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Abstract

Bulk RNA sequencing is essential for understanding cancer biology, yet current
computational methods struggle with cross-cohort generalization, interpretability,
and multi-source integration. We propose multi-agent architectures built from
specialized large language models (LLMs) as a solution. Unlike monolithic
models, our framework integrates multi-modal inputs. By assigning complemen-
tary tasks to expression-focused, sequence-based, literature-aware, and integrative
agents, the system achieves more robust, interpretable, and clinically meaningful
insights. We discuss supporting evidence, potential challenges, and a research
agenda, emphasizing the paradigm’s importance for precision oncology.

1 Introduction

Cancer remains a leading cause of mortality worldwide, with nearly 20 million new cases and 9.7
million deaths (including nonmelanoma skin cancers [NMSCs]) in 2022. About one in five people
will develop cancer, and roughly one in nine men and one in twelve women will die from it [2]].
Its heterogeneous nature, with diverse molecular subtypes and therapeutic responses, necessitates
sophisticated computational approaches for accurate diagnosis, prognosis, and treatment selection
(18} [14].

Bulk RNA sequencing (RNA-seq) is a fundamental technology for profiling the transcriptomic
landscape of cancer, revealing gene expression patterns, pathway dysregulation, and molecular
subtypes [LL1}[17]. Resources such as The Cancer Genome Atlas (TCGA) provide extensive datasets
across cancer types, enabling large-scale computational analyses [19].

Despite these advances, traditional machine learning models often generalize poorly across cohorts
and experimental conditions. Efforts to improve interpretability exist [7, 20], but models still lack
transparency, limiting clinical applicability.

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
processing, code generation, and scientific reasoning [3} [15]], as well as in biological applications like
protein structure prediction, drug discovery, and genomic analysis [9, 12| 5]. However, their use in
bulk transcriptomic analysis, especially within multi-agent frameworks, remains largely unexplored.

We argue that the future of bulk RNA-seq analysis and cancer prediction lies in a specialized multi-
agent paradigm powered by large language models (LLMs). Single-model pipelines, while effective
for narrow tasks, struggle with scalability, interpretability, and clinical translation. In contrast, a
multi-agent architecture where dedicated LLM agents handle quality control, feature extraction,
pathway inference, and predictive modeling offers superior performance and transparency. We argue
that such distributed, collaborative systems are not optional enhancements but essential for precision
oncology, turning computational predictions into actionable, trustworthy insights for patient care.
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2 Background and Current Challenges

2.1 Bulk RNA Sequencing in Cancer Research

Bulk RNA-seq technology measures the average gene expression across all cells in a tissue sample,
providing a comprehensive snapshot of the transcriptomic state [21]. In cancer research, bulk RNA-
seq data has been instrumental in identifying molecular subtypes, predicting treatment responses, and
understanding disease mechanisms [6].

The typical bulk RNA-seq analysis workflow involves several computational steps: quality control,
read alignment, quantification, normalization, and downstream analysis including differential expres-
sion analysis, pathway enrichment, and predictive modeling. Each step introduces potential sources
of bias and technical variation that can impact downstream interpretations.

2.2 Limitations of Current Computational Approaches
Traditional computational approaches for bulk RNA-seq include:

* Statistical Methods: Tools like DESeq?2 [13] and edgeR [16] identify differentially ex-
pressed genes. Limitation: Cannot capture complex gene-gene interactions.

* Dimensionality Reduction: PCA and t-SNE are used for visualization and exploration.
Limitation: May distort biologically meaningful relationships and is sensitive to noise.

* Machine Learning Models: Random forests, SVMs, and neural networks predict cancer
outcomes. Limitations: Poor cross-cohort generalization, limited interpretability, and
difficulty integrating multi-modal data (clinical, genomic, literature).

2.3 Promise and Gaps of LLMs in Biology

Large language models (LLMs), particularly transformer-based architectures, excel at sequential data
analysis and have been applied successfully in biology:

* Protein sequences: ProtBERT [5] and ESM-2 [12]] achieve state-of-the-art structure predic-
tion and functional annotation.

* Genomic sequences: [8] and Nucleotide Transformer [4]] predict regulatory elements and
functional regions.

* Biomedical text: BioBERT [10] and SciBERT [1]] enhance entity recognition, relation
extraction, and literature mining.

However, LLM applications to bulk transcriptomic data remain limited.

3 Our Position: Multi-Agent, Multi-Modal Transcriptomic Analysis

We propose a multi-agent framework grounded in the principle that complex biological problems
benefit from specialized expertise and collaborative reasoning. Analogous to interdisciplinary cancer
research, this system distributes tasks across agents, each focusing on a specific modality or aspect of
bulk RNA-seq analysis. This multi-modal, multi-agent design offers:

* Modularity: Agents can be independently trained, updated, and validated.

* Specialization: Each agent focuses on a distinct modality, improving performance over
generalist models.

* Robustness: Distributed agents provide resilience against individual failures.
 Interpretability: Agent-specific outputs enhance transparency and biological insight.

3.1 Agent Types and Capabilities

We define four specialized agents handling different data modalities: gene expression matrices, RNA
sequences, biomedical text, and integrative synthesis. Table[I]summarizes their objectives, inputs,
architectures, and key capabilities.
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Table 1: Specialized agents in the multi-agent, multi-modal framework for bulk RNA-seq analysis.

Agent Type

Input Modality

Architecture

Key Capabilities

Gene Expres-

Expression matrices
(TCGA, other bulk

Transformer adapted
for tabular data with

Identify latent transcriptomic signatures,
classify samples and subtypes, generate

quence Agent

splice junctions, vari-
ants

(DNABERT, Nu-
cleotide Transformer)

sion Agent RNA-seq datasets) attention mechanisms synthetic data for augmentation, enable
cross-cohort generalization
Predict expression from sequence fea-
RNA Se- Raw RNA sequences, | DNA/RNA — LLMs tures, capture structural and regula-

tory patterns, integrate sequence context
with expression data

Biomedical text, clin-

Pretrained biomedi-

Provide biological interpretation of ex-

attention

Literature- . . cal LLMs (BioBERT) | pression patterns, validate findings, in-
ical trials, curated 3 .
Aware Agent fine-tuned for ge- | tegrate prior knowledge to improve pre-
databases . o . e
nomics diction and interpretability
. Fuse information from all agents, gener-
. . Multi-modal  trans- o .
Integration Multi-modal outputs . ate consensus predictions, quantify un-
formers with cross- ) . .
Agent from other agents certainty, support interpretable and clin-

ically relevant decision-making

3.2 Communication and Coordination

Effective multi-agent analysis relies on structured communication:

 Each specialized agent independently analyzes its data modality.

* Integration agents synthesize outputs to produce consensus predictions.

* Meta-learning mechanisms iteratively refine agent communications.

This architecture ensures robust multi-modal reasoning and interpretable framework for cancer
prediction and transcriptomic analysis. Figure 1 shows the overall architecture of the proposed
multi-agent framework for bulk RNA-seq analysis.

[

Expression Matrices
TCGA, Bulk RNA-seq
Datasets

) |

RNA Sequences
Splice Junctions
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Clinical Trials, Literature

) |

Prior Knowledge
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Figure 1: Multi-agent framework integrating gene expression matrices, RNA sequences, biomedical
literature, and prior knowledge through specialized agents coordinated by an Integration Agent.

4 Arguments Supporting Our Position

The multi-agent, multi-modal framework provides several key advantages for cancer prediction,
analysis, and translational relevance:
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* Enhanced Predictive Performance: By integrating complementary information from
expression patterns, RNA sequences, and literature knowledge, the system captures a
more comprehensive view of cancer biology. Literature-aware agents provide biological
constraints that improve generalization across cohorts, while ensemble-like predictions from
multiple agents enable robust uncertainty quantification.

* Synthetic Data Generation: Gene Expression Agents can produce biologically plausible
synthetic samples, which help address class imbalance in rare cancer subtypes, enable
privacy-preserving analyses, and support hypothesis generation by exploring uncharted
regions of expression space.

* Interpretability and Clinical Relevance: Each agent produces outputs that can be mech-
anistically interpreted, fostering expert trust and facilitating translational application of
predictions in clinical settings.

5 Counterarguments and Rebuttals

While multi-agent systems offer significant benefits, critics raise several concerns. We address these
challenges as follows:

* Technical Challenges: Critics may argue that multi-agent systems are computationally
expensive, sensitive to heterogeneous data, and difficult to coordinate. We respond that:
— Advances in distributed computing, model compression, and efficient attention mecha-
nisms reduce computational burden.

— Standardized preprocessing pipelines and data harmonization strategies mitigate issues
arising from data heterogeneity.

— Careful system design ensures effective coordination and communication between
agent.
* Scientific Challenges: Skeptics point to risks such as hallucination, overfitting, and poor
reproducibility. Our countermeasures include:
— Rigorous validation and benchmarking using curated datasets and expert oversight to
ensure reliability and biological relevance.
— Monitoring and evaluation to prevent overfitting and to identify fske predictions.

6 Future Directions

Looking forward, we identify key areas to advance multi-agent, multi-modal systems:

* Technical Priorities:
— Optimize agent architectures, communication protocols, and coordination mechanisms
for transcriptomic analysis.
— Improve training efficiency via transfer learning, few-shot learning, and continual
learning strategies.
— Develop comprehensive evaluation frameworks assessing both predictive performance
and biological interpretability.
* Biological Validation:
— Systematically validate predictions using cell lines, patient samples, and clinical co-
horts.
— Engage domain experts to assess clinical relevance of outputs.

7 Conclusion

We position multi-agent LL.M architectures as a paradigm shift for bulk RNA-seq analysis and
cancer prediction. By integrating expression data, sequence features, and literature knowledge
through specialized agents, these systems overcome current barriers of generalization, interpretability,
and integration. We argue this approach is not just a technical advance, but a critical step toward truly
precise and clinically relevant oncology.
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