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ABSTRACT

Consistency-based method has been proved effective for semi-supervised learning
(SSL). However, the impact of the pseudo-labeled samples’ quality as well as the
mining strategies for high quality training sample have rarely been studied in SS-
L. An intuitive idea is to select pseudo-labeled training samples by threshold. We
find it essential the selection of these thresholds to the final result of SSL. Follow-
ing this discovery, we propose SEAT (Score Ensemble with Adaptive Threshold),
a simple and efficient semi-supervised learning object detection method, in which
the high confidence pseudo-labels are selected for self-training. Apart from con-
fidence score as the indicator of the sample’s quality, we also introduce the scores
of temporal consistency and augmentation consistency. The scores provide a more
comprehensive description to the quality of each sample. To cope with the data
distribution difference among categories, the adaptive threshold strategy is used to
automatically determine the sample mining threshold for each category. We con-
duct experiments on PASCAL-VOC and MSCOCO, extensive results show that
our method is competitive and can be easily combined with consistency-based
methods.

1 INTRODUCTION

Over the years, as the development of deep learning, large scale data are playing a more and more
important role in promoting the performance of different machine learning tasks. How to make use
of the huge amount of unlabeled data becomes a central topic among researchers in the machine
learning society. Especially for computer vision tasks, large scale images are needed to train the
model with hundreds of thousands of parameters.

Augmentation consistency has been proven effective for semi-supervised learning Miyato et al.
(2018)); Laine & Ailal(2016); Tarvainen & Valpola (2017); Jeong et al.| (2019); |Sohn et al.| (2020);
Xie et al.| (2020). The main idea is to add a regularization term to the generated pseudo-labels on
unlabeled data by the model. The regularization term is defined as minimizing the pseudo-labels’
dissimilarity between the teacher and student models. The images are processed using different type
and strength of augmentations before fed into the teacher and student models correspondingly Jeong
et al.[(2019). Augmentation consistency works by stabilizing the training process on unlabeled data
and improves generalization ability of the model. In the field of image classification, Rand Augment
Cubuk et al.| (2019) and CTAugment [Berthelot et al.| (2019a) are good examples to show the power
of augmentation consistency.

As for object detection, it also turns out to be a powerful strategy to adapt the detectors on unlabeled
data with self-training. However, the refinery of the pseudo-labels are rarely noticed and studied.
In the preliminary study, we show the importance of pseudo-label threshold for semi-supervised
learning. One common coping strategy is to filter out less confident unlabeled samples Jeong et al.
(2019)Sohn et al|(2020) Tang et al.| (2020). It does help to improve the overall quality of the pseudo-
labels, but it ignores the data distribution inconsistency among different classes. Given a static
threshold, there exists a high risk to introduce noises to pseudo labels by filtering out many low
confident positive samples and keeping high confident negative samples. Another challenge is how
to make good use of middle confident unlabeled samples. Samples with confidence scores that are
close to the threshold are essential for self-training, since these samples contribute to draw a precise
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classification boundary. However, the pseudo-labels of these samples convey the most amount of
noises than other samples.

In semi-supervised learning, unlabeled data are used for training together with pseudo-labels pre-
dicted by the teacher model. The quality of unlabel training samples with pseudo-labels play an
essential role in semi-supervise learning. Usually, these training samples are selected according to
the confidence score predicted by the detectors. Candidate samples with confidence scores higher
than a given threshold like 0.8 are seen as high quality training sample. However, there are two
major challenges. First, the confidence score should not be the only indicator of the quality of the
training samples. In practice, even if the threshold is set as high as possible, like 0.9, there still ex-
ists some high confident false positive samples which significantly brings noise to semi-supervised
training. More scores that reveals more detailed information from other aspects are needed for high
quality sample mining. Second, the confidence scores of unlabled data does not follow the same
distribution of different categories. Setting the same threshold for sample selection is an inaccurate
way. For instance, in the same unlabeled dataset, there are more highly confident samples of the
category CAR than PERSON. In this case, the threshold of the category CAR shall be set higher
than that of the category PERSON.

To cope with above challenges, we propose SEAT (Score Ensemble with Adaptive Threshold), a
simple and efficient semi-supervised learning object detection method to deal with above two chal-
lenges. In SEAT, the high confidence pseudo-labels are refined for self-training. We use multiple
scores apart from the confidence score predicted by the detector itself (SE, Score Ensemble). The
threshold to filter in/out unlabeled samples is calculated dynamically according to the data distri-
bution of each class (AT, Adaptive Threshold). First, to provide more information to guide the
pseudo-labeled sample mining, we introduce the scores of temporal consistency and augmentation
consistency. Second, to deal with the difference of confidence score distribution among categories,
we propose an adaptive threshold calculation method. For categories where the confidence scores
obeys long-tail distribution, we assume that there are more false positive samples mixed with true
positive samples. The thresholds of these categories are set higher to filter out the FP samples. For
categories where the confidence scores aggregates around 1 and 0, we assume that there are fewer
FP samples mixed with TP samples. The corresponding thresholds are set lower.

In this paper, we implement SEAT both on single stage and two stage detectors (Yolov3 and Faster
RCNN). We compare with state-of-the-art methods STAC, and CSD. Through experiments, we show
that our framework is flexible to be combined with previous methods, and generates competitive
results. We have the following contributions:

e As far as we know, we are the first to stress the importance of thresholding and conduct
extensive experiments to study its properties.

e We propose SEAT, a simple and efficient semi-supervised learning object detection method.
In SEAT, we design multiple scores to help pseudo-label sample selection from the candi-
dates generated by the teacher model, and dynamic threshold to deal with classwise data
distribution imbalance of the pseudo-label samples.

o SEAT is a flexible method which can be easily combined with other SSL methods such
as |Sohn et al.| (2020) and Jeong et al.| (2019). And we show SEAT helps to promote the
performance of the state-of-the-art methods because it provides more reliable pseudo-label
samples for semi-supervised training.

2 RELATED WORK

Semi-Supervised Learning (SSL) aims to make use of large scale unlabel data to improve the
model where the images are obtained almost for free. Consistency regularization becomes popular
in this field because of its effectiveness and flexibility. VAT [Miyato et al.| (2018)), Temporal En-
semble |Laine & Ailal(2016), and Mean-Teacher Tarvainen & Valpolal(2017)) study semi-supervised
image classification with consistency regularization by adding different disturbs to the predictions
on the unlabeled data. Proven its efficiency, consistency regularization is then promoted to semi-
supervised object detection. In CSD [Jeong et al.| (2019), consistency regularization is applied to
both the classification as well as localization branches. To avoid mismatch of bounding boxes, only
horizontal flip is used as the augmentation method to evaluate the consistency on unlabeled images.
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Another methodology to energize the unlabel data is self-training. The model is first trained on the
labeled data to get relatively good representation ability. Then for each unlabeled sample x,,, the
model predicts its pseudo-label y,,. Due to the ability limitation of the model, there is usually much
noise in the pseudo-labels, which has a large impact on SSL. How to generate high quality pseudo-
labeled samples from the unlabeled data becomes an essential problem. MixMatch Berthelot et al.
(2019b) generates the pseudo-labels using the average predictions of unlabeled images on several
augmentations. The unlabeled images are mixed with the labeled images and used for self-training.
In Note-RCNN |Gao et al.|(2019), an ensemble of two classification head of Faster-RCNN is used to
overcome the disturb from the noisy pseudo-labels.

Both consistency regularization and high quality pseudo-labeled sample mining can also be com-
bined. In STAC Sohn et al.| (2020)), high confidence threshold is used to obtain high quality pseudo-
labels. However, we argue that a fixed high threshold is not enough for SSL due to data distribution
difference among categories.

Object Detection can be divided into two categories, anchor based and anchor-free. In this paper,
we only concentrate on anchor based methods like Faster-RCNN [Ren et al.| (2015) and YOLOv3
Redmon & Farhadi| (2018)). Faster-RCNN is a two stage detector, where foreground proposals are
first generated by the RPN (Region Proposal Network). These proposals are then classified and
localized with a set of fully connected layers. YOLOV3 is a single stage detector, in which the
bounding boxes are directly predicted with three independent tasks, bounding box localization, con-
fidence of objectness, and classification. Both of the methods regress the bounding boxes from a set
of anchor boxes, so they are called anchor-based detectors.

Unsupervised Domain Adaptation for Object Detection is different from SSL for Object Detec-
tion in two aspects. First, in the problem of DA, the labeled data and unlabeled data have obvious
appearance dissimilarity. The main purpose of DA is to learn the domain irrelevant features for
both domains |Saito et al.| (2019) Deng et al.| (2020) |Chen et al.| (2018). While in the problem of
SSL, the difference between labeled data and unlabeled data is not the concern. The purpose of
SSL is to promote the performance of the model with help of unlabeled data. Second, the test set
of DA is in the target domain. In SSL, we are concerned about the base data set. Due to above
differences, methods for DA usually solves the problem of domain shift by decreasing the feature
distribution among two domains [Volpi et al|(2018)Pinheiro| (2018). On the contrary, SSL methods
promotes the performance of the original model by refining the pseudo-labels/Cascante-Bonilla et al.
(2020) for self-training or training with carefully designed data augmentation methods |Verma et al.
(2019))Arazo et al.|(2019).

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given two sets of images X = {z;;¢ =1,2,..., M} and U = {u;;j = 1,2, ..., N}, where X is the
labeled dataset and U is the unlabeled dataset. {x;,y;} corresponds to one pair of labeled training
sample, where y; is the labeled bounding boxes. In the scenario of self-training for SSL, pseudo-
labels for U are generated by the teacher model. Assume that the teacher generates pseudo-labels
;QJT = T'(u;; 0r), and the student model has the predictions of the unlabeled data QJS = S(uj;0s).
Unsupervised loss is then:

by = Z Z@J‘T’?)J‘S> = Z T (uj; 0r), S(uj; 0s)) (1)

u; €U u; €U

where [(-) is the standard supervised loss function of the object detector. As stated in |Sohn et al.
(2020); Jeong et al. (2019), not all of the pseudo-labeled samples are suitable for unsupervised
training. Low confident pseudo-labeled samples contain noises and false positive samples which is
harmful for the student. Traditional method to get high quality training samples from the unlabeled
data is to select samples with highly confident pseudo-label. A uniform threshold is usually used to
filter out low confident pseudo-labeled samples, like 0.8.

We argue that there are two problems in this kind of rough division of pseudo-labeled samples, for
two reasons. First, confidence score predicted by the detector is not the only indicator of the pseudo-
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labeled samples. Confidence score itself is only one point view to look at the sample. There are
many other ways to check the quality of a sample, for instance, resistance to image noise, similarity
to other samples of the same class, consistency during training. Each aspect of the sample reveals
only a small part of it. If we come up with a way to find out all the point views and combine all
the information together, we get the most accurate judgement on the quality of the sample. Second,
uniform threshold is too rough, which does not take category variation into consideration. Due to
data distribution difference among categories, the threshold should also be decided separately. To
solve above two problems, we propose Score Ensemble (SE) and Adaptive Threshold (AT) to mine
high quality pseudo-labeled samples for semi-supervised training.

3.2 SCORE ENSEMBLE

Confidence score Confidence score is the most popular indicator used to mine high quality pseudo-
labeled samples. In Yolov3, confidence score is the combination of the object-ness score which
reveals the probability of a bounding box to be foreground and the classification score which reveals
the probability that the content in the bounding box belongs to which class (Eq. [2). In Faster-RCNN,
the box-head classifies the RPN generated proposals and outputs the confidence scores (Eq. [3). In
object detection tasks, confidence score offers the model a basic ability to distinguish true positive
samples (TP) from false positive samples (FP).

CFRONN — argmin L (pi, p}), @
Ppi
CYOLO — . 4 JOUITuth 3)

p; is the ground-truth label. In previous work, the pseudo-labeled samples are separated into TP and
FP with the uniform threshold for all categories (for instance, 0.9 in|Sohn et al.[(2020)). Differently,
we use adaptive thresholds for each categories which will be introduced later.

Temporal Consistency Score We find that with the process of training, the predictions of the model
changes over time. Mostly, the false predictions are less stable than the correct predictions. Fol-
lowing this discovery and inspired by [Laine & Aila (2016)), we propose the temporal consistency
score as another indicator of the pseudo-labeled sample’s quality. We record the model during its
supervised training process. For the jth epoch, the model is saved as II;. The predictions of II;

on the whole unlabeled sample u; is written as @. For sample u;, temporal consistency score over
multiple models {II,} is calculated as follows:

_ 5

where C7 is the confidence score of sample u; predicted by model IT,. In Wang et al.| (2018), multi-
model prediction consistency is also used for object detection training sample mining. Different
from Wang et al.| (2018), our temporal consistency does not require additional cut an paste. We
are more concerned the agreement degree that multiple models have on each sample, other than the
categorial prediction distribution.

Augmentation Consistency Score It has been proven effective in images classification Miyato et al.
(2018)Laine & Aila|(2016)Tarvainen & Valpola)(2017) that consistency regularization with differen-
t augmentations improves the semi-supervised learning. Instead of directly adding a regularization
term, we generate the augmentation consistency scores for the pseudo-labeled samples. Thus, we
create another indicator to help distinguishing TPs and FPs. Since some of the samples are not
tolerant to the augmentation disturbing, and may produce different predictions, augmentation con-
sistency scores reflect the degree of resistance to different augmentations. Assume there are K types
of augmentation written as f(),k = 1,2, ..., K. Augmentation consistency score for sample u; is
calculated as follows:
e S (€

= Var£(C) ©)

In this work, we use data augmentation strategies like images flip, resize and color transform.

Having gotten scores for each sample u;, training samples are selected from the pseudo-labeled
samples by ensembling the scores. Each time we filter our samples by setting a unique threshold for
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Algorithm 1 SEAT for semi-supervised object detection

1: Train the model II on labeled data X.
2: Generate pseudo-labels Y7 = 9j,7=1,2,..., N for the samples in the unlabeled data set U
using the model II.

3: Calculate the adaptive thresholds for each categories following Eq. [6]
4: for sample s; do

5. if s; € U then
6.
7
8

Get pseudo-label y; of s;. Check the adaptive threshold £, of sample s;’s category.

if scores; > tj, then
: Unsupervised loss calculated by Eq.
9: end if

10:  else

11: Supervised loss
12:  endif

13: end for

each of the scores, the overall quality of the training samples is improved. To combine the ability of
all scores, we ensemble the scores in a boosting way. The samples are first filtered by the confidence
score, then filtered by the temporal consistency score, and finally by the augmentation consistency
scores. The thresholds for each scores are set adaptively instead of static for all categories.

3.3 ADAPTIVE THRESHOLDS FOR EACH CATEGORY

Since the decision boundary is the key for training data selection in SSL, a more accurate thresh-
olding method is essential other than the uniform threshold. With the observation that the data
distribution of pseudo-labeled samples for each class are different, we assume that the ideal thresh-
olds for each class should also be different. One challenge is how to figure out the ideal thresholds
automatically according to the data distribution of each classes.

Since the detectors are usually pre-trained on labeled data, the confidence score is regressed with
the supervision of GT labels. The distribution of the confidence scores on the training data tend
to gather around O or 1. This phenomenon can be explained as follows: when the training process
converges, the confidence score prediction loss is small, so they must be around O or 1, otherwise
the loss will become large. When we calculate the distribution of the confidence scores on the
pseudo-labeled data, however, they may not gather around O or 1 as close as on the labeled data.
It is because the detector has not been trained on the unlabeled data set in supervised manner. We
call this the score distribution shift phenomenon. The score distribution shift can be defined as the
entropy of the confidence score distribution. Intuitively, when the larger the score shift is, the more
noise the pseudo-labeled samples have. The threshold of the category with large score distribution
shift should be set higher than that with smaller score distribution shift. We adaptively calculate the
threshold for each class with different confidence score shift as follows:

t, = argmin Sy, (t) — vSk(T), (6)
t

where k is the index of the categories. S (t) represents the total number of samples with confidence
scores larger than ¢. « controls the percentage of samples used to determine the variational threshold.
Pseudo-labeled samples with confidence scores higher than 7" are seen as true positive (TP) samples.

4 EXPERIMENTS

We evaluate our method on public datasets MS-COCO and Pascal VOC, the most popular public
datasets for object detection. Following |Sohn et al.| (2020) and [Tang et al.| (2020), we conduct
experiments based on three different settings. The MS-COCO data set contains 118k labeled images
and 123k unlabeled images. Following Tang et al.|(2020), we split the labeled images into two parts.
1%, 2%, 5%, and 10% images are randomly sampled from the labeled images and they are used as
the labeled set. The other 99%, 98%, 95%, and 90% images are used as the unlabeled set. Following
Sohn et al.|(2020) and Tang et al.|(2020), we use the 118k labeled images as the labeled set and the
123k unlabeled images as the unlabeled set. The semi-supervised object detection methods are
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Table 1: Comparison on MS-COCO with COCO-unlabel. Experiment is done on Faster-RCNN
Resnet-50. Evaluated with IOU=0.5.

Detector Methods COCO-train  COCO-unlabel AP  AP%?
Supervised Vv - 373 592
Proposal Vv v 384 59.7
&
Faster.RCNN ~ CSDP Vv Vv 402 60.5
STAC® v v 39.8  60.2
SEAT (ours) Vv vV 385 599
CSD + SEAT (ours) +/ v 410 613
Supervised vV - 27.5 50.1
&
YOLO-v3 CSD v v 287 524
STAC® Vv i 29.0 526
SEAT (ours) Vv Vv 285 51.8
CSD + SEAT (ours) +/ Vv 30.3 529

Table 2: Comparison on MS-COCO. Experiment is done on Faster-RCNN.

Methods 1% COCO 2% COCO 5% COCO 10% COCO
Supervised 9.2 12.2 17.6 21.1
CSD + SEAT (ours) 13.8 16.9 21.5 26.4

evaluated with mAP over 80 classes on the MS-COCO test set. Following the standard MS-COCO
evaluation method, the mean mAP over IOUs of 0.5 to 0.95 (0.05 gap) is reported.

In Pascal VOC, there are two sets VOCO07 and VOC12 which do not contain same images. We use
the VOCO7 as the labeled set, and VOC12 as the unlabeled set. The testset of VOCO07 is used for
evaluation. The evaluation metric is the mAP over 20 classes over IOU of 0.5.

4.1 IMPLEMENTATION DETAILS

We implement SEAT both on single stage and two stage detectors (Yolov3 and Faster RCNN). For
Yolov3, we use Darknet19 as the backbone. For Faster-RCNN, we use ResNet-50 as the backbone.
We use MMDetection to construct the networks and design the training process. The models are
pretrained on ImageNet.

There are two ways to generate pseudo labels for the unlabeled images, online and offline. Online
generation refers to predict pseudo labels while training. Offline generation refers to predict pseudo
labels altogether and store the labels in the file, which can be loaded into the memory for training
later on. To save calculation resources, we conduct the offline generation in all the experiments for
LWDT. We train object detectors with 2 NVIDIA Tesla V100 in 30 epochs with batch size of 8, in
which 4 labeled and 4 unlabeled images are sampled randomly from the training set. We use SGD
with initial learning rate of 0.0005 to optimize the network. The learning rate is stepped after 15 and
25 epochs.

4.2 RESULTS

The main purpose of SSL is to promote the performance of the model trained on the labeled data.
We compare the results of the model trained with SEAT in SSL manner with the model trained on
labeled data in SL manner. In additions, we compare with consistency based semi-supervised object
detection methods Sohn et al.| (2020)Jeong et al.|(2019)Tang et al.| (2020).
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Table 3: Results on PASCAL VOC2007. Experiment is done on Faster-RCNN. Score 1 is confidence
score. Score 2 is temporal consistency score. Score 3 is augmentation consistency score.

Methods Labeled Unlabeled Scorel Score2 Score3 AT | AP AP°?
Supervised VOCO07 - — — — —- | 42.60 74.80
CSD¢ VOCO07 VOCI12 \/ —_ —_ —- | 4342 78.40

STAC VOCO07 VOCI12 vV — — — | 44.64 79.08

CSD + SEAT (ours) | VOCO07 VOC12 Vv vV —_ - | 43.50 79.32
CSD + SEAT (ours) | VOCO07 VOC12 \/ \/ \/ — | 44.06 79.20
CSD + SEAT (ours) | VOCO7 VOCI2 v Vi vV | 4530 8005
CSD + SEAT (ours) | VOC07 VOCI12 + COCO Vv vV V v/ | 45.80 80.85

Table 4: Results on PASCAL VOC2007 to study the influence of threshold. Experiment is done on
Faster-RCNN.

Methods Labeled Data  Unlabeled Data Threshold AP AP?%5
CSD + SE (ours) VOCO07 VOCI12 0.4 42.80 75.33
CSD + SE (ours) VOCO07 VOC12 0.8 4398 78.01
CSD + SE (ours) VOCO07 VOCI12 0.9 4421 79.45
CSD + SE + AT (ours) VOCO07 VOCI12 AT 45.30 80.05

Table [I] shows the comparison between different methods on MSCOCO. Same as [Sohn et al.
(2020)Tang et al.| (2020), the coco-train2017 data set is used as the labeled data, and the coco-
unlabeled is used as the unlabeled data. We conduct experiments both on Faster-RCNN (ResNet-
50) and Yolo-v3 (Darknet19). Although only applying SEAT does not produce competitive results,
when combined with CSD, our method outperforms other methods. We get an improvement of 3.7
mAP on Faster-RCNN and 2.8 mAP on Yolo-v3.

Table 2 shows the results on split COCO data set. We only use a small part of the samples in COCO-
train2017 as the labeled data and the rest as the unlabeled data. We randomly split the data set into
1% over 99%, 2% over 98%, 5% over 95% and 10% over 90%. For 1 and 2 % protocols, we improve
2 mAP. For 5 and 10 % protocols, we improve 4 mAP. As for the experiment on Pascal-VOC, we
also outperform previous methods.

4.3 ABLATION STUDY

Understanding Score Ensemble Table [3] shows the ablation study of scores used in our method.
Confidence score used in CSD shows beneficial for SSL. The improvement over baseline is 0.8
mAP. Together with temporal consistency score, we achieve the improvement of 0.9 mAP. When
ensembled with augmentation consistency score, the advantage rises to 1.4 mAP. For the above
experiments, the thresholds are set to be 0.8 for all categories. After applying adaptive thresholds,
we achieve 45.3 mAP and get 2.7 mAP over baseline. We also notice that more unlabeled data is
helpful. When adding more unlabeled COCO data into training, the result further rises to 45.8 mAP.

In our proposed method, we only use three scores, confidence score, augmentation consistency, and
temporal consistency. We have proven these scores are all beneficial for the whole system. While a
problem naturally arises: what kind of scores are helpful? In our opinion, the scores should provide
information from different aspects. Compared with distinguishing accuracy using a score, we are
more concerned whether it can provide information other than the confidence score already has.
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Figure 1: Data distribution of TP/FP samples on COCO-test. By changing the threshold to select
pseudo-labeled samples for training, the TP/FP ratio also changes. The data distribution difference
among categories has an influence on the ideal threshold to distinguish the TPs and FPs.

Understanding Adaptive Thresholds Threshold is important for SSL, because it is the simplest
way to extract high quality pseudo-labeled training samples. In previous works, a static threshold is
usually offered for all categories, which causes two side effects. One is that the same threshold for
all the categories assumes that the data distributions of each categories are the same, which is not the
case. This will cause the mis-split of the pseudo-labeled samples. If the threshold is set too high for
one category, the training data is too little. If the threshold is set too low for one category, the noises
in the training data are too much. Although the thresholds for each categories can be manually set, it
requires plenty of time to figure out all the hyper parameters. Our adaptive thresholds solves above
problems by adaptively select suitable thresholds for each class according to the data distribution of
the unlabeled data. This method does not require heavy work to adjust parameters, while improves
the overall quality of the pseudo-labeled samples.

Apart from the proposed adaptive thresholds by calculating the data distribution on unlabeled data,
there is another way to figure out a set of thresholds. In the case where the data distribution on
labeled data has little difference to that on unlabeled data, it is fine to calculate the thresholds on
labeled data. Then we know whether each pseudo-labeled samples are positive or negative, and can
determine more precise adaptive thresholds for each categories. But the assumption of same data
distribution on labeled and unlabeled data is not always true. The adaptive thresholds calculated on
labeled data has not much difference on our proposed adaptive thresholds on unlabeled data.

Training Samples: Quantity and Quality To select high quality training data from the pseudo-
labeled samples, a high threshold is usually used in SSL. The higher the threshold, the purer is the
pseudo-labeled samples. But the threshold cannot be set as high as possible, because number of
effective samples decreases as the threshold rises. So the quantity and quality of the training data is
contradictory.

5 CONCLUSION

The quality of pseudo-labels matter a lot for semi-supervised object detection. In this paper, we
investigate the relationship between the pseudo-label quality and SSL. Following the discovery, we
design a general framework for semi-supervised object detection, SEAT ((Score Ensemble with
Adaptive Threshold)). In the framework, the high confidence pseudo-labels are refined for self-
training. Several indicators are used to distinguish true positive samples (TP) from false negative
samples (FP). These indicators convey information of the quality of a sample from different aspects.
They provide a more comprehensive description to the quality of each sample. In this paper, apart
from confidence score as the indicator of the sample’s quality, we also introduce the scores of tempo-
ral consistency and augmentation consistency. To cope with the data distribution difference among
categories, the adaptive threshold strategy is used to automatically determine the sample mining
threshold for each category. This framework is compatible with consistency-based SSL method-
s. Extensive results on PASCAL-VOC and MSCOCO show the flexibility and efficiency of this
framework. In future work, more reliable indicators and better combination methods are needed to
improve SEAT.
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