
Learning Causal Relations from Subsampled Time Series with Two Time-Slices

Anpeng Wu 1 Haoxuan Li 2 Kun Kuang 1 Keli Zhang 3 Fei Wu 1 4 5

Abstract
This paper studies the causal relations from sub-
sampled time series, in which measurements are
sparse and sampled at a coarser timescale than
the causal timescale of the underlying system.
In such data, because there are numerous miss-
ing time-slices (i.e., cross-sections at each time
point) between two consecutive measurements,
conventional causal discovery methods designed
for standard time series data would produce sig-
nificant errors. To learn causal relations from
subsampled time series, a typical solution is to
conduct different interventions and then make a
comparison. However, full interventions are of-
ten expensive, unethical, or even infeasible, par-
ticularly in fields such as health and social sci-
ence. In this paper, we first explore how readily
available two-time-slices data can replace inter-
vention data to improve causal ordering, and pro-
pose a novel Descendant Hierarchical Topology
algorithm with Conditional Independence Test
(DHT-CIT) to learn causal relations from sub-
sampled time series using only two time-slices.
Specifically, we develop a conditional indepen-
dence criterion that can be applied iteratively to
test each node from time series and identify all of
its descendant nodes. Empirical results on both
synthetic and real-world datasets demonstrate the
superiority of our DHT-CIT algorithm.

1. Introduction
Learning causal relations from time series data is a funda-
mental problem in many fields of science (Granger, 1969;
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1980; Lütkepohl, 2005; Hyvärinen et al., 2010; Runge et al.,
2019; Bussmann et al., 2021; Löwe et al., 2022; Assaad
et al., 2022). Most existing methods can well-identify causal
structures from time series data by modeling these structures
at the system’s timescale, under the assumption of causal
sufficiency. However, in practice, these methods may face
challenges when measurements are sparse and sampled at a
coarser timescale than the causal timescale of the system, as
shown in Figure 1(a,b), there would be numerous missing
time-slices1 between two consecutive measurements (Gong
et al., 2015; Plis et al., 2015b; Hyttinen et al., 2016; Peters
et al., 2017). In such data, it has been demonstrated that full
graph discovery is unidentifiable without prior knowledge
of the subsampling rate and structural functions (Gong et al.,
2015; Plis et al., 2015b; Hyttinen et al., 2016).

Recently, many works have been developed to study the
causal ordering of the summary causal graph (Definition
3.1), also known as topological ordering, as depicted in
Figure 1(c.II), in which a node in the ordering can only be
a parent to nodes that appear after it in the same ordering
(Dahlhaus & Eichler, 2003; Teyssier & Koller, 2005; Pe-
ters et al., 2014; Loh & Bühlmann, 2014; Park & Klabjan,
2017). To construct precise causal orderings for learning
DAGs of summary causal graph2, a typical solution is to con-
duct intervention experiments on each node and then make
a comparison to identify which variables have been influ-
enced by the intervention. As marked in red in Figure 1(b),
intervening on Xt−3

2 would change the distribution of its
descendants (Xt−3

3 , Xt−3
4 ), enabling quick identification of

them. Subsequently, we can construct a causal ordering in
which each node is connected to its descendant nodes. The
acyclicity constraint is automatically maintained because
the causal ordering only represents ancestral and descendant
relationships. However, while intervention experiments can
significantly aid in accurately identifying the causal order-
ing, full interventions are often costly, ethically problematic,
or even unfeasible (Wang et al., 2017; Yang et al., 2018).

Besides, while existing ordering-based methods could be
well-generalized to the subsampled time series setting, these
methods typically generate non-unique topological order-
ing with numerous spurious edges. For example, SCORE

1We refer to cross-sections at each time point as one time-slice.
2In discussing the summary graph’s DAG, we omit self-loops.
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Figure 1. (a, b) Subsampled Time Series with Only Two Time-Slices. (c, d) The SCORE and DHT-CIT Algorithms. In clinical study,
doctors typically compare earlier Xt−3 and current Xt patient records to identify causes of outcome of interest. Patient visits may be
recorded less frequently than the causal timescale of the underlying system, leaving Xt−2 and Xt−1 unrecorded.

and DiffAN (Rolland et al., 2022; Sanchez et al., 2022) use
the Hessian of the data log-likelihood to iteratively identify
leaf nodes and generate a complete topological ordering
(Figure 1(c)) to approximate the true causal structure. How-
ever, the generated complete topological ordering is not
only a non-unique topological ordering but also includes
numerous spurious edges, which poses potential difficulties
in downstream pruning tasks to identify directed acyclic
graphs (DAGs) of summary causal graphs (Figure 1(a) (Rol-
land et al., 2022; Sanchez et al., 2022)). Therefore, in the
subsampled time series setting, when full interventions are
impractical, this paper explores a novel conditional indepen-
dence criterion to learn descendant hierarchical topology
(DHT) using only two time-slices.

Unlike traditional time series studies where all previous
time-slices within the observation windows are accessible,
in many subsampled time series scenarios, we have access
only to limited reliable time-slices. This situation is quite
common in healthcare, where doctors typically use limited
time-slices to analyze a patient’s condition and determine
treatments. Therefore, in this paper, we study the causal or-
dering for the summary causal graph on subsampled time se-
ries using only two time-slices. Inspired by the intervention
in Figure 1(b), we find that each node is influenced by its
ancestors and itself, then the earlier time-slice would trans-
mit perturbations to both itself and its descendants in the
subsequent time-slice, serving as simulated interventions.
Treating the earlier perturbations as auxiliary instrumental
variables, we propose a Descendant Hierarchical Topology
algorithm with Conditional Independence Test (DHT-CIT)
to quickly identify (non-)descendants for each node (Fig-

ure 1(d)), ultimately constructing a more efficient unique
Descendant Hierarchical Topology with merely a few spu-
rious edges. Subsequently, we prune unnecessary edges to
approximate the true summary causal graph. Empirical re-
sults on both synthetic and real-world datasets demonstrate
the superiority of our DHT-CIT algorithm.

2. Related Work
Standard methods for inferring causal structure from conven-
tional time series typically focus either on estimating a tran-
sition model at the measurement timescale (e.g., Granger
causality (Granger, 1969; 1980)) or they integrate a model
of measurement timescale with ’instantaneous’ or ’contem-
poraneous’ causal relations to capture interactions within
and between d-variate time series from observational data
(Lütkepohl, 2005; Hyvärinen et al., 2010; Luo et al., 2015;
Nauta et al., 2019; Runge et al., 2019; Runge, 2020; Buss-
mann et al., 2021; Löwe et al., 2022; Assaad et al., 2022).
However, these methods depend on modeling causal struc-
tures at the system timescale and assuming causal suffi-
ciency. Both of these conditions might not hold in Subsam-
pled Time Series with only two time-slices, as there could
be numerous unmeasured time slices latent in the time se-
ries, either before or between these two observed time-slices
(Gong et al., 2015; Peters et al., 2017).

Subsampled processes with a few time-slices in time series
setting are ubiquitous and inherent in the real world, how-
ever, causal discovery over Subsampled Time Series is not
as well explored. With the prior of the degree of undersam-
pling, Gong et al. (2015) uses Expectation-Maximization
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algorithm to recover the linear temporal causal relations
from the subsampled data. Tank et al. (2019) take structural
vector autoregressive models for parameter identifiability
and estimation. The identifiability of both works is achieved
only for linear data. For nonlinear data, by analyzing loop
lengths and strongly connected components (SCCs) in com-
pressed graphs, Danks & Plis (2013) provide theorems and
algorithms to infer partial information about the structure of
the compressed graph. Leveraging these findings and some
additional structural insights about constraint satisfaction
problems, Abavisani et al. (2023) generalizes the search-
based RASL algorithm (Plis et al., 2015a) and proposes a
new sRASL algorithm for learning the true directed causal
structure from subsampled time-series. Inspired by works
(Gong et al., 2015; Plis et al., 2015b), Hyttinen et al. (2016)
proposes a constraint optimization approach to identify a
small part of the causal information (i.e., an equivalence
class) from subsampled time series data, but requires no
instantaneous effects. Causal discovery from subsampled
time series is still challenging without an efficient solution.

Recently, promising topology-based methods tackle the
causal discovery problem by finding a certain topologi-
cal ordering of the nodes and then pruning the spurious
edges (Teyssier & Koller, 2005; Peters et al., 2014; Loh &
Bühlmann, 2014; Park & Klabjan, 2017; Ghoshal & Hon-
orio, 2018; Ahammad et al., 2021; Sanchez et al., 2022;
Reisach et al., 2023). In this paper, we study the directed
summary causal graph on subsampled time series with in-
stantaneous effects using only two time-slices and explore
using two time-slices as a substitute for intervention data
to improve causal ordering of summary causal graph in
subsampled time series. More related works about non-
temporal data are placed in Appendix A.

3. Problem Setup
Standard Time Series. Let X = {Xτ

i }d×t denote the
full d-variate time series with all time slices Xτ at t time
points, where Xτ

i , i ∈ {1, 2, · · · , d} and τ ∈ {1, 2, · · · , t},
is a random vector comprising observations of n samples.
For simplicity of notation, we will not discuss each sample
individually. Instead, we refer to Xτ

i as a random variable
when discussing the causal structure. The true causal struc-
ture of the summary causal graph is represented by a DAG
G. For each Xτ

i , we use the notation paτi to specify the
partial set of parents of Xτ

i (as well as for Xτ+1
i ) at time

τ . Similarity, we define chτ
i for the set of child nodes, anτ

i

for the ancestors set, sibτ
i for the siblings set, and deτi for

the descendants set. As shown in Figure 1(a,b), follow-
ing the summary causal graph (Definition 3.1), the causal
structure can be expressed in the functional relationship, for
i ∈ {1, 2, · · · , d} and τ ∈ {1, 2, · · · , t}:

Xτ
i = fi

(
paτi , X

τ−1
i ,paτ−1

i

)
+ ϵτi , (1)

where fi(·) is a twice continuously differentiable function,
which embeds the instantaneous effects from its parents paτi
at time τ and time-lagged effects from previous variable
Xτ−1; and ϵτi denotes the Additive Noise term at time τ .

Definition 3.1 (Summary Causal Graph). The summary
causal graph is the directed graph with nodes X1, ..., Xd

containing an arrow from Xj to Xk for j ̸= k whenever
there is a direct arrow from Xta

j to Xtb
k for some ta ≤ tb,

and an optional self-loop arrow in Xi for all i ∈ {1, · · · , d}.

Subsampled Time Series with Two Time-Slices. In this
paper, we focus on learning the directed acyclic graphs G
of the summary causal graph (Figure 1(a)) on subsampled
time series (Figure 1(b)) with instantaneous effects using
only two time-slices D = {Xta ,Xtb}1<ta<tb<t. Based on
a conditional independence criterion using earlier time-slice
Xta as conditional instrumental variables, we can easily
distinguish descendants and non-descendants for each node
in the current time-slice Xtb . We rigorously prove that it
is complete under graph constraints, i.e., Markov property,
acyclic summary causal graph, stationary full-time graph.
More discussion about advantages and limitations of two
time-slices is deferred to Appendix I.

Assumption 3.2 (Markov Property). The Markov property
of time series assumes the future slice Xt+1 depends on
current state Xt but does not depend on history X1···t−1.

This is just for illustration, and later we can relax this as-
sumption as high-order Markov assumption subsampled
time series with high-order lagged effect in Appendix F.3.

Assumption 3.3 (Acyclic Summary Causal Graph, Section
5.2.1 in Assaad et al. (2022))). The summary causal graph
of a time series is considered acyclic if the lagged effect of
each variable solely affects its own value and its descendants,
without any influence on its non-descendants.

Assumption 3.4 (Consistency Throughout Time, Definition
7 in Assaad et al. (2022))). A causal graph G for a multivari-
ate time series X is said to be consistent throughout time if
all the causal relationships remain constant throughout time,
also referred to as stationary full-time graph.

Following these assumptions, the topological ordering is
known to be identifiable from observational data (Peters
et al., 2014; Bühlmann et al., 2014), and it is possible to
recover the DAG of the summary graph underlying the ad-
ditive noise models (Eq. (1)). Further discussion on the
assumptions made in this paper is provided in Appendix F.

4. Algorithm
In this section, we will first introduce the complete topologi-
cal ordering from classical topology-based approaches (Rol-
land et al., 2022; Sanchez et al., 2022) and show how two
time-slice data help identify a unique descent hierarchical
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topology. Then, based on a conditional independence crite-
rion using the previous time-slice as auxiliary instrumental
variables, we propose a novel identifiable topology-based
algorithm (DHT-CIT) for two time-slices, which is applica-
ble to any type of noise. The search space over the learned
descendant hierarchical topology is much smaller than that
of advanced approaches. Then, the underlying summary
graph can be found by pruning the unnecessary edges with
a well-defined pruning method (Bühlmann et al., 2014).

4.1. Descendant Hierarchical Topology

As shown in Figure 1(c), the conventional topology-based
approach SCORE (Rolland et al., 2022; Sanchez et al., 2022)
sequentially identifies and removes leaf nodes to generate
a complete topological ordering based on the Hessian’s
diagonal of the data log-likelihood.

Definition 4.1 (Complete Topological Ordering). The com-
plete topological ordering (π(X) = (Xπ1

, Xπ2
, · · · , Xπd

),
πi is the reordered index of node) is a sorting of all nodes
in a DAG such that for any pair of nodes Xπi

and Xπj
, if

there exists a directed edge from Xπi
to Xπj

, then i > j.

However, a complete topological ordering is a dense graph
with d(d−1)/2 edges, containing numerous spurious edges,
many of which point to non-descendants unnecessarily.
Moreover, these methods (Rolland et al., 2022; Sanchez
et al., 2022) may not always produce a unique solution,
making it challenging to eliminate false edges and resulting
in errors when learning summary causal graph. Fortunately,
as shown in Figure 1(d), obtaining two time-slices data can
help identify a unique hierarchical topological ordering, i.e.,
descendant hierarchical topology, in which each edge only
points from an ancestor node to its descendant nodes and
not to any non-descendant nodes.

Definition 4.2 (Hierarchical Topological Ordering). In
the hierarchical topological ordering e.g., Π(X) =
({Xπ1

}L1
, {Xπ2

, Xπ3
}L2

, · · · ), each layer is denoted by
Li and the located layer of Xj are represented as lj . If there
is a directed edge from Xπi

to Xπj
, then lπi

> lπj
.

Definition 4.3 (Descendant Hierarchical Topology). In the
descendant hierarchical topology, each node Xt

i identifies
other nodes as either non-descendant nodes or descendant
nodes, and each node Xt

i establishes direct edges pointing
to its descendants deti, i.e., Xt

i → deti, i ∈ {1, 2, · · · , d}.

For a given causal graph, there may be multiple complete
topological orderings (CTO) and hierarchical topological or-
derings (HTO). However, the descendant hierarchical topol-
ogy is unique and contains fewer non-essential edges com-
pared to CTO and HTO. This improvement eliminates spu-
rious edges pointing to non-descendant nodes in the learned
descendant hierarchical topology and reduces the search
space during the pruning stage of topology-based methods.

4.2. Descendant Conditional Independence Criteria

Two time-slices help topological ordering for learning sum-
mary causal graphs. Based on a conditional independence
criterion using previous time-slice Xta as auxiliary instru-
mental variables, we can easily distinguish descendants and
non-descendants for each node in current time-slice Xtb .

Theorem 4.4 (Descendant-Oriented Conditional Indepen-
dence Criteria). Given observationsD = {Xta ,Xtb}ta<tb

satisfying Assumptions 3.2, 3.3, and 3.4, for variables Xta
i

and Xtb
i , where i ∈ {1, 2, · · · , d}, we can conclude that

Xtb
j is a descendant node of Xtb

i iff Xta
i ⊥̸⊥ Xtb

j | an
ta
i .

Proof. From the the non-zero time-lagged effect and As-
sumptions 3.2, 3.3, and 3.4, we can infer that:
(a) The effect of Xta

i on Xtb
i is non-zero, i.e., Xta

i 99K Xtb
i ;

(b) Under Markov property, Xτ ̸→ Xtb
i for τ < ta < tb;

(c) Under acyclic assumption, Xta
i ̸→ antb

i for ta < tb;
(d) Under stationary time series, Xta

i 99K Xta
j 99K Xtb

j .
Under conditions (a), (b), (c) and (d), if Xtb

j ∈ antb
i , then

there are only two causal paths between Xta
i and Xtb

j :
Xta

i L99 anta
i 99K Xtb

j and Xta
i 99K {Xtb

i ,detbi } L99

Xtb
j . Hence, once we cut off all backdoor paths by con-

trolling the conditional set anta
i , then the confounding ef-

fect between Xta
i and Xtb

j would be eliminated, leading to
Xta

i ⊥⊥ Xtb
j | an

ta
i . Similarity, if Xtb

j ∈ sibtb
i , then the

summary backdoor path is Xta
i L99 anta

i 99K antb
j 99K

Xtb
j . In summary, if Xtb

j is a non-descendant node of Xtb
i ,

then Xta
i ⊥⊥ Xtb

j | an
ta
i . In turn, given the condition

Xta
i ⊥̸⊥ Xtb

j | an
ta
i , Xtb

j is a descendant node of Xtb
i .

However, since the causal graph is unknown, we are unable
to directly determine the ancestor nodes anta

i . Therefore,
we select all variables at time τ except for Xta

i and any
variables that are independent of Xta

i , as the conditional
set Xta

⊗i. This means that Xta
i ⊥̸⊥ Xta

j for each variable
Xta

j ∈ Xta
⊗i. As the events in conditional set Xta

⊗i occurs
before current time t, Xta

⊗i does not introduce additional
backdoor paths to non-descendant nodes at time t, nor can
it block the path Xta

i 99K Xtb
i 99K Xtb

j . Thus, we can
reformulate the Theorem 4.4 using the conditional set Xta

⊗i.

Corollary 4.5. Given observations D = {Xta ,Xtb}ta<tb ,
for variables Xi and Xj where i, j ∈ {1, 2, · · · , d}, Xj is
a descendant node of Xi iff Xta

i ⊥̸⊥ Xtb
j |X

ta
⊗i.

Based on the corollary 4.5, we can distinguish between de-
scendant and non-descendant nodes of each variable Xi by
conducting a single conditional independence test per vari-
able (Xta

i ⊥̸⊥ detbi | X
ta
⊗i). Additionally, if we perform a

random intervention on Xta
i , the conditional set in corollary

4.5 will be empty because the random intervention is inde-
pendent of the other variables. As a result, the conditional
independence test in corollary 4.5 can be replaced with a
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simple independence test, which will effectively speed up
the search for descendant hierarchical topology. The dif-
ference between the theorems of this paper with those of
traditional methods are placed in Appendix B.

4.3. DHT-CIT Algorithm

4.3.1. DESCENDANT HIERARCHICAL TOPOLOGY

Based on the conditional independence criteria in corollary
4.5, using previous time-slice Xta

⊗i = {X
ta
j | X

ta
j ⊥⊥ Xta

i }
as AIVs, we can identify descendants detbi of each variable
Xta

i by a single conditional independence test per variable
(Xta

i ⊥̸⊥ detbi | X
ta
⊗i). For every i, j ∈ {1, 2, · · · , d}, we

calculate the conditional independence significance P using
the conditional HSIC test with Gaussian kernel (Zhang et al.,
2011). We determine that Xi is a descendant of Xj if the
reported p-value is less than or equal to a threshold α, i.e.,
Xta

i ⊥̸⊥ Xtb
j |X

ta
⊗i, and the adjacency matrix of the unique

descendant hierarchical topology can be obtained via

P =


p1,1 p1,2 · · · p1,d
p2,1 p2,2 · · · p2,d

...
...

. . .
...

pd,1 pd,2 · · · pd,d

 , (2)

ATP =


I(p1,1 ≤ α) I(p1,2 ≤ α) · · · I(p1,d ≤ α)
I(p2,1 ≤ α) I(p2,2 ≤ α) · · · I(p2,d ≤ α)

...
...

. . .
...

I(pd,1 ≤ α) I(pd,2 ≤ α) · · · I(pd,d ≤ α)

, (3)

where pi,j = HSIC(Xta
i , Xtb

j | Xta
⊗i), α is a hyper-

parameter denoting significance threshold, and I(·) is the
indicator function. If the p-value is less than α, the result is
considered significant and an edge is added in the descen-
dant hierarchical topology. In statistical hypothesis testing,
α is typically set to 0.05 or 0.01. In this paper, we set the
hyper-parameter α = 0.01 as the default.

Despite the significant advancements in the development
of conditional independence testing (Zhang et al., 2011;
Runge, 2018; Bellot & van der Schaar, 2019), it remains
a complex task, especially in high-dimensional scenarios.
This complexity can lead to biased topological ordering that
includes cycles. To address this challenge, our approach in-
troduces topological ordering adjustment as a dual safeguard
to ensure acyclicity in the causal discovery process.

4.3.2. TOPOLOGICAL ORDERING ADJUSTMENT

To correct the conditional independence test and avoid cy-
cles in the topological ordering, we propose topological
layer adjustment to rectify the cycle graph in ordering.

Identifying Leaf Layer. We systematically identify leaf
nodes of the descendant hierarchical topology layer by layer.
Specifically, those nodes that do not have any descendants

are classified as leaf nodes. We iteratively identify all leaf
nodes of the descendant hierarchical topology as a leaf layer,
and then delete them from the topology. Firstly, we denote
all variables at time-slice τ , except for Xτ

i , as Xτ
−i for τ ∈

{1, 2, · · · , t}. At k-th leaf layer Lk, if Xtb
i ⊥⊥Xta

−i |X
ta
⊗i,

then Xtb
i is a leaf node at time-slice τ = tb and Xi ∈ Lk.

By repeating this operation, we can iteratively k := k + 1
and identify the current leaf layer Lk:

Xtb
i ∈ Lk, if aTP

i,j = 0 for all j ∈Mi,k, (4)

where XMi,k
= {Xta/Xta

i ,L1:k−1} denotes all variables
at time-slice ta, except for Xta

i and the variables in lower
layer L1:k−1. And Mi,k is the index of these variables.

Ensuring Acyclic Constraints. By repeating the above
procedure, we can sequentially leaf nodes layer-by-layer
until we encounter cycles in the topological ordering, which
makes it impossible to identify any leaf node as all nodes
have at least one descendant node at this time. To ensure
acyclic constraints and rectify the edges in descendant hi-
erarchical topology, if the causal relationship between the
unprocessed nodes in topological ordering forms a DAG, we
locate the maximum p-value that is less than α and change
it to 2α, deleting the corresponding edge in the topology

p(i∗,j∗) := 2α and aTP
i∗,j∗ = 0, (5)

(i∗, j∗) = argmaxi,j(pi,j ≤ α).

We repeat this operation until a new leaf node is identi-
fied. By adjusting the p-value, the layer sorting leads to
a more precise hierarchical topological ordering ATP =
{aTP

i,j }d×d. This ensures that the graph’s topological order-
ing is acyclic and improves the accuracy of learned graphs.

4.3.3. PRUNING SPURIOUS EDGES

Based on a conditional independence criterion and two
time-slices data, as depicted in Figure 1(d), we propose
a DHT-CIT algorithm to construct a more efficient descen-
dant hierarchical topology with merely a few spurious edges.
Theoretically, conditional independence in hierarchical topo-
logical layer ordering enables a pruning process that requires
only a limited set of nodes - either nodes from one higher
layer, the current layer, and two lower layers, or the node’s
non-descendants and one lower layer’s nodes - to deter-
mine the existence of spurious edges between nodes. In
contrast, classical methods like CAM, which rely on sig-
nificance testing with generalized additive models and a
p-value threshold of 0.001, often show superior practical
performance (Bühlmann et al., 2014). Consequently, fol-
lowing Rolland et al. (2022), we utilize CAM for pruning
spurious edges in our approach. The detailed pseudo-code
for this method is provided in Algorithm 1 in Appendix D.
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Table 1. The results (mean±std ) on Sin-d-e using observational data (D = {X1,X2}).
Sin-10-10 Graph with Observational Data ( D = {X1,X2} ) Sin-20-20 Graph with Observational Data ( D = {X1,X2} )

Method SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓ SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓
PC 12.8±5.03 43.6±9.94 0.56±0.12 3.51±0.72 - 21.5±6.75 98.2±31.8 0.61±0.11 4.59±0.69 -
FCI 15.3±3.77 71.0±11.5 0.54±0.09 3.89±0.46 - 30.5±4.09 237.±59.1 0.54±0.05 5.51±0.37 -

GOLEM 0.50±0.80 1.80±2.70 0.97±0.03 0.38±0.59 - 1.30±1.10 5.60±4.40 0.97±0.03 0.93±0.66 -
NOTEARS 1.20±0.60 2.30±1.20 0.94±0.02 1.02±0.30 - 2.60±1.49 6.00±3.40 0.94±0.03 1.55±0.46 -

ReScore 1.00±0.63 1.40±1.36 0.95±0.03 0.88±0.47 - 2.00±0.77 5.10±2.90 0.95±0.01 1.38±0.28 -

Granger 31.3±11.6 66.8±30.8 0.21±0.04 5.48±1.10 - 104±20.7 368±8.82 0.10±0.03 10.1±1.01 -
VarLiNGAM 35.0±0.00 69.4±3.20 0.36±0.00 5.91±0.00 - 170±0.00 339±3.20 0.19±0.00 13.0±0.00 -

CD-NOD 5.40±0.92 15.5±4.70 0.74±0.04 2.32±0.19 - - - - - -

CAM 3.70±2.95 13.2±10.6 0.84±0.13 1.79±0.74 80.00±0.00 10.3±6.50 41.6±34.7 0.79±0.12 3.07±0.98 360.0±0.00

SCORE 5.60±3.92 21.2±16.1 0.78±0.14 2.25±0.78 35.80±0.98 7.40±2.41 31.3±21.7 0.85±0.04 2.68±0.47 172.1±0.22

DHT-CIT 1.00±1.22 3.20±3.70 0.95±0.05 0.68±0.72 13.20±4.30 1.00±1.32 3.10±4.40 0.98±0.03 0.51±0.61 30.60±7.70

* CD-NOD on Sin-20-20 takes over 5 hours and #Prune on one-stage methods is not meaningful. We don’t discuss these results and represent them with ’-’.

Table 2. The results (mean±std ) on Sigmoid-10-10 & Poly-10-10 data.
Sigmoid-10-10 data with Gaussian Noise ( D = {X1,X2} ) Poly-10-10 data with Gaussian Noise ( D = {X1,X2} )

Method SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓ SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓
GOLEM 4.30±2.19 18.4±7.92 0.78±0.11 2.00±0.51 - 19.00±4.00 59.4±13.6 0.20±0.12 4.33±0.45 -

NOTEARS 12.5±5.40 45.3±17.9 0.46±0.21 3.44±0.78 - 17.8±5.36 56.4±16.9 0.23±0.18 4.16±0.64 -
ReScore 12.2±4.30 45.6±14.4 0.45±0.17 3.43±0.63 - 17.7±4.73 57.3±14.1 0.22±0.15 4.16±0.56 -

CAM 3.70±3.43 10.4±7.86 0.82±0.17 1.55±1.20 80.00±0.00 8.00±4.69 19.8±7.88 0.63±0.21 2.68±0.95 80.00±0.00

SCORE 9.90±3.81 32.8±11.6 0.56±0.16 3.09±0.61 38.90±1.60 18.90±4.33 40.4±10.9 0.23±0.13 4.32±0.52 42.20±1.48

DHT-CIT 0.67±1.12 1.80±2.99 0.96±0.06 0.46±0.72 8.67±2.92 3.22±3.15 10.8±5.69 0.84±0.15 1.51±1.03 11.33±3.87

5. Numerical Experiments
5.1. Baselines and Evaluation

In the experiments, we provide a broad range of time se-
ries variants of conventional non-temporal methods that
utilize a concatenation of the two cross-sectional data and
the temporal edge as additional information to initialize the
adjacency matrix and remove temporal edges that are not
the same variable. Then, we apply the proposed algorithm
(DHT-CIT) to both synthetic and real-world data and com-
pare its performance to the following baselines: constraint-
based methods, PC and FCI (Spirtes et al., 2000); score-
based methods, GOLEM (Ng et al., 2020), NOTEARS
with MLP (Zheng et al., 2020), and ReScore (Zhang et al.,
2023); traditional time-seires method, Granger (Shojaie &
Michailidis, 2010), VARLiNGAM (Hyvärinen et al., 2010),
and CD-NOD (Huang et al., 2020); topology-based meth-
ods, CAM (Bühlmann et al., 2014) and SCORE (Rolland
et al., 2022). The discussions about the rationale behind the
chosen baselines are deferred to Appendix C.

To evaluate the performance of the proposed DHT-CIT, we
compute the Structural Hamming Distance (SHD) between
the output and the true graphs, which evaluates the differ-
ences in terms of node, edge, and connection counts in the
two graphs. Besides, we use Structural Intervention Dis-
tance (SID) to count the minimum number of interventions
required to transform the output DAG into the true DAG,
or vice versa. The accuracy of the identified edges can also

be evaluated through the use of commonly adopted met-
rics F1-Score and L2-distance (Dis.) between two graphs.
Additionally, this paper primarily aims to enhance causal
ordering for learning causal relations from subsampled time
series. To this end, we compare topology-based methods by
quantifying the number of spurious edges requiring pruning,
denoted as #Prune.

5.2. Experiments on Synthetic Data

Datasets. We test our algorithm on synthetic data gener-
ated from a additive non-linear noise model (Eq. 1) under
Assumptions 3.2, 3.3 and 3.4. Given d nodes and e edges,
we generate the causal graph G using Erdos-Renyi model
(Erdös & Rényi, 2011). In main experiments, we gener-
ate the data with Gaussian Noise for every variable Xτ

i ,
i = 1, 2, · · · , d at time τ = 1, 2, · · · , t:

Xτ
i = Sin

(
paτi , X

τ−1
i

)
+ 1

10Sin
(
w · paτ−1

i

)
+ ϵτi ,

X0 ∼ N (0, Id) , ϵ
τ ∼ N (0, 0.4 · Id),

(6)

where Sin(paτi ) =
∑

j∈pa(Xi)
sin(Xτ

j ), Id is a d-th order
identity matrix, and w is a random 0-1 vector that controls
the number and existence of time-lagged edges from paτ−1

i .
To evaluate the performance of our DHT-CIT across var-
ious scenarios using observations D = {Xta ,Xtb} with
subsampleing rate u = tb − ta, we vary the number of
nodes (d) and edges (e) to generate larger and denser graphs,
which we refer to as Sin-d-e. To simulate real-world data
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Table 3. The experiments on different noise types.
Sin-10-10 data with Laplace Noise (D = {X1,X2})

Method SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓
GOLEM 1.50±1.20 2.80±2.52 0.92±0.05 1.00±0.70 -

NOTEARS 1.60±0.06 3.70±3.10 0.92±0.03 1.23±0.26 -
ReScore 2.00±1.34 3.00±2.41 0.90±0.06 1.29±0.57 -

CAM 5.30±2.83 14.0±8.01 0.78±0.12 2.23±0.57 80.0±0.00

SCORE 3.90±1.70 9.90±6.01 0.84±0.06 1.93±0.43 35.5±0.92

DHT-CIT 1.20±1.99 3.60±6.55 0.94±0.04 0.59±0.92 0.80±1.40

Sin-10-10 data with Uniform Noise (D = {X1,X2})
Method SHD↓ SID↓ F1-Score↑ Dis.↓ #Prune↓
GOLEM 2.60±1.80 6.80±3.94 0.89±0.06 1.46±0.68 -

NOTEARS 2.00±1.34 4.80±1.30 0.91±0.05 1.29±0.57 -
ReScore 1.70±0.90 3.70±2.90 0.92±0.04 1.21±0.48 -

CAM 8.90±7.15 21.4±12.0 0.68±0.22 2.14±0.73 80.0±0.00

SCORE 5.10±3.42 13.6±8.30 0.80±0.11 2.14±0.73 35.0±0.00

DHT-CIT 1.00±2.19 1.10±2.47 0.96±0.09 0.44±0.90 0.70±1.55

as much as possible, we design 2 additional non-linear func-
tions to test the performance of our DHT-CIT, i.e., Sigmoid-
d-e with Sigmoid(X) = 3

1+exp (−X) and Poly-d-e with

Poly(X) = 1
10 (X + 2)

2. Moreover, to test the algorithm’s
robustness against different noise types, we also generate
data with Laplace noise (X0

i , ϵ
τ ∼ Laplace(0, 1/

√
2)) and

Uniform noise (X0
i , ϵ

τ ∼ U(−1, 1)). In each experiment
setting, we perform 10 replications, each with a sample size
1000, to report the mean and the standard deviation of error.

The experiments on varying time-lagged edges are deferred
to Figure 3 in Appendix, while in the main experiments,
we set the number of time-lagged edges from paτ−1

i as 0.
Additional, experiments on exploring time costly and large
graph are deferred to Appendix H.2 and H.3.

Studying Two Time-Slices without Sub-Sampling on
Sparse Graph and Different Non-Linear Functions.
From the results on sparse graphs (Sin-10-10 and Sin-20-
20) in Table 1, we have the following observation: (1) In
two time-slices settings, the time series variants of PC and
FCI algorithms are limited to identifying Markov equiv-
alence classes and struggle with non-linear relations. (2)
The three methods (GOLEM, NOTEARS, and ReScore)
specifically designed for sparse graphs have shown excel-
lent performance, surpassing the proposed DHT-CIT on Sin-
10-10 with observational data (D = {X1,X2}). However,
their performance deteriorates on Sin-20-20 and relies on
causal sufficiency and time dependency. (3) Traditional time
series algorithms like Granger and VARLiNGAM, which
require multiple time slices, struggle with identifying the
summary causal graph using only two time-slices. They
even underperform compared to temporal variants of con-
ventional methods designed for non-temporal data. While
the CD-NOD method shows promising results in small-sized
datasets, it only offers an equivalence class of the causal
graph, which constrains the exploration of true causality. (4)

As a topology-based method, SCORE was able to recover
nearly true causal structure when applied to interventional
data. However, its performance decreases when dealing
with observational data (D = {X1,X2}) due to the pres-
ence of complex causal relationships from previous states.
(5) The proposed DHT-CIT builds a descendant hierarchical
topology with merely a few spurious edges. The search
space over the learned descendant hierarchical topology is
much smaller than that of SCORE. On average, compared to
SCORE, the number of pruned edges in DHT-CIT decreases
24.4 for Sin-10-10 and 147.6 for Sin-20-20. As the under-
lying DAG’s size increases, DHT-CIT achieves unbiased
causal discovery on interventional data, but there may be a
slight decrease on observational data, i.e., merely one error
edge on average, but its F1-Score still exceeds 95%.

Moreover, the results in Table 2 verify that our DHT-CIT
excels in identifying causal graphs for complex nonlinear
functions with fewer erroneous edges. Compared to CAM
and SCORE, our DHT-CIT significantly lowers the number
of spurious edges needing pruning in topological ordering,
which demonstrates the scalability and superiority of our
DHT-CIT method across diverse functions.

Scaling to Different Noise Types. To evaluate algorithm’s
robustness against various noise types, Sin-10-10 data was
generated with Laplace and Uniform noise. The results in
Table 3 demonstrate the superior and robust performance of
DHT-CIT against different types of noise, with the accuracy
consistently comparable to that under Gaussian noise.

Studying Two Time-Slices D = {Xta ,Xtb} with Vary-
ing Sub-Sampling Rate u = tb − ta on Denser Graphs.
Due to the limited space and constraints of most models,
in this section, we only compare our method against the
best baseline GLOEM and the advanced SCORE method
in denser graphs from two time-slices D = {Xta ,Xtb}
with varying sub-sampling rate u = tb − ta. We evaluate
their efficacy using SID, SHD, and #Prune metrics. From
the results on Sigmoid-d-e with varying numbers of nodes
and edges (Sub-sampling Rate u = 3, Table 4), we have
the following observations: as the graph becomes denser,
that is, as the number of edges increases, the performance
of DHT-CIT gradually declines, leading to an increase in
erroneous edges. Conversely, SCORE tends to outperform
DHT-CIT in extremely dense graphs (Sigmoid-10-40). Be-
cause, in extremely dense graphs, the causal relationships in
the summary graph become similar to the complete graph
identified by SCORE, while the performance of DHT-CIT
declines due to the increasing complexity of conditional in-
dependence tests. Therefore, our DHT-CIT method is more
suited to relatively sparse graphs, for example, graphs with
10 nodes and up to 30 edges (the complete topology graph
has 45 edges), or graphs with 20 nodes and up to 100 edges
(the complete topology graph has 190 edges). In extremely
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Figure 2. Causal Discovery on the PM-CMR Dataset.

Table 4. The experiments (mean±std) on Sigmoid-d-e using observations D = {Xta , Xtb} with Subsampling Rate u = tb − ta.

Sigmoid-10-20 on D = {X1,X4} Sigmoid-10-30 on D = {X1,X4} Sigmoid-10-40 on D = {X1,X4}
Method SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓
GOLEM 10.70±2.93 63.70±11.85 - 26.90±4.83 71.40±8.59 - 35.20±3.25 67.00±11.20 -
SCORE 15.10±3.65 53.10±12.95 31.20±1.60 14.80±5.71 46.40±8.04 20.80±1.60 23.60±2.24 38.40±13.46 10.30±2.00

DHT-CIT 6.30±2.90 25.30±13.66 13.50±2.91 14.10±4.46 38.80±11.02 11.10±1.58 23.60±2.24 41.20±6.90 6.80±2.48

Sigmoid-20-20 on D = {X1,X4} Sigmoid-20-60 on D = {X1,X4} Sigmoid-20-100 on D = {X1,X4}
Method SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓
GOLEM 26.0±5.60 138.0±47.15 - 60.10±5.49 322.3±23.84 - 100.0±5.32 336.4±16.19 -
SCORE 8.40±6.20 39.10±38.82 173.2±1.99 37.10±8.14 257.9±34.38 144.7±4.27 57.5±11.00 266.4±48.18 112.4±3.10

DHT-CIT 0.70±0.90 3.20±3.49 30.10±9.84 22.10±3.75 173.5±38.71 58.8±6.52 53.5±8.43 233.3±31.78 75.4±6.05

Sigmoid-10-20 on D = {X2,X4} Sigmoid-10-20 on D = {X2,X6} Sigmoid-10-20 on D = {X2,X10}
Method SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓ SHD↓ SID↓ #Prune↓
GOLEM 17.40±4.96 58.40±13.81 - 21.60±4.50 67.20±11.41 - 21.80±4.87 69.70±10.66 -
SCORE 12.20±1.78 47.20±5.21 29.20±0.40 15.80±3.76 54.70±10.17 30.00±1.20 22.30±4.43 67.60±10.34 32.30±2.40

DHT-CIT 8.30±3.82 26.00±12.77 0.46±0.72 8.30±1.55 38.10±5.19 11.20±2.28 14.60±3.75 36.20±12.86 13.60±0.92

dense graphs, we recommend using the topology obtained
by the SCORE. When the density of the graph in real-world
applications is uncertain, a better choice is to integrate the
topological ordering from SCORE as prior knowledge, then
apply our DHT-CIT algorithm to refine and enhance this
ordering, i.e., DHT-CIT+SCORE (see Appendix G).

On Sigmoid-10-20 simulations, as the subsampling rate u
increases, indicating more unobserved time slices within the
observation window, the number of error edges identified
by DHT-CIT increases. However, it still outperforms all
current state-of-the-art (SOTA) methods in performance.
This demonstrates the scalability, superiority, and robustness
of DHT-CIT in handling varying subsampling rates.

5.3. Experiments on Real-World Data

The PM-CMR (Wyatt et al., 2020) is a public time series
dataset that is commonly used to study the impact of the par-
ticle (PM2.5, T ) on the cardiovascular mortality rate (CMR,
Y ) in 2132 counties in the US from 1990 to 2010. Addi-

tionally, the dataset includes 7 variables (X1:7={unemploy,
income, female, vacant, owner, education, poverty}) related
to the city status, which are potential common causes of
both PM2.5 and CMR. The corresponding description of
variables is detailed in Table 8 in Appendix H.4. With the
prior knowledge, i.e., T ← X1:7 → Y and T → Y , we
draw two time-slices in 2000 & 2010 to evaluate the perfor-
mance of the proposed DHT-CIT and two well-performed
baselines (GOLEM and SCORE). As illustrated in Figure 2,
both GOLEM and SCORE do not generate true summary
causal graph, and only our DHT-CIT achieves more accu-
rate causal relationships in real-world data. GOLEM shows
there is no direct edge from T to Y and SCORE shows that
T is the parent node of {X1, X5, X6}, which contradicts
the prior knowledge. Only our DHT-CIT algorithm recovers
the dense causal graph, i.e., T ← X1:7 → Y and T → Y .
The results are consistent with the experiments on denser
graphs: both GOLEM and SCORE are only applicable to
sparse graphs, whereas our DHT-CIT maintains superior
performance and scalability to larger and denser graphs.
More detailed results are deferred to Appendix H.4.
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6. Conclusion
In the subsampled time series with only two time-slices, con-
ventional causal discovery methods designed for standard
time series data would produce significant errors without
prior knowledge of the subsampling rate and structural func-
tions. To address this issue, we treat the perturbations from
the earlier time-slice as simulated intervention (i.e., auxil-
iary instrumental variables) to improve topological ordering
and propose a novel DHT-CIT algorithm to learn a unique
descendant hierarchical topology with merely a few spuri-
ous edges for identifying DAG of summary causal graph.
The proposed DHT-CIT algorithm considerably eases the
assumptions typically made in traditional time series studies
about modeling causal structures at the system timescale,
requiring causal sufficiency, and observing all time slices
within the observation windows.
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Erdös, P. and Rényi, A. On the evolution of random graphs.
In The Structure and Dynamics of Networks, pp. 38–82.
Princeton University Press, 2011.

Ghoshal, A. and Honorio, J. Learning linear structural equa-
tion models in polynomial time and sample complexity.
In International Conference on Artificial Intelligence and
Statistics, pp. 1466–1475. PMLR, 2018.

9

https://openreview.net/forum?id=B_pCIsX8KL_
https://openreview.net/forum?id=B_pCIsX8KL_


Learning Causal Relations from Subsampled Time Series

Gong, M., Zhang, K., Schoelkopf, B., Tao, D., and Geiger, P.
Discovering temporal causal relations from subsampled
data. In International Conference on Machine Learning,
pp. 1898–1906. PMLR, 2015.

Granger, C. W. Investigating causal relations by economet-
ric models and cross-spectral methods. Econometrica:
journal of the Econometric Society, pp. 424–438, 1969.

Granger, C. W. Testing for causality: A personal viewpoint.
Journal of Economic Dynamics and control, 2:329–352,
1980.

Hasan, U., Hossain, E., and Gani, M. O. A survey on causal
discovery methods for temporal and non-temporal data.
arXiv preprint arXiv:2303.15027, 2023.

Hauser, A. and Bühlmann, P. Characterization and greedy
learning of interventional markov equivalence classes of
directed acyclic graphs. Journal of Machine Learning
Research, 13(1):2409–2464, 2012.

Huang, B., Zhang, K., Zhang, J., Ramsey, J., Sanchez-
Romero, R., Glymour, C., and Schölkopf, B. Causal
discovery from heterogeneous/nonstationary data. Jour-
nal of Machine Learning Research, 21(1):3482–3534,
2020.

Hyttinen, A., Eberhardt, F., and Järvisalo, M. Constraint-
based causal discovery: Conflict resolution with answer
set programming. In Conference on Uncertainty in Artifi-
cial Intelligence, pp. 340–349. AUAI Press, 2014.

Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F., and
Danks, D. Causal discovery from subsampled time se-
ries data by constraint optimization. In Conference on
Probabilistic Graphical Models, pp. 216–227. PMLR,
2016.

Hyvärinen, A., Zhang, K., Shimizu, S., and Hoyer, P. O.
Estimation of a structural vector autoregression model
using non-gaussianity. Journal of Machine Learning
Research, 11(5), 2010.

Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle,
H., Schölkopf, B., Mozer, M. C., Pal, C., and Bengio, Y.
Learning neural causal models from unknown interven-
tions. arXiv preprint arXiv:1910.01075, 2019.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,
S. Gradient-based neural dag learning. In International
Conference on Learning Representations, 2020.

Li, Y., Xia, R., Liu, C., and Sun, L. A hybrid causal structure
learning algorithm for mixed-type data. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 7435–7443, 2022.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal in-
ference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 78(5):947–1012,
2016.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

10



Learning Causal Relations from Subsampled Time Series

Plis, S., Danks, D., Freeman, C., and Calhoun, V. Rate-
agnostic (causal) structure learning. Advances in neural
information processing systems, 28, 2015a.

Plis, S., Danks, D., and Yang, J. Mesochronal structure
learning. In Conference on Uncertainty in Artificial Intel-
ligence, 2015b.

Ramsey, J., Spirtes, P., and Zhang, J. Adjacency-faithfulness
and conservative causal inference. pp. 401–408, 2006.

Reisach, A. G., Tami, M., Seiler, C., Chambaz, A., and
Weichwald, S. Simple sorting criteria help find the
causal order in additive noise models. arXiv preprint
arXiv:2303.18211, 2023.

Rolland, P., Cevher, V., Kleindessner, M., Russell, C., Janz-
ing, D., Schölkopf, B., and Locatello, F. Score matching
enables causal discovery of nonlinear additive noise mod-
els. In International Conference on Machine Learning,
pp. 18741–18753. PMLR, 2022.

Runge, J. Conditional independence testing based on a
nearest-neighbor estimator of conditional mutual infor-
mation. In International Conference on Artificial Intelli-
gence and Statistics, pp. 938–947. PMLR, 2018.

Runge, J. Discovering contemporaneous and lagged causal
relations in autocorrelated nonlinear time series datasets.
In Conference on Uncertainty in Artificial Intelligence,
pp. 1388–1397. PMLR, 2020.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and
Sejdinovic, D. Detecting and quantifying causal asso-
ciations in large nonlinear time series datasets. Science
advances, 5(11):eaau4996, 2019.

Sanchez, P., Liu, X., O’Neil, A. Q., and Tsaftaris, S. A.
Diffusion models for causal discovery via topological
ordering. 2022.

Shojaie, A. and Michailidis, G. Discovering graphical
granger causality using the truncating lasso penalty. Bioin-
formatics, 26(18):i517–i523, 2010.

Solus, L., Wang, Y., and Uhler, C. Consistency guarantees
for greedy permutation-based causal inference algorithms.
Biometrika, 108(4):795–814, 2021.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, prediction, and search. MIT press, 2000.

Sun, X., Janzing, D., Schölkopf, B., and Fukumizu, K. A
kernel-based causal learning algorithm. In International
Conference on Machine Learning, pp. 855–862. PMLR,
2007.

Tank, A., Fox, E. B., and Shojaie, A. Identifiability and
estimation of structural vector autoregressive models for
subsampled and mixed-frequency time series. Biometrika,
106(2):433–452, 2019.

Teyssier, M. and Koller, D. Ordering-based search: a simple
and effective algorithm for learning bayesian networks.
In Conference on Uncertainty in Artificial Intelligence,
pp. 584–590. AUAI Press, 2005.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing bayesian network structure learning
algorithm. Machine learning, 65(1):31–78, 2006.

Wang, Y., Solus, L., Yang, K., and Uhler, C. Permutation-
based causal inference algorithms with interventions. Ad-
vances in Neural Information Processing Systems, 30,
2017.

Wyatt, L. H., Peterson, G. C. L., Wade, T. J., Neas, L. M.,
and Rappold, A. G. Annual pm2. 5 and cardiovascular
mortality rate data: Trends modified by county socioe-
conomic status in 2,132 us counties. Data in brief, 30:
105–318, 2020.

Yang, K., Katcoff, A., and Uhler, C. Characterizing and
learning equivalence classes of causal dags under inter-
ventions. In International Conference on Machine Learn-
ing, pp. 5541–5550. PMLR, 2018.

Zhang, A., Liu, F., Ma, W., Cai, Z., Wang, X., and Chua,
T.-S. Boosting causal discovery via adaptive sample
reweighting. In International Conference on Learning
Representations, 2023.

Zhang, J. On the completeness of orientation rules for
causal discovery in the presence of latent confounders
and selection bias. Artificial Intelligence, 172(16-17):
1873–1896, 2008.

Zhang, K., Peters, J., Janzing, D., and Schölkopf, B. Kernel-
based conditional independence test and application in
causal discovery. In Conference on Uncertainty in Artifi-
cial Intelligence, pp. 804–813. AUAI Press, 2011.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
Dags with no tears: Continuous optimization for structure
learning. Advances in Neural Information Processing
Systems, 31, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing,
E. Learning sparse nonparametric dags. In International
Conference on Artificial Intelligence and Statistics, pp.
3414–3425. PMLR, 2020.

Zhu, S., Ng, I., and Chen, Z. Causal discovery with re-
inforcement learning. In International Conference on
Learning Representations, 2020.

11



Learning Causal Relations from Subsampled Time Series

A. Related Work on Non-Temporal Data
Constraint-based methods typically rely on conditional independence tests to identify causal relationships by testing the
independence between variables given a set of conditions (Sun et al., 2007; Hyttinen et al., 2014), such as PC, FCI, SGS, and
ICP (Spirtes et al., 2000; Zhang, 2008; Ramsey et al., 2006; Peters et al., 2016). Score-based methods (Tsamardinos et al.,
2006; Ke et al., 2019; Zhu et al., 2020) search through the space of all possible causal structures with the aim of optimizing
a specified metric, and rely on local heuristics to enforce the acyclicity, such as GES, and GIES (Chickering, 2002; Hauser
& Bühlmann, 2012). Continuous-optimization methods (Zheng et al., 2018; Lachapelle et al., 2020) view the search as
a constrained optimization problem and apply first-order optimization methods to solve it, such as GraNDAG, GOLEM,
NOTEARS, ReScore (Lachapelle et al., 2020; Ng et al., 2020; Zheng et al., 2018; 2020; Zhang et al., 2023). Hybrid methods
combine the advantages of both types of methods (Tsamardinos et al., 2006; Chen et al., 2021; Li et al., 2022; Hasan et al.,
2023). GSP and IGSP algorithms (Solus et al., 2021; Wang et al., 2017) evaluate the score of each DAG structure using
some information criterion and search for the optimal solution by iteratively changing permutations. Nevertheless, most
constraint-based methods (e.g. PC, FCI) typically find causal structures within an equivalence class, resulting in a limited
understanding of the underlying causal relationships. Score-based methods (e.g. NOTEARS, GES) rely on local heuristics
to enforce acyclicity constraints, which can be insufficient for effectively handling large datasets. Additionally, the causal
graphs produced by minimizing a specific score function are not guaranteed to be entirely accurate.

Recently, topology-based methods tackle the causal discovery problem by finding a certain topological ordering of the nodes
and then pruning the spurious edges in topological ordering (Teyssier & Koller, 2005; Peters et al., 2014; Loh & Bühlmann,
2014; Park & Klabjan, 2017; Ghoshal & Honorio, 2018; Ahammad et al., 2021; Sanchez et al., 2022; Reisach et al., 2023).
Examples of topology-based methods include CAM, SCORE and NoGAM (Bühlmann et al., 2014; Rolland et al., 2022;
Montagna et al., 2023). These methods encounter a less combinatorial problem as the set of permutations is much smaller
than the set of directed acyclic graphs. While these methods restrict the number and direction of potential edges in the
learned DAG, they often generate numerous spurious edges that need to be pruned. In this paper, we focus on only two
time-slices for learning causal relations and concatenate two time-slices data with the temporal edge to study a causal graph.
Although the topology-based approach is widely applicable to cross-sectional data, its application to two time-slices studies
is not routine and the data opportunities that two time-slices provide for topology-based methods are also overlooked.

B. The Difference of Our Algorithms With Traditional Methods
Our algorithm differs from that of Zhang et al. (2011): In this paper, we study the causal structure from subsampled time
series using the proposed descendant-oriented conditional independence criteria, which can help us to determine descendants
for each node in summary causal graphs using only two time slices. In this paper, the conditional HSIC proposed by Zhang
et al. (2011) is a tool for testing conditional independence and cannot directly discern causal relations from subsampled time
series. It could be replaced by any existing conditional hypothesis testing method within our criteria. Moreover, testing for
conditional independence is inherently complex and may yield inaccurate results and incorrect ordering. Thus, our DHT-CIT
introduces a topological ordering adjustment as a dual safeguard to ensure the acyclicity of the causal discovery process.

Our algorithm differs from that of Peters et al. (2017): Theorems 10.1, 10.2, 10.3, and 10.4 in Section 10 of Peters et al.
(2017) rely on all previous time-slices within the observation windows that are accessible, i.e., Xpast(t) could be observed,
which are not satisfied in subsampled time series. In Section 10.2.1, Peters et al. (2017) also noted that current methods for
subsampled time series require well-modeled interventions. Without well-defined interventions, it remains challenging to
learn causal structures from subsampled time series without efficient solutions. In our Theorem 1, given two time-slice
observations D = {Xta ,Xtb}ta<tb , Xtb

j is a descendant node of Xtb
i iff Xta

i ⊥̸⊥ Xtb
j | an

ta
i .

Our algorithm differs from that of Mastakouri et al. (2015): Mastakouri et al. (2015) focuses on the detection of
direct and indirect causes of a given target time series, rather than full graph discovery. Their theory requires that each
observed candidate time series be a non-descendant node of the target time series. They must conduct two conditional
independence tests for each observed candidate to identify the direct causes of the target. In contrast, our theory constructs
the descendant hierarchical topology of the directed summary causal graph and requires only one conditional independence
test per component. Furthermore, the full graph studied by Mastakouri et al. (2015) does not include instantaneous effects.
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C. The Discussion About the Compared Baselines
In this paper, we study the directed summary causal graph on subsampled time series with instantaneous effects using
only two time-slices, which is different from Standard Time Series Setting. Traditional methods designed for time series
setting typically depend on modeling causal structures at the system timescale and assuming causal sufficiency, they require
multiple time-slices with equal time intervals to estimate causal graphs. While Gong et al. (2015); Plis et al. (2015b);
Hyttinen et al. (2016) can identify a part of the causal information (i.e., an equivalence class) from subsampled time series
data, they either rely on linear models or require the absence of instantaneous effects, which does not align with our setting.
Besides, algorithms designed for subsampled time series in these studies lack reproducible open-source code.

Since there are no available standard algorithms designed for two time-slice data, we develop variants of conventional
non-temporal methods to the two time-slices setting proposed in this paper and compare the proposed algorithm with them:
constraint-based methods, PC and FCI (Spirtes et al., 2000); score-based methods, GOLEM (Ng et al., 2020), NOTEARS
with MLP (Zheng et al., 2020), and ReScore (Zhang et al., 2023); time-seires method, CD-NOD (Huang et al., 2020);
topology-based methods, CAM (Bühlmann et al., 2014) and SCORE (Rolland et al., 2022).

How to apply the non-temporal algorithms to the time series setting: In the main experiments, we provide a broad range
of time series variants of conventional non-temporal methods - namely PC, FCI, GOLEM, NOTEARS with MLP, ReScore +
NOTEARS, CAM, and SCORE - that utilize a concatenation of the two cross-sectional data and the temporal edge (where
the previous variable of the same components leads to the subsequent variable) as prior information (as initializing the
adjacency matrix, and removing temporal edges that are not the same variable). Given D = {Xta ,Xtb}ta<tb , since the
subsampled time series is a stationary stochastic process and the summary causal graph is acyclic, after removing the nodes
Xta in the learned graph, the learned DAGs on Xtb would approximate the summary causal graphs.

Socre-based methods GOLEM, NOTEARS and ReScore are designed to recover the whole DAG by applying first-order
optimization methods to solve a constrained optimization problem. While they may produce significant errors regarding
the lagged effect, the causal graph learned on Xtb is expected to approximate the true graph. Similarly, CAM relies on an
additive structure to estimate a topological order by greedily maximizing data likelihood, and Score derives a topological
order by approximating the score’s Jacobian. Consequently, the causal graphs learned on Xtb using these methods are also
considered reliable in our setting. However, the time series variants of PC and FCI may struggle to identify causal graphs
due to potential violations of causal sufficiency and time dependency. Although the identifiability results of these variants in
two time-slices are not guaranteed, our experiments show that they outperform traditional time series algorithms.

Traditional temporal algorithms designed for time series setting: Besides, we also provide a dynamic time series
method CD-NOD (Huang et al., 2020), which applies the PC algorithm for causal discovery on an augmented dataset that
includes a time label to capture unobserved changing factors. Furthermore, we also incorporate three traditional causal
discovery methods designed for standard time series data: Granger causality (Granger, 1969; Shojaie & Michailidis, 2010),
VARLiNGAM (Hyvärinen et al., 2010) as baselines in our main experiments3.

D. The Motivation and Pseudo-Code of Our Proposed DHT-CIT
In many applications, the time series sampling process may be slower than the timescale of causal processes, resulting
in numerous previous time-slices being missing or unreliable. In the presence of unmeasured time-slices, relying solely
on a single time-slice is insufficient for identifying causal relations. Therefore, our motivation is to use just two reliable
time-slices to explore the summary causal graph of subsampled time series, rather than depending on all previous time-slices
that are available and reliable (the limitation of traditional methods). In this paper, we demonstrate that if two valid time
slices at two arbitrary moments are available, the variables in the earlier slice can be used as conditional instrumental
variables to replace interventions and improve topological ordering. This method significantly relaxes assumptions of
traditional time series studies that depend on modeling causal structures at the system timescale, causal sufficiency, and all
time slices in the observation windows could be observed (Granger, 1969; 1980; Luo et al., 2015; Nauta et al., 2019; Runge
et al., 2019; Runge, 2020; Bussmann et al., 2021; Löwe et al., 2022; Assaad et al., 2022). Notably, if no previous time-slice
data is available or reliable, our approach, like other causal discovery algorithms, will not produce identifiable results.

Under Assumptions 3.2, 3.3 and 3.4, we show how two time-slice help topological ordering for learning causal relations. In
such cases, we propose DHT-CIT, a novel topological sorting algorithm that utilizes conditional independence tests per node

3For CD-NOD, Granger causality and VARLiNGAM, we use the latest implementation from the causal-learn package.
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to distinguish between its descendant and non-descendant nodes and build a unique descendant hierarchical topology with a
few spurious edges for identifying summary causal graph. Algorithm 1 shows the pseudo-code of our DHT-CIT4.

Algorithm 1 DHT-CIT: Descendant Hierarchical Topology with Conditional Independence Test

Input: Two time-slices D = {Xta ,Xtb}ta<tb with d nodes; two significance threshold α = 0.01 and β = 0.001 for
conditional independence test and pruning process; the layer index k = 0.
Output: One adjacency matrix of descendant hierarchical topology ATP , one DAG G.
Components: Conditional independence test HSIC(. . . ); and pruning process CAM(· · · ).
Stage 1 - Identifying Descendant Hierarchical Topology:
for i = 1 to d do

Construct the conditional set Xta
⊗i via an independence test Xta

⊗i = {X
ta
j | X

ta
j ⊥⊥ Xta

i }
for j = 1 to d do
pi,j = HSIC(Xta

i , Xtb
j |X

ta
⊗i)

aTP
i,j = I(pi,j ≤ α)

end for
end for
We obtain P = {pi,j}d×d and ATP = {aTP

i,j }d×d

Stage 2 - Adjusting the Topological Ordering:
while The causal relationship between the unprocessed nodes is a directed cyclic graph do
k := k + 1
XMi,k

= {Xta/Xta
i ,L1:k−1}

Xtb
i ∈ Lk, if aTP

i,j = 0 for all j ∈Mi,k

while Lk = ∅ do
pi∗,j∗ := 2α and aTP

i∗,j∗ = 0, (i∗, j∗) = argmaxi,j(pi,j ≤ α)

Xtb
i ∈ Lk, if aTP

i,j = 0 for all j ∈Mi,k

end while
We obtain P = {pi,j}d×d and ATP = {aTP

i,j }d×d

end while
Stage 3 - Pruning Spurious Edges:
We obtain G = CAM(D,ATP , β)
Return: ATP and G

Hardware used: Ubuntu 16.04.3 LTS operating system with 2 * Intel Xeon E5-2660 v3 @ 2.60GHz CPU (40 CPU cores, 10
cores per physical CPU, 2 threads per core), 256 GB of RAM, and 4 * GeForce GTX TITAN X GPU with 12GB of VRAM.

Software used: Python 3.8 with cdt 0.6.0, ylearn 0.2.0, causal-learn 0.1.3, GPy 1.10.0, igraph 0.10.4, scikit-learn 1.2.2,
networkx 2.8.5, pytorch 2.0.0.

E. Explanations and Examples
E.1. The Arrows but Self-Loops in the Summary Graph

In this paper, we use the notation paτi to specify the partial set of parents of Xτ
i (as well as for Xτ+1

i ) at time τ , and
the nodes {Xτ−1

i ,paτ−1
i } at time τ − 1 also are parents to Xτ

i , as shown in data generation function Eq. (1): Xτ
i =

fi
(
paτi , X

τ−1
i ,paτ−1

i

)
+ϵτi . Here, paτi → Xτ

i denotes the instantaneous effects at current time τ , and {Xτ−1
i ,paτ−1

i } →
Xτ

i represents the lagged effects from both itself and its parents at previous time τ − 1. Based on Eq. (1) Xt
i =

fi
(
pati, X

t−1
i ,pat−1

i

)
+ ϵτi , all arrows but self-loops in the summary graph not only represent the instantaneous interaction

from pati → Xt
i , also captures the lagged effects from the nodes at previous time paτ−1

i → Xτ
i . The consistency of causal

relation fi throughout time ensures that only the direct children, not the descendants, of a variable remain its children in the
next time slice of the full-time series.

4The code of DHT-CIT is available at: https://github.com/anpwu/DHT-CIT.
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E.2. Clinical Study with Regular Sampling

In clinical studies, doctors and researchers often employ specific methods to collect samples at regular intervals by recruiting
volunteers in schools, community centers, and other venues, or by offering some form of incentive policy. Researchers
will then design studies requiring participants to undergo medical examinations or submit health information at fixed time
intervals. Then, doctors typically compare earlier Xt−3 and current Xt patient records to identify causes of outcome of
interest. Patient visits may be recorded less frequently than the causal timescale of the underlying system, leaving Xt−2 and
Xt−1 unrecorded. This situation is quite common in healthcare, where doctors typically use limited time-slices to analyze a
patient’s condition and determine treatments.

E.3. Physical Example

In practical applications, there are extensive serialized events and periodic time series with acyclic summary causal graphs.
For example, the local electricity transportation mechanism of urban power systems, and the rise and fall of the Earth’s
ocean surfaces. The gravitational forces exerted by the moon (Xt

1) and the sun (Xt
2) periodically influence the rise and fall

of the Earth’s ocean surfaces (Xt
3). In this scenario, the causal direction is unidirectional since the tidal movements on Earth

cannot, in return, affect the motion states of the moon and the sun.

F. Further Discussion on the Assumptions Used in This Paper
F.1. Implications of Violating Assumptions in Our Algorithm

Violation to Assumption 3.2: If the first-order Markov assumption is violated, the current state Xt would not be exclusively
influenced by the immediately preceding state Xt−1 but would depend on a series of previous states Xt−q, · · · , Xt−1.
Consequently, in our Descendant-Oriented Conditional Independence Criteria (Theorem 4.4), the sufficient and necessary
condition for Xtb

j being a descendant node of Xtb
i at time tb would be redefined as Xta

i ̸⊥ Xtb
j | {an

ta−q+1
i , · · · ,anta

i }.
We discuss the high-order Markov models in Appendix F.3.

Violation to Assumption 3.3: If the acyclic summary causal graph is violated, the data generation process would change
from Xτ

i = fi
(
paτi , X

τ−1
i ,paτ−1

i

)
+ ϵτi to Xτ

i = fi
(
paτi , X

τ−1
i ,paτ−1

i ,deτ−1
i

)
+ ϵτi . Then, if the subsampling rate

of the subsampled time series exceeds 2 (applicable for instantaneous effects) or the length of the loop containing Xt
i

(applicable for no instantaneous effects), any two nodes within this loop will be connected by a bidirectional arrow in the
learned summary causal graph. This implies that the structure of the learned summary causal graph by two time-slice
models will vary as the subsampling rate increases (Danks & Plis, 2013; Peters et al., 2017). While achieving perfect acyclic
summary causal graphs in dynamical systems may be challenging due to external interventions and internal feedback, these
assumptions offer a valuable framework for modeling system behavior in short-term stable and controlled environments.

Violation of Assumption 3.4: If the consistency throughout time is violated, then the learned causal graph might be a
subgraph of a summary causal graph, but it will certainly be larger than the graph constructed by instantaneous effects at
time tb. In other words, the learned DAG will be a causal graph that lies between the DAG of instantaneous effects at time tb
and the DAG of the true summary causal graph. Because the simulated interventions by two-time-slices only propagate
to its descendant nodes at time tb through the link Xta

i → Xta+1
i → · · · → Xtb

i → detbi , but the DAG of instantaneous
effects at time tb might just be a subgraph of the summary causal graph. One solution is that, provided the observational
windows are sufficiently extended beyond the longest cycle of changes in causal relations, it becomes feasible to accurately
infer the Descendant Hierarchical Topology of the summary causal graph.

F.2. Further Discussion on Acyclic Summary Causal Graph and Consistency Throughout Time Assumption

While perfect acyclic summary causal graphs and consistency throughout time may be challenging to achieve in dynamical
and biological systems due to external interventions and internal feedback, these assumptions provide a useful framework
for modeling and predicting system behavior, especially in relatively stable and controlled environments. Actually, we can
divide the homeostatic systems into multiple short-term stages with an acyclic summary graph. For instance, the entire
process of a cold virus entering the human body through the respiratory tract, lying dormant, proliferating, and attacking
human cells, until the body recognizes the virus and initiates an immune response, can be simplified into an acyclic summary
causal graph. These short-term acyclic graph models allow for the application of the proposed DTG-CIV algorithm to
identify and analyze causal relationships within short-term windows.
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Moreover, dynamical and biological systems do not encompass the entire real world; in practical applications, there are
extensive serialized events and periodic time series with acyclic summary causal graphs. For example, the local electricity
transportation mechanism of urban power systems, and the rise and fall of the Earth’s ocean surfaces. The gravitational
forces exerted by the moon (Xt

1) and the sun (Xt
2) periodically influence the rise and fall of the Earth’s ocean surfaces (Xt

3).
In this scenario, the causal direction is unidirectional since the tidal movements on Earth cannot, in return, affect the motion
states of the moon and the sun. Therefore, studying time series with acyclic summary graphs is popular and remains a key
area of interest in both academic studies and practical applications (please see the survey paper by (Assaad et al., 2022)).

F.3. Relaxing Markov Assumption to High-Order Markov Models

Notably, in this paper, we can relax the Markov Assumption to a high-order Markov Assumption. This means that the future
time-slice Xt+1 depends only on states Xt···t−q+1 and does not directly depend on states X1···t−q . Then, with q + 1 time-
slices (Xta···ta−q+1 and Xtb ), we can use anta···ta−q+1 to replace the condition set anta to infer the descendant-oriented
conditional independence criteria (Theorem 4.4). However, in this paper, we focus exclusively on the two-time-slices
algorithm to demonstrate our theorem and algorithm.

F.4. Discussion about Identical Causal Structure across Samples/Subgroups

Varying causal structures among different samples or subgroups is indeed an interesting topic. However, it is undeniable
that in real life, there indeed exists a multitude of sequential events sharing the same causal mechanisms, such as the basic
biological processes governing human health, the fundamental laws of physics that apply to various engineering problems,
or the universal principles of economics that drive market behaviors. In fact, in studying the varying causal structures across
samples, if we could observe all explanatory variables within the system, we might find that some overlooked variables,
such as genes or different environments, could be sources of individual heterogeneity. In future work, we will explore the
EM algorithm or heterogeneity detection algorithms to identify different causal structures across samples or subgroups.

G. Relaxing Conditional Independence Test Limitations and Scaling to Large Graphs
While hypothesis testing using HSIC is indeed a sensible approach, we can relax this issue from three perspectives:

1. Our DHT-CIT algorithm introduces a topological ordering adjustment technique (refer to Section 4.3.2 for more details)
as a dual safeguard to correct partial erroneous edges identified by the conditional HSIC test, ensuring the resulting
summary graph remains acyclic. This provides tolerance for errors in the HSIC test.

2. The proposed DHT-CIT algorithm can be appended to any existing topology-based method to enhance topological
ordering, as mentioned in Appendix J.1. By treating the topological ordering learned from existing methods as
prior knowledge, the size of the conditional set required for the Descendant-Oriented Conditional Independence
Criteria significantly reduces. Additionally, the search space size of the DHT-CIT algorithm decreases by at least half,
substantially easing the difficulty of hypothesis testing. We refer to the combination of the SCORE and DHT-CIT
algorithms as DHT-CIT+SCORE, which utilizes the topological ordering learned by SCORE as prior knowledge.

3. To further mitigate this issue, we implement random interventions to some nodes in the previous states of two time
slices (D = {X1, X2}), then apply DHT-CIT to learn causal relations. Depending on the number of nodes intervened
in the previous state, we have variants like DHT-CIT (10 Intervention), DHT-CIT(20 Intervention), and so on.

To verify the scalability of our DHT-CIT with interventions and DHT-CIT+SCORE, we conduct experiments in high-
dimensional settings, such as Sin-50-50 Simulations with 50 nodes and 50 edges, Sin-50-100 Simulations with 100 edges
and on Sin-100-100 Simulations with 100 nodes and 100 edges.

H. Supplementary Experiments
H.1. Exploring Varying Time-Lagged Edges and Denser Graph

In the experiments on denser graphs with more edges (e = 2d and e = 3d), we gradually increase the number of time-lagged
edges from other variables Xτ−1

−i from 0 to d. As shown in Figure 3, most well-performed baselines on sparse graphs
exhibit a substantial decrease in performance when applied to denser graphs. However, our DHT-CIT algorithm outperforms
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Figure 3. Exploring varying time-lagged edges and denser graph.

Table 5. Training time(s) of various methods in a single execution on different datasets.

Data-10-10 Data-10-20 Data-10-30 Data-20-20

CD-NOD 5433s > 2h > 2h > 5h
CAM 97.2s 92.8s 111.3s 543.6s

GOLEM 36.4s 36.4s 36.4s 228.0s
NOTEARS 33.6s 35.6s 36.4s 747.2s

SCORE 29.1s 28.0s 29.6s 63.5s
ReScore 24.1s 23.2s 24.2s 29.2s

PC 21.1s 20.7s 21.1s 32.8s
FCI 18.7s 18.7s 18.8s 30.1s

VarLiNGAM 17.9s 18.3s 18.4s 27.3s
Granger 8.4s 8.5s 8.4s 36.4s

DHT-CIT 64.1s 68.5s 66.1s 306.0s
DHT-CIT+SCORE 33.7s 33.6s 34.0s 140.0s

the best baseline on denser graphs. On the Sin-10-20 dataset, we achieve a 48% increase in SHD, a 48% increase in SID,
and a 15% boost in F1-Score. On the Sin-10-30 dataset, we achieve a 30% increase in SHD, a 43% increase in SID, and a
7% boost in F1-Score. Our DHT-CIT is robust to varying time-lagged edges.

H.2. Training Cost Analysis

In Data-d-e Simulations, we implement 10 replications to study the average running time(s) for the proposed model in a
single execution and sorted it by time spent on Data-10-10 in Table 5. From the experiments on denser and larger graphs
in Tables 5, 6 & 7, we observed that although the time consumption of DHT-CIT+SCORE is always greater than that
of SCORE, compared to DHT-CIT alone, DHT-CIT+SCORE reduces computational costs by 40%-66%. As shown in
experiments on denser and larger graphs (Tables 5, 6 & 7), DHT-CIT+SCORE not only reduces computational costs but
also improves performance on large graphs. Therefore, for graphs with over 20 nodes, DHT-CIT+SCORE is recommended
to lower computational costs and achieve better performance, while for smaller graphs (under 20 nodes), the time cost of
DHT-CIT (300 seconds) is manageable.

H.3. The Experiments on Large Graphs With High-Dimension Variables

Datasets. Followed the data generation process (Eq. (6)) in Section 5.2 in the main text. Given d nodes and e edges, we
generate the causal graph G using the Erdos-Renyi model.

Xτ
i = Sin

(
paτi , X

τ−1
i

)
+

1

10
Sin

(
w · paτ−1

i

)
+ ϵτi ,X

0 ∼ N (0, Id) , ϵ
τ ∼ N (0, 0.4 · Id) (7)

where Sin(paτi ) =
∑

j∈pa(Xi)
sin(Xτ

j ), Id is a d-th order identity matrix, and w is a random 0-1 vector that controls the
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Table 6. The experiments on Sin-50-50 dataset.

Sin-50-50 data with Gauss noise ( D = {X1,X3} )

Method SHD↓ SID↓ #Prune↓ Running Time(s)↓
SCORE 73.5±28.71 8.80±3.47 1175.±0.40 977s

DHT-CIT 930.±147.3 99.4±4.8 323.8±26.54 2655s
DHT-CIT (10 Intervention) 670.±106.8 51.4±3.32 282.0±23.71 2145s
DHT-CIT (20 Intervention) 142.±18.45 14.6±1.96 251.4±19.11 1706s
DHT-CIT (25 Intervention) 73.0±27.77 6.80±2.64 246.6±16.66 1109s
DHT-CIT (50 Intervention) 0.80±0.98 0.40±0.40 99.60±20.33 377s

DHT-CIT+SCORE 25.0±5.18 3.80±1.47 225.4±10.52 1176s
DHT-CIT+SCORE (10 Intervention) 3.00±1.55 0.80±0.40 223.2±15.10 884s
DHT-CIT+SCORE (20 Intervention) 4.40±1.41 0.90±0.50 187.4±13.65 649s

Table 7. The experiments on Sin-50-100 & Sin-100-100 datasets.

Sin-50-100 data with Gauss noise ( D = {X1,X3} )

Method SID↓ SHD↓ #Prune↓ Running Time(s)↓
SCORE 247.0±102.5 23.0±8.56 1127.±2.06 1027s

DHT-CIT 2039.±84.14 234.±2.71 397.6±25.54 3217s
DHT-CIT (50 Intervention) 203.0±61.1 14.8±3.90 149.0±27.00 357s

DHT-CIT+SCORE 97.4±101.6 7.60±5.28 352.6±23.69 1249s
DHT-CIT+SCORE (10 Intervention) 53.2±20.29 4.80±0.98 284.0±26.58 1109s

Sin-100-100 data with Gauss noise ( D = {X1,X3} )

Method SID↓ SHD↓ #Prune↓ Running Time(s)↓
SCORE 381.±156.5 28.67±4.5 4850±0.2 4689s

DHT-CIT 2377±427 218.±12.9 787.0±49.1 19655s
DHT-CIT (100 Intervention) 5.33±7.50 1.00±1.41 347.0±9.10 1074s

DHT-CIT+SCORE 28.67±9.53 4.67±0.47 925.0±83.3 6342s
DHT-CIT+SCORE (10 Intervention) 14.67±11.9 3.33±1.25 797.3±29.4 6108s

number and existence of time-lagged edges from paτ−1
i . In this experiment, we set the number of time-lagged edges from

other variables as 0. To evaluate our DHT-CIT on larger graphs, we generate large graphs Sin-50-50, Sin-50-100, and
Sin-100-100. Given the limited effectiveness of many methods when applied to subsampled time series data D = X1,X3,
this section is dedicated to a comparative analysis between variants of our approach and the SCORE algorithm. Moreover,
we focus exclusively on the four most crucial metrics: SHD, SID, #Prune, and Running Time(s).

Although theoretically, DHT-CIT can achieve unbiased estimation, it is limited by the performance of conditional indepen-
dence tests. For the conditional instrumental variables described above, we calculate the conditional independencies using
the conditional independence HSIC test with Gaussian kernel (Zhang et al., 2011). However, as the data dimension increases,
the accuracy of the HSIC test decreases, leading to incorrect topological orderings generated by DHT-CIT. To mitigate this
issue, given two-time slices (D = {X1,X2} ), we relax this issue from three perspectives: topological ordering adjustment,
interventions, and pre-training using SCORE methods. The detailed description is placed in Appendix G.

Two types of DHT-CIT variants: (1) We implement random interventions to some nodes in the previous states of two
time slices (D = {X1, X2}). Depending on the number of nodes intervened in the previous state, we have variants like
DHT-CIT (10 Intervention), DHT-CIT(20 Intervention), and so on. (2) We refer to the combination of the SCORE and
DHT-CIT algorithms as DHT-CIT+SCORE, which utilizes the topological ordering learned by SCORE as prior knowledge.

Results. From the results on larger graphs (Sin-50-50, Sin-50-100 and Sin-100-100) in Tables 6 & 7, we have the following
observation: As the number of interventions on previous states of two-time slices increases, DHT-CIT with Intervention
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Table 8. The Description for Real Variables on PM-CMR Dataset.

Variable Description

PM2.5(T ) Annual county PM2.5 concentration, µg/m3

CMR(Y ) Annual county cardiovascular mortality rate, deaths/100,000 person-years

Unemploy(X1) Civilian labor force unemployment rate in 2010
Income(X2) Median household income in 2009
Female(X3) Family households - female householder, no spouse present in 2010 / Family households in 2010
Vacant(X4) Vacant housing units in 2010 / Total housing units in 2010
Owner(X5) Owner-occupied housing units - percent of total occupied housing units in 2010
Edu(X6) Educational attainment - persons 25 years and over - high school graduate (includes equivalency) in 2010
Poverty(X7) Families below poverty level in 2009

can more accurately identify true causal relationships. When the number of interventions exceeds half, the performance
of DHT-CIT with Intervention surpasses that of SCORE. Additionally, utilizing SCORE’s topological ordering as prior
knowledge, DHT-CIT+SCORE greatly outperforms SCORE and DHT-CIT in Sin-50-50, Sin-50-100 and Sin-100-100
simulations. This is partly because DHT-CIT improves the topological ordering learned by SCORE, and also graph
knowledge from SCORE helps reduce the size of the conditional set and search space of DHT-CIT. As shown in Table 7,
similar results can be found in Sin-50-100 and Sin-100-100 Simulations. This demonstrates the scalability of our DHT-CIT
algorithm with interventions and the combined DHT-CIT+SCORE approach.

H.4. The Experiments on Real-World Dataset

Datasets. The PM-CMR5 (Wyatt et al., 2020) is a public time series data that is commonly used to study the impact
of the particle (PM2.5, T ) on the cardiovascular mortality rate (CMR, Y ) in 2132 counties in the US from 1990 to 2010.
Additionally, the dataset includes 7 variables (X1:7) related to the city status, which are potential common causes of
both PM2.5 and CMR. The corresponding description of variables is detailed in Table 8. With the prior knowledge, i.e.,
T ← X1:7 → Y and T → Y , we draw two time-slices in 2000 & 2010 to evaluate the performance of the proposed
DHT-CIT and two well-performed baselines (GOLEM and SCORE).

Results. With the prior knowledge, i.e., T ← X1:7 → Y and T → Y , we draw two time-slices in 2000 & 2010 to evaluate
the performance of the proposed DHT-CIT and two well-performed baselines (GOLEM and SCORE). As illustrated in
Figure 2 and 4, both GOLEM and SCORE do not generate true summary causal graphs, and only our DHT-CIT achieves
more accurate causal relationships in real-world data. GOLEM shows there is no direct edge from T to Y and SCORE
shows that T is the parent node of {X1, X5, X6}, which contradicts the prior knowledge. Only our DHT-CIT algorithm
recovers the dense causal graph, i.e., T ← X1:7 → Y and T → Y . The results are consistent with the experiments on
denser graphs: both GOLEM and SCORE are only applicable to sparse graphs, whereas our DHT-CIT maintains superior
performance and scalability to larger and denser graphs.

Notably, our algorithm demonstrates significant improvement on denser graphs (Figure 3). In comparison to the best
baseline, our algorithm boasts a 48% increase in SHD, a 48% increase in SID, and a 15% boost in F1-Score on Sin-10-20,
and boasts a 30% increase in SHD, a 43% increase in SID, and a 7% boost in F1-Score on Sin-10-30. Most previous
baselines were only applicable to sparse graphs, whereas our algorithm exhibits substantial improvements on dense graphs.
Therefore, we believe that DHT-CIT provides a more precise DAG for the PM-CMR dataset. Therefore, to effectively
combat cardiovascular disease, it is recommended that cities disseminate information about its dangers, promote prevention,
and provide medical care for low-income families.

I. The Advantages and Limitations of Using Two Time-Slices Data
Advantages: (1) Enhanced Topological Ordering: Traditional topology-based methods typically produce non-unique
topological orderings with numerous spurious edges, resulting in decreased accuracy and efficiency in downstream search
tasks. By using two time-slices as auxiliary instrumental variables, we can learn causal relations more efficiently, with

5PM-CMR:https://pasteur.epa.gov/uploads/10.23719/1506014/SES PM25 CMR data.zip
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T Y X1 X2 X3 X4 X5 X6 X7

T 0 1 1 0 0 0 1 1 0

Y 0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 1 1 0

X2 1 1 1 0 1 0 1 1 0

X3 1 1 1 0 0 0 1 1 0

X4 1 0 1 1 1 0 1 1 1

X5 0 0 0 0 0 0 0 0 0

X6 0 1 0 0 0 0 1 0 0

X7 1 1 1 1 1 0 1 1 0

The State
in 2000

The State in 2010 (SCORE) The State in 2010 (DHT-CIT)

T Y X1 X2 X3 X4 X5 X6 X7

T 0 1 0 0 0 0 0 0 0

Y 0 0 0 0 0 0 0 0 0

X1 1 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0 0

X3 1 0 1 1 0 0 1 0 1

X4 1 0 0 1 1 0 1 0 1

X5 0 0 1 0 0 0 0 0 0

X6 0 1 1 1 0 0 1 0 0

X7 1 1 0 0 0 0 0 0 0

T Y X1 X2 X3 X4 X5 X6 X7

T 0 0 0 0 0 0 0 0 0

Y 0 0 0 0 0 0 0 0 0

X1 0 0 0 0 0 0 0 0 0

X2 1 1 0 0 1 1 0 1 0

X3 1 1 1 0 0 0 1 0 0

X4 0 0 0 0 0 0 0 0 0

X5 0 0 0 0 0 0 0 0 0

X6 0 0 0 0 0 0 1 0 0

X7 0 0 0 1 1 0 0 1 0

The State in 2010 (GOLEM)

Figure 4. Learned Adjacency Matrix on PM-CMR Dataset.

a reduced search space and fewer spurious edges. (2) Feasibility in Intervention-Limited Contexts: Using interventional
data can quickly identify (non-)descendants for each node and construct a more precise topological ordering. In scenarios
where interventions are infeasible, unethical, or too costly, using two time-slices to replace intervention can be a practical
alternative. (3) Reduced Data Requirements: In time series scenarios, traditional methods depend on the modeling causal
structures at the system timescale, causal sufficiency, and all time slices in the observation windows could be observed.
In this paper, we propose exploring limited time-slices, i.e., two reliable time-slices, to ease the data requirements. (4)
Scaling to Non-linear and Non-Gaussian Models: We use two time-slices as conditional instrumental variables to simulate
exogenous interventions. When applied to a variable, these simulated interventions only affect the variable’s value, and
the permutation would propagate to its descendant nodes. Then, we can apply conditional independence tests to capture
these intervention-related permutations for identifying each variable’s descendants, without requiring any structural or
distributional assumptions about the data.

Limitations: (1) Our DHT-CIT algorithm relies on the acyclic summary causal graph and consistency throughout time
assumptions. While perfect acyclic summary causal graphs and consistency throughout time may be challenging to achieve
in real applications due to external interventions and internal feedbacks, these assumptions provide a useful framework for
modeling and predicting system behavior, especially in relatively stable and controlled environments. Sometimes, we can
divide dynamic systems into multiple short-term stages with acyclic summary graph. (2) The two-slice model requires that
sampling occurs at the same two timesteps across all observations. If multiple two-slice samples are collected from varying
starting points, the DHT-CIT method would fail to accurately identify descendant nodes via the conditional independence
tests. Fortunately, numerous volunteer recruitment activities or data selection strategies exist to assist us in obtaining
regular sampled two-slice data. (3) The efficacy of the proposed DHT-CIT algorithm is contingent upon the conditional
independence test. Despite the significant advancements in the development of conditional independence testing, it remains
a complex task, especially in high-dimensional scenarios. This complexity may induce biased topological orders, including
cycles. To address this challenge, our approach introduces topological ordering adjustment as a dual safeguard to ensure
acyclicity in the causal discovery process.

J. Future Applications
J.1. Potential Applications of Our DHT-CIT Algorithm

The proposed DHT-CIT can be integrated as a module into any existing topology-based method to enhance the topological
ordering. Additionally, our DHT-CIT algorithm is capable of identifying the true causal graph from the Markov equivalence
classes that are typically learned using traditional methods. For instance, our DHT-CIT algorithm can effectively use the
descendant hierarchical topology to orient the undirected edges outputted by a constraint-based algorithm such as PCMCI
(Runge et al., 2019; Runge, 2020).

J.2. Generalizing the DHT-CIT Algorithm to Other Domains

As long as the common time series causal assumptions in Assaad et al. (2022) and the q-order Markov Assumption are
satisfied, we can directly extend our algorithm to other domains and applications with q+1 time-slices (Xta···ta−q+1 and
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Xtb ). For example, we can analyze the causal graph of city status variables in PM-CMR (Wyatt et al., 2020), and explore the
relationships between various factors affecting soil moisture. In human genomics and gene expression, we also can establish
two-time-slices causal relationships (surjections: where each expression variable can find a corresponding conditional
instrumental variable in the genomic sequence variables). The challenges arise as different time series data may adhere
to various high-order Markov Assumptions, which we need to identify. Additionally, sometimes the temporal transfer
of events/processes might conceal causal relationships, requiring further extraction, such as the two-time-slices causal
relationships between genomic and gene expression data. The DHT-CIT algorithm provides an excellent tool and opportunity
for identifying the topological ordering in the aforementioned forms of data. We haven’t covered experiments in all areas in
this paper due to the high cost of data acquisition. Future updates on these datasets will be shared on our project pages.
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