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Abstract

Bulk RNA sequencing is essential for understanding cancer biology, yet current1

computational methods struggle with cross-cohort generalization, interpretability,2

and multi-source integration. We propose multi-agent architectures built from3

specialized large language models (LLMs) as a solution. Unlike monolithic4

models, our framework integrates multi-modal inputs. By assigning complemen-5

tary tasks to expression-focused, sequence-based, literature-aware, and integrative6

agents, the system achieves more robust, interpretable, and clinically meaningful7

insights. We discuss supporting evidence, potential challenges, and a research8

agenda, emphasizing the paradigm’s importance for precision oncology.9

1 Introduction10

Cancer remains a leading cause of mortality worldwide, with nearly 20 million new cases and 9.711

million deaths (including nonmelanoma skin cancers [NMSCs]) in 2022. About one in five people12

will develop cancer, and roughly one in nine men and one in twelve women will die from it [2].13

Its heterogeneous nature, with diverse molecular subtypes and therapeutic responses, necessitates14

sophisticated computational approaches for accurate diagnosis, prognosis, and treatment selection15

[18, 14].16

Bulk RNA sequencing (RNA-seq) is a fundamental technology for profiling the transcriptomic17

landscape of cancer, revealing gene expression patterns, pathway dysregulation, and molecular18

subtypes [11, 17]. Resources such as The Cancer Genome Atlas (TCGA) provide extensive datasets19

across cancer types, enabling large-scale computational analyses [19].20

Despite these advances, traditional machine learning models often generalize poorly across cohorts21

and experimental conditions. Efforts to improve interpretability exist [7, 20], but models still lack22

transparency, limiting clinical applicability.23

Large language models (LLMs) have demonstrated remarkable capabilities in natural language24

processing, code generation, and scientific reasoning [3, 15], as well as in biological applications like25

protein structure prediction, drug discovery, and genomic analysis [9, 12, 5]. However, their use in26

bulk transcriptomic analysis, especially within multi-agent frameworks, remains largely unexplored.27

We argue that the future of bulk RNA-seq analysis and cancer prediction lies in a specialized multi-28

agent paradigm powered by large language models (LLMs). Single-model pipelines, while effective29

for narrow tasks, struggle with scalability, interpretability, and clinical translation. In contrast, a30

multi-agent architecture where dedicated LLM agents handle quality control, feature extraction,31

pathway inference, and predictive modeling offers superior performance and transparency. We argue32

that such distributed, collaborative systems are not optional enhancements but essential for precision33

oncology, turning computational predictions into actionable, trustworthy insights for patient care.34
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2 Background and Current Challenges35

2.1 Bulk RNA Sequencing in Cancer Research36

Bulk RNA-seq technology measures the average gene expression across all cells in a tissue sample,37

providing a comprehensive snapshot of the transcriptomic state [21]. In cancer research, bulk RNA-38

seq data has been instrumental in identifying molecular subtypes, predicting treatment responses, and39

understanding disease mechanisms [6].40

The typical bulk RNA-seq analysis workflow involves several computational steps: quality control,41

read alignment, quantification, normalization, and downstream analysis including differential expres-42

sion analysis, pathway enrichment, and predictive modeling. Each step introduces potential sources43

of bias and technical variation that can impact downstream interpretations.44

2.2 Limitations of Current Computational Approaches45

Traditional computational approaches for bulk RNA-seq include:46

• Statistical Methods: Tools like DESeq2 [13] and edgeR [16] identify differentially ex-47

pressed genes. Limitation: Cannot capture complex gene-gene interactions.48

• Dimensionality Reduction: PCA and t-SNE are used for visualization and exploration.49

Limitation: May distort biologically meaningful relationships and is sensitive to noise.50

• Machine Learning Models: Random forests, SVMs, and neural networks predict cancer51

outcomes. Limitations: Poor cross-cohort generalization, limited interpretability, and52

difficulty integrating multi-modal data (clinical, genomic, literature).53

2.3 Promise and Gaps of LLMs in Biology54

Large language models (LLMs), particularly transformer-based architectures, excel at sequential data55

analysis and have been applied successfully in biology:56

• Protein sequences: ProtBERT [5] and ESM-2 [12] achieve state-of-the-art structure predic-57

tion and functional annotation.58

• Genomic sequences: [8] and Nucleotide Transformer [4] predict regulatory elements and59

functional regions.60

• Biomedical text: BioBERT [10] and SciBERT [1] enhance entity recognition, relation61

extraction, and literature mining.62

However, LLM applications to bulk transcriptomic data remain limited.63

3 Our Position: Multi-Agent, Multi-Modal Transcriptomic Analysis64

We propose a multi-agent framework grounded in the principle that complex biological problems65

benefit from specialized expertise and collaborative reasoning. Analogous to interdisciplinary cancer66

research, this system distributes tasks across agents, each focusing on a specific modality or aspect of67

bulk RNA-seq analysis. This multi-modal, multi-agent design offers:68

• Modularity: Agents can be independently trained, updated, and validated.69

• Specialization: Each agent focuses on a distinct modality, improving performance over70

generalist models.71

• Robustness: Distributed agents provide resilience against individual failures.72

• Interpretability: Agent-specific outputs enhance transparency and biological insight.73

3.1 Agent Types and Capabilities74

We define four specialized agents handling different data modalities: gene expression matrices, RNA75

sequences, biomedical text, and integrative synthesis. Table 1 summarizes their objectives, inputs,76

architectures, and key capabilities.77
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Table 1: Specialized agents in the multi-agent, multi-modal framework for bulk RNA-seq analysis.
Agent Type Input Modality Architecture Key Capabilities

Gene Expres-
sion Agent

Expression matrices
(TCGA, other bulk
RNA-seq datasets)

Transformer adapted
for tabular data with
attention mechanisms

Identify latent transcriptomic signatures,
classify samples and subtypes, generate
synthetic data for augmentation, enable
cross-cohort generalization

RNA Se-
quence Agent

Raw RNA sequences,
splice junctions, vari-
ants

DNA/RNA LLMs
(DNABERT, Nu-
cleotide Transformer)

Predict expression from sequence fea-
tures, capture structural and regula-
tory patterns, integrate sequence context
with expression data

Literature-
Aware Agent

Biomedical text, clin-
ical trials, curated
databases

Pretrained biomedi-
cal LLMs (BioBERT)
fine-tuned for ge-
nomics

Provide biological interpretation of ex-
pression patterns, validate findings, in-
tegrate prior knowledge to improve pre-
diction and interpretability

Integration
Agent

Multi-modal outputs
from other agents

Multi-modal trans-
formers with cross-
attention

Fuse information from all agents, gener-
ate consensus predictions, quantify un-
certainty, support interpretable and clin-
ically relevant decision-making

3.2 Communication and Coordination78

Effective multi-agent analysis relies on structured communication:79

• Each specialized agent independently analyzes its data modality.80

• Integration agents synthesize outputs to produce consensus predictions.81

• Meta-learning mechanisms iteratively refine agent communications.82

This architecture ensures robust multi-modal reasoning and interpretable framework for cancer83

prediction and transcriptomic analysis. Figure 1 shows the overall architecture of the proposed84

multi-agent framework for bulk RNA-seq analysis.85

Figure 1: Multi-agent framework integrating gene expression matrices, RNA sequences, biomedical
literature, and prior knowledge through specialized agents coordinated by an Integration Agent.

4 Arguments Supporting Our Position86

The multi-agent, multi-modal framework provides several key advantages for cancer prediction,87

analysis, and translational relevance:88
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• Enhanced Predictive Performance: By integrating complementary information from89

expression patterns, RNA sequences, and literature knowledge, the system captures a90

more comprehensive view of cancer biology. Literature-aware agents provide biological91

constraints that improve generalization across cohorts, while ensemble-like predictions from92

multiple agents enable robust uncertainty quantification.93

• Synthetic Data Generation: Gene Expression Agents can produce biologically plausible94

synthetic samples, which help address class imbalance in rare cancer subtypes, enable95

privacy-preserving analyses, and support hypothesis generation by exploring uncharted96

regions of expression space.97

• Interpretability and Clinical Relevance: Each agent produces outputs that can be mech-98

anistically interpreted, fostering expert trust and facilitating translational application of99

predictions in clinical settings.100

5 Counterarguments and Rebuttals101

While multi-agent systems offer significant benefits, critics raise several concerns. We address these102

challenges as follows:103

• Technical Challenges: Critics may argue that multi-agent systems are computationally104

expensive, sensitive to heterogeneous data, and difficult to coordinate. We respond that:105

– Advances in distributed computing, model compression, and efficient attention mecha-106

nisms reduce computational burden.107

– Standardized preprocessing pipelines and data harmonization strategies mitigate issues108

arising from data heterogeneity.109

– Careful system design ensures effective coordination and communication between110

agent.111

• Scientific Challenges: Skeptics point to risks such as hallucination, overfitting, and poor112

reproducibility. Our countermeasures include:113

– Rigorous validation and benchmarking using curated datasets and expert oversight to114

ensure reliability and biological relevance.115

– Monitoring and evaluation to prevent overfitting and to identify fske predictions.116

6 Future Directions117

Looking forward, we identify key areas to advance multi-agent, multi-modal systems:118

• Technical Priorities:119

– Optimize agent architectures, communication protocols, and coordination mechanisms120

for transcriptomic analysis.121

– Improve training efficiency via transfer learning, few-shot learning, and continual122

learning strategies.123

– Develop comprehensive evaluation frameworks assessing both predictive performance124

and biological interpretability.125

• Biological Validation:126

– Systematically validate predictions using cell lines, patient samples, and clinical co-127

horts.128

– Engage domain experts to assess clinical relevance of outputs.129

7 Conclusion130

We position multi-agent LLM architectures as a paradigm shift for bulk RNA-seq analysis and131

cancer prediction. By integrating expression data, sequence features, and literature knowledge132

through specialized agents, these systems overcome current barriers of generalization, interpretability,133

and integration. We argue this approach is not just a technical advance, but a critical step toward truly134

precise and clinically relevant oncology.135
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