) Overview of the proposed framework SIGHT. First, node features are encoded into
spike trains Xspikes as input (Eq. 1). Then, the node representations are learned by aggregating and
propagating neighbor information through graph convolution layers (Eq. 2). Before propagation,
predictions are refined via an iterative predictive coding unit (Eq. 3). Over multiple steps, neuronal
activities converge to stable representations, and synaptic weights are updated through Hebbian-
style local learning. (b) Predictive coding unit, where residuals between predictions and latent states
are converted into error spikes to iteratively update activations with Eq. 3 for K times.

3 METHODOLOGY

In this paper, we propose SIGHT, a flexible framework for reliable uncertainty estimation in GNN-
based classification, as shown in Figure 1. Further details on reproducibility, pseudocode, and com-
putational complexity analysis are provided in Appendix B.

3.1 NOTATION

We consider a graph G = (V, E) composed of a node set V and an edge set E , where |V| = N and
the graph is represented by an adjacency matrix A ∈ RN×N . Each node vi ∈ V is associated with a
feature vector xi ∈ RF , which together form the feature matrix X ∈ RN×F .

We adopt the symmetrically normalised adjacency matrix Ã = D− 1
2 (A + I)D− 1

2 , where D is the
degree matrix. An L-layer SIGHT model maintains hidden dimensions d0 = F, d1, . . . , dL and
weight matrices W(l) ∈ Rdl−1×dl . We focus on node classification, where each node vi is assigned
a label yi ∈ 1, . . . , C, and the labels of all nodes are collectively represented by a one-hot matrix
Y ∈ 0, 1N×C . In this paper, bold uppercase letters (e.g., X,W,Z) denote matrices.

3.2 POISSON ENCODING OF NODE FEATURES

Given the node feature matrix X ∈ RN×F , we first normalise each feature channel to the range
[0, 1], yielding X̃. Each scalar feature X̃i,f is then converted into a spike train using a Poisson
process:

Xspikes[t, i, f ] ∼ Bernoulli
(
X̃i,f

)
, Xspikes ∈ {0, 1}T×N×F . (1)

At each simulation step t, the slice Xspikes[t] is used as the network input.

3.3 FORWARD PASS WITH PREDICTIVE CODING INFERENCE

To illustrate the method, we first present SIGHT with GCN (Kipf & Welling, 2017) as the backbone.
However, the framework is not restricted to GCN and can be readily extended to other GNN archi-
tectures, such as GAT (Veličković et al., 2018), highlighting its broad applicability. The forward
pass integrates graph convolution with predictive coding dynamics. For each layer l ∈ {1, . . . , L}
and timestep t, the procedure consists of:

Graph Convolution. We compute latent predictions as:

P(l) = ÃH(l−1)W(l), H(0) = Xspikes[t]. (2)

3
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Predictive Coding Loop. We initialise the latent state Z
(l)
0 ← P(l) and perform K inference

iterations:

E
(l)
k = P(l) − Z

(l)
k , Uk = P(l) + γ LIFerr(E

(l)
k ), Z

(l)
k+1 = LIFpred(Uk). (3)

Here, Z(l) ∈ RN×dl denotes layerwise latent predictions, P(l) ∈ RN×dl denotes instantaneous pre-
activations, and E

(l)
k denotes the local residual, γ is a correction gain, and LIFerr,LIFpred denote

leaky integrate-and-fire dynamics.

After K iterations, the final latent state Z
(l)
K serves as the layer output. The spike tensor Z(l)

K is
rectified and propagated to the next layer. At the final layer, the corrected spikes are passed to the
classifier. This iterative procedure can also be interpreted from an energy-minimisation perspective,
where the dynamics of LIF neurons approximate gradient descent on a local error functional, as
described in Appendix B.2.

Uncertainty Quantification via Error Statistics. We define the predictive coding confidence at
layer l for node i as u(l)

i = exp
(
−|E(l)

i,: |22
)
, which approximates the likelihood of observation under

Gaussian residual noise. This provides a principled mapping from error magnitudes to epistemic
uncertainty, eliminating the need for explicit ensembling or Monte Carlo sampling.

3.4 SPIKE-RATE READOUT

Since each LIF neuron (Gerstner & Kistler, 2002) produces binary spikes, we extract rate codes by
averaging across T timesteps

H(l) =
1

T

T∑
t=1

Z
(l)
t , (4)

where Z(l)
t ∈ {0, 1}N×dl is the spike matrix at timestep t. These rate codes provide stable represen-

tations for downstream prediction and learning.

3.5 LOCAL HEBBIAN-STYLE WEIGHT UPDATES

Instead of backpropagation, SIGHT employs local Hebbian updates driven by predictive coding
errors. At the top layer L, the prediction error is defined as

R(L) = Y −H(L), (5)

where Y is the one-hot label matrix.

For each layer l, weights are updated as ∆W(l) ∝ (H(l−1))⊤R(l). This rule couples presynaptic
rates H(l−1) with postsynaptic residuals R(l), implementing a biologically plausible outer-product
Hebbian update. Crucially, no backpropagated error is required and each layer learns from its own
residuals.

3.6 THEORETICAL ANALYSIS

Here we provide an OOD generalisation bound theorem linking predictive coding error with the
generalisation gap, and a convergence theorem showing that iterative error correction in SIGHT
reduces an energy function and improves calibration.
Theorem 1 (OOD generalisation Bound for SIGHT). Let H be a hypothesis class of spiking graph
neural networks, and let PID and POOD denote the in-distribution and out-of-distribution data dis-
tributions over graphs. For a hypothesis h ∈ H, the classification error on POOD satisfies:

ϵOOD(h) ≤ ϵID(h) + discH(PID, POOD) + λ, (6)

where discH is an H-divergence measuring distribution shift, and λ is the minimal joint error over
H.

Furthermore, in SIGHT, the H-divergence can be upper bounded by a function of the expected
predictive coding error ε:

discH(PID, POOD) ≤ C · EG∼POOD

[
∥ε(G)∥2

]
, (7)

4
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where C > 0 is a constant depending on the Lipschitz smoothness of the message-passing operator.
This implies that reducing the predictive coding error ε directly lowers the bound on the OOD
generalisation gap.

Proof sketch. The first inequality follows from the standard domain adaptation bound based on H-
divergence. For SIGHT, the predictive coding mechanism produces an error signal ε at each infer-
ence step, which reflects the mismatch between top-down predictions and bottom-up inputs. Since
the message-passing operator in SIGHT is L-Lipschitz with respect to graph signals, differences
in graph distributions translate linearly into differences in predictive coding errors. Bounding the
H-divergence in terms of E[∥ε∥] follows from this Lipschitz property.

Theorem 2 (Energy Convergence and Calibration Improvement). Consider SIGHT with an energy
function:

Et =
1

2

∑
l

∥∥xl
t − f l(xl−1

t )
∥∥2
2
, (8)

where xl
t is the latent representation at layer l and time t, and f l is the feedforward mapping at

layer l.

Under the update rule:
xl
t+1 = xl

t − η · εlt, (9)

with learning rate 0 < η < 2
L , the sequence {Et} is monotonically non-increasing and converges

to a fixed point E∗ ≥ 0.

Moreover, if the model outputs predictive distributions pθ(y|x) with entropy Ht at time t, then:

ECE ≤ K ·
√
E∗, (10)

for some constant K > 0 depending on the calibration mapping. Thus, reducing the predictive cod-
ing error also reduces the Expected Calibration Error (ECE), improving the reliability of uncertainty
estimates.

Proof sketch. The energy descent follows from the gradient-descent-like nature of the predictive
coding updates, where each latent state moves opposite to the local prediction error. Convergence
is ensured by the choice of η given the Lipschitz constant of the network layers. The ECE bound
follows from relating prediction confidence misalignment to the residual prediction error in the final
equilibrium state.

Overall, these results provide strong theoretical evidence that predictive coding in SIGHT serves
as a unified principle for improving both OOD generalisation and probabilistic calibration. Further
details on the proof of convergence for predictive coding inference are provided in Appendix C.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the SIGHT framework on five benchmark datasets.
Our evaluation considers both node classification accuracy and the reliability of uncertainty estima-
tion under distribution shifts. Additional experimental results are provided in Appendix D.5.

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, the experiments are conducted on five node classification datasets, i.e.,
Cora, Citeseer, Pubmed, Twitch, and CBAS. We evaluate SIGHT under two types of distribu-
tion shifts: covariate shift and concept shift. For citation networks (i.e., Cora, Citeseer, and
PubMed), we apply covariate shift by following a commonly used benchmark (Wu et al., 2022).
Specifically, the original node labels retain while synthetically generating spurious node features
to induce distribution shifts between the ID and OOD datasets, i.e., P train(X) ̸= P test(X) but
P train(Y |X) = P test(Y |X). In contrast, for Twitch and CBAS (Gui et al., 2022), we apply con-
cept shift by altering the conditional distribution while keeping the input distribution stable, i.e.,
P train(Y |X) ̸= P test(Y |X). Detailed introduction on datasets and shift types are provided in Ap-
pendix D.1.

5
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Table 1: Node classification accuracy and uncertainty calibration on ID and OOD datasets with the
GCN backbone. Best results are in bold, and SIGHT is marked with . Results with the GAT
backbone are in Table 6.

Method Accuracy ↑ ECE ↓ NLL ↓ BS ↓ AUROC ↑

ID OOD ID OOD ID OOD ID OOD ID OOD

C
or

a GCN 89.8±0.3 43.5±5.2 0.019±0.003 0.391±0.071 0.318±0.008 2.595±0.512 0.150±0.004 0.919±0.103 88.7±0.3 59.9±3.7
+G-∆UQ 91.3±0.4 80.1±4.7 0.019±0.004 0.053±0.031 0.270±0.018 0.574±0.149 0.130±0.007 0.288±0.068 87.3±1.2 81.5±2.8
+SIGHT 93.2±0.6 95.6±0.2 0.015±0.002 0.009±0.002 0.241±0.021 0.153±0.010 0.105±0.009 0.068±0.003 86.7±1.2 89.8±1.5

C
ite

se
er GCN 82.1±0.4 46.6±1.9 0.026±0.003 0.334±0.027 0.503±0.012 1.838±0.051 0.252±0.006 0.793±0.026 84.1±0.8 74.1±1.6

+G-∆UQ 81.6±0.4 71.0±4.2 0.021±0.008 0.066±0.027 0.531±0.037 0.889±0.145 0.263±0.010 0.416±0.056 82.2±1.6 76.5±1.3
+SIGHT 86.6±0.7 91.2±0.4 0.028±0.006 0.024±0.004 0.452±0.023 0.307±0.016 0.204±0.010 0.136±0.008 80.1±1.1 83.4±0.8

Pu
bm

ed GCN 88.0±0.1 73.7±1.9 0.008±0.001 0.146±0.028 0.306±0.001 0.960±0.081 0.173±0.000 0.411±0.028 85.2±0.3 72.3±1.5
+G-∆UQ 91.3±0.2 83.8±0.7 0.006±0.001 0.090±0.009 0.236±0.002 0.668±0.048 0.129±0.002 0.263±0.013 86.3±0.4 74.2±0.3
+SIGHT 90.0±0.1 90.1±0.2 0.009±0.001 0.006±0.001 0.275±0.001 0.275±0.004 0.149±0.001 0.148±0.002 85.5±0.4 85.1±0.2

Tw
itc

h GCN 60.7±9.0 57.5±4.1 0.129±0.066 0.046±0.028 0.685±0.006 0.683±0.007 0.492±0.006 0.490±0.008 59.5±4.3 49.2±3.3
+G-∆UQ 64.8±9.9 58.3±2.9 0.163±0.067 0.065±0.024 0.690±0.021 0.687±0.009 0.497±0.021 0.494±0.009 58.0±9.1 45.4±1.5
+SIGHT 59.3±6.6 60.6±1.4 0.077±0.033 0.039±0.009 0.676±0.035 0.671±0.005 0.483±0.033 0.478±0.005 56.1±6.9 52.2±3.9

C
BA

S GCN 77.0±4.9 69.6±4.9 0.095±0.025 0.116±0.007 0.596±0.032 0.840±0.026 0.327±0.025 0.432±0.022 77.5±5.0 71.6±2.6
+G-∆UQ 76.4±5.2 65.1±2.8 0.125±0.018 0.131±0.039 0.611±0.058 0.881±0.043 0.337±0.036 0.461±0.031 77.4±6.4 66.9±7.4
+SIGHT 93.9±2.2 76.4±2.8 0.071±0.021 0.086±0.020 0.241±0.067 0.746±0.075 0.114±0.034 0.363±0.032 81.6±4.9 73.0±1.8

Baselines. We adopt GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018) as backbones
since they form the foundational frameworks of most GNN models and are widely recognizee as im-
portant and representative architectures in graph learning. In addition, we consider G-∆UQ (Trivedi
et al., 2024), a recently proposed framework for uncertainty quantification on graphs. G-∆UQ intro-
duces graph-specific anchoring strategies that regularise the predictive distribution, thereby improv-
ing intrinsic uncertainty estimates. Unlike standard post-hoc calibration, it integrates uncertainty
modelling directly into the training objective, making it a strong representative of training-based
approaches. Finally, we also demonstrate that the combination of our framework with different
post-hoc calibration models can further enhance calibration (see Appendix D.2).

Evaluation Metrics. We evaluate performance using accuracy alongside four complementary
calibration-oriented metrics: expected calibration error (ECE) (Guo et al., 2017), negative log-
likelihood (NLL), Brier Score (BS), and area under the receiver operating characteristic curve (AU-
ROC). Details of the metrics are in Appendix D.3.

Implementation. SIGHT is implemented with three layers of spiking graph convolution, each fol-
lowed by predictive coding inference with K = 20 iterations. Input node features are encoded
into Poisson spike trains with T = 25 time steps, and hidden dimensions are set to 128–128–64.
For Cora, Citeseer, and PubMed, we use 500 training epochs with early stopping (patience = 100);
for CBAS and Twitch, we use 1000 epochs with patience = 200. The learning rates are set to
ηx = 0.005 and ηp = 0.0005 for Cora, Citeseer, PubMed, and CBAS, while higher rates ηx = 0.01
and ηp = 0.001 are used for Twitch. Each experiment is repeated with five random seeds for statis-
tical robustness. The full implementation details can be found in Appendix D.4.

4.2 RESULTS

Comparison of Performance and Calibration. Table 1 compares the node classification accu-
racy and calibration capabilities of the traditional GNN model on ID and OOD data after introducing
different intrinsic calibration methods: G-∆UQ and SIGHT. Overall, SIGHT achieves the best per-
formance on the majority of benchmarks, particularly in OOD regimes. For example, on Cora and
Citeseer, SIGHT significantly improves OOD accuracy by even 40% while also reducing ECE by 40
times. On Pubmed, SIGHT attains balanced gains, achieving strong ID accuracy and the best results
on all OOD scenarios, indicating superior uncertainty awareness. On Twitch and CBAS, SIGHT
consistently achieves lower calibration errors together with higher accuracy and AUROC, confirm-
ing its strong generalization and uncertainty estimation capabilities under different OOD conditions.
These results highlight that SIGHT not only matches or surpasses accuracy-oriented baselines but
also establishes new state-of-the-art calibration and OOD generalisation performance.

When combining SIGHT with different post-hoc calibration models, as shown in Table 2, SIGHT
consistently produces better-calibrated models, with Accuracy and ECE values outperforming those

6
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Table 2: Accuracy and ECE under distribution shifts for different post-hoc calibration models using
GCN and GAT backbones, w/o and w/ SIGHT ( ). ✗ denotes no post-hoc calibration.

GCN GAT

Model Accuracy ↑ ECE ↓ Accuracy ↑ ECE ↓

w/o SIGHT w/ SIGHT w/o SIGHT w/ SIGHT w/o SIGHT w/ SIGHT w/o SIGHT w/ SIGHT

C
or

a

✗ 43.5±5.2 95.6±0.2 0.391±0.071 0.009±0.002 67.4±4.1 96.3±0.7 0.164±0.026 0.008±0.002
CAGCN 40.9±3.3 95.6±0.2 0.439±0.081 0.037±0.019 67.4±4.1 95.8±0.7 0.255±0.031 0.042±0.022
Dirichlet 42.1±4.4 95.5±0.1 0.412±0.039 0.012±0.001 65.9±3.0 96.6±0.4 0.174±0.024 0.009±0.003
ETS 42.1±5.7 95.6±0.2 0.419±0.055 0.009±0.001 67.0±3.9 95.2±1.0 0.176±0.017 0.011±0.003
GATS 42.5±6.2 95.4±0.3 0.433±0.085 0.051±0.020 66.9±4.2 96.5±0.5 0.262±0.042 0.061±0.039
IRM 41.8±4.4 95.4±0.2 0.434±0.045 0.009±0.001 67.4±4.1 96.6±0.3 0.188±0.021 0.008±0.001
Order 41.1±3.9 95.5±0.1 0.407±0.031 0.012±0.005 66.6±3.8 96.4±0.3 0.179±0.025 0.009±0.002
Spline 41.4±4.1 95.5±0.2 0.427±0.043 0.286±0.003 66.1±2.7 96.1±0.8 0.178±0.022 0.287±0.016
VS 42.7±5.8 95.4±0.3 0.419±0.040 0.007±0.001 67.0±3.9 96.8±0.5 0.176±0.027 0.007±0.003

C
ite

se
er

✗ 46.6±1.9 91.2±0.4 0.334±0.027 0.024±0.004 46.6±1.9 93.4±0.2 0.334±0.027 0.028±0.003
CAGCN 46.9±2.1 90.9±0.2 0.448±0.057 0.036±0.008 66.5±3.2 92.7±0.2 0.257±0.027 0.041±0.008
Dirichlet 47.1±2.0 90.9±0.3 0.333±0.028 0.025±0.002 66.3±3.1 92.8±0.5 0.123±0.023 0.029±0.006
ETS 46.7±1.9 90.6±0.4 0.335±0.026 0.025±0.004 66.4±3.3 93.1±0.5 0.132±0.025 0.036±0.004
GATS 47.0±2.1 90.9±0.2 0.459±0.050 0.072±0.011 67.1±3.4 93.3±0.3 0.293±0.031 0.052±0.003
IRM 46.7±1.9 90.7±0.2 0.330±0.029 0.027±0.003 66.6±3.2 92.7±0.6 0.126±0.027 0.024±0.002
Order 47.2±2.5 90.9±0.2 0.317±0.024 0.024±0.004 67.2±3.3 93.1±0.1 0.126±0.014 0.027±0.003
Spline 46.8±2.0 90.9±0.1 0.315±0.026 0.173±0.002 66.3±3.0 92.7±0.7 0.125±0.029 0.177±0.002
VS 46.9±2.1 90.7±0.4 0.334±0.035 0.021±0.002 66.2±2.9 92.8±0.1 0.125±0.020 0.024±0.003

Pu
bm

ed

✗ 73.7±1.9 90.1±0.2 0.146±0.028 0.006±0.001 73.7±1.9 85.7±0.3 0.146±0.028 0.011±0.002
CAGCN 74.8±1.9 90.1±0.2 0.074±0.017 0.037±0.013 77.4±2.5 85.6±0.2 0.113±0.043 0.052±0.022
Dirichlet 74.2±1.6 90.3±0.2 0.134±0.024 0.009±0.001 77.0±1.8 85.6±0.1 0.106±0.016 0.017±0.003
ETS 74.9±1.9 90.2±0.2 0.125±0.029 0.007±0.001 77.2±2.3 85.8±0.4 0.104±0.021 0.010±0.003
GATS 73.8±1.7 90.2±0.1 0.118±0.033 0.059±0.019 77.3±2.4 85.9±0.2 0.129±0.025 0.079±0.025
IRM 74.2±1.5 90.2±0.2 0.141±0.021 0.005±0.001 77.2±1.9 85.5±0.4 0.114±0.022 0.007±0.002
Order 74.1±1.8 90.3±0.2 0.136±0.022 0.007±0.001 77.1±2.0 86.1±0.2 0.114±0.025 0.009±0.001
Spline 73.8±1.5 90.2±0.1 0.139±0.021 0.084±0.001 76.7±1.6 85.9±0.3 0.116±0.019 0.085±0.009
VS 73.7±1.2 90.3±0.1 0.148±0.016 0.006±0.000 77.0±1.9 86.4±0.5 0.112±0.019 0.009±0.001

Tw
itc

h

✗ 57.5±4.1 60.6±1.4 0.046±0.028 0.039±0.009 57.5±4.1 60.1±3.3 0.046±0.028 0.031±0.027
CAGCN 54.4±4.2 60.4±1.3 0.079±0.004 0.091±0.012 56.0±5.2 61.3±2.2 0.072±0.015 0.066±0.009
Dirichlet 55.7±3.9 60.4±1.3 0.016±0.006 0.012±0.002 55.9±5.3 60.4±3.0 0.031±0.017 0.019±0.009
ETS 56.3±3.3 59.8±1.6 0.037±0.031 0.030±0.010 55.6±5.6 60.2±2.4 0.063±0.062 0.023±0.011
GATS 55.2±3.8 60.4±1.6 0.050±0.020 0.091±0.018 55.8±5.4 61.2±2.3 0.035±0.018 0.058±0.011
IRM 55.6±3.5 60.4±1.7 0.009±0.001 0.011±0.001 55.5±5.7 61.4±1.1 0.010±0.001 0.012±0.003
Order 54.1±4.4 60.6±1.5 0.024±0.025 0.018±0.007 55.3±6.0 60.6±3.5 0.036±0.011 0.019±0.008
Spline 54.8±4.1 60.2±1.4 0.140±0.029 0.026±0.015 55.6±5.6 61.8±1.1 0.099±0.106 0.034±0.024
VS 55.5±3.8 60.8±1.4 0.040±0.026 0.011±0.002 55.8±5.4 60.7±2.1 0.039±0.011 0.015±0.004

C
BA

S

✗ 69.6±4.9 76.4±2.8 0.116±0.007 0.086±0.020 70.4±2.7 59.9±3.0 0.112 ±0.022 0.114±0.039
CAGCN 65.4±3.6 72.2±1.9 0.115±0.036 0.124±0.022 66.0±7.4 57.8±2.6 0.125±0.038 0.165±0.017
Dirichlet 67.8±3.0 76.7±1.8 0.090±0.013 0.092±0.019 66.0±7.4 61.8±2.4 0.085±0.017 0.116±0.024
ETS 68.5±4.1 76.7±2.1 0.087±0.026 0.080±0.012 65.8±7.2 59.3±2.6 0.130±0.055 0.139±0.037
GATS 68.4±4.4 78.5±1.3 0.149±0.090 0.135±0.029 65.7±7.1 62.3±3.3 0.131±0.039 0.129±0.025
IRM 68.7±4.3 76.7±2.8 0.088±0.009 0.102±0.020 63.1±6.3 60.5±1.3 0.099±0.039 0.130±0.027
Order 66.3±5.1 77.1±1.8 0.069±0.020 0.098±0.016 65.2±6.8 59.3±2.5 0.118±0.053 0.129±0.020
Spline 68.7±4.4 76.7±2.8 0.136±0.099 0.126±0.015 67.1±8.8 58.7±2.7 0.152±0.058 0.143±0.030
VS 67.5±3.3 74.8±2.6 0.101±0.029 0.097±0.009 69.2±7.4 58.4±1.7 0.095±0.011 0.094±0.024

of the vanilla (w/o SIGHT) models in all datasets. For Cora and Citeseer, incorporating SIGHT
into GNNs can increase even more than 50% Accuracy and ECE can be reduced even to 60 times
that without SIGHT. Furthermore, integrating SIGHT with post-hoc calibration models enhances
performance more effectively than applying the same calibration strategy to vanilla models. For a
given post-hoc method, SIGHT not only improves calibration but also maintains or even surpasses
the accuracy of baseline models across most datasets. Although certain combinations of SIGHT and
post-hoc calibration methods may lead to slight performance degradation (e.g., SIGHT with GAT
on CBAS), this should not be viewed as a limitation of SIGHT itself. Other post-hoc methods ap-
plied in the same setting also fail to yield significant improvements in either accuracy or calibration,
and in some cases even cause further degradation. In contrast, when combined with GCN, SIGHT
already achieves the best performance on CBAS. This suggests that the benefits of SIGHT are more
effectively realised through appropriate backbone selection rather than additional post-hoc calibra-
tion, highlighting its inherent ability to deliver robust generalisation and well-calibrated uncertainty
estimates. Overall, SIGHT consistently yields better-calibrated models for node classification tasks
and can be combined with post-hoc calibration models for further gains.
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(c) Pubmed

Figure 2: Correlation between predictive coding (PC) error and confidence scores on the Cora,
Citeseer, and Pubmed OOD test sets. Higher PC errors consistently correspond to lower confidence,
showing that PC residuals serve as an intrinsic measure of uncertainty.

OOD Detection. OOD detection (Hendrycks et al., 2019; Ren et al., 2023) aims to classify
samples as ID or OOD. To evaluate whether models assign higher uncertainty to shifted in-
puts (Bazhenov et al., 2023), we compare G-∆UQ and SIGHT with GCN and GAT backbones.
Their AUROC results are reported in Table 3.

Table 3: AUROC results for OOD detection. Best
results are in bold, and SIGHT is marked with .

Method Cora Citeseer Pubmed Twitch CBAS

GCN 70.4±2.8 74.1±1.1 72.6±1.2 53.2±0.5 74.5±3.8
+G-∆UQ 83.0±2.2 77.7±1.0 74.8±0.4 52.2±4.6 72.3±6.6
+SIGHT 89.0±1.6 84.0±1.2 85.1±0.2 54.5±2.4 78.1±2.4

GAT 73.9±2.1 78.3±1.1 77.0±0.6 49.5±2.4 75.9±4.1
+G-∆UQ 83.3±2.4 80.4±1.1 82.7±0.8 49.3±3.9 78.3±5.3
+SIGHT 88.0±2.8 81.1±1.8 82.1±0.2 52.7±3.1 83.1±3.4

Across the three citation networks (Cora,
Citeseer, and Pubmed) and the social net-
work Twitch, SIGHT consistently achieves
the highest AUROC under GCN backbone,
substantially outperforming plain GCN and
even the strong G-∆UQ baseline nearly 20%
and 7% at most, respectively. For the CBAS
dataset, SIGHT with GAT remains compet-
itive and surpasses the baselines, confirm-
ing its robustness under diverse distribution
shifts. These improvements highlight the ef-
fectiveness of predictive coding residuals in
distinguishing ID from OOD samples. Overall, these results demonstrate that SIGHT provides re-
liable uncertainty estimation for OOD detection, outperforming both conventional GNNs and ad-
vanced calibration baselines.

Explainability of Predictive Coding on Uncertainty Estimation. This experiment measures PC
error as an interpretability signal in our model trained on OOD datasets. Figure 2 illustrates the cor-
relation between PC error and model confidence measured by the mean maximum softmax probabil-
ity (MSP), on the OOD splits of Cora, Citeseer, and Pubmed. Across all three datasets, we observe
a strong negative correlation: as the average PC error increases, the MSP decreases. This indicates
that larger residuals correspond to lower confidence, thereby providing an intrinsic and interpretable
signal of uncertainty. Notably, the fitted polynomial curves show high R2 values (> 0.94), confirm-
ing that PC errors serve as a reliable proxy for confidence across diverse graph benchmarks. These
results highlight that SGPC does not require additional calibration procedures to extract meaning-
ful uncertainty estimates, as the residuals themselves naturally align with confidence scores under
distribution shifts. See Appendix D.5.2 for more experimental results on Twitch and CBAS datasets.

Ablation Study. Table 4 reports an ablation study with GCN and GAT backbone, where we com-
pare the full SIGHT model against three variants: without spiking neurons (w/o Spik), without
predictive coding (w/o PC), and without the joint Spiking Predictive Coding mechanism (w/o SPC).
The complete SIGHT model consistently achieves the best performance across all datasets and met-
rics, confirming the effectiveness of combining spiking computation with predictive coding. When
the spiking mechanism is removed (w/o Spiking), accuracy drops substantially (e.g., from 95.6%
to 68.4% on Cora with GCN) and calibration metrics such as ECE and Brier Score deteriorate, in-
dicating that event-driven representations are key to both generalisation and calibration. Excluding
predictive coding (w/o PC) yields relatively high accuracy on some datasets (e.g., Pubmed with GAT,
92.9%), but calibration performance significantly worsens, as reflected by higher NLL and ECE val-
ues, showing that local error feedback is essential for uncertainty estimation and well-calibrated
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Table 4: Ablation study of SIGHT with GCN and GAT backbones. Best results are in bold.

GCN GAT

Method Acc ↑ ECE ↓ NLL ↓ BS ↓ AUROC ↑ Acc ↑ ECE ↓ NLL ↓ BS ↓ AUROC ↑
C

or
a

SIGHT 95.6±0.2 0.009±0.002 0.153±0.010 0.068±0.003 89.8±1.5 96.3±0.7 0.008±0.002 0.138±0.028 0.058±0.012 89.6±2.1
w/o Spik 68.4±5.1 0.146±0.043 1.011±0.196 0.473±0.084 71.4±2.3 64.5±5.5 0.175±0.048 1.243±0.230 0.551±0.093 66.3±4.7
w/o PC 95.2±0.3 0.020±0.005 0.158±0.004 0.076±0.002 89.3±1.4 97.1±0.2 0.017±0.005 0.135±0.022 0.048±0.006 83.3±5.2
w/o SPC 43.5±5.2 0.391±0.071 2.595±0.512 0.919±0.103 59.9±3.7 67.4±4.1 0.164±0.026 1.072±0.108 0.498±0.059 71.1±3.2

C
ite

se
er SIGHT 91.2±0.4 0.024±0.004 0.307±0.016 0.136±0.008 83.4±0.8 93.4±0.2 0.028±0.003 0.261±0.012 0.105±0.005 80.8±1.2

w/o Spik 75.0±2.7 0.040±0.007 0.793±0.081 0.372±0.036 75.6±1.4 79.1±3.6 0.038±0.009 0.678±0.096 0.315±0.047 78.3±1.3
w/o PC 92.1±0.2 0.037±0.005 0.296±0.011 0.126±0.004 82.3±1.3 93.2±0.3 0.051±0.007 0.287±0.009 0.110±0.005 79.0±1.9
w/o SPC 46.6±1.9 0.334±0.027 1.838±0.051 0.793±0.026 74.1±1.6 66.6±3.3 0.125±0.022 0.968±0.085 0.470±0.037 77.4±1.3

Pu
bm

ed SIGHT 90.1±0.2 0.006±0.001 0.275±0.004 0.148±0.002 85.1±0.2 85.7±0.3 0.011±0.002 0.380±0.009 0.210±0.005 81.7±0.8
w/o Spik 78.3±1.2 0.116±0.013 0.665±0.043 0.338±0.018 77.1±1.6 79.1±3.6 0.038±0.009 0.678±0.096 0.315±0.047 78.3±1.3
w/o PC 87.2±0.1 0.008±0.001 0.345±0.002 0.189±0.001 81.8±0.1 92.9±0.2 0.008±0.001 0.203±0.006 0.107±0.003 87.3±0.4
w/o SPC 73.7±1.9 0.146±0.028 0.960±0.081 0.411±0.028 72.3±1.5 76.7±1.5 0.116±0.018 0.776±0.078 0.352±0.022 76.0±0.7

Tw
itc

h SIGHT 60.6±1.4 0.039±0.009 0.671±0.005 0.478±0.005 52.2±3.9 60.1±3.3 0.031±0.027 0.670±0.013 0.477±0.012 51.6±4.7
w/o Spik 59.5±5.5 0.016±0.003 0.669±0.012 0.476±0.012 50.2±4.5 55.4±7.9 0.072±0.041 0.681±0.014 0.488±0.014 46.6±7.6
w/o PC 59.6±2.2 0.035±0.021 0.675±0.011 0.482±0.010 51.8±4.1 59.6±2.9 0.038±0.029 0.673±0.012 0.481±0.012 51.3±5.1
w/o SPC 57.5±4.1 0.046±0.028 0.683±0.007 0.490±0.008 49.2±3.3 58.6±3.7 0.036±0.017 0.678±0.012 0.485±0.012 49.7±2.6

C
BA

S SIGHT 76.4±2.8 0.086±0.020 0.746±0.075 0.363±0.032 73.0±1.8 60.0±3.0 0.114±0.039 0.978±0.054 0.504±0.029 81.0±5.3
w/o Spik 74.8±6.2 0.093±0.021 0.726±0.105 0.359±0.066 73.8±3.5 73.0±2.8 0.088±0.019 0.802±0.030 0.396±0.008 72.3±6.7
w/o PC 76.0±3.8 0.097±0.009 0.645±0.115 0.334±0.061 82.8±7.3 70.4±3.1 0.122±0.033 0.839±0.046 0.427±0.025 76.0±4.9
w/o SPC 69.6±4.9 0.116±0.007 0.840±0.026 0.432±0.022 71.6±2.6 70.4±2.6 0.112±0.022 0.836±0.074 0.429±0.039 70.4±2.8

predictions. Finally, removing the full spiking predictive coding loop (w/o SPC) leads to the most
severe degradation across metrics. These results collectively demonstrate that both spiking compu-
tation and predictive coding contribute complementary strengths. Their integration in SIGHT is thus
crucial for delivering high accuracy, strong calibration, and reliable OOD generalization.

From the perspective of dataset characteristics, it can also be observed that incorporating SIGHT
into the same backbone consistently yields strong performance across different types of distribu-
tion shifts. Specifically, integrating SIGHT with GCN leads to better results on Cora, Pubmed, and
CBAS, while combining it with GAT achieves the best performance on Citeseer and Twitch. This di-
vergence can be attributed to structural differences between datasets. These findings suggest that the
choice of backbone architecture should be tailored to dataset properties, and highlight the flexibility
of SIGHT in enhancing a wide range of GNN models under both feature and concept shifts.

Parameter Analysis. We further investigate the impact of different hyperparameters on SIGHT,
including the number of predictive coding iterations K, the number of timesteps T , and the learning
rate under both GCN and GAT backbones. The results show that SIGHT is generally robust to vari-
ations in K and T , while the learning rate has a stronger influence, particularly on smaller datasets.
These findings confirm the practicality and robustness of SIGHT, with detailed experimental results
provided in Appendix D.5.3.

5 CONCLUSION

In this work, we introduced SpIking GrapH predicTive coding (SIGHT), a novel brain-inspired
framework that integrates spiking neural dynamics with predictive coding to achieve uncertainty-
aware graph learning. SIGHT departs from deterministic GNNs by iteratively minimizing predic-
tion errors across spiking graph states, enabling both robust generalisation under distribution shifts
and dynamic confidence estimation during inference. Experimental results demonstrate that SIGHT
provides robust uncertainty estimation under distribution shifts while maintaining competitive pre-
dictive performance, paving the way toward more reliable and neuromorphic-ready graph learning
models. Looking forward, we aim to extend SIGHT to multimodal graph learning, incorporating
heterogeneous sensory or semantic inputs, and explore its deployment on neuromorphic hardware
platforms, leveraging the event-driven and energy-efficient properties of spiking computation for
real-time, low-power applications. In addition, future work will investigate how replacing tradi-
tional backpropagation with predictive coding in deep neural networks influences model calibration
under out-of-distribution scenarios.
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Reproducibility Statement. We are committed to ensuring reproducibility of our work. Details
of model architectures, training procedures, and evaluation protocols are provided in Section 4.1 and
Appendix D, including hyperparameters, training epochs, and optimisation strategies. All datasets
(Cora, Citeseer, Pubmed, Twitch, and CBAS) are publicly available with standard preprocessing
following prior works. To further support reproducibility, we release open-source code containing
implementations of SIGHT, baselines, and post-hoc calibration models, together with configuration
files for reproducing all experiments and ablation studies. Pseudocode and the anonymous download
link are given in Appendix B.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs were used as a general-purpose assist tool during the preparation of this paper.
Specifically, LLMs assisted with polishing grammar of the manuscript and rephrasing sentences for
conciseness and readability.

B METHODOLOGY

B.1 REPRODUCIBILITY

To facilitate reproducibility, we provide our code in an anonymous repository. Additional details
regarding the benchmarks and experimental setup are presented in Appendix D.

B.2 LEAKY INTEGRATE-AND-FIRE (LIF)

In SIGHT, the Leaky Integrate-and-Fire (LIF) neuron plays a central role by converting continuous
prediction errors into discrete spike events and updating latent states through biologically inspired
neural dynamics. By acting as a leaky integrator with a firing threshold, the LIF mechanism ap-
proximates gradient descent on the predictive coding energy function while preserving event-driven
sparsity. This not only ensures biological plausibility but also provides computational efficiency and
energy savings, making the model well-suited for deployment on neuromorphic hardware.

From Predictive Coding to Input Current. After K inference steps of the predictive-coding loop
in layer ℓ, we obtain a continuous latent drive z

(ℓ)
K . This value acts as the constant synaptic current

fed into the LIF neurons:
i(ℓ) := z

(ℓ)
K . (11)

LIF Recurrence and Spiking. Given the input i(ℓ), the LIF membrane potential is updated across
T spiking timesteps as

v
(ℓ)
t+1 = β v

(ℓ)
t + i(ℓ) − vth s

(ℓ)
t , t = 0, . . . , T − 1, (12)

s
(ℓ)
t = Θ

(
v
(ℓ)
t − vth

)
, (13)

where 0 < β < 1 is the leak factor (β = 0.9 in our experiments), vth is the firing threshold, and
Θ(·) denotes the Heaviside step function. Each s

(ℓ)
t ∈ {0, 1}N×dℓ is a binary spike matrix indicating

whether neurons fire at timestep t.

Rate-code Representation. To obtain a stable representation from the spike train, we compute the
average firing rate across all timesteps:

H(ℓ) =
1

T

T∑
t=1

s
(ℓ)
t . (14)

This rate code H(ℓ) ∈ [0, 1]N×dℓ is then passed to the next layer or the final classifier.

Thus, each LIF block performs the following transformation:

z
(ℓ)
K −→ {s(ℓ)t }Tt=1 −→ H(ℓ), (15)

bridging predictive coding states with spiking dynamics.

B.3 SUMMARY OF SIGHT

Figure 1 illustrates the overall framework of SIGHT. In traditional GNNs, node representations are
updated by aggregating neighbor features through weighted message passing and nonlinear trans-
formations, with embeddings refined globally via backpropagation. While this synchronous ag-
gregation captures structural context, it lacks mechanisms for uncertainty modeling and local error
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Algorithm 1 Training Epoch of SIGHT

Require: Node features X, adjacency Ã, labels Y
1: Poisson Encoding: Generate spike trains Xspikes from normalized features.
2: Predictive Coding Inference:
3: for each layer l = 1 to L do
4: Input H(0) ← Xspikes

5: Pre-activation P(l) ← ÃH(l−1)W(l)

6: Iteratively update latent state Z(l) via LIF error–prediction dynamics.
7: end for
8: Rate Readout: H(l) ← 1

T

∑
t Z

(l)
t

9: Hebbian Learning:
10: for each layer l = 1 to L do
11: Update W(l) ∝ (H(l−1))⊤(Y −H(L))
12: end for

correction. In contrast, SIGHT augments aggregation with predictive coding units that exchange
both predictive signals and residual errors as spikes. This enables bi-directional message passing,
allowing nodes to iteratively refine their states based on mismatches between expected and observed
inputs. As a result, embeddings become not only structurally aware but also uncertainty-informed
and energy-efficient.

B.4 PSEUDOCODE

Please refer to Algorithm 1 for the pseudocode.

B.5 COMPUTATIONAL COMPLEXITY ANALYSIS

We conduct energy efficiency analysis and time complexity analysis.

Energy Efficiency Analysis. Spiking implementations introduce event-driven sparsity with only
a fraction ρ ≪ 1 of neurons fire per timestep. The effective cost per timestep is therefore
O
(
ρ|E|dl−1 + ρNdl

)
. This makes SIGHT well-suited for neuromorphic hardware, where mul-

tiplications are replaced by accumulations triggered by spikes, reducing both latency and power
consumption.

Time Complexity. For each layer l with input dimension dl−1 and output dimension dl, a sin-
gle graph convolution requires O

(
|E|dl−1 + Ndl

)
, where |E| is the number of edges. Predictive

coding inference introduces an additional factor of K inner iterations per layer. Thus, the per-layer
cost is O

(
K(|E|dl−1 + Ndl)

)
. Over L layers and T Poisson timesteps, the total complexity is

O
(
TK

∑L
l=1(|E|dl−1 +Ndl)

)
. In practice, T and K are small constants, so the overhead remains

linear in |E| and N .

Space Complexity. Unlike backpropagation, SIGHT does not store full computational graphs
or intermediate gradients. Each layer only maintains its latent state Z(l), residuals E(l), and
weight matrix W(l). Hence, memory scales as O

(∑L
l=1 Ndl + dl−1dl

)
, significantly lower than

O(T
∑

l Ndl) required by backpropagation through time in spiking networks.

Comparison with Backpropagation. Backpropagation requires gradient chaining across all lay-
ers and timesteps, incurring O(LT ) memory and repeated backward passes. SIGHT avoids this by
relying on local Hebbian updates ∆W(l) ∝ (H(l−1))⊤R(l), which only requires forward states and
local residuals. This significantly reduces both runtime constants and memory footprint.

SIGHT achieves comparable asymptotic complexity to conventional GNNs while avoiding the heavy
memory burden of backpropagation. Event-driven sparsity further improves efficiency, enabling
scalable, energy-aware training and inference for large graphs and safety-critical applications.
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C THEORETICAL ANALYSIS

In this part, we provide detailed proofs for the theoretical claims in Section 3.6.

C.1 CONVERGENCE OF PREDICTIVE CODING INFERENCE

Recall that the predictive coding (PC) energy function is defined as

F(Z) = 1

2

L∑
l=1

∥Z(l) − f (l)(H(l−1);W(l))∥22, (16)

where Z(l) is the latent representation of layer l, f (l) denotes the GNN message-passing operator
with weights W(l).

The inference dynamics follow the update rule:

Z(l)
k+1 = Z(l)

k − η ε
(l)
k , ε

(l)
k = Z(l)

k − f (l)(H(l−1);W(l)). (17)

Theorem 3 (Convergence of PC Inference). Suppose each f (l) is Lipschitz continuous with constant
Lf < 1. Then for any initialization Z(l)

0 , the iterative dynamics converge linearly to a unique fixed
point

Z(l) ∗ = f (l)(H(l−1);W(l)), (18)
which minimizes the local energy E(Z).

Proof. We note that
∇Z(l)F(Z) = Z(l) − f (l)(H(l−1);W(l)) = ε(l).

Thus, the PC update is equivalent to performing gradient descent on F(Z):

Z(l)
k+1 = Z(l)

k − η∇Z(l)F(Z).
For Lipschitz-smooth functions with Lf < 1, standard results in convex optimization guarantee
convergence to a stationary point, provided η < 2

Lf
. Since F is quadratic in Z, this stationary point

is also the global minimizer.

C.2 PREDICTIVE CODING RESIDUALS AS UNCERTAINTY ESTIMATORS

We define the predictive coding residual at node i and layer l as

u
(l)
i = ∥ε(l)i ∥2. (19)

Proposition C.1. If the predictive function f (l) is well-calibrated on the in-distribution (ID) data,
then larger residuals u(l)

i correspond to higher epistemic uncertainty, particularly under distribution
shift.

Sketch. In the ID case, residuals ε(l) are approximately zero-mean with bounded variance. Under
OOD shift, the mismatch between the learned mapping f (l) and the new distribution causes system-
atic deviations in Z(l), resulting in larger ∥ε(l)∥. Therefore, residual magnitudes can be used as a
proxy for uncertainty.

C.2.1 HEBBIAN UPDATES AND GLOBAL RISK MINIMISATION

SIGHT updates weights locally via

∆W(l) ∝ [ε(l)]⊤H(l−1). (20)

Lemma 1. The above local Hebbian update is equivalent, in expectation, to a stochastic gradient
step on the global predictive risk

R(W) = E(X,y)

[
ℓ(f(X;W), y)

]
, (21)

where ℓ is the cross-entropy loss.
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Sketch. By Taylor expanding the cross-entropy loss around the current prediction, the gradient
∇W(l)ℓ can be decomposed into a local error term times the input activation H(l−1). This aligns
with the Hebbian update rule, showing that PC updates approximate the gradient of R(W) without
backpropagation.

Theoretical analysis of SIGHT establishes three key results: the predictive coding inference dynam-
ics are guaranteed to converge to local energy minima, ensuring stability of the learning process; the
residual signals generated during inference naturally serve as interpretable measures of epistemic un-
certainty, providing insights into model confidence; and the local Hebbian update rules approximate
gradient descent on the global predictive risk, thereby enabling efficient learning without reliance
on backpropagation.

D EXPERIMENTS

D.1 DATASETS

According to Section 4.1, our experiments are conducted on five node classification datasets, Cora,
Citeseer, Pubmed, Twitch, and CBAS. The Cora, Citeseer, and Pubmed citation networks contain
nodes representing documents, edges representing citation links, bag-of-words feature vectors, and
class labels corresponding to research topics. Since these datasets lack explicit domain information,
we synthetically introduce covariate shifts by generating spurious node features. Concretely, we
retain the original node labels and construct 6 domains (id i ∈ {1, 2, 3, 4, 5, 6}) with shifted features.
For each domain, a randomly initialized GCN takes the node label yv and domain id i as input
to produce spurious features x̃

(i)
v . The final node representation is obtained by concatenating the

original and spurious features:

x(i)
v =

[
xv ∥ x̃(i)

v

]
, X(i) =

[
x(i)
v

]
v∈V . (22)

We treat X(1), X(2), and X(3) as ID data, while X(4), X(5), and X(6) serve as OOD domains. This
construction enables systematic evaluation of model generalisation under feature distribution shifts.
The reported number of nodes in Table 5 corresponds to a single synthetic domain.

The Twitch dataset is a social graph where nodes represent users, edges represent friendship links,
and features describe user metadata. The binary classification task aims to predict whether a user
streams mature content. Following Gui et al. (2022), the domains are defined by user language,
which ensures that the prediction target is not confounded by the language used. Finally, CBAS is
a synthetic dataset adapted from BA-Shapes (Ying et al., 2019). It is constructed by attaching 80
house-shaped motifs to a 300-node Barabási–Albert base graph. The learning objective is a four-
class node classification task, where each node is categorized as the top, middle, or bottom node of
a house motif, or as part of the base graph. In place of constant node features, colored attributes are
introduced, forcing OOD algorithms to address the spurious correlations between colors and labels
under concept splits.

We formalize concept shift by viewing a dataset as a mixture of |C| latent concepts C =
{c1, . . . , c|C|}. Let Pyj ,di

(Y) denote the output distribution that assigns probability one to value
yj under domain di, i.e., P (Y = yj | Xind = xi) = 1. For the classification setting where Y is
discrete, the conditional distribution of a concept ck can be represented as a combination of one-
dimensional distributions:

Pck(Y | Xind = xi) =
|Y|∑
j=1

qki,j Pyj ,di
(Y), (23)

where qki,j indicates the strength of the spurious correlation between domain di and label yj in
concept ck. The overall dataset distribution can then be described as a mixture across concepts:

P (Y,X) =

|C|∑
k=1

wk Pck(Y,X) =

|C|∑
k=1

wk P (X)ck Pck(Y | X), (24)

where wk denotes the mixture coefficient associated with concept ck.
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Table 5: Statistics of the experimental datasets.

Dataset # Nodes # Edges # Classes # Features Shift Type Train/Val/ID Test/OOD Test(%)

Cora 2,708 5,429 7 1,433 Covariate 25/12.5/12.5/50
Citeseer 3,327 4,732 6 3,703 Covariate 25/12.5/12.5/50
Pubmed 19,717 44,338 3 500 Covariate 25/12.5/12.5/50
Twitch 34120 892346 2 128 Concept 39.87/28.36/8.54/23.23
CBAS 700 3962 4 4 Concept 20/40/20/20

For all datasets, we follow the dataset splits in (Wu et al., 2024) and (Gui et al., 2022) for training,
validation, ID and OOD testing. More details of the dataset statistics are shown in Table 5.

D.2 BASELINES

Post-hoc Calibration Models. As introduced in section 4.1, we propose a variety of post-hoc
strategies to calibrate model predictions. Their key advantage lies in flexibility, as they operate
directly on the model’s outputs without requiring any modification to the underlying architecture or
training process. In our experiments, we adopt the post-hoc calibration models provided by Trivedi
et al. (2024). Here is an introduction of these post-hoc strategies used in our experiments:

• CaGCN: (Wang et al., 2021) leverages the graph structure and an auxiliary GCN to generate
node-wise temperatures.

• Dirichlet calibration: (Kull et al., 2019) models calibrated outputs with a Dirichlet distribu-
tion, capturing inter-class dependency in probability adjustment.

• Ensemble temperature scaling (ETS): (Zhang et al., 2020) extends this idea by combining
multiple temperature-scaled models for improved flexibility.

• GATS: (Hsu et al., 2022) further incorporates graph attention to capture the influence of
neighboring nodes when learning these temperatures.

• Multi-class isotonic regression (IRM): (Zhang et al., 2020) applies non-parametric isotonic
regression to better capture non-linear calibration mappings.

• Order-invariant calibration: (Rahimi et al., 2020) enforces invariance to label permutations,
ensuring consistent probability estimates across classes.

• Spline: Gupta et al. (2021) fits smooth spline functions to adjust predicted probabilities.

• Vector scaling (VS): (Guo et al., 2017) learns class-specific scaling parameters, allowing
heterogeneous calibration across classes.

All code used in this work complies with the respective providers’ licenses and does not include any
personally identifiable information or offensive content. The repositories for the baseline implemen-
tations are listed below:

GCN (MIT license): https://github.com/tkipf/pygcn

GAT (MIT license): https://github.com/Diego999/pyGAT

G-∆UQ: https://github.com/pujacomputes/gduq/tree/main

D.3 EVALUATION METRICS

According to section 4.1, we report five widely used metrics: Accuracy, Expected Calibration Error
(ECE), Negative Log-Likelihood (NLL), Brier Score (BS), and the Area Under the Receiver Operat-
ing Characteristic Curve (AUROC). These metrics capture complementary aspects of accuracy and
calibration.

Accuracy. Accuracy is the most widely used metric for evaluating node classification perfor-
mance. It measures the proportion of correctly predicted labels over the total number of test nodes
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and directly reflects the discriminative power of the model. Formally, given test set Dtest with
ground-truth labels {yi} and predicted labels {ŷi}, accuracy is defined as

Accuracy =
1

|Dtest|
∑

i∈Dtest

I(ŷi = yi), (25)

where I(·) denotes the indicator function. Higher accuracy indicates that the model has stronger clas-
sification capability, though it does not capture the quality of predictive probabilities or calibration,
which motivates the use of additional uncertainty-aware metrics.

Expected Calibration Error (ECE). Calibration refers to the alignment between predicted con-
fidence and empirical accuracy. Calibrated models are expected to generate confidence scores that
accurately reflect the true likelihood of the predicted classes (Naeini et al., 2015; Guo et al., 2017;
Ovadia et al., 2019). ECE partitions predictions into M confidence bins {Bm}Mm=1. For each bin,
we compute the average confidence conf(Bm) and the empirical accuracy acc(Bm). ECE is defined
as

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣, (26)

where n is the total number of test samples. A smaller ECE indicates better calibration.

Brier Score (BS). The Brier Score measures the mean squared difference between predicted prob-
ability vectors and one-hot ground-truth labels:

Brier =
1

n

n∑
i=1

C∑
c=1

(
pθ(y = c|xi)− 1[yi = c]

)2
, (27)

where C is the number of classes and 1[·] denotes the indicator function. A lower Brier Score
indicates that predicted probabilities are closer to the true distribution.

Negative Log-Likelihood (NLL). NLL evaluates the quality of probabilistic predictions. Given
predicted probability distributions pθ(yi|xi) for test samples (xi, yi), it is defined as

NLL = − 1

n

n∑
i=1

log pθ(yi|xi). (28)

Lower values correspond to higher likelihood assigned to the true labels, indicating better uncer-
tainty modelling.

Area Under ROC Curve (AUROC). Given a classifier that outputs class probabilities {pi,c}Kc=1

(or logits {zi,c}Kc=1) for each sample i, let the hard prediction be
ŷi = argmaxc pi,c, yi ∈ {1, . . . ,K}. (29)

Define the binary label for error detection as

ybin
i = 1[ŷi ̸= yi] ∈ {0, 1}, (30)

where 1 denotes a misclassification (positive class) and 0 denotes a correct prediction (negative
class).

We compute an uncertainty score si from the model outputs using MSP and entropy:
MSP: si = 1−max

c
pi,c, (31)

Entropy: si = −
K∑
c=1

pi,c log pi,c. (32)

For a threshold τ , predict “error” if si > τ . The ROC statistics are

TPR(τ) =
∑

i 1[si > τ ] 1
[
ybin
i = 1

]∑
i 1

[
ybin
i = 1

] , (33)

FPR(τ) =
∑

i 1[si > τ ] 1
[
ybin
i = 0

]∑
i 1

[
ybin
i = 0

] . (34)
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Table 6: Node classification accuracy and uncertainty calibration on ID and OOD datasets with the
GAT backbone. Best results are in bold, and SIGHT is marked with . Results with the GCN
backbone are in Table 1.

Method Accuracy ↑ ECE ↓ NLL ↓ BS ↓ AUROC ↑

ID OOD ID OOD ID OOD ID OOD ID OOD

C
or

a GAT 90.6±0.5 67.4±4.1 0.015±0.001 0.164±0.026 0.286±0.027 1.072±0.108 0.137±0.011 0.498±0.059 88.9±0.7 71.1±3.2
+G-∆UQ 93.9±0.4 80.2±3.5 0.015±0.002 0.061±0.033 0.211±0.007 0.578±0.098 0.097±0.004 0.291±0.053 87.2±1.6 81.8±3.0

+SIGHT 93.9±0.9 96.3±0.7 0.017±0.002 0.008±0.002 0.227±0.036 0.138±0.028 0.097±0.016 0.058±0.012 87.1±3.0 89.6±2.1

C
ite

se
er GAT 82.1±0.4 46.6±1.9 0.026±0.003 0.334±0.027 0.503±0.012 1.838±0.051 0.252±0.006 0.793±0.026 84.1±0.8 74.1±1.6

+G-∆UQ 81.6±0.4 71.0±4.2 0.021±0.008 0.066±0.027 0.531±0.037 0.889±0.145 0.263±0.010 0.416±0.056 82.2±1.6 76.5±1.3
+SIGHT 88.8±0.5 93.4±0.2 0.020±0.006 0.028±0.003 0.414±0.022 0.261±0.012 0.175±0.010 0.105±0.005 77.7±1.74 80.8±1.2

Pu
bm

ed GAT 88.0±0.1 73.7±1.9 0.008±0.001 0.146±0.028 0.306±0.001 0.960±0.081 0.173±0.000 0.411±0.028 85.2±0.3 72.3±1.5
+G-∆UQ 91.3±0.2 83.8±0.7 0.006±0.001 0.090±0.009 0.236±0.002 0.668±0.048 0.129±0.002 0.263±0.013 86.3±0.4 74.2±0.3

+SIGHT 86.0±0.3 85.7±0.3 0.012±0.002 0.011±0.002 0.376±0.009 0.380±0.009 0.208±0.005 0.210±0.005 81.6±0.7 81.7±0.8

Tw
itc

h GAT 60.7±9.0 57.5±4.1 0.129±0.066 0.046±0.028 0.685±0.006 0.683±0.007 0.492±0.006 0.490±0.008 59.5±4.3 49.2±3.3
+G-∆UQ 64.8±9.9 58.3±2.9 0.163±0.067 0.065±0.024 0.690±0.021 0.687±0.009 0.497±0.021 0.494±0.009 58.0±9.1 45.4±1.5

+SIGHT 51.2±2.9 60.1±3.3 0.103±0.033 0.031±0.027 0.719±0.021 0.670±0.013 0.524±0.019 0.477±0.012 49.8±2.4 51.6±4.7

C
BA

S GAT 75.7±1.9 70.4±2.7 0.104±0.034 0.112±0.022 0.593±0.042 0.837±0.074 0.324±0.026 0.429±0.040 81.5±6.3 70.4±2.8
+G-∆UQ 80.1±6.8 73.0±7.2 0.101±0.030 0.123±0.047 0.529±0.128 0.759±0.134 0.284±0.072 0.389±0.082 82.1±2.3 74.8±8.1

+SIGHT 82.6 ±0.6 60.0±3.0 0.126±0.027 0.114±0.039 0.515±0.034 0.978±0.054 0.261±0.013 0.504±0.029 84.6±0.0 81.0±5.3

The AUROC is the area under this ROC curve:

AUROC =

∫ 1

0

TPR
(
FPR−1(u)

)
du. (35)

Intuitively, it measures how well si ranks misclassified samples above correctly classified ones. The
introduction of how threshold is selected is detailed in Appendix D.4.

D.4 IMPLEMENTATION DETAILS

According to section 4.1, all experiments are conducted on a cloud server equipped with a single
NVIDIA vGPU (48 GB memory) and 20 vCPUs (Intel Xeon Platinum 8470), with 90 GB system
memory. The software environment includes Ubuntu 20.04, Python 3.8, PyTorch 2.0, PyTorch Geo-
metric, snnTorch, and CUDA 11.8. We train models in a full-batch setting with Adam optimizer. For
fair comparison, our framework and all baselines employ temperature scaling as a post-processing
step for calibration.

As for the ROC thresholds τ , they are not manually chosen but derived from the empirical distribu-
tion of uncertainty scores. Formally, let

S = {s1, s2, . . . , sn}, (36)

then the threshold set is
T = {−∞} ∪ S ∪ {+∞}. (37)

That is, each observed uncertainty score (together with boundary points) is treated as a potential
threshold, so AUROC evaluates performance across all possible thresholds rather than relying on a
fixed one.

D.5 ADDITIONAL RESULTS

D.5.1 COMPARISON OF PERFORMANCE AND CALIBRATION

Table 6 reports node classification accuracy and calibration metrics under both ID and OOD set-
tings with the GAT backbone. Overall, SIGHT consistently delivers competitive or superior perfor-
mance compared to GAT and G-∆UQ. Apart from CBAS, SIGHT achieves strong OOD accuracy
while simultaneously reducing calibration errors, as reflected in the lowest OOD ECE and Brier
scores. These improvements highlight the ability of predictive coding residuals to enhance uncer-
tainty awareness beyond conventional GAT models. On the smaller CBAS datasets, SIGHT remains
robust, matching or surpassing baselines in ID accuracy and achieving higher AUROC. Importantly,
AUROC values confirm that SIGHT provides more reliable uncertainty estimation under distribution
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(c) Pubmed

Figure 3: Correlation between predictive coding (PC) error and confidence scores on the Cora,
Citeseer, and Pubmed ID test sets. Higher PC errors consistently correspond to lower confidence,
showing that PC residuals serve as an intrinsic measure of uncertainty.

(a) TwitchID (b) CBASID (c) TwitchOOD (d) CBASOOD

Figure 4: Correlation between predictive coding (PC) error and confidence scores on the Twitch and
CBAS ID and OOD test sets. Higher PC errors correspond to lower confidence, indicating that PC
residuals provide an intrinsic measure of uncertainty.

shifts, establishing a favorable balance between predictive accuracy and calibration quality across
diverse domains.

D.5.2 EXPLAINABILITY OF PREDICTIVE CODING ON UNCERTAINTY ESTIMATION

Other than OOD data shown in Figure 2, Figure 3 reports the correlation between PC error and
confidence on the ID test sets of Cora, Citeseer, and Pubmed. Similar to the OOD case, we ob-
serve a strong negative correlation: higher PC errors correspond to lower confidence. This shows
that predictive coding residuals not only capture local mismatches between predictions and inputs
but also faithfully reflect model certainty on in-distribution samples. The high R2 values of the
polynomial fits (0.94–0.97) further confirm that PC errors provide reliable, interpretable indica-
tors of confidence, supporting the claim that SIGHT yields uncertainty estimates without post-hoc
calibration. In contrast, Figure 4 shows the correlation on Twitch and CBAS under both ID and
OOD settings. Here, the correlations are weak (low R2 values), suggesting that PC errors do not
align well with confidence. This misalignment is particularly evident under concept shift, where
disrupted label–feature correspondence causes predictive coding to propagate misleading error sig-
nals, undermining the reliability of uncertainty estimation. Overall, these results indicate that PC
residuals are effective under covariate shift but limited under concept shift.

D.5.3 PARAMETER ANALYSIS

As introduced in 4.2, we further investigate the impact of different hyperparameters on SIGHT,
including the number of predictive coding iterations K, the number of timesteps T , and the learn-
ing rate under both GCN and GAT backbones. Figure 5 presents the sensitivity analysis. Across
datasets, performance remains stable across a wide range of K and T , showing that SIGHT is ro-
bust to the choice of inference iterations and simulation length. In contrast, the learning rate has a
more pronounced influence: overly large or small values lead to noticeable drops in AUROC, par-
ticularly on smaller datasets such as CBAS and Twitch. These findings demonstrate that SIGHT
maintains strong and consistent performance without requiring fine-grained hyperparameter tuning,
highlighting its practicality and robustness in real-world settings.
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Figure 5: Sensitivity analysis of SGPC under different hyperparameters with GCN and GAT back-
bones. The effects of predictive coding iterations (K), timesteps (T ), and learning rate (LR) on
AUROC are evaluated across five datasets (Cora, Citeseer, Pubmed, CBAS, Twitch).
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