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Abstract
High-resolution flood probability maps are instrumental for assessing flood risk
but are often limited by the availability of historical data. Additionally, producing
simulated data needed for creating probabilistic flood maps using physics-based
models involves significant computation and time effort, which inhibit its fea-
sibility. To address this gap, this study introduces Precipitation-Flood Depth
Generative Pipeline, a novel methodology that leverages generative machine
learning to generate large-scale synthetic inundation data to produce proba-
bilistic flood maps. With a focus on Harris County, Texas, Precipitation-Flood
Depth Generative Pipeline begins with training a cell-wise depth estimator using
a number of precipitation-flood events model with a physics-based model. This
cell-wise depth estimator, which emphasizes precipitation-based features, out-
performs universal models. Subsequently, the conditional generative adversarial
network (CTGAN) is used to conditionally generate synthetic precipitation point
cloud, which are filtered using strategic thresholds to align with realistic pre-
cipitation patterns. Hence, a precipitation feature pool is constructed for each
cell, enabling strategic sampling and the generation of synthetic precipitation
events. After generating 10,000 synthetic events, flood probability maps are
created for various inundation depths. Validation using similarity and corre-
lation metrics confirms the accuracy of the synthetic depth distributions. The
Precipitation-Flood Depth Generative Pipeline provides a scalable solution to
generate synthetic flood depth data needed for high-resolution flood probability
maps, which can enhance flood mitigation planning.
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1 INTRODUCTION

Flood hazards pose a significant threat to cities and com-
munities globally, resulting in extensive physical damage
and substantial economic costs due to material losses
and human casualties, particularly in densely populated
regions. In the United States, flood-related insurance
claims have consistently averaged around $40 billion
annually over the past four decades (Yildirim et al., 2022).
With the projected increase in the frequency and sever-
ity of flood events across various US regions (Musselman
et al., 2018), this financial burden is expected not only
to persist but also to escalate. An accurate assessment
of flood risk is crucial to plan for efficient response
and recovery of potentially affected communities. Flood
risk characterization traditionally involves the creation of
floodplain maps, which delineate areas typically prone to
flooding based on historical data and hydrologic simu-
lations. However, floodplain maps often have limitations
due to their reliance on limited historical data, which may
not accurately reflect current and future conditions. Also,
development of floodplains using physics-based hydraulic
and hydrologic (H&H) models is computationally expen-
sive. In addition, these maps usually depict flood extent
for a few specific flooding frequency, limiting their util-
ity in risk assessments and communication. The gaps in
traditional floodplain mapping underscore the need to
incorporate probability into flood maps beyond the tradi-
tional 100-year and 500-year frequencies. In the context
of this study, probabilistic flood maps quantify flood risk
from a distribution of rainfall events, without explicitly
considering the frequency of each of those events. That is,
probabilistic floodmaps estimate the likelihood that a rain-
fall event causes a certain inundation in a given place (e.g.,
1 ft) from a large number of rainfall events, without con-
sidering the probability of occurrence of each event. For
example, if 350 out of 1000 rainfall events cause at least 1-ft
inundation in a certain place, a probabilistic floodmapwill
associate a likelihood of 0.35 to the 1-ft inundation of that
place for rainfall events with the range of characteristics
considered. This quantified likelihood provides a measure
of 1-ft inundation risk in the area given the characteristics
of rainfall events. In this context, this probability is dif-
ferent from the annual likelihood typically used, which is
based on a statistical analysis of historical storms and the
extrapolation of flood depth and/or extent values for a few
return periods (e.g., 10-, 100-, 500-year storm). By offering
a spatially continuous probabilistic measure of flood risks,
maps provide quantitative insights that can help policy-
makers, planners, and communities in the mitigation and
preparedness phases with tailored, data-driven strategies
that lessen the impacts of potential flooding (Nofal et al.,
2024).

The creation of flood probability maps hinges on simu-
lating a large number of flood inundation scenarios based
on which the likelihood of a range of flood depths across a
region can be estimated. In fact, one of the major barriers
to creation of flood probability maps is the lack of numer-
ous flood scenarios. On one hand, the number of historical
flood events in a given region is not large enough to build
a robust statistical distribution of rainfall events and their
associated flood depths. Also, depending on the rate of land
use change, historical data may not be adequate to esti-
mate flood risk under current conditions. On the other
hand, generating a large number of simulated flood sce-
narios using H&H models is computationally expensive
and would not be feasible. An alternative to historical data
is represented by synthetic high-resolution flood scenarios
generated using generative models.
The use of generative models and machine learning has

gained significant attention in flood risk analysis. Recent
studies have adopted generative adversarial networks
(GANs) to generate synthetic precipitation data integrated
with hydrologic models such as soil and water assess-
ment tool (SWAT) for flood frequency analysis (Ji et al.,
2024), and to support real-time urban flood forecasting
through event-based modeling (Piadeh et al., 2023). Deep
learning architectures, including convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs),
have been applied for flash flood prediction and integra-
tion with hydrodynamic models for flood mapping and
risk assessment (Naeini & Snaiki, 2024). Hybrid models
such as Fast Gated recurrent neural networks (FastGRNN)
combined with fully convolutional networks (FCN) have
shown strong performance in predicting flood status from
multivariate sensor networks (Dong et al., 2021), and
ensemble machine learning methods like Random For-
est and Extreme Gradient Boosting (XGBoost) have been
widely used to generate flood susceptibility maps from
spatial conditioning factors (Lyu & Yin, 2023; Zhu, Lai,
et al., 2024). Other studies have leveraged long short-
term memory (LSTM) networks and conditional GANs
to improve flood prediction accuracy in urban environ-
ments (Do Lago et al., 2023; McSpadden et al., 2024), while
Ho et al. (2025) applied a vision-language segmentation
model to estimate building lowest floor elevation (LFE)
from street imagery for enhanced flood exposuremapping.
System-level modeling efforts have included Bayesian net-
work frameworks to simulate cascading failures in flood
control infrastructure (Dong et al., 2020), stochastic pro-
gramming for resilient planning under extreme weather
scenarios (Zhang & Alipour, 2023), and structural moni-
toring of flood-critical assets such as dams through intel-
ligent segmentation and multisource machine learning
approaches (Yao et al., 2024; Zhu, Niu, et al., 2024). Gen-
erative methods have also been explored for infrastructure
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HUANG et al. 3

F IGURE 1 The workflow consists of four main steps. Step I involves developing and selecting the optimal depth estimator among
universal and cell-wise models based on training precipitation-flood events. Step II focuses on event sampling, preprocessing point-level
features, and training a constraint-aware conditional generative adversarial network (CTGAN) to generate a synthetic point cloud through
conditional sampling. In Step III, a precipitation feature-level pool is created for each cell mesh using thresholds derived from sampled
training event features, enabling strategic sampling to generate synthetic precipitation event features. The trained depth estimator from Step I
then processes K-nearest neighbor (KNN)-smoothed synthetic precipitation features along with static features to predict synthetic flood
depths. Finally, Step IV iterates Step III to generate thousands of synthetic precipitation events, forming a synthetic depth distribution and
ultimately constructing a synthetic flood probability map.

monitoring, including conditional GAN-based models for
detecting bridge damage via time-frequency decomposi-
tion (Lee et al., 2025). Additionally, large-scale machine
learning systems such as the telescopic broad Bayesian
learning framework have been introduced for streaming
data adaptation in civil infrastructure contexts (Yuen &
Kuok, 2025). Integrated models that assess transportation
resilience under flood disruptions have further expanded
machine learning’s role in flood-aware infrastructure plan-
ning (Yin et al., 2023). Despite these advancements, few
existing approaches focus on generating synthetic flood
data tailored for probabilistic flood mapping.
To address these challenges, we propose the

Precipitation-Flood Depth Generative Pipeline, a novel
methodology that harnesses generative machine learning
to synthesize large-scale precipitation data and predict
corresponding flood inundation depths through strategic
sampling and modeling. The main workflow is illustrated
in Figure 1. Precipitation-Flood Depth Generative Pipeline
starts with the training of a depth estimator using a
number of H&H model-generated flood events, incor-
porating precipitation-based, spatial, and region-specific
features. Following this, a Conditional GAN (CTGAN)
with constraints is employed to generate synthetic rainfall
precipitation events. Strategic thresholds are established
to filter these synthetic records, ensuring close alignment

with true precipitation patterns. For each location, syn-
thetic events are smoothed using a K-nearest neighbors
(KNN) algorithm and processed through the trained
depth estimator to derive synthetic depth distributions. By
iterating this procedure across multiple synthetic rainfall
events, we construct flood probability maps for different
combinations of rainfall characteristics (duration, peak
precipitation intensity, and cumulative precipitation).
These maps are validated using similarity and correlation
metrics to confirm the correspondence of synthetic depth
distributions to training data.
The novel contributions of the model presented in this

paper are threefold:

(1) We introduce a novel methodology that utilizes a sur-
rogate machine learning pipeline to estimate flood
probabilities using synthetic precipitation-flood events
generated by CTGAN and depth estimator.

(2) The cell-wise machine learning modeling, introduced
in Section 2.3, presents an innovative approach to
feature engineering, yielding enhanced prediction per-
formance compared to global models.

(3) We develop an all-to-one event sampling algorithm
designed to strategically improve the quality of syn-
thetic records while preserving nonlinearity, ensuring
a more realistic simulation of flood events.
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4 HUANG et al.

F IGURE 2 Study area and Harris County Flood Control
District gauge distribution. Map generated using ArcGIS Pro 3.0.0
(https://pro.arcgis.com/).

Precipitation-Flood Depth Generative Pipeline provides
a scalable solution for generating high-resolution flood
probability maps, to support to flood preparedness and
mitigation efforts. The following section explains the
components of the Precipitation-Flood Depth Generative
Pipeline and the associated data sets.

2 MATERIAL ANDMETHODS

2.1 Study region and data

2.1.1 Study region

As shown in Figure 2, Harris County, Texas, serves as the
test bed for developing the Precipitation-FloodDepth Gen-
erative Pipeline. The primary watersheds in this area are
Cypress Creek and Buffalo Bayou. Harris County, located
at the heart of the Greater Houston Metropolitan Statisti-
cal Area, covers 1778 squaremiles (4605 square kilometers)
and has seen its population grow to over 4.5 million in the
past decade. The county’s flat topography, with elevations
ranging from−40 ft (−12.19 m) to 300 ft (91.44 m), coupled
with its largely developed land (over two-thirds), along
with 20% pasture and cultivated lands (Dewitz, 2024),
contributes to significant flood risk. The Cypress Creek
watershed in the northern part and the Buffalo Bayou sys-
tem in the central and southern areas flow into the San
Jacinto River and the Ship Channel, eventually draining
into the Gulf of Mexico. Dense urban development, poor
natural drainage, limited soil infiltration, and the county’s
subtropical climate further exacerbate its vulnerability to
chronic flooding.

2.1.2 Data

In creating Precipitation-FloodDepthGenerative Pipeline,
there is a need for an initial set of rainfall events and related
flood inundation scenarios. The lack of sufficient histor-
ical precipitation flood inundation data was addressed
using 592 precipitation events processed with a physical-
based model (Garcia, 2023) to obtain corresponding flood
scenarios. Specifically, Garcia (2023) considered storm
events occurred in Harris County in the period 2014–2022,
and applied Rasterized Time-series Resampling Method
(RTRM) to build 592 synthetic, realistic storms varying
by spatial extent, duration, and rainfall intensity. Garcia
et al. (2023) modeled those events in HEC-RAS 2D and
produced as many flood scenarios. The study region in
HEC-RAS 2D was modeled using a 1200 ft × 1200 ft mesh
grid, with additional refinements applied nearmajor rivers
and tributaries to enhance both computational accuracy
and stability. This final mesh consists of 26,301 individual
cells. Manning’s roughness coefficient and impervious-
ness values were sourced from the 2019 National Land
Cover Data set (Dewitz, 2024), while soil infiltration
values were obtained from the Gridded Soil Survey Geo-
graphic database (Soil Survey Staff, 2023).Model validation
involved analyzing data from Harris County Flood Con-
trol District gauges (Harris County Flood Control District,
2023) during five significant flood events from2016 to 2020,
including the 2016 Tax Day flood and Hurricane Harvey in
2017. This validation process, which calibrated the HEC-
RAS 2Dmodel for global minimum error across all gauges,
confirmed themodel’s reliability and accuracy for simulat-
ing diverse flood scenarios (Garcia et al., 2023).Weused the
592 rainfall events as the initial set from which to generate
further synthetic rainfall events, as described in Section 2.4
and Section 2.5. The flood depth scenarios became the
input for the depth estimator, a surrogatemachine learning
model for determining cell-wise maximum flood depth,
described in Section 2.3.

2.2 Preprocessing

We employed Voronoi tessellation (Konrad, 2021) to par-
tition the training data set, assigning each point within
the study area a unique polygonal region to ensure there
is no overlap among cells. Additionally, we segmented the
592 rainfall events used in the HEC-RAS 2D flood scenar-
ios into three classes by inundation depth level, to ensure
consistent stratification for subsequent data set splitting
and resampling. Specifically, for the training set, events
are classified with mean depths of ≤ 2 inches, between
> 2 and ≤ 6 inches, and > 6 inches in a ratio of 2:4:1,
respectively. The validation set consists of 20% of the
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HUANG et al. 5

TABLE 1 Features used in depth estimator.

Feature Level Unit Description
Cumulative precipitation All Inch Event total precipitation
Peak precipitation All Inch Event peak precipitation
Duration All Hour Effective precipitation duration
Channel Universal Binary (1 or 0) Identification of channel cell
Terrain elevation Universal Feet Geographical height of each cell
Nine heavy cumulative precipitation ratios
(HCPRs; one for each watershed)

Cell wise Scalar (range 0 to 1) Proportion of watershed area
experiencing heavy cumulative
precipitation

Nine heavy peak precipitation ratios
(HPPRs; one for each watershed)

Cell wise Scalar (range 0 to 1) Proportion of watershed area
experiencing heavy peak
precipitation

training set volume, with the remaining data designated
as the test set. This approach optimizes the separation of
events to ensure relatively balanced representation across
the training, validation, and testing phases, facilitating
more effective modeling.

2.3 Depth estimator model

For the depth estimator component of Precipitation-Flood
Depth Generative Pipeline, we chose a tree-basedmachine
learning model trained on simulated scenarios from the
HEC-RAS 2D model. Compared to traditional machine
learning models, tree-based models have shown supe-
rior performance due to their ability to manage complex,
nonlinear relationships and interactions within the data.
XGBoost (Chen & Guestrin, 2016; Shehadeh et al., 2021),
in particular, excels with its gradient boosting framework,
which iteratively improves model accuracy by minimizing
residual errors from previous iterations. Additionally, deep
learning models in regression, such as the Transformer
(Castangia et al., 2023; Vaswani et al., 2017), utilize atten-
tion mechanisms to capture long-range dependencies and
complex feature interactions, providing substantial bene-
fits in predictive performance. In this study, we employed
the XGBoost regressor and the regression Transformer
as universal depth estimators, training them on physics-
based model-generated events that include both spatial
features and precipitation-based features, as shown in
Table 1. This integration aims to enhance the accuracy
and robustness ofmaximum flood inundation estimations.
Furthermore, we compared these universal models with
a cell-wise model, MaxFloodCast V2 (Lee et al., 2024),
an XGBoost-based depth estimator aggregating 26,301
machine learningmodels, one for each of the 26,301 cells of
the mesh. In MaxFloodCast V2, each cell model is trained
independently of the others, without considering precipi-
tation orwater levels in neighboring cells. However, spatial

dependencies exist in the natural water flow. For example,
the water level of cells located in a channel is influenced by
thewater draining fromupstreamareas. To account for this
spatial influence while maintaining cell-wise model inde-
pendence, we introduced a heavy cumulative precipitation
ratio (HCPR) and a heavy peak precipitation ratio (HPPR).
Heavy precipitation is the hourly peak intensity or cumula-
tive rain volume above a certain threshold established for a
study area. HCPR and HPPR are defined at the watershed
level as in Equation (1) and Equation (2).

R𝑐
𝑖
=

∑
𝑗
𝐴𝐶𝑖,𝑗 × ℎ𝑐

𝑖,𝑗

𝐴𝑊𝑖
, 𝑐 ∈ {𝔠, 𝔭} (1)

ℎ𝑐
𝑖,𝑗
=

{
1, if 𝑝𝑐

𝑖,𝑗
> 2 in

0, otherwise
(2)

where 𝑐 representsHCPRas 𝔠 andHPPRas𝔭, with𝑅 denot-
ing the respective heavy precipitation ratio. 𝐴𝑊𝑖 refers to
the total area of watershed 𝑖, while 𝐴𝐶𝑖,𝑗 represents the
area of cell 𝑗 within watershed 𝑖. The binary variable ℎ𝑖,𝑗
identifies whether cell 𝑗 in watershed 𝑖 experiences heavy
precipitation, and 𝑝𝑖,𝑗 denotes the corresponding precip-
itation condition for cell 𝑗 within the same watershed.
HCPR and HPPR are defined at the watershed scale, and
are uniform across all cells within the samewatershed dur-
ing a rainfall event. These ratios can differ considerably
across watersheds and across events, and offer substan-
tial explanatory potential as surrogates for precipitation
patterns.
We assessed the predictive performance of the depth

estimators (in Section 3.1) using root mean squared error
(RMSE) and 𝑅2 scores (Chicco et al., 2021) to evaluate
both accuracy and model explainability. RMSE measures
the average magnitude of the prediction errors, providing
insight into the estimator’s precision, while 𝑅2 indicates
the proportion of variance in the observed data that is
predictable from the input features, reflecting the model’s
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6 HUANG et al.

explanatory power. In addition, we conducted a compre-
hensive analysis of the aggregated performance of these
models on both channel and nonchannel cells. This dis-
tinction is crucial due to the varying hydrological and
ground texture characteristics inherent to these environ-
ments, which influence the uncertainty and behavior of
flood dynamics.

2.4 Rainfall data augmentation via
CTGAN

Given the limited physics-based model simulated
precipitation-flood events, to generate relatively robust
synthetic rainfall events in our study, we strategically
sampled 315 events as explained in Section 2.2 and then
employed CTGAN from Synthetic Data Vault (SDV)
(Xu et al., 2019; Patki et al., 2016) for tabular data aug-
mentation. CTGAN extends the GAN framework to
handle structured data, particularly tabular data sets,
making it highly effective for generating synthetic data
in scenarios with small, imbalanced data sets. One of
CTGAN’s strengths is its ability to support the speci-
fication of constraints and conditions during the data
generation process, enabling the preservation of specific
relationships or attributes present in the original data
set.
We converted the training cell-level data into point-level

data using centroids to facilitate generation. Consequently,
the input attributes for CTGAN included latitude, lon-
gitude, cumulative precipitation, peak precipitation, and
precipitation duration. To enhance the quality of the syn-
thetic records, we constrained conditional sampling to
ensure that synthetic points satisfied the following con-
ditions: (1) Sampled points are inside the study area
(Figure 2); (2) for a sampled point, the cumulative pre-
cipitation is always greater than the peak precipitation
value; (3) for a sampled point, the peak precipitation
is greater than the average precipitation intensity, cal-
culated by dividing the cumulative precipitation by the
event duration.
To determine the optimal hyperparameters for the gen-

erator and discriminator learning rates, as well as the
stoppage epochs, we conducted a comprehensive hyper-
parameter grid search to explore the optimal learning
rates for the generator and discriminator, ensuring both
networks improved steadily without overpowering each
other. Additionally, selecting appropriate stoppage epochs
enabled us to terminate the training process at the most
accurate point, preventing overfitting or underfitting. The
optimal checkpoint was selected based on the corre-
sponding synthetic data set achieving the highest average
marginal distribution, as evaluated using theKolmogorov–

TABLE 2 Definition of low, medium, and high (LMH)
thresholds for each precipitation-based feature within a cell mesh.

Class Range
Low [0 , 𝜇𝑖 − 𝜃1 ⋅ 𝜎𝑖]

Medium (𝜇𝑖 − 𝜃1 ⋅ 𝜎𝑖 , 𝜇𝑖 + 𝜃2 ⋅ 𝜎𝑖]

High (𝜇𝑖 + 𝜃2 ⋅ 𝜎𝑖 , +∞)

Smirnov statistic (KS statistic) (Finner et al., 2018). The
KS statistic 𝐾 for a particular feature 𝑥𝑖 between the
training data set and the synthetic data set is defined
as follows:

𝐾𝑖,𝑛,𝑚 = sup
𝑥𝑖

|𝐹𝑡,𝑛(𝑥𝑖) − 𝐹𝑠,𝑚(𝑥𝑖)| (3)

where 𝐹𝑡,𝑛 and 𝐹𝑠,𝑚 represent the empirical distribution
functions of the training data set and the synthetic data
set generated by CTGAN, respectively. The function sup𝑥𝑖
denotes the supremumacross the domain of feature𝑥𝑖 . The
overall quality score for all features, excluding location-
based features, in the synthetic data set is computed using
the following formula:

𝑆𝑐𝑜𝑟𝑒 =

∑𝑁

𝑖=1
(1 − 𝐾𝑖,𝑛,𝑚)

𝑁
(4)

where𝑁 is the number of features. Ahigher score indicates
a higher quality of the synthetic data, signifying a closer
approximation to the training data distribution. The out-
come of this step is a comprehensive synthetic point cloud
containing 10,000,000 synthetic rainfall records generated
by CTGAN, representing various precipitation durations.
This diverse point cloud presents a significant challenge in
processing and formulating individual precipitation events
under varying conditions.

2.5 Rainfall events generation

In the synthetic point data set, which comprises collections
of precipitation records, we have predefined thresholds
for cumulative precipitation, peak intensity, and dura-
tion, respectively—categorized as low, medium, and high
(LMH)—for each cell mesh based on training data. These
categories are established based on the conditions shown
in Table 2, where 𝜇𝑖 is the mean of a precipitation-based
feature 𝑥𝑖 from training data set, and 𝜎𝑖 refers to its
standard deviation. 𝜃1 and 𝜃2 are two positive constants.
Consequently, for each cell mesh, we defined low (L),
medium (M), and high (H) thresholds based on the distri-
bution of precipitation-related features—cumulative pre-
cipitation, peak precipitation, and duration—derived from
the training data set. These thresholds were then applied
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HUANG et al. 7

to the synthetic point data set generated as described
in Section 2.4. For each cell, we constructed a corre-
sponding precipitation feature-level pool comprising all
possible LMH combinations of cumulative precipitation,
peak precipitation, and duration, resulting in a total of
27 combinations (i.e., LLL, LLM,. . . , HHH.). To ensure
consistency and representativeness, we systematically iter-
ated over all synthetic point records, retaining indices of
synthetic points that fell within the cell boundary while
preserving the original distribution of the pool.
Establishing the synthetic indices pool for each cell

enabled to generate global precipitation events with var-
ious precipitation distributions across the study area. To
generate an event, a specific duration was sampled ran-
domly from the aggregated pool and set as the global
rainfall duration, reducing the possible cumulative–peak–
duration combinations from 27 to 9 (e.g., if the input
synthetic duration is H, then the potential set of combina-
tion is LLH, LMH, LHH,MLH,MMH,MHH, HLH, HMH,
HHH). Subsequently, a synthetic record was randomly
sampled for each cell from its own pool. The sampling
was repeated for all the cells of the mesh. This strategic
sampling allowed to create single synthetic precipitation
events from a large point cloud, transitioning from point-
level to cell-level representation in accordwith the original
distribution of precipitation characteristics in the study
area. To enhance the approximation of training precipita-
tion events, we applied the KNN method as a smoother
(Zhou et al., 2021) to cumulative and peak precipitation
features, respectively. Additionally, we computed HCPR
and HPPR from these smoothed values. Following this
cell-level processing, we utilized the depth estimator with
optimal predictive performance as identified in Section 2.3
to generate inundation depths resulting from each syn-
thetic precipitation event. The depth estimatorwas applied
to the thousands of generated rainfall events and pro-
duced a synthetic inundation depth distribution in each
cell.
To assess the event-generation performance, we eval-

uated the statistical similarity between the inundation
depth distribution of the training set of rainfall events
and the inundation depth distribution of the synthetic
set. We implemented interpolation using the formula
in Equation (5) for the synthetic set depth distribution
𝐝𝐬 to ensure the same dimension as the training set
depth distribution 𝐝𝐭 , facilitating the evaluation. Let 𝐝𝐭 =
[𝑑𝑡(1), 𝑑𝑡(2), … , 𝑑𝑡(𝑚)] be the training set depth vector
with 𝑚 records, and 𝐝𝐬 = [𝑑𝑠(1), 𝑑𝑠(2), … , 𝑑𝑠(𝑛)] be the
synthetic set depth vector with 𝑛 synthetic records. We
define an interpolation function 𝑓 such that:

𝑓(𝑖) = 𝑑𝑠(𝑖) for 𝑖 = 1, 2, … , 𝑛

The interpolated values 𝑑′𝑠(𝑗) for 𝑗 = 1, 2, … ,𝑚 are given
by:

𝑑′𝑠(𝑗) = 𝑓

(
𝑗 − 1

𝑚 − 1
⋅ (𝑛 − 1) + 1

)
(5)

This process ensures that 𝐝𝐭 and 𝐝′𝐬 are of the same
length, enabling valid comparisons using multiple statisti-
cal measures. Cosine similarity (Vijaymeena and Kavitha,
2016) assesses their directional similarity. Pearson corre-
lation (Freedman et al., 2007) evaluates the linear rela-
tionship between the two distributions. Finally, Kullback–
Leibler (KL) divergence (Hershey & Olsen, 2007) quan-
tifies how one probability distribution diverges from the
other. The corresponding formulas can be written as:

Cosine Similarity(𝐝𝐭, 𝐝′𝐬) =
𝐝𝐭 ⋅ 𝐝

′
𝐬‖𝐝𝐭‖‖𝐝′𝐬‖ (6)

Corr(𝐝𝐭, 𝐝′𝐬) =
∑𝑚

𝑖=1
(𝑑𝑡(𝑖) − 𝑑𝑡)(𝑑

′
𝑠(𝑖) − 𝑑′𝑠)√∑𝑚

𝑖=1
(𝑑𝑡(𝑖) − 𝑑𝑡)2

∑𝑚

𝑖=1
(𝑑′𝑠(𝑖) − 𝑑′𝑠)

2

(7)

𝐷𝐾𝐿(𝐩 ∥ 𝐪) =

𝑚∑
𝑖=1

𝑝(𝑖) log
𝑝(𝑖)

𝑞(𝑖)
(8)

𝑝(𝑖) =
𝑑𝑡(𝑖)∑𝑚

𝑘=1
𝑑𝑡(𝑘)

(9)

𝑞(𝑖) =
𝑑′𝑠(𝑖)∑𝑚

𝑘=1
𝑑′𝑠(𝑘)

(10)

where 𝐩 and 𝐪 are the normalized versions of 𝐝𝐭 and
𝐝′𝐬, respectively, as represented in Equations (9) and (10).
Besides the averaged synthetic depth distribution across
the study region, we further explore the performance
by aggregating the results into channel and nonchannel
levels, as described in Section 2.3. This detailed analy-
sis allows to assess how well the synthetic data capture
the unique characteristics of different regions in the
study area.

3 RESULTS

3.1 Selection of depth estimator

To understand the advancements of tree-basedmodels and
transformers in regression problems, specifically in the
context of inundation depth estimation, we compared the
predictive performance of two universal models, XGBoost
Regressor and Regression Transformer, with one cell-
wise model, MaxFloodCast V2. MaxFloodCast V2 utilizes
an XGBoost-based architecture and incorporates heavy
precipitation ratio features. We trained the Regression
Transformer using an encoder with four layers, a model
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8 HUANG et al.

TABLE 3 Depth estimator comparison on test data set.

Model Level
Overal
RMSE

Overal
𝑹𝟐

Channel
RMSE

Channel
𝑹𝟐

Nonchannel
RMSE

Nonchannel
𝑹𝟐 Time

Regression Transformer
(Vaswani et al., 2017)

Universal 2.6634 0.6537 4.1264 0.7278 2.4133 0.4928 5.8 s

XGBoost Regressor
(Chen & Guestrin, 2016)

Universal 2.6916 0.6463 4.2755 0.7078 2.4153 0.4920 4.1 s

MaxFloodCast V2 (Lee
et al., 2024)

Cell-wise 0.6996 0.9189 1.7280 0.9107 0.5680 0.9200 10.6 s

dimensionality of 128, a feed-forward layer size of 2048,
and eight attention heads with a 25% dropout rate on eight
NVIDIA RTX A100 GPUs. The XGBoost Regressor was
trained on an NVIDIA RTX A6000, while MaxFloodCast
V2was trained in parallel on anAMDEPYC 7702P 64-Core
Processor, sharing the same hyperparameter settings as the
XGBoost Regressor. The model’s objective function aimed
to minimize RMSE, utilizing a learning rate of 0.01. The
XGBoost algorithm generated 1000 trees with a maximum
depth of 5, applying L1 regularization to mitigate overfit-
ting and employing a subsample ratio of 0.3 to introduce
nonlinearity and improvemodel robustness. Following the
sampling strategy described in Section 2.2, we configured
252 precipitation-flood events for training, 63 events for
validation, and the remaining events as the test set. The
comparison results are presented inTable 3,which assesses
the overall, channel, and nonchannel RMSE, as well as the
𝑅2 score.
The comparison of results reveals significant differences

in the predictive performance between the universal mod-
els and the cell-wise model. The Regression Transformer
and XGBoost Regressor both show substantial errors, with
overall RMSE scores above 2 ft, indicating they struggle to
accurately predict inundation depths. Their performance
is particularly poor in channel cells, where RMSE values
exceed 4 ft. In contrast, MaxFloodCast V2 demonstrates
superior performance with an overall RMSE of 0.6996 ft
and an 𝑅2 value of 0.9189, significantly outperforming
the universal models. It achieves lower RMSE in both
channel (1.7280 ft) and nonchannel cells (0.5680 ft), high-
lighting its accuracy and reliability. The cell-wise approach
of MaxFloodCast V2, which tailors the model to the spe-
cific characteristics of each cell, allows it to better capture
local variations in precipitation and terrain features, result-
ing in more accurate predictions. Also, the incorporation
of heavy precipitation ratio features enhances its ability to
capture the influence of runoff from upstream areas on
channel cell depths. The data set used for training, gen-
erated by the physics-based model, is both limited and
imbalanced, comprising 90 training events. This limita-
tion affects the universalmodelsmore significantly, as they
are less adept at handling such imbalances compared to

the specialized cell-wise approach of MaxFloodCast V2.
Overall, while the cell-wise model demands higher com-
putational resources and longer processing times than
universal models, its advantages outweigh these costs in
the context of this pipeline, which focuses on region-
specific flood depth estimation. Given its superior per-
formance in capturing complex hydrological dynamics,
the computational overhead is a minor trade-off, mak-
ing MaxFloodCast V2 the optimal depth estimator for the
Precipitation-Flood Depth Generative Pipeline.

3.2 CTGAN-generated precipitation
records quality review

Among the initial 592 precipitation-flood events, we
strategically sampled 90 events following the 2:4:1 ratio
described in Section 2.2 and configured 36 hyperparame-
ter sets for our grid search. This involved combining six
pairs of learning rate settings with six distinct stoppage
epochs, increasing from 50 epochs to 300 epochs in incre-
ments of 50, and modeling on NVIDIA’s RTX A6000 GPU.
This meticulous grid search focused on generating records
under the condition duration ≥ 1, targeting the potential
simulation of global precipitation events. As shown in
Figure 3I, we identified the optimal checkpoint with a gen-
erator learning rate of 10−2, a discriminator learning rate
of 10−3, and early stopping at 250 epochs. Notably, the
generator learning rate is set to be 10 times higher than
that of the discriminator to prevent the generator from
being overpowered in the early stages before it can effec-
tively learn the underlying data patterns. Ultimately, both
the generator and discriminator converged before reach-
ing the 300-epoch limit. The optimal settings enabled a
direct comparison of cumulative precipitation, peak pre-
cipitation, and duration between the training data set and
the 10,000,000 synthetic data points generated by CTGAN,
as depicted in Figure 3 II. This configuration produced
an average marginal distribution score of 0.802, demon-
strating a high fidelity of the synthetic data, particularly
for cumulative and peak precipitation when compared
to the original data set. As shown in Figure 3 II(c), we
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HUANG et al. 9

F IGURE 3 (I) Grid search results for conditional generative adversarial network (CTGAN) hyperparameters. The optimal
hyperparameter set was selected based on the highest average marginal distribution scores across all synthetic precipitation-based features
generated by the best-performing CTGAN configurations. The key hyperparameters explored in the grid search include the generator and
discriminator learning rates, as well as the number of training epochs. (II) Stacked marginal distribution comparison of three synthetic
features between training data and synthetic data: (a) cumulative precipitation, (b) peak precipitation, and (c) duration. The distribution of
the training data set is represented in gray, while the synthetic distribution is depicted in light blue. Distributions were generated using
Synthetic Data Vault (SDV) (Patki et al., 2016).

enforced a constraint in CTGAN that limits duration ≥ 1,
since our focus is primarily on global precipitation event
generation. Additionally, the CTGANmodelmaintains the
flexibility to generate local precipitation events by allowing
cumulative precipitation to drop to zero. Moving forward,
the challenge remains to construct multiple precipitation-
depth events from the synthetic point data set that closely
correlate with training events.

3.3 Synthetic rainfall event assessment

Using the strategic filtering and sampling methods out-
lined in Section 2.5, we generated 10,000 synthetic rainfall

events through parallel computing. For each event, the
sampled global duration level guided and constrained the
selection of precipitation features from each cell’s tailored
pool. Leveraging the 27-element precipitation-level combi-
nation pool described in Section 2.5, the cell-level sampling
preserved regular precipitation trends while maintaining
the probability of extreme scenarios. As the number of sim-
ulated events increased, the overall synthetic precipitation
patterns closely aligned with those in the training data set.
Due to the independence and nonlinearity of point data in
CTGAN-generated records, cumulative and peak precip-
itation maps often exhibited a “pepper-salt” appearance.
To mitigate this, we applied KNN smoothing, selecting the
value of 𝐾 based on the synthetic event’s duration follow-
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10 HUANG et al.

F IGURE 4 Synthetic flood event with 15 h global precipitation. All the attribute maps are in the same scale and they share the same
color bar with different units: inch, inch, hour, and feet, respectively. The synthetic cumulative precipitation and peak precipitation are
processed by 50-NN smoother. Maps generated by Geopandas Python package.

ing that the longer duration correspond to larger 𝐾 values,
and vice versa. From these smoothed precipitation-based
features, we derivedHCPR andHPPR, resulting in 21 input
features for the depth estimator, MaxFloodCast V2, which
was then used to generate synthetic inundation depths and
complete the precipitation-flood event. The event gener-
ation process averaged 10 min for 100 rainfall events in
parallel, utilizing 100 GB of memory on an AMD EPYC
7702P 64-core processor.
Figure 4 illustrates a synthetic precipitation-flood event

with a global duration of 15 h, comprising four subplots:
synthetic cumulative precipitation, synthetic peak precip-
itation, precipitation duration, and synthetic inundation
depth. In Harris County, this 15-h storm event would have
a return period of approximately 200 years (Perica et al.,
2018). Cumulative and peak precipitationmaps show some
spatial variability, as expected for a relatively long but still
sub-daily rainfall. The inundation depth map highlights
flood-prone regions, particularly along river channels and
low-lying areas. This result is consistent with the expecta-
tion that a 200-year storm would cause multiple floodings
at the local level in the area.

3.4 Synthetic rainfall distribution
assessment

We generated 10,000 synthetic precipitation-flood events,
each cell having a comprehensive synthetic depth distri-

bution for direct comparison with the training data set. To
assess the performance of the synthetic events quantita-
tively, we utilized four key metrics—RMSE, cosine simi-
larity, correlation, and KL divergence—comparing them
against the limited number of sampled training events.
To ensure a fair comparison, the synthetic events were
downsampled to match the size of the training data. This
downsampling process was repeated 50 times to minimize
variability introduced by randomness. A detailed statistical
comparison between the normalized versions of the train-
ing and the synthetic data sets is provided in Table 4, with
the corresponding visualizations shown in Figure 5.
The sampled synthetic flood depth distribution demon-

strates comparable overall performance, as evidenced by
the RMSE and cosine similarity metrics, indicating that
the generated events align closely with the training data
and accurately capture key hydrological characteristics
and trends. Notably, the mean RMSE for nonchannel cells
is 2.10 ft, substantially lower than the 5.99 ft recorded for
channel cells. This disparity suggests that the synthetic
datamore effectively represent regionswith simpler hydro-
dynamics, while the higher RMSE in channel cells reflects
the inherent difficulty in modeling real-world depth dis-
tributions in areas characterized by dynamic flow patterns
and greater variability. Nevertheless, the synthetic data
perform well even in these more complex regions, achiev-
ing a mean cosine similarity of 0.85 for channel cells,
highlighting the model’s ability to capture the overall
structure and trends of the real data.
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HUANG et al. 11

TABLE 4 Statistical comparison of sampled training depth distribution and downsampled synthetic depth distribution for key metrics
across overall, channel, and nonchannel cells.

Metric RMSE (ft) Cosine similarity Correlation KL divergence
Overall
Count 26301 26301 26301 26301
Mean 2.5813 0.8537 0.5621 0.8332
Std 2.0925 0.0553 0.0996 0.4610
Min 0.3248 0.3523 0.0010 0.0236
25% 1.1264 0.8452 0.5205 0.5308
50% 1.8231 0.8627 0.5588 0.7692
75% 3.3417 0.8911 0.6034 1.0227
Max 26.982 0.9923 0.8812 6.2701
Channel
Count 2985 2985 2985 2985
Mean 5.9978 0.8461 0.5433 0.7831
Std 2.7955 0.0489 0.0998 0.4392
Min 0.6084 0.4735 0.0015 0.0905
25% 3.9428 0.8276 0.5151 0.4697
50% 5.4801 0.8662 0.5513 0.7598
75% 7.7058 0.8785 0.6121 1.0152
Max 27.015 0.9578 0.8015 5.1892
Nonchannel
Count 23316 23316 23316 23316
Mean 2.0992 0.8696 0.5525 0.8224
Std 1.4678 0.0562 0.1013 0.4532
Min 0.3221 0.3511 0.0010 0.0240
25% 1.0912 0.8415 0.5240 0.5521
50% 1.6098 0.8772 0.5644 0.7559
75% 2.7623 0.9028 0.6183 1.0194
Max 16.940 0.9815 0.8897 6.2550

In nonchannel cells, the model excels with a mean
cosine similarity of 0.87 and a relatively low KL diver-
gence of 0.82. These metrics suggest that the synthetic
data closely match the probability distributions of the real
data in these regions, where simpler hydrological behavior
makes depth distributions easier to replicate. In contrast,
the KL divergence for channel cells, though still low at
0.78, indicates some deviation between the synthetic and
real data, which is expected given the complexity and
variability of flood behavior in these more dynamic areas.
The correlation between the synthetic and real data sets

further reinforces the model’s effectiveness. Nonchannel
cells exhibit a mean correlation of 0.55, while channel cells
show a slightly lower but still robust correlation of 0.54.
This highlights the model’s ability to capture linear rela-
tionships across both cell types, though the more intricate
hydrodynamic processes in channel cells present addi-
tional challenges. Hydrologically, these findings are par-
ticularly significant. Channel cells, which are more prone

to flooding due to their dynamic flow patterns, underscore
the model’s strength in capturing intricate interactions
even under complex conditions. Themodel’s ability to gen-
eralize across nonchannel cells, reflected in their lower
RMSE and KL divergence values, is equally noteworthy,
showing the model’s potential to explore a variety of flood
scenarios without overfitting to specific events.
Geographically, the distinction between channel and

nonchannel cells emphasizes the importance of local topo-
graphical and hydrological features in floodmodeling. The
synthetic data perform better in regions with clear hydro-
dynamic patterns, while still maintaining a reasonable
alignment in flat areas where riverine and flash flooding
may compound.
Overall, these results highlight the strong potential

of the synthetic data set for reliable flood depth esti-
mation across diverse regions, especially in flood-prone
channel areas where accuratemodeling is crucial for effec-
tive risk assessment and mitigation. The close alignment
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12 HUANG et al.

F IGURE 5 Histograms of flood assessment metrics: Comparison of metrics between channel cells and nonchannel cells, based on the
differences between the sampled training depth distribution and the downsampled synthetic depth distribution.

between the synthetic and training data across multi-
ple metrics underscores the robustness of the approach,
demonstrating its ability to replicate complex flood
patterns while maintaining generalizability across var-
ied hydrological landscapes. These findings affirm the
method’s suitability for predictive flood modeling and
underscore its potential as a powerful tool for future flood
risk assessment and management efforts.

3.5 Flood probability maps

Flood depths generated by a large number of synthetic
precipitation-flood events represent a foundational data
set from which one can estimate flood probability. Prob-
ability is calculated cell-wise as the proportion of synthetic
events that cause a certain value of flood depth or higher.
Using the 10,000 synthetic events simulated in Section 3.3,
we built synthetic flood probability maps for the follow-
ing inundation depths: 1 ft, 2 ft, 4 ft, and 6 ft (Figure 6).
In Figure 6.IV, for example, a high 𝑃(depth ≥ 6𝑓𝑡) in a
cell means that for a generic flood event, there is a high
probability that flood level will equal or exceed 6 ft in

that cell. In other words, the probability value serves as
a quantification of risk for a certain flooding depth. This
interpretation should be distinct from annual flood prob-
ability, which is traditionally used in flood mapping. As
shown in Figure 6, at 1 ft and 2 ft depths, flood probabil-
ities greater than 0.5 (high probability) are predominantly
observed in the northeastern, southeastern, and central
regions of the study area, while lower probabilities are
seen in the western and southern areas. As the depth
threshold increases to 4 ft and 6 ft, the high-probability
zones become more concentrated along rivers/channels
and low-lying regions.

4 DISCUSSION

In this study, we presented an innovative applica-
tion methodology, Precipitation-Flood Depth Generative
Pipeline, for generating high-resolution flood probabil-
ity maps using synthetic precipitation-flood events. Our
approach leveraged advanced machine learning tech-
niques, including CTGAN (Xu et al., 2019) as precipitation-
based features generator and XGBoost-based MaxFlood-
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HUANG et al. 13

F IGURE 6 Synthetic flood probability maps based on four inundation depth criteria. The color gradient from blue to red represents
probabilities ranging from 0 to 1 for a global precipitation event, with blue indicating lower probabilities and red indicating higher
probabilities. Channel cells are highlighted in gray. Maps generated by Geopandas Python package.

Cast (Lee et al., 2024) as synthetic depth estimator, to
overcome the limitations of traditional floodmodeling that
rely on historical data and records, not always available.
To address the limitations in feature dimensionality found
in existing CTGAN tools and the challenge of generating
individual precipitation-flood events from a massive syn-
thetic point cloud, we designed a robust and systematic
workflow. This includes cell-level pool creation, strategic
sampling, noise smoothing, depth synthesis, and the even-
tual formation of individual events. Each step in the pro-
cess is carefully structured to avoid overfitting and ensure
that the generated synthetic events accurately reflect real-
world flood scenarios while maintaining computational
efficiency and high fidelity to hydrological patterns. By
generating 10,000 synthetic precipitation-flood events, we
created a data set that captures a wide spectrum of poten-
tial flood scenarios, increasing the robustness of flood
risk assessments. The RMSE values highlight a notable
difference between channel and nonchannel cells, reflect-

ing the challenges in accurately modeling flood depth
distribution in regions with dynamic flows and greater
variability. These findings demonstrate the model’s ability
to capture key trends and nonlinear relationships, partic-
ularly along channels and in floodplain areas, which are
more susceptible to flooding. Additionally, the synthetic
data’s capacity to generalize beyond the training events
highlights its potential for producing possible flood sce-
narios, which is critical for accurate risk assessment and
mitigation planning.

4.1 Spatial nature of weather and
flooding

Despite the advancements introduced with the
Precipitation-Flood Depth Generative Pipeline, this
approach has some limitations in generating local pre-
cipitation events. While CTGAN can generate records
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14 HUANG et al.

with no precipitation, these are sparse, and we observed
a tendency to generate storms covering most of the study
area. In reality, short storms (0.5–2 h), whether of high or
low intensity, should affect a portion of the study area, that
is, the cells that receive rain and the cells downstream.
The localized pattern of short storms is not well captured
by the CTGAN generator. The prevalence of large-extent
storms in the synthetic data set influenced flood depth
distributions at the cell level and the final maps. As a
result, flood probability for low depths (1 and 2 ft) is likely
overestimated outside of channels, given the spatial uni-
formity of high probabilities (> 75%) observable even on
elevated road cells and at watershed divides 6. Traditional
flood probability maps for Harris County show the extent
of the 100-year and 500-year floodplain, but do not provide
information on associated flood depths at the largest
scale, complicating a direct comparison with the synthetic
flood probability maps in Figure 6. For the higher depths
considered (4 and 6 ft), synthetic flood probabilities have
more distinct values between low-lying and high-lying
areas, and align more closely to the latest 100-year and
500-year floodplain extents (TWDB, 2024).
Synthetic flood probability overestimation can be

explained because the three storm characteristics, that is,
duration, cumulative rainfall, and peak intensity, are gen-
erated at the cell level independently, without considering
the spatial autocorrelation existing in an actual storm.
Future work will focus on additional characteristics that
capture the spatial nature of precipitation events. These
include the spatial autocorrelation of storm events of dif-
ferent duration, intensity, and extent, the directions along
which storms typically move, and other spatio-temporal
properties defined at the event-scale rather than cell-wise,
for example, rotation and velocity.

4.2 Computational efficiency

The computational complexity of the pipeline is overall
significant. The cell-wise depth estimator, MaxFloodCast,
costs higher computational resource than the universal
models tested (Section 3.1), taking approximately 10 min
and 100 GB CPU memory to generate 100 precipitation-
flood events. This performance is however competitive
over HEC-RAS 2D, for which Lee et al. (2024) found that
the runtime for a single simulation was around three min-
utes on average. The obvious advantage of MaxFloodCast
is the parallelization across cells, which is not possible in
HEC-RAS 2D. Future work should improve the computa-
tional efficiency of the pipeline, especially in presence of
additional relationships of spatial and hydrological nature
that would enhance precipitation event generation.

4.3 Applications and future research

The Precipitation-Flood Depth Generative Pipeline was
applied in Harris County due to the availability of an
initial data set of storms for training, as well as of a cal-
ibrated physics-based model that provided the data for
training the depth-estimator. The pipeline can be applied
in any study area as long as a set of historical storms
and resulting flood depth levels are available. However,
different model parameterization might be necessary to
adapt to region-specific meteorological and hydrological
conditions, especially for the storm generator component.
Future research should determine what the appropriate
scale is for the pipeline application, and if the scale dif-
ference between weather analysis (regional scale) and
flood depth analysis (watershed scale) represents an issue
for implementing the pipeline and producing accurate
flood probability maps. For example, weather radar mea-
surements tend to underestimate precipitation in small
catchments (Sokol et al., 2021), especially those that exhibit
a flashy response (Ochoa-Rodriguez et al., 2015). Conse-
quently, the storm generator trained with historical radar
data in these areas would be biased toward low-intensity
and smoothed storms and underestimate flood risk. In
absence of a local network of rain gauges that helps with
radar error mitigation, precipitation analysis should be
expanded to a larger scale and include nearby water-
sheds, to ensure that regional storm patterns are accurately
captured and represented in the synthetic storm data set.
Flood probability maps visualize flood risk as a function

of water depth. In regions with a flat ground surface that
are subject to both riverine and flash flood mechanisms,
maps can support depth-specific floodmanagement strate-
gies. For example, they can leverage LFE data sets to assess
flood risk at the building level; to prioritize structural mit-
igation interventions (e.g., foundation raising) based on
inundation probability at a certain water height thresh-
old; or to identify roads with a high probability to become
impassable due to a 2-ft inundation. The nonbinary nature
of maps further allows for comparative flood risk assess-
ments across different inundation levels, enabling more
nuanced and targeted flood mitigation strategies across
diverse landscapes.
Finally, this study is an example of synthetic data imple-

mentation in disaster resiliencemodels. Real and synthetic
data support the development of robust AI models for
various hazard-related applications (Liu et al., 2025). For
example, AI-generated storms can be used to augment
flood scenarios and loss data in addition to the available
historical data, increasing awareness on vulnerable assets
and assisting decision-makers on preparedness and miti-
gation actions in peace time. Further, AI models play a
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pivotal role in hybrid models for weather and flood fore-
casting, where real-time measurements from gauges and
radar are integratedwith synthetic data (Slater et al., 2023).
Despite the development of hybrid forecasting models in
many regions of the world, their effect on disaster opera-
tions is not observable because of their novelty and limited
adoption (Panahi et al., 2021). Therefore, future studies
should investigate how to leverage GAN and other gen-
erative ML methods for augmenting data from past storm
and flood events, but also explore how these methods and
their products can be effectively and reliably integrated
with decisions and operations before, during, and after a
flood event.

5 CONCLUSIONS

In this study, we proposed the Precipitation-Flood Depth
Generative Pipeline, a novel machine learning framework
for generating synthetic precipitation-flood events to con-
struct high-resolution probabilistic flood maps. By inte-
grating a CTGAN for synthetic precipitation generation
with a specialized cell-wise depth estimator (MaxFlood-
Cast V2), our approach addresses some of the limitations
in traditional flood mapping methods, including data
scarcity and computational costs associated with physics-
based simulations. The results show the capability of
the pipeline to produce flood probability maps that align
with hydrological intuition and known flood-prone areas,
highlighting its potential as a scalable tool for flood risk
assessment.
Despite its advantages, certain limitations remain, such

as potential inconsistencies in extreme precipitation cases
and challenges in fully capturing spatial dependencies.
Future research will focus on enhancing the integra-
tion of generative models with physics-based simulations,
improving event-generation mechanisms to better capture
localized precipitations, and further benchmarking against
alternative deep learning models. Additionally, extending
this framework to different geographical regions and incor-
porating real-time flood forecasting applications could
expand its scope in disaster resilience and urban planning.
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