
Generative Modeling on Manifolds Through
Mixture of Riemannian Diffusion Processes

Jaehyeong Jo 1 Sung Ju Hwang 1 2

Abstract
Learning the distribution of data on Riemannian
manifolds is crucial for modeling data from non-
Euclidean space, which is required by many ap-
plications in diverse scientific fields. Yet, existing
generative models on manifolds suffer from ex-
pensive divergence computation or rely on approx-
imations of heat kernel. These limitations restrict
their applicability to simple geometries and hin-
der scalability to high dimensions. In this work,
we introduce the Riemannian Diffusion Mixture,
a principled framework for building a generative
diffusion process on manifolds. Instead of fol-
lowing the denoising approach of previous dif-
fusion models, we construct a diffusion process
using a mixture of bridge processes derived on
general manifolds without requiring heat kernel
estimations. We develop a geometric understand-
ing of the mixture process, deriving the drift as a
weighted mean of tangent directions to the data
points that guides the process toward the data dis-
tribution. We further propose a scalable training
objective for learning the mixture process that
readily applies to general manifolds. Our method
achieves superior performance on diverse man-
ifolds with dramatically reduced number of in-
training simulation steps for general manifolds.1

1. Introduction
Deep generative models have shown great success in learn-
ing the distributions of the data represented in Euclidean
space, e.g., images and text. While the focus of the pre-
vious works has been biased toward data in the Euclidean
space, modeling the distribution of the data that naturally
resides in manifolds with specific geometry has been un-
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derexplored, while they are required for wide application:
For example, the earth and climate science data (Karpatne
et al., 2018; Mathieu & Nickel, 2020) lives in the sphere,
whereas protein structures (Jumper et al., 2021; Watson
et al., 2022) and robotic movements (Simeonov et al., 2022)
are best represented by the group SE(3), and 3D computer
graphics shapes (Hoppe et al., 1992) can be identified as
a general closed manifold. However, previous generative
methods are ill-suited for modeling these data as they do not
take into consideration the specific geometry describing the
data space and may assign a non-zero probability to regions
outside the desired space.

Recent works (Bortoli et al., 2022; Huang et al., 2022) ex-
tend the diffusion generative framework to the Riemannian
manifolds that learn to reverse the noising process, similar
to Euclidean diffusion models. Although diffusion models
have been shown to successfully model the distribution on
simple manifolds, e.g., sphere and torus, they have difficulty
in training since the score matching objective either relies
on an imprecise approximation of the intractable heat kernel
that degrades the performance or requires the computation
of the divergence which is computationally expensive and
scales poorly to high dimensions. In addition, previous
diffusion models are geometrically not intuitive as their gen-
erative processes are parameterized by the score function
which does not provide explicit geometric interpretation.

On the other hand, continuous normalizing flow (CNF) mod-
els on manifold (Mathieu & Nickel, 2020; Rozen et al.,
2021; Ben-Hamu et al., 2022; Chen & Lipman, 2024) aim to
learn the continuous-time flow by parameterizing the vector
field. While CNF models leverage deterministic processes
and alleviate the challenges of leveraging Brownian motion,
most of the CNF models require computation of divergence
during training that cannot even scale to moderately high
dimensions and further cannot be readily adapted to general
geometries. Even though several works (Rozen et al., 2021;
Ben-Hamu et al., 2022; Chen & Lipman, 2024) proposed
simulation-free methods on simple manifolds, they still re-
quire in-training simulation for general manifolds which
necessitates a large number of steps to obtain accurate tra-
jectories for the deterministic process.
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1

https://github.com/harryjo97/riemannian-diffusion-mixture


Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes

In this work, we present Riemannian Diffusion Mixture, a
novel generation framework for learning a diffusion pro-
cess on Riemannian manifolds based on a geometric per-
spective. We build upon the diffusion mixture represen-
tation (Peluchetti, 2021; Liu et al., 2023), constructing a
diffusion process directly on the manifold as a mixture of
bridge processes, i.e., diffusion process conditioned to end-
points, without the need for heat kernel estimation. We
show that by designing the drift of a diffusion process as
a weighted mean of tangent vectors to the data points, the
resulting process is guided to the data distribution and yields
a prediction of the final result as the most probable endpoint.
We further derive a scalable training objective, namely the
two-way bridge matching, based on simple regression on the
drifts of the diffusion processes that do not require comput-
ing divergence. We establish a theoretical background for
the diffusion mixture framework on the Riemannian setting
that is readily applicable to general manifolds and show that
the previous CNF model is a special case of our framework.

We experimentally validate our approach on diverse man-
ifolds of both real-world and synthetic datasets, on which
our method outperforms or is on par with the state-of-the-art
baselines. We demonstrate that ours can scale to high dimen-
sions while allowing significantly faster training compared
to the previous diffusion models relying on score matching.
Especially on general manifolds, our method shows superior
performance with dramatically reduced in-training simula-
tion steps, using only 5% of the steps compared to CNF
model. We summarize our main contributions as follows:

• We propose a principled framework for building genera-
tion processes on general manifolds as a mixture of bridge
processes that does not require estimation of heat kernel.

• We present a geometric design for the drift of the diffusion
process as a weighted mean of tangent directions on mani-
folds that guides the process to the target distribution, and
introduce an efficient training objective readily applicable
to general manifolds.

• Our method achieves superior performance on diverse
manifolds, and we empirically show that ours can scale
to higher dimensions with significantly faster training
compared to previous diffusion models.

• Especially on general manifolds, our approach outper-
forms CNF model with greatly reduced in-training simu-
lation steps, demonstrating the necessity of stochasticity.

2. Background
In this section, we introduce basic concepts of Riemannian
manifolds and diffusion processes defined on manifolds.

Riemannian Manifold We consider complete, orientable,
connected, and boundaryless Riemannian manifolds M

equipped with Riemannian metric g that defines the inner
product of tangent vectors. TxM denotes the tangent space
at point x ∈ M and ∥η∥M denotes the norm of the tan-
gent vector η ∈ TxM. For smooth function f :M→ R,
∇f(x) ∈ TxM denotes the Riemannian gradient, div(v) de-
notes the Riemannian divergence for the smooth vector field
v : M → TxM, and ∆M denotes the Laplace-Beltrami
operator defined by ∆f = div(∇f). expx : TxM →M
and exp−1

x :M→ TxM denotes the Riemannian exponen-
tial and logarithm map, respectively. Lastly, dvolx denotes
the volume form on the manifold, and

∫
f(x)dvolx is the

integration of function f on the manifold.

Diffusion Process on Riemannian Manifold Brownian
motion on a Riemannian ManifoldM is a diffusion process
generated by ∆M/2 (Hsu, 2002) which is a generalization
of the Euclidean Brownian motion. The transition distribu-
tion of the Brownian motion corresponds to the heat kernel,
i.e. the solution to the heat equation, which coincides with
the Gaussian distribution when M is a Euclidean space.
One can construct a diffusion process that converges to a
stationary distribution described by the Langevin dynamics:

dXt = −
1

2
∇Xt

U(Xt)dt+ dBM
t , (1)

where BM
t denotes the Brownian motion defined on M,

such that the terminal distribution satisfies dp(x)/dvolx ∝
e−U(x) (Durmus, 2016) for a potential function U which we
describe in detail in Appendix A.1. A diffusion process on
the manifold can be simulated using the Geodesic Random
Walk (Jørgensen, 1975; Bortoli et al., 2022) which corre-
sponds to taking a small step on the tangent space in the
direction of the drift.

3. Riemannian Diffusion Mixture
We now present Riemannian Diffusion Mixture, a new
framework for learning a generative diffusion process on
Riemannian manifolds using a mixture of bridge processes.

3.1. Bridge Processes on Manifold

The first step of constructing the generative process is
designing a diffusion process conditioned to fixed end-
points, i.e. the bridge process. In contrast to the Euclidean
space which is equipped with simple families of bridge pro-
cesses derived from the Brownian motion or the Ornstein-
Uhlenbeck process (Peluchetti, 2023; Jo et al., 2024), de-
signing a bridge process on general manifolds is challenging
since the transition density of the Brownian motion is in-
tractable in general.

To achieve a simple bridge process that can be used for
building a generative model, we start with the Brownian
bridge on the manifoldM with fixed endpoints, modeled
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by the following SDE (see Appendix A.1 for details of the
Brownian bridge):

dXt = ∇Xt log pM(Xt, z, T−t)dt+ dBM
t , (2)

for X0 = z0 where pM denotes the heat kernel onM and
z denotes the fixed endpoint. We cannot directly use this
Brownian bridge process as the heat kernel is known in very
limited cases and even on a simple manifold such as a sphere,
the heat kernel is represented as an infinite sum (Tulovsky &
Papiez, 2001). Thereby we explore a new family of bridge
processes that do not require the heat kernel.

Intuitively, a diffusion process that takes each step in the
direction of the endpoint should carry the process toward
the desired endpoint regardless of the prior distribution. The
natural choice for this direction would be following the
shortest path between the current state and the endpoint on
the manifold, which corresponds to the inverse of the expo-
nential map2, i.e., the logarithm map. The logarithm map
provides a simple approach to represent a tangent vector that
heads toward the desired endpoint, as illustrated in Figure 1
by the blue vectors pointing to the endpoints.

From this observation, we introduce a simple family of
bridge processes on manifolds derived from the logarithm
map, namely the Logarithm Bridge Process Qx,zlog :

dXt =
σ2
t

τT − τt
exp-1

Xt
(z)dt+ σtdB

M
t (3)

for X0=x, where z is the fixed endpoint, exp-1 is the log-
arithm map, σt is the time-dependent noise schedule that
uniquely determines the process, and τ(t) :=

∫ t
0
σ2
sds de-

notes the rescaled time with respect to σt. A key observation
is that the logarithm map exp-1 represents the direction of
the shortest path between the current state Xt and the end-
point z. As the magnitude of the drift increases to infinity
with a rate σ2

t /(τT − τt) as t→ T , the process is forced to
converge to z by the direction of the drift.

By leveraging the short-time asymptotic behavior of the
Brownian motion and the Girsanov theorem, we theoret-
ically derive in Appendix A.2 that the Logarithm bridge
exhibits a similar convergence behavior as the Brownian
bridge, regardless of the prior distribution Γ. In particular,
whenM is a Euclidean space Rd, the logarithm bridge pro-
cess reduces to the well-known Euclidean Brownian bridge
process. But for general manifolds, our Logarithm bridge
process differs from the Brownian bridge process of Eq. (2)
due to the difference in the drifts.

Although the Logarithm bridge provides a simple solution
for constructing the generative process on manifolds, the
logarithm map of general manifolds may not be given in

2Here we assume that the endpoint is not in the cut locus of the
current state for the inverse to be well-defined.

Figure 1: We construct a generative process on general
manifolds as a mixture of bridge processes (Eq. (6)). The
drift of the mixture process (purple vector) corresponds
to the weighted mean of the tangent vectors pointing to
the directions of the endpoints (blue vector), guiding the
diffusion process (black dotted) to the data distribution.

closed form and could be costly to compute on the fly. We
can bypass the difficulty by taking a different perspective
for defining the direction toward the endpoint on the mani-
fold. Specifically, inspired by Chen & Lipman (2024), we
consider a path on the manifold that minimizes the spectral
distance dw(·, ·), which is defined by the eigenvalues λi and
eigenfunctions ϕi of the Laplace-Beltrami operator ∆M:

dw(x, y)
2 =

∞∑
i=1

w(λi)
(
ϕi(x)− ϕi(y)

)2
, (4)

where w is a monotonically decreasing function. From
the fact that ∇dw(·, z)2 describes the tangent vector at the
current state with the direction that minimizes the spectral
distance to the endpoint z, we introduce a new family of
bridge processes, namely Spectral Bridge Process Qx,zspec:

dXt = −
1

2

σ2
t

τT − τt
∇Xt

dw(Xt, z)
2

∥∇Xtdw(Xt, z)∥2M
dt+ σtB

M
t (5)

for X0=x where the norm of the gradient∇dw normalizes
the magnitude of the drift. The Spectral bridge process in
Eq. (5) is designed so that substituting the spectral distance
dw with the geodesic distance dg results in the Logarithm
bridge process in Eq. (3). Note that the eigenvalues and
the eigenfunctions are computed only once, in advance of
training our generative model, and do not require computing
eigenfunctions during training.

Other choices of bridge processes on manifolds are possi-
ble, such as semi-classical Brownian bridge (Elworthy &
Truman, 1981) or Fermi bridge (Thompson, 2015) which
we describe in Appendix A.3. Yet we focus on the Loga-
rithm bridge and Spectral bridge due to their simplicity and
practicality for real-world problems where the most relevant
manifolds either have known geodesics or eigenfunctions
of the Laplace-Beltrami operator, for example, SE(3)N for
protein modeling (Jumper et al., 2021), SU(N) for high
energy physics (Boyda et al., 2021), and product of tori for
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molecular conformed generation (Jing et al., 2022). We fur-
ther note that one can consider using the Brownian bridge
(Eq. (2)) with appropriate estimation of the heat kernel, e.g.,
Varadhan approximation (Bortoli et al., 2022) or eigenfunc-
tion expansion on maximum torus (Lou et al., 2023).

3.2. Generative Process on Riemannian Manifold

Riemannian Diffusion Mixture Having the bridge pro-
cesses at hand, we now build a diffusion process on man-
ifolds that transports a prior distribution Γ to the data
distribution Π. Extending the diffusion mixture frame-
work (Peluchetti, 2021; Liu et al., 2023) to the Riemannian
setting, we construct a generative process on the manifold
M by mixing a collection of bridge processes onM, de-
noted as {Qx,z :x∼Γ, z∼Π}.

We derive a diffusion process that admits a marginal density
pt which is equal to the mixture of marginal densities px,zt
of Qx,z , that is modeled by the following SDE (we provide a
formal definition and a detailed derivation in Appendix A.4):

dXt =

[∫
ηz(Xt, t)

pzt (Xt)

pt(Xt)
Π(dvolz)

]
dt+ σtdB

M
t (6)

for X0 ∼ Γ where ηz denotes the drift of Qx,z , pzt (·) =∫
px,zt (·)Γ(dvolx), and pt(·)=

∫
pzt (·)Π(dvolz).

From the geometrical viewpoint, the drift of the mixture
process (Figure 1 purple) corresponds to the weighted mean
of tangent vectors (Figure 1 blue) heading in the direction
of the points in the data distribution. Therefore, simulating
the mixture process can be interpreted as taking a small step
in the direction of the most likely endpoint of the process.
From this perspective, we can derive an explicit prediction
from the mixture process, in particular, from the mixture of
Logarithm bridges by projecting the drift onto the manifold
along the geodesic using the exponential map as follows:

X̂t := expXt

(∫
exp-1

Xt
(z)

pzt (Xt)

pt(Xt)
Π(dvolz)

)
, (7)

which corresponds to the most probable endpoint of the
mixture process given the current state. This differentiates
our method from the previous diffusion models that do not
admit straightforward predictions for their denoising process
on non-Euclidean manifolds.

Notably, by the construction of the mixture process, its
terminal distribution is guaranteed to be equal to the data
distribution Π regardless of the initial distribution Γ, and
thereby our framework can be trivially applied to an arbi-
trary initial distribution. This is not the case for previous
diffusion models (Bortoli et al., 2022; Huang et al., 2022)
which require careful design of the potential U(·) in the
noising process (Eq. (1)), since they rely on the denoising
diffusion framework, in contrast to our bridge mixture con-
struction. Our framework yields freedom for the choice

of the noise schedule σt in Eq. (6) where σt need not be
decreasing or be large for small t.

When the mixture consists of the Logarithm bridges or the
Spectral bridges, we refer to the mixture processes as the
Logarithm Bridge Mixture (LogBM) and Spectral Bridge
Mixture (SpecBM), respectively. Note that our LogBM gen-
eralizes previous diffusion mixture framework (Peluchetti,
2021; Liu et al., 2023) since the Logarithm bridge recovers
the Brownian bridge for the Euclidean space.

Probability Flow ODE For a mixture process Qf , there
exists a deterministic process that admits the same marginal
densities, i.e., the probability flow (Maoutsa et al., 2020;
Song et al., 2021). The time-reversed process Qb of Qf
is also a mixture process built from the collection of time-
reversed bridge processes, which can be derived from Qf
in terms of the score function (Eq. (43)). As a result, the
probability flow associated with Qf satisfies the following
ODE (see Appendix A.5 for detailed derivation):

d

dt
Yt =

1

2

(
ηf (Yt, t)− ηb(Yt, T−t)

)
, Y0 ∼ Γ, (8)

where ηf and ηb denote the drift of Qf and Qb, respectively,
and the likelihood of the probability flow as follows:

log pT (YT )− log p0(Y0)

=
1

2

∫ T

0

div
(
ηf (Yt, t)− ηb(Yt, T−t)

)
dt. (9)

We further discuss in Appendix A.5 that the probability
flow derived from our mixture process is different from the
continuous flows used in previous CNF models.

3.3. Two-way Bridge Matching

Now we show how to train a generative model that ap-
proximates the mixture process in Eq. (6). We parameter-
ize the drifts of the mixture process and its time-reversed
process with neural networks, i.e., sθf (z, t)≈ ηf (z, t) and
sϕb (z, t)≈ηb(z, t). However, the drifts of the mixture pro-
cesses cannot be directly approximated since we do not
have access to the integration in Eq. (6). In what follows,
we derive a simple and efficient training objective that is
applicable to general manifolds without computing the Rie-
mannian divergence.

For a diffusion process Q :dZt=η(Zt, t)dt+ νtdB
M
t and

its parameterized process Pψ :dZt = sψ(Zt, t)dt+νtdB
M
t ,

the KL divergence between two processes can be obtained
from the Girsanov theorem as follows (we provide detailed
derivation in Appendix A.6):

DKL(QT ∥PψT ) ≤ DKL(Q∥Pψ) (10)

= Ez∼QT

Z∼Qz

[
1

2

∫ T

0

∥∥∥ν−1
t

(
sψ(Zt, t)− ηz(Zt, t)

)∥∥∥2
M
dt

]
+ C
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where QT and PψT denotes the terminal distributions of
Q and Pψ respectively, Qz and ηz denotes the process
Q(·|ZT =z) and its drift, and C is a constant.

Although we can directly use Eq. (10) to train sθf and sϕb , it
is computationally expensive as the samples Zt should be
obtained through a simulation of bridge processes. This is
because the transition density of the Brownian motion is not
accessible for general manifolds. Especially, simulating the
bridge process requires a large number of discretized steps
due to the exploding magnitude of the drift of the bridge
process near the terminal time, i.e., magnitude of the drift
explodes with a rate σ2

t /(τT − τt) as t→ T .

We address this issue by proposing an efficient training
scheme, which we refer to as the two-way bridge matching.
The main idea is to exploit the fact that (1) the simulation
of the bridge process can be performed from both forward
and backward directions, which can bypass the explosion of
drift that allows larger step size, and (2) Zt can be obtained
from a single bridge process with fixed endpoints instead
of simulating two different bridge processes, reducing the
computational cost in half. Altogether, the two-way bridge
matching is formalized as follows:

E(x,y)∼(Π,Γ),
t∼[0,T ]

EZt∼Qx,y σ−2
t

[
F θ,xf (Zt, t) + Fϕ,yb (Zt, t)

]
F θ,xf (Zt, t) =

∥∥∥sθf (Zt, t)− ηxf (Zt, t)∥∥∥2M, (11)

Fϕ,yb (Zt, t) =
∥∥∥sϕb (Zt, T−t)− ηyb (Zt, T−t)∥∥∥2M,

where Qx,y denotes the bridge process with fixed starting
point x and endpoint y, and Zt is obtained in a two-way
approach, i.e., simulating Qx,y from time 0 to t if t < T/2,
and otherwise simulating from time T to t. Notably, from
the result of Eq. (10), minimizing Eq. (11) guarantees to
minimize the KL divergence between data distribution and
terminal distribution of our parameterized mixture process.

However, we empirically observe that using Eq. (11) intro-
duces high variance during training due to the coefficient
σ−2
t . Therefore, we present an equivalent objective that

enables stable training by leveraging importance sampling,
where we use a proposal distribution q(t) ∝ σ−2

t to adjust
the weighting as follows:

E(x,y)∼(Π,Γ),
t∼q

EZt∼Qx,y

[
F θ,xf (Zt, t) + Fϕ,yb (Zt, t)

]
, (12)

which we refer to as the time-scaled two-way bridge match-
ing. During training with Eq. (12), we first sample t ∼ q
and (x, y) ∼ (Π,Γ), then simulate Zt ∼ Qx,y using the
two-way approach, where different triplets (t, x, y) are sam-
pled to compute the expectation. We summarize the training
process of our two-way bridge matching in Algorithm 1.

Algorithm 1 Two-way bridge matching
Input: Training set D, prior distribution Γ, trained neural
networks sθf and sϕb , terminal time T, number of in-training
simulation step N
For each epoch:

1: Sample x ∼ D, y ∼ Γ, and t ∼ q
2: (z0, zf , η)← (y, x, ηf ) if t<T/2 else (x, y, ηb)
3: dt← t/N
4: z ← z0, s← 0, dt← t/N
5: for n = 1 to N do ▷ In-training simulation of Zt
6: W ∼ N (0, Id) ▷ Random normal in TzM
7: v ← ηzf (z, s)dt+ σtW

√
dt

8: z ← expz v ▷ Geodesic step in direction of v
9: s← s+ dt

10: end for
11: Lθ,ϕ ← F θ,xf (z, t) + Fϕ,yb (z, t) ▷ Eq. (12)
12: Update θ, ϕ using Lθ,ϕ

In particular, our two-way bridge matching consists of a sim-
ple regression on the drifts of bridge processes, i.e., F θ,xf
and Fϕ,yb , without computation of divergence or any approx-
imation. Thereby, on manifolds for modeling real-world
problems, our framework can scale to high dimensions,
which previous generative models cannot scale to.

We note that our time-scaled two-way bridge matching dif-
fers from the Flow Matching objective which regresses the
conditional vector field over uniformly distributed time. We
experimentally validate the importance of the time distribu-
tion q in Section 5.5, where using a uniform time distribution
results in a significant drop in performance compared to us-
ing t∼q. This is because Eq. (12) guarantees to maximize
the likelihood of our generative model, whereas it is not true
for a simple regression over uniformly distributed time.

We empirically validate that our two-way approach can
obtain accurate trajectories with significantly reduced simu-
lation steps compared to the one-way simulation, resulting
in up to ×34.9 speed up for training. Furthermore, we show
in Section 5 that the in-training simulation is not a signifi-
cant overhead during training since the two-way approach
greatly reduces the number of simulation steps without sac-
rificing the accuracy, which is significantly faster than the
implicit score matching used for previous diffusion models.

Connection with Riemannian Flow Matching Espe-
cially, in the case when the noise schedule is set to be very
small, i.e., σt → 0, we can recover the deterministic flow of
Riemannian Flow Matching (RFM) (Chen & Lipman, 2024)
from our mixture process, where the bridge processes with
σt → 0 correspond to the conditional vector fields of Flow
Matching. Thereby RFM can be considered a special case
of our framework when the randomness is removed.
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However, stochasticity is crucial for learning the density
on manifolds with non-trivial curvature. While obtaining
a trajectory of the probability path for RFM during train-
ing requires a large number of simulation steps, we can
obtain trajectories from the mixture process with only a few
simulation steps thanks to its stochastic nature, which we
empirically show in Section 5.5. The existence of stochas-
ticity dramatically reduces the number of in-training simu-
lation steps compared to RFM, achieving ×12.8 speed up
in training without sacrificing the performance. We demon-
strate in Figures 3 and 9 that our method is able to model
complex distribution on the manifold with only a few in-
training simulation steps, whereas RFM completely fails in
such a setting. Furthermore, we can leverage the Girsanov
theorem to derive that our training objective in Eq. (12) is
guaranteed to minimize the KL divergence between the data
distribution and the terminal distribution of our parameter-
ized process, which does not apply to RFM as it is based on
a deterministic process.

Sampling Generating samples with the Riemannian diffu-
sion mixture can be achieved in two different ways: (1) sim-
ulating the approximation of the mixture process (Eq. (6))
and (2) simulating the probability flow (Eq. (8)). First, the
mixture process can be approximated by using the drift
estimation sθf as follows:

dXt = sθf (Xt, t)dt+ σtdB
M
t . (13)

which can be simulated using the Geodesic Random
Walk (Jørgensen, 1975; Bortoli et al., 2022). Alternatively,
the probability flow can be modeled by the ODE using the
drift estimations sθf and sϕb as follows:

d

dt
Xt =

1

2

(
sθf (Xt, t)− sϕb (Xt, T−t)

)
, (14)

which can be solved using integrators on Riemannian mani-
folds (Hairer, 2011).

4. Related Work
Euclidean Diffusion Models Diffusion models (Song &
Ermon, 2019; Ho et al., 2020; Song et al., 2021) model
the generative process via the denoising diffusion process
derived from the time-reversal of the noising process. Re-
cent works (Peluchetti, 2021; Liu et al., 2023; Peluchetti,
2023) introduce an alternative approach for modeling the
generative process without using the time-reversal, namely
diffusion mixture, by building bridge processes between
the initial and the terminal distributions. However, these
methods are limited to Euclidean space and sub-optimal for
modeling the data living on manifolds, for example, sphere
for climate data and tori for biological data such as pro-
teins. Our work shows how to extend the diffusion mixture
framework to manifolds that generalize the Euclidean case.

Generative Models on Riemannian Manifolds Previ-
ous generative models (Gemici et al., 2016; Rezende et al.,
2020; Bose et al., 2020) relied on projecting a Euclidean
space to manifolds which is problematic since such mapping
cannot be bijective, resulting in numerical instabilities. Re-
cent works address this problem by constructing a mapping
on the manifold that describes the transport from a prior
distribution to the data distribution, namely the diffusion
models and the CNF models.

The seminal work of Bortoli et al. (2022) extends the score-
based model to the manifold, while Huang et al. (2022)
introduces a variational framework for diffusion models on
manifolds. However, both rely on score matching that ei-
ther needs to be approximated or scales poorly to higher
dimensions. Specifically, denoising score matching requires
the conditional score function to be approximated which
obstructs exact training. Further, implicit score matching re-
quires the computation of the Riemannian divergence which
scales poorly to high dimensions, and using the Hutchinson
estimator (Hutchinson, 1989) introduces high variance in
training. In contrast, our framework provides efficient and
scalable training that does not require divergence and does
not rely on approximations of the heat kernel. Since the
construction of the mixture process guarantees convergence
to the data distribution regardless of the prior distribution,
our method can be readily extended for arbitrary prior dis-
tribution. We provide discussion on Diffusion Schrödinger
Bridge (Thornton et al., 2022), improvement of Rieman-
nian diffusion models (Lou et al., 2023), and recent works
focusing on specific geometries in Appendix A.7.

On the other hand, CNF models build a continuous-time
flow (Chen et al., 2018; Grathwohl et al., 2019) on the man-
ifold by parameterizing the vector field. However, previous
CNF models (Lou et al., 2020; Mathieu & Nickel, 2020;
Falorsi & Forré, 2020) rely on simulation-based maximum
likelihood training which is computationally expensive. Re-
cent works (Rozen et al., 2021; Ben-Hamu et al., 2022)
introduce simulation-free training methods on simple ge-
ometries, but they scale poorly to high-dimension due to the
computation of the divergence and further cannot be adapted
to non-simple geometries. Chen & Lipman (2024) extends
the Flow Matching framework (Lipman et al., 2023) to man-
ifolds which learns the probability path by regressing the
conditional vector fields. Instead of the deterministic flow,
our work constructs a diffusion-based generative process
for which stochasticity is crucial for learning on general
geometries, as it achieves superior performance with greatly
reduced in-training simulation steps.

5. Experiments
We experimentally validate our method on diverse datasets
including real-world benchmarks as well as synthetic dis-
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Table 1: Test NLL results on earth and climate science datasets. We report the mean of 5 different runs with different
data splits. Best performance and its comparable results (p > 0.05) from the t-test are highlighted.

Volcano Earthquake Flood Fire
Dataset size 827 6120 4875 12809

RCNF (Mathieu & Nickel, 2020) -6.05 ± 0.61 0.14 ± 0.23 1.11 ± 0.19 -0.80 ± 0.54

Moser Flow (Rozen et al., 2021) -4.21 ± 0.17 -0.16 ± 0.06 0.57 ± 0.10 -1.28 ± 0.05

CNFM (Ben-Hamu et al., 2022) -2.38 ± 0.17 -0.38 ± 0.01 0.25 ± 0.02 -1.40 ± 0.02

RFM (Chen & Lipman, 2024) -7.93 ± 1.67 -0.28 ± 0.08 0.42 ± 0.05 -1.86 ± 0.11

StereoSGM (Bortoli et al., 2022) -3.80 ± 0.27 -0.19 ± 0.05 0.59 ± 0.07 -1.28 ± 0.12

RSGM (Bortoli et al., 2022) -4.92 ± 0.25 -0.19 ± 0.07 0.45 ± 0.17 -1.33 ± 0.06

RDM (Huang et al., 2022) -6.61 ± 0.96 -0.40 ± 0.05 0.43 ± 0.07 -1.38 ± 0.05

RSGM-improved (Lou et al., 2023) -4.69 ± 0.29 -0.27 ± 0.05 0.44 ± 0.03 -1.51 ± 0.13

Ours (LogBM) -9.52 ± 0.87 -0.30 ± 0.06 0.42 ± 0.08 -2.47 ± 0.11

Glycine (2D) Proline (2D) RNA (7D)
Dataset size 13283 7634 9478

MoPS (De Cao & Aziz, 2020) 2.08 ± 0.009 0.27 ± 0.008 4.08 ± 0.368

RDM (Huang et al., 2022) 1.97 ± 0.012 0.12 ± 0.011 -3.70 ± 0.592

RFM (Chen & Lipman, 2024) 1.90 ± 0.055 0.15 ± 0.027 -5.20 ± 0.067

Ours (LogBM) 1.89 ± 0.056 0.14 ± 0.027 -5.27 ± 0.090
101 102 103

N (Torus dim.)

0.1
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0.1

0.2
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Figure 2: (Left) Test NLL results on protein datasets. Best performance and its comparable results (p > 0.05) from
the t-test are highlighted in bold. (Right) Comparison on high-dimensional tori. We compare the log-likelihood in bits
against RSGM and RFM where the results are obtained by running the open-source codes.

tributions. We follow the experimental settings of previ-
ous works (Bortoli et al., 2022; Chen & Lipman, 2024)
where we provide the details of the training setup in Ap-
pendix B. We compare our method against generative mod-
els on manifolds: RCNF (Mathieu & Nickel, 2020), Moser
Flow (Rozen et al., 2021), CNFM (Ben-Hamu et al., 2022)
and RFM (Chen & Lipman, 2024) are CNF models, Stere-
oSGM (Bortoli et al., 2022) is a Euclidean score-based
model using stereographic projection, RSGM (Bortoli et al.,
2022) is a Riemannian score-based model, RDM (Huang
et al., 2022) is a Riemannian diffusion model based on a
variational framework, and RSGM-improved (Lou et al.,
2023) uses improved heat kernel estimator for RSGM.

5.1. Earth and Climate Science Datasets

We first evaluate the generative models on real-world
datasets living on the 2-dimensional sphere, which con-
sists of earth and climate science events including volcanic
eruptions (NOAA, 2020b), earthquakes (NOAA, 2020a),
floods (Brakenridge, 2017), and wild fires (EOSDIS, 2020).
We use the LogBM, i.e. a mixture of Logarithm bridges, as
the logarithm map is easy to compute on the sphere.

Table 1 demonstrates that our method significantly outper-
forms the baselines on the Volcano and the Fire datasets

which require high fidelity as the data are concentrated in
specific regions. Ours constantly outperforms the Rieman-
nian score-based model while matching the performance of
RFM on the Earthquake and the Flood dataset. We visualize
the generated samples and learned densities of our model in
Figure 4 showing that our method is capable of capturing
the distribution on the sphere.

We further compare the convergence of the generative pro-
cesses measured by the geodesic distance in Figure 5 where
our generative process converges faster than that of the
baselines. We observe that the prediction from our model
(Eq. (7)) converges faster than that of RFM, verifying that
ours is able to make more accurate predictions throughout
the generation process.

5.2. Protein Datasets

We further experiment on protein datasets represented on
n-dimensional torus from the torsion angles, consisting of
500 high-resolution proteins (Lovell et al., 2003) and 113
selected RNA sequences (Murray et al., 2003) preprocessed
by Huang et al. (2022) (details in Appendix B.3). We addi-
tionally compare our method against the Mixture of Power
Spherical (MoPS) (De Cao & Aziz, 2020) which models the
distribution as a mixture of power spherical distributions.
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Figure 3: Visualization of the generated samples and the learned density of our method and RFM on the mesh datasets.
Blue dots represent the generated samples and darker red colors indicate higher likelihood. The numbers in the parentheses
denote the number of in-training simulation steps used to train the model.

Dataset Target Distribution RFM (15 steps) RFM (300 steps)Ours (15 steps)

B
un

ny
, 

k=
10

0
Sp

ot
, 

k=
10

0

Steps Stanford Bunny Spot the Cow
k = 50 k = 100 k = 50 k = 100

RFM w/ Diff. Dist. 300 1.48 ± 0.01 1.53 ± 0.01 0.95 ± 0.05 1.08 ± 0.05

RFM w/ Bihar. Dist. 300 1.55 ± 0.01 1.49 ± 0.01 1.08 ± 0.05 1.29 ± 0.05

Ours w/ Diff. Dist. 15 1.42 ± 0.01 1.41 ± 0.00 0.99 ± 0.03 0.97 ± 0.03

Ours w/ Bihar. Dist. 15 1.55 ± 0.02 1.45 ± 0.01 1.09 ± 0.06 0.97 ± 0.02

Torus Spot

RSGM (ISM) 4.97 -
RSGM (SSM) 1.20 -
RFM 0.97 12.83

Ours 1.00 1.00

Table 2: (Left) Test NLL results on mesh datasets. We report the mean of 5 different runs. Best performance and its
comparable results (p > 0.05) from the t-test are highlighted. (Right) Comparison of the training time. We report the
relative training time of the baselines with respect to ours on high-dimensional torus and Spot.

We use the LogBM as the logarithm map is easy to com-
pute on the torus. Table of Figure 2 demonstrates that ours
outperforms or is on par with RDM while making marginal
improvements over RFM, where the baselines are likely to
be close to optimal. We provide the results of the other two
protein datasets (General, Pre-Pro) in Table 3 showing com-
parable results with RFM. We visualize the learned density
in Figure 8 using Ramachandran plots where ours models
the data distribution almost perfectly.

5.3. High-Dimensional Tori

We validate the scalability of our method using the syn-
thetic data on high-dimensional tori. We follow Bortoli et al.
(2022) by creating a wrapped Gaussian distribution with
a random mean and variance of 0.2 on n-dimensional tori
where we compare the performance with RFM and RSGM
trained via implicit score matching. To make a fair compar-
ison, we use the same model architecture for all methods,
where the total number of parameters for our models match
that of the baselines. We describe the detailed setting in
Appendix B.4. As shown in Figure 2 (Right), ours con-
stantly outperforms RSGM, especially in high dimensions.

RSGM scales poorly with the dimensions due to the high
variance in computing the stochastic divergence of the train-
ing objective. RFM also shows a significant drop in high
dimensions which implies that the vector field could not be
well-approximated with a limited number of parameters. On
the other hand, ours is able to scale fairly well even for high
dimensions as our training objective of Eq. (12) does not
require computation of divergence or any approximation.
We observe that our method shows consistent performance
without degradation for higher dimensions when using more
parameters, scaling fairly well even to dimension 104.

In particular, as shown in Table 2 (Right), we achieve up
to ×5 speedup in training compared to RSGM that uses
implicit score matching (ISM), and also significantly faster
than RSGM using ISM with the stochastic estimator (SSM).
Our training time is comparable to Flow Matching which is
simulation-free on tori.

5.4. General Closed Manifolds

To validate our framework on general manifolds with non-
trivial curvature, we evaluate modeling synthetic distribu-
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tions on triangular meshes. Following Chen & Lipman
(2024), we construct the target distribution on Stanford
Bunny (Turk & Levoy, 1994) and Spot the Cow (Crane
et al., 2013) from the k-th eigenfunction of the mesh, which
we provide detail in Appendix B.5. We use SpecBM, i.e.
a mixture of Spectral bridges, with using the diffusion
distance (Coifman & Lafon, 2006) or the biharmonic dis-
tance (Lipman et al., 2010) for dw. As visualized in Fig-
ure 3 and Figure 9, our method is able to fit the complex
distributions using only 15 steps for the in-training sim-
ulation, while RFM completely fails when using a small
number of in-training simulation steps. We show in Table 2
that our method outperforms RFM while using only 5% of
in-training simulation steps, achieving ×12.8 speed up in
training compared to RFM.

5.5. Further Analysis

Non-Compact Manifold We further validate that our
framework can be applied to non-compact manifolds, in par-
ticular for spaces of negative curvature. We experiment on
the synthetic distributions on a 2-dimensional hyperboloid
modeled by a mixture of wrapped Gaussian distributions.
Figure 10 demonstrates that our method is capable of mod-
eling the target distributions.

Time-scaled Training Objective We experimentally val-
idate that the time-scaled objective of Eq. (12) is crucial
for learning the distribution, by comparing ours with a vari-
ant trained with uniform time distribution similar to Flow
Matching. Table 6 shows that the variant using uniform
time distribution results in a significant drop in performance.
This is because our time-scaled objective guarantees maxi-
mizing the likelihood of the generative model, whereas the
variant using uniform time distribution does not.

Number of In-Training Simulation Steps We empiri-
cally demonstrate that our method can be trained using only
15 steps for the in-training simulation in Figures 11 and
12: We show in (a) and (c) that the trajectories of the mix-
ture process simulated with 15 steps result in an almost
similar distribution to the exact trajectories, which cannot
be achieved with the one-way simulation as shown in (b).
Especially, (d) demonstrates that using a small noise scale,
resembling a deterministic process, requires a large number
of simulation steps to obtain accurate trajectories, explain-
ing the reason for the failure of RFM in Figure 3 and 9.

6. Conclusion
In this work, we present Riemannian Diffusion Mixture, a
new approach for learning generative diffusion processes on
general manifolds. We build the generation process using a
mixture of bridge processes by designing the drift to be a

weighted mean of tangent directions to the data distribution,
which does not require approximating the heat kernel. We
develop a highly scalable training scheme on general mani-
folds based on simple regression of the drifts which enables
significantly faster training compared to previous diffusion
models. Our approach shows superior performance on di-
verse manifolds with a dramatically reduced number of
in-training simulation steps. We believe our work provides
a promising direction for manifold diffusion models which
could be applied to various scientific fields, for example, the
design of proteins.

Impact Statement This paper presents work whose goal
is to advance the field of deep generative models for data
on non-Euclidean spaces. We believe that our work can en-
hance our understanding of diverse scientific fields including
protein modeling and high-energy physics.
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Appendix

A. Derivations
A.1. Diffusion Process on Riemannian Manifold

Brownian bridge process is a diffusion process described by the Brownian motion conditioned to fixed endpoints, which is
induced by the following infinitesimal generator:

1

2
∆M +∇ log p(·, z, T − t), (15)

where p denotes the transition density of the Brownian motion, i.e. the heat kernel defined onM, and z denotes the fixed
endpoint. Thus Brownian bridge process can be modeled by the following SDE:

Qzbb : dXt = ∇Xt
log pM(Xt, z, T−t)dt+ dBM

t . (16)

We refer the readers to Hsu (2002) for a formal definition of the Brownian bridge process. The theoretical properties of
Brownian bridge have been studied in previous works (Hsu, 1990; Driver, 1994).

One can construct a diffusion process onM that converges to a stationary distribution described by the Langevin dynamics
as follows:

dXt = −
1

2
∇Xt

U(Xt)dt+ dBM
t , (17)

where the terminal distribution satisfies dp(x)/dvolx ∝ e−U(x) (Durmus, 2016) for a potential function U . For example,
U(x) = dg(x, µ)

2/(2γ2)+ log ∥D exp−1
µ (x)∥ results in a stationary distribution equal to the wrapped Gaussian distribution

with an arbitrary mean location mu ∈M, where dg denotes the geodesic distance.

A.2. Logarithm Bridge Process

Here we show that the Logarithm bridge of Eq. (3) describes a diffusion process that converges to an endpoint. For the
notational simplicity, we omit the subscriptM for the heat kernel onM. First, we derive that the following simplified
process is a bridge process with an endpoint z:

Qzlog : dXt =
1

T − t
exp-1

Xt
(x)dt+ dBM

t . (18)

For any pair of points x and y onM, the following short-time asymptotic of the heat kernel holds (Theorem 5.2.1 of (Hsu,
2002)):

lim
t→0

t log p(x, y, t) = −dg(x, y)
2

2
, (19)

where dg(·, ·) is a geodesic distance defined onM. Further leveraging the identity from Proposition 6 of McCann (2001),
we obtain the following result:

lim
t→0

t∇x log p(x, y, t) = −
1

2
∇xdg(x, y)2 = exp-1

x (y). (20)

Furthermore, we have an upper bound for the gradient of the logarithmic heat kernel for any pair of points x, y ∈M and
t ∈ [0, T ] as follws (Theorem 5.5.3 of (Hsu, 2002)):

∥∥∥∇x log p(x, y, t)∥∥∥
M
≤ C

[
dg(x, y)

t
+

1√
t

]
, (21)
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where C is a constant. From Eq. (21), we have the following bound:∥∥∥∥exp-1
x (z)

T − t
−∇x log p (x, z, T−t)

∥∥∥∥
M

(22)

= 1{t>T−ϵ} ·
∥∥∥∥exp-1

x (z)

T − t
−∇x log p (x, z, T−t)

∥∥∥∥
M

+ 1{t≤T−ϵ} ·
∥∥∥∥exp-1

x (z)

T − t
−∇x log p (x, z, T−t)

∥∥∥∥
M

(23)

≤ δ(ϵ) + 1

ϵ

∥∥exp-1
x (z)

∥∥
M + ∥∇x log p(x, z, T−t)∥M (24)

≤ δ(ϵ) + 1

ϵ
dg(x, z) + C

[
dg(x, z)

ϵ
+

1√
ϵ

]
, (25)

which holds for every ϵ > 0 where δ(t) denotes the first term of Eq. (23). Since δ(ϵ) → 0 as ϵ → 0 from the results of
Eq. (20), we obtain the following bound:∥∥∥∥exp-1

x (z)

T − t
−∇x log p (x, z, T−t)

∥∥∥∥
M
<∞. (26)

Finally, using the Girsanov theorem for Qzbb and Qzlog, we obtain the following result:

DKL

(
Qzbb∥Qzlog

)
=

1

2
EX∼Qz

bb

[∫ T

0

∥∥∥∥exp-1
Xt

(z)

T − t
−∇x log p (Xt, z, T−t)

∥∥∥∥2
M

dt

]
<∞, (27)

which implies that the Brownian bridge and the Logarithm bridge have the same support. Since the Brownian bridge
converges to z by definition, we can conclude that the Logarithm bridge also converges to a fixed endpoint z.

The Logarithm bridge process presented in Eq. (3) is the result of using the change of time (Øksendal, 2003) on Eq. (18)
with respect to the rescaled time τ(t) :=

∫ t
0
σ2
sds. Additionally, similar to the Euclidean bridge processes introduced in

Wu et al. (2022), the derivation of our Logarithm bridge process provides a more general form of bridge processes on the
manifold:

dXt =

[
σ2
t

τT − τt
exp-1

Xt
(z) + σt∇Xt

U(Xt, t)

]
dt+ σtdB

M
t , (28)

for a scalar function U that satisfies EX∼Qz,bb

∫ T
0
∥∇U(Xt, t)∥2M <∞ which is sufficient for bounded functions U .

A.3. Other Bridge Processes

Semi-classical Brownian bridge A semi-classical Brownian bridge introduced by (Elworthy & Truman, 1981), also
known as Brownian Riemannian bridge, is a bridge process defined by the infinitesimal generator

1

2
∆M +∇ log k(·, z, T − t), (29)

where k is given by the Jacobian determinant of the exponential map at y as follows:

k(x, y, t) =
1

(2πt)n/2
e−

d2g(x,y)

2t |detDexp-1
y (x) expy|−1/2. (30)

Fermi bridge Previous works (Thompson, 2015; 2018) introduce a general family of bridge processes, namely the Fermi
bridge, that describes diffusion processes conditioned to a submanifold N , which can be defined by the infinitesimal
generator as follows:

1

2
∆M −

rN
T − t

∂

∂rN
, (31)

where rN (·) := d(·, N) is the distance function to the submanifold N and ∂/∂rN denotes differentiation in radial direction.
Although the Logarithm bridge can be derived from the Fermi bridge by constraining N to a single point, to the best of our
knowledge, the Logarithm bridge was not studied in previous literature, and further leveraging the Logarithm bridge process
in the context of generative modeling is our novel contribution.
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A.4. Diffusion Mixture on Riemannian Manifold

Diffusion Mixture Representation We extend the diffusion mixture representation (Peluchetti, 2021) to the Riemannian
setting. We start with the statement of the diffusion mixture representation: Let {Qλ : λ ∈ Λ} be a collection of diffusion
processes onM modeled by the following SDEs:

Qλ : dXλ
t = ηλ(Xλ

t , t)dt+ σλt dB
λ
t , Xλ

0 ∼ pλ0 , (32)

where Bλ
t are independent Brownian motions onM and pλ0 denotes the initial distributions of Qλ. Denoting the marginal

distribution of Qλ as pλt and a mixing distribution L on Λ, consider the following density and the distribution defined as the
mixture of pλt and pλ0 , respectively, as follows:

pt(x) =

∫
pλt (x)L(dvolx) , p0(x) =

∫
pλ0 (x)L(dvolx). (33)

Then there exists a diffusion process onM such that its marginal density is equal to pt with the initial distribution given as
p0, described by the following SDE:

Q∗ : dXt = η(Xt, t)dt+ σtdB
M
t , X0 ∼ p0, (34)

where the drift ηt and the diffusion coefficient σt satisfy the following:

η(x, t) =

∫
ηλ(x, t)

pλt (x)

pt(x)
L(dvolx) , σ2

t =

∫
(σλt )

2 p
λ
t (x)

pt(x)
L(dvolx). (35)

The proof for the Riemannian setting extends that of the Euclidean case, where we leverage the Fokker-Planck equation to
characterize the marginal density. From the condition of Eq. (35), we can derive the following:

∂pt(x)

∂t
=

∫
∂

∂t
pλt (x)L(dvolx) (36)

=

∫ [
−div

(
pλt (x)η

λ(x, t)
)
+

1

2
(σλt )

2∆Mpλt (x)

]
L(dvolx) (37)

= −div
(
pt(x)

∫
ηλ(x, t)

pλt (x)

pt(x)
L(dvolx)

)
+

1

2
∆M

(
pt(x)

∫
(σλt )

2 p
λ
t (x)

pt(x)
L(dvolx)

)
(38)

= −div
(
pt(x)η(x, t)

)
+

1

2
σ2
t∆Mpt(x), (39)

where the second equality is derived from the Fokker-Planck equation with respect to the process Qλ. Since Eq. (39)
corresponds to the Fokker-Planck equation with respect to the mixture process, we can conclude that pt is the marginal
density of the mixture process.

Generative Process Now, we are ready to derive our Riemannian Diffusion Mixture in Eq. (6). Using the diffusion
mixture representation, we can derive the mixture of a collection of the bridge processes {Qx,z : x∼Γ, z∼Π} as follows:

QΠ : dXt =

[∫ ∫
ηz(Xt, t)

px,z(Xt)

pt(Xt)
Γ(dvolx)Π(dvolz)

]
dt+ σtdB

M
t (40)

=

[∫
ηz(Xt, t)

pz(Xt)

pt(Xt)
Π(dvolz)

]
dt+ σtdB

M
t , X0∼Γ, (41)

where ηz denotes the drift of the bridge processes Qx,z for x∼Γ and pzt (·) =
∫
px,zt (·)Γ(dvolx).

A.5. Probability Flow ODE

Here we provide the derivation of the probability flow of the mixture process Qf by considering its time-reversed process Qb
in two different perspectives. First, the time-reversed process Qb corresponds to a mixture process built from the collection
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of time-reversed bridge processes from Π to Γ, which can be modeled by the following SDE:

dXt =
σ2
T−t

τT − τT−t

[∫
ηzb (Xt, t)

pzt (Xt)

pt(Xt)
Γ(dvolz)

]
dt+ σT−tdB

M
t , X0 ∼ Π, (42)

where τ(t) :=
∫ t
0
σ2
sds as defined in Eq. (3) and ηzb denotes the drift of the bridge process Qb(·|XT = z). On the other

hand, Qb can be derived in terms of the score function from Theorem 3.1 of Bortoli et al. (2022) as follows:

dXt =
[
− ηf (Xt, t) + σ2

T−t∇Xt
log pt(Xt)

]
dt+ σT−tdB

M
t . (43)

Therefore, we can obtain the score function in terms of the drifts of Qf and Qb as follows:

∇ log pt(Xt) = (ηf (Xt, t) + ηb(Xt, T−t)) /σ2
t , (44)

and as a result, the probability flow associated with the mixture process Qf is obtained by the following ODE:

d

dt
Yt =

(
ηf (Yt, t)−

1

2
∇ log pt(Yt)

)
=

1

2

(
ηf (Yt, t)− ηb(Yt, T−t)

)
, Y0 ∼ Γ. (45)

WhenM is a Euclidean space, our derived probability flow of Eq. (45) corresponds to the probability flow for Schrödinger
bridges (De Bortoli et al., 2021; Chen et al., 2022; Shi et al., 2023).

Finally, using Proposition 2 of Mathieu & Nickel (2020), we can compute the likelihood of the probability flow as follows:

log pT (YT ) = log p0(Y0) +
1

2

∫ T

0

div
(
ηf (Yt, t)− ηb(Yt, T−t)

)
dt. (46)

It is worth noting that the probability flow of the mixture process is different from the continuous flows used in previous
works. This is due to the difference in the marginal densities that are characterized by different laws: By construction, the
marginal density of the probability flow is equal to the marginal density of the associated mixture process which is described
by the Fokker-Planck equation:

∂pt(z)

∂t
= −div

(
ηf (z, t)pt(z)

)
+

1

2
σ2
t∆Mpt(z), (47)

whereas the marginal density of a deterministic process is described by the transportation equation:

∂p̃t(z)

∂t
= −div

(
ηCNF(z, t)p̃t

)
. (48)

A.6. Bridge Matching on Riemannian Manifold

We first derive the KL divergence between a diffusion process Q : dZt=η(Zt, t)dt+ νtdB
M
t with terminal distribution

QT and its parameterized process Pψ : dZt = sψ(Zt, t)dt+ νtdB
M
t by leveraging the Girsanov theorem as follows:

DKL(QT ∥PψT ) ≤ DKL(Q∥Pψ) = Ez∼QT ,
Z∼Qz

[
log

dQz

dPψ
(Z) + log

dQ
dQz

(Z)

]
(49)

= Ez∼QT

[
DKL(Qz∥Pψ)

]
+ C1 (50)

= Ez∼QT ,
Z∼Qz

[
1

2

∫ T

0

∥∥∥ν−1
t

(
sψ(Zt, t)− ηz(Zt, t)

)∥∥∥2
M
dt

]
+ C2, (51)

where QT and PψT denotes the terminal distributions of Q and Pψ respectively, Qz and ηz denotes the process Q(·|ZT =z)
and its drift, and C is a constant. The first inequality is from the data processing inequality.

16



Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes

Using the result of Eq. (51) and leveraging the fact that the time-reversed process of the mixture process Qf is also a mixture
process of time-reversed bridge processes (Eq. (42)), the models sθf and sϕb can be trained to approximate the drifts ηf and
ηb, respectively, with the following objectives:

Lf (θ) = E x∼Π,
X∼Qx

f

[
1

2

∫ T

0

∥∥∥σ−1
t

(
sθf (Xt, t)− ηxf (Xt, t)

)∥∥∥2
M

dt

]
, (52)

Lb(ϕ) = E y∼Γ,

X∼Qy
b

[
1

2

∫ T

0

∥∥∥σ−1
T−t

(
sϕb (Xt, t)− ηyb (Xt, t)

)∥∥∥2
M

dt

]
. (53)

Instead of separately training the models by simulating two different bridge processes Qxf and Qyb , we can train the
models simultaneously by simulating a single bridge process Qx,y with a fixed starting point x and endpoint y, i.e.,
Qf (·|X0 = x,XT = y), reducing the computational cost for the simulation in half. Furthermore, when simulating Qx,y,
we introduce a two-way approach to obtaining Zt ∼ Qx,y: simulating Qx,y from time 0 to t if t < T/2, and otherwise
simulating from time T to t. Altogether, we obtain the following loss as presented in Eq. (11):

E(x,y)∼(Π,Γ),
Z∼Qx,y

1

2

∫ T

0

σ−2
t

[∥∥∥sθf (Zt, t)− ηxf (Zt, t)∥∥∥2M+
∥∥∥sϕb (Zt, T−t)− ηyb (Zt, T−t)∥∥∥2M

]
dt. (54)

Furthermore, by leveraging an importance sampling with a proposal distribution q(t) ∝ σ−2
t , we obtain the time-scaled

two-way bridge matching as follows:

E(x,y)∼(Π,Γ),
t∼q

EZt∼Qx,y

[∥∥∥sθf (Zt, t)− ηxf (Zt, t)∥∥∥2M+
∥∥∥sϕb (Zt, T−t)− ηyb (Zt, T−t)∥∥∥2M

]
. (55)

We note that while the idea of the importance sampling for the time distribution was also used in Huang et al. (2022), our
approach leverages a simple and easy-to-sample proposal distribution q, which is effective in stabilizing the training and
improving the generation quality, without the need for additional computation or training time.

A.7. Other Relevant Works

Here we further discuss relevant works on manifold diffusion models, extending Section 4. Thornton et al. (2022) extends
Diffusion Schrödinger Bridge to the manifold setting, which aims to find the forward and backward processes between
distributions that minimize the KL divergence to the Brownian motion. However, Thornton et al. (2022) uses Iterative
Proportional Fitting to alternatively train the models that require computing the divergence for numerous iterations, which
is computationally expensive compared to our divergence-free two-way bridge matching which can train the models
simultaneously. Recently, Lou et al. (2023) introduced practical improvements for Riemannian diffusion models based on a
refined estimator for the heat kernel on Riemannian symmetric spaces. For our framework, improved heat kernel estimators
can be used to construct a mixture of Brownian bridges, instead of Logarithm bridges or Spectral bridges, but we leave it as
future work. Furthermore, Bose et al. (2023) introduces a stochastic version of Flow Matching (Lipman et al., 2023) in
the SO(3) group, which can be considered a special case of our Logarithm bridge applied to SO(3). Other line of works
focus on specific geometries such as SO(3) (Leach et al., 2022), SE(3) (Yim et al., 2023; Urain et al., 2023), and product of
tori (Jing et al., 2022), or constrained manifolds (Fishman et al., 2023) defined by set of inequality constraints.

B. Experimental Details
B.1. Implementation Details

We follow the experimental settings of previous works (Bortoli et al., 2022; Chen & Lipman, 2024) including the data splits
with the same seed values of 0-4 for five different runs. We split the datasets into training, validation, and test sets with (0.8,
0.1, 0.1) proportions. Following Chen & Lipman (2024), we use the validation NLL for early stopping and the test NLL is
computed from the checkpoint that achieved the best validation NLL.

We parameterize the drifts of the mixture processes with multilayer perceptrons where we concatenate the time to the input,
following the previous works. For all experiments except the high dimensional tori, we use 512 hidden units and select the
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Volcano

FireFlood

Earthquake

Figure 4: Visualization of the generated samples and learned density of our model on earth and climate science datasets.
Red dots denote samples from the test set and green dots denote the generated samples. Darker green colors denote a higher
likelihood modeled by our approach.
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Figure 5: Convergence of the generative processes on the
Volcano dataset. We compare the geodesic distance between
the samples of the trajectory (Traj.) and the final results.
We further compare the convergence of predictions (Pred.)
made by ours and that of RFM.

Ours Volcano Flood

Uniform -5.37 ± 0.67 0.67 ± 0.14

Time-scaled -9.52 ± 0.87 0.42 ± 0.08

Figure 6: Ablation study on the time-scaled training ob-
jective. We report the test NLL of our method (Time-scaled)
against a variant trained with uniformly distributed time (Uni-
form), instead of the time-scaled distribution q in Eq. (12).

Ours Earthquake Proline

Different samples -0.29 ± 0.08 0.14 ± 0.025

Same samples -0.30 ± 0.06 0.14 ± 0.027

Figure 7: Ablation study on the two-way bridge matching.
We show that sampling Zt from a single bridge process (de-
noted as Same samples) as proposed in our work does not
introduce additional variance by comparing the performance
with the variant of our method which samples different Zt for
each forward and backward direction of the bridge process
(denoted as Different samples).

number of layers from 6 to 13, using either the sinusoidal or swish activation function. All models are trained with Adam
optimizer and we either do not use a learning rate scheduler or use the scheduler with the learning rate annealed by a linear
map which then applies cosine scheduler, as introduced in Bortoli et al. (2022). We also use the exponential moving average
for the model weights (Polyak & Juditsky, 1992) with decay 0.999.
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Table 3: Test NLL results on protein datasets. We report the mean of 5 different runs with different data splits. Best
performance and its comparable results (p > 0.05) from the t-test are highlighted in bold.

General (2D) Glycine (2D) Proline (2D) Pre-Pro (2D) RNA (7D)
Dataset size 138208 13283 7634 6910 9478

MoPS (De Cao & Aziz, 2020) 1.15 ± 0.002 2.08 ± 0.009 0.27 ± 0.008 1.34 ± 0.019 4.08 ± 0.368

RDM (Huang et al., 2022) 1.04 ± 0.012 1.97 ± 0.012 0.12 ± 0.011 1.24 ± 0.004 -3.70 ± 0.592

RFM (Chen & Lipman, 2024) 1.01 ± 0.025 1.90 ± 0.055 0.15 ± 0.027 1.18 ± 0.055 -5.20 ± 0.067

Ours (LogBM) 1.01 ± 0.026 1.89 ± 0.056 0.14 ± 0.027 1.18 ± 0.059 -5.27 ± 0.090

Pre-ProProline

GlycineGeneral

Figure 8: Visualization of the learned density of our model on protein datasets using the Ramachandran contour plots. The
red dots denote the samples from the test set. The blue color denotes the log-likelihood computed from our model where the
darker colors indicate a higher likelihood.

The drifts of the mixture processes are parameterized in the ambient space with projection onto the tangent space as follows:

sθ(x, t) = projx(s̃
θ(x, t)). (56)

where projx is a orthogonal projection onto the tangent space at x. For all experiments, we train our models using the
time-scaled two-way bridge matching in Eq. (12), where we use 15 steps for the in-training simulation carried out by
Geodesic Random Walk (Jørgensen, 1975; Bortoli et al., 2022).

Except for the mesh experiments, we compute the likelihood of our parameterized probability flow ODE using Dormand-
Prince solver (Dormand & Prince, 1980) with absolute and relative tolerance of 1e−5, following the previous works (Bortoli

19



Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes

Figure 9: Visualization of the generated samples and the learned density of our method and RFM on the mesh datasets.
Blue dots represent the generated samples and darker red colors indicate higher likelihood. The numbers in the parentheses
denote the number of in-training simulation steps used to train the model.
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et al., 2022; Chen & Lipman, 2024). For the mesh experiments, we compute the likelihood with 1000 Euler steps with
projection after every step as done in Chen & Lipman (2024). For all experiments, we use NVIDIA GeForce RTX 3090 and
2080 Ti and implement the source code with PyTorch (Paszke et al., 2019) and JAX.

B.2. Earth and Climate Science Datasets

We follow the data splits of previous works (Bortoli et al., 2022; Chen & Lipman, 2024), reporting an average of five
different runs with different data splits using the same seed values of 0-4. For a fair comparison with baselines, we set
the prior distribution to be a uniform distribution on the sphere. The convergence analysis demonstrated in Figure 5 was
conducted on the models trained on the Volcano dataset, where we measure the geodesic distance between the final sample
and the trajectory Zt of each method for discretized time steps t. The convergence of the predictions was also measured
similarly, where we use the parameterized prediction of Eq. (7).

B.3. Protein Datasets

We follow the experimental setup of Huang et al. (2022) and Chen & Lipman (2024) where we use the dataset compiled by
Huang et al. (2022) that consists of 500 high-resolution proteins (Lovell et al., 2003) and 113 selected RNA sequences (Mur-
ray et al., 2003). The proteins and the RNAs are divided into monomers where the joint structures are removed and use the
backbone conformation of the monomer. For proteins, this results in 3 torsion angles of the amino acid where the 180◦

angle is removed and can be represented on the 2D torus. For RNAs, the 7 torsion angles are represented on the 7D torus.
We follow the data splits of Chen & Lipman (2024) and report an average of five different runs with different data splits
using the same seed values of 0-4. For a fair comparison with the baselines, we also set the prior distribution to be a uniform
distribution on the 2D and 7D tori.

B.4. High-Dimensional Tori

We follow the experimental setup of Bortoli et al. (2022) where we create the dataset as a wrapped Gaussian distribution on
a high dimensional tori with uniformly sampled mean and scale of 0.2. Since we evaluate on higher dimensions, up to 2000
dimensions, we use 2048 hidden units for all methods. Specifically, we use MLP with 3 hidden layers and 2048 hidden units
for RSGM (Bortoli et al., 2022) and RFM (Chen & Lipman, 2024). To make a fair comparison with the baselines, we match
the number of model parameters by using MLP with 2 hidden layers and 2048 hidden units for the model estimating the
mixture process, i.e. sθf , and use MLP with 1 hidden layer and 512 hidden units for the model estimating the time-reversed
mixture process, i.e. sϕb . We train all methods for 50k iterations with a batch size of 512 without early stopping and evaluate
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(a) (b)

Figure 10: Visualization of the learned density of our model on the hyperboloid. We visualize the synthetic distributions
and the learned density on the hyperboloid via projection onto a Poincare disk. (a) visualizes a mixture of four wrapped
Gaussian distributions and (b) visualizes a mixture of six wrapped Gaussian distributions.

the log-likelihood per dimension for 20k generated samples. We also set the prior distribution to be a uniform distribution
on the high-dimensional tori. We measure the training time of each method implemented by JAX (Bradbury et al., 2018) for
a fair comparison.

B.5. General Closed Manifolds

We use the triangular meshes provided by Chen & Lipman (2024): An open-source mesh is used for Spot the Cow and a
downsampled mesh with 5000 triangles is used for Stanford Bunny, where the 3D coordinates of the meshes are normalized
so that the points lie in (0, 1). Following Chen & Lipman (2024), the target distributions on the mesh are created by first
computing the k-th eigenfunction (associated with non-zero eigenvalue) on three times upsampled mesh, thresholding at
zero, and then normalizing the resulting function. The visualization of generated samples and learned density of RFM in
Figure 3 and 9 are obtained by running the open source code. For a fair comparison with RFM, we set the prior distribution
to be a uniform distribution on the mesh. We measure the training time of our model and RFM which are all implemented in
JAX for a fair comparison.

B.6. Further Analysis

Time-scaled Training Objective We compare our framework trained with Eq. (12) against a variant trained with uniformly
distributed time instead of time-scaled distribution q in Eq. (12), on the Volcano dataset. We follow the experimental setup
of earth and climate science experiments.

Number of In-Training Simulation Steps For t in [0, 1], let X(N)
t be the sample Xt obtained by simulating LogBM

with N discretized steps either from time 0 to t or T to t. We measure the maximum mean discrepancy (MMD) (Gretton
et al., 2012) and Wasserstein distance between X

(500)
t and X

(N)
t for N ≤ 500, where X

(500)
t . For Figures 11 and 12 (d),

we use a very small noise scale for the mixture process to mimic a deterministic process. Note that the absolute scales of the
MMD among Figure 11 (a)-(d) are not directly comparable, as the MMD are measured for different reference distributions.
The MMD results should be interpreted as how much they deviate from the MMD result of the ’almost exact’ trajectories.

Non-Compact Manifold We create the synthetic distributions on a 2-dimensional hyperboloid using a mixture of wrapped
Gaussian distributions. We use MLP with 4 layers with 512 hidden units and trained for 100k iterations without early
stopping. We visualize the learned density in Figure 10 by projecting onto a Poincare disk.

C. Limitations
While our method shows superior performance on diverse manifolds, the theoretical guarantee for constructing the mixture
process on non-compact manifolds is not sufficient. We experimentally show that our framework is capable of modeling
distributions on non-compact manifold with negative curvature. Also, in our work, we validate that our approach can scale
to higher dimensions on manifolds that are considered for real-world tasks, e.g., hypersphere and high-dimensional torus.
Yet our method may have difficulty when scaling to complex manifolds for which computing the logarithm map or the
eigenfunctions are expensive.
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(a) Twoway simulation (Volcano)

(c) Two-way simulation w/ noise (Bunny) (d) Two-way simulation w/ small noise (Bunny)

(b) One-way vs Two-way (Volcano)

Figure 11: Denoting X
(N)
t as Xt of LogBM simulated with N steps, we measure the MMD distance between X

(500)
t , i.e.,

almost exact sample, and X
(N)
t for N ≤ 500. (a) Results by differing the number of steps for the two-way approach

where we observe that the MMD results of 15 steps are almost the same as the exact simulation. (b) Results with the
one-way approach where we can see that the one-way approach requires a significantly large number of steps to obtain
accurate trajectories. (c) Results for simulating the mixture process on the Stanford Bunny dataset where we observe that
15 steps are enough to obtain accurate trajectories. (d) Results for simulating the mixture process with small noise scale
where using 15 steps produces highly inaccurate trajectories, and we can see that it requires more than 100 steps to obtain
accurate trajectories.
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(a) Twoway simulation (Volcano)

(c) Two-way simulation w/ noise (Bunny) (d) Two-way simulation w/ small noise (Bunny)

(b) One-way vs Two-way (Volcano)

Figure 12: Denoting X
(N)
t as Xt of LogBM simulated with N steps, we measure the Wasserstein distance between

X
(500)
t , i.e., almost exact sample, and X

(N)
t for N ≤ 500. (a) Results by differing the number of steps for the two-way

approach where we observe that the MMD results of 15 steps are almost the same as the exact simulation. (b) Results with
the one-way approach where we can see that the one-way approach requires a significantly large number of steps to obtain
accurate trajectories. (c) Results for simulating the mixture process on the Stanford Bunny dataset where we observe that
15 steps are enough to obtain accurate trajectories. (d) Results for simulating the mixture process with small noise scale
where using 15 steps produces highly inaccurate trajectories, and we can see that it requires more than 100 steps to obtain
accurate trajectories.
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