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Abstract

Graph neural networks (GNNs) can efficiently process text-attributed graphs
(TAGs) due to their message-passing mechanisms, but their training heavily re-
lies on the human-annotated labels. Moreover, the complex and diverse local
topologies of nodes of real-world TAGs make it challenging for a single mecha-
nism to handle. Large language models (LLMs) perform well in zero-/few-shot
learning on TAGs but suffer from a scalability challenge. Therefore, we propose
a preference-driven knowledge distillation (PKD) framework to synergize the
complementary strengths of LLMs and various GNNs for few-shot node classi-
fication. Specifically, we develop a GNN-preference-driven node selector that
effectively promotes prediction distillation from LLMs to teacher GNNs. To
further tackle nodes’ intricate local topologies, we develop a node-preference-
driven GNN selector that identifies the most suitable teacher GNN for each node,
thereby facilitating tailored knowledge distillation from teacher GNNs to the stu-
dent GNN. Extensive experiments validate the efficacy of our proposed framework
in few-shot node classification on real-world TAGs. Our code is available at
https://github.com/GEEX-Weixing/PKD.

1 Introduction

Text-attributed graphs (TAGs [1]), such as citation, webpage, and product graphs [2, 3], have nodes
associated with text attributes. Graph neural networks (GNNs) [4, 5] have demonstrated excellent
performance and efficiency in node classification on TAGs, which are supported by high-quality labels
and effective message-passing mechanisms [6]. However, the manual labeling of nodes is undoubtedly
a tedious, expensive, and time-consuming task [7, 8]. In many scenarios, only a few node labels are
available. Additionally, nodes often have complex and diverse interaction relationships with each
other—their local topologies are intricate—which challenge traditional GNNs with fixed message-
passing mechanisms. Compared with GNNs, large language models (LLMs) exhibit impressive
zero-/few-shot learning capabilities on TAGs [9, 10, 11]. But the large parameter scale considerably
hinders their inference efficiency [12].

A natural idea is to blend their complementary strengths for few-shot node classification on TAGs.
Knowledge distillation (KD) [13] is a feasible solution. However, directly distilling knowledge from
the LLM to GNN is impractical. Firstly, the discrepancy of decoder-only (LLMs) and encoder-only
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(GNNs) leads to fundamentally different characteristics in their embedding spaces [14]. And the
huge embedding-dimension difference needs sophisticated embedding alignment and also brings high
training cost [15]. In contrast, conducting prediction distillation from LLMs to GNNs by annotating
node labels can efficiently alleviate the label scarcity and scalability dilemma [16]. The critical
question is how to select the nodes for the LLM’s label annotation to effectively enhance teacher
GNNGs. Generally, one may use uncertainty [17] as a selection metric in the embedding space of GNN.
However, owing to nodes’ diverse semantic and complex structural attributes (e.g., local topologies),
a single GNN cannot capture the essences of nodes completely [18]. Therefore, we investigate the
embedding spaces of various-architecture GNNs to effectively mitigate cognitive limitations [19]
associated with relying on a single GNN, thereby better selecting nodes for LLM’s label annotations.

Nevertheless, since nodes have intricate local topologies, which need tailored message-passing
mechanisms, how to tailor for each node the most appropriate message-passing mechanism is another
challenge. Different GNNs provide different prediction attributes for each node during the learning
process [20], encompassing the understandings of its topologies, its interaction relationships to
other nodes, and its latent patterns. These node-specific attribute differences suggest that a single
message-passing mechanism cannot fundamentally handle the entire graph. Some studies [21, 18]
distill knowledge sequentially or simultaneously from teacher GNNs without taking into account the
node-specific local topologies, resulting in no obvious performance improvement or even performance
degradation [22]. Therefore, it is essential to identify the GNN message-passing mechanisms that
align with the node-specific attributes.

To this end, we propose a preference-driven knowledge distillation (PKD) framework that unites the
complementary strengths of LLMs and various-architecture GNNs for few-shot node classification
on TAGs. It mainly includes two modules: GNN-preference-driven Node Selector (GNS) and Node-
preference-driven GNN Selector (NGS). The prerequisite of GNS is that the LLM should be able
to comprehend the graph topology. Thus, we develop the graph topology aware (GTA) prompts
to fine-tune the LLLM, enhancing its capacity to comprehend graph topology. GNS fully exploits
nodes’ prediction discrepancies among various GNNs to decide nodes whose labels are annotated
by the LLM will effectively enhance teacher GNNGs, facilitating knowledge distillation from the
LLM to teacher GNNs. NGS selects for each node the most appropriate GNN message-passing
mechanism, facilitating the tailored knowledge distillation from various teacher GNNss to the student
GNN. It regards the fine-tuned LLM as the RL-based (reinforcement learning) agent, which treats all
textualized node-specific attributes (including node’s semantic, structure, and prediction attributes) as
state and the student GNN’s performance as reward. Our contributions can be summarized as follows:

* We introduce a preference-driven knowledge distillation (PKD) framework to synergize
the complementary strengths of the LLM and various GNNs ingeniously for few-shot node
classification on TAGs;

* We propose a GNN-preference-driven node selector, effectively determining nodes for
annotation by the LLM and promoting knowledge distillation from the LLM to teacher
GNNs;

* We propose a node-preference-driven GNN selector to tailor for each node the most appro-
priate message-passing mechanism, promoting knowledge distillation from teacher GNNs
to the student GNN;

* We validate the efficacy of PKD for few-shot node classification on nine TAGs. The

experiments show that it even defeats some state-of-the-art methods that use more node
labels.

2 Related Work

2.1 Graph Neural Networks

The field of graph learning has been dominated by GNNs. Early GCN [4] introduces a spectral-based
graph convolution operation to propagate node information through the graph. GAT [23] uses at-
tention mechanisms to weigh neighbors’ contributions, enabling adaptive learning of neighborhood
importance. APPNP [24] enhances message passing by using personalized propagation with a power
iteration approach, improving label propagation on graphs. HoGCN [25] extends GCNs by incor-
porating higher-order neighborhood information to improve representation power. GPRGNN [26]



combines graph convolution with residual connections to improve propagation efficiency, particularly
in graphs with diverse node degrees. HoloNets [27] introduces a dual-filter mechanism with spectral
response, extending spectral convolutions to directed graphs. DirGNN [28] defines the in-neighbors
and out-neighbors and performs separate propagation and aggregation, improving the message passing
through the incorporation of edge directionality. To deal with label scarcity, GCNII [29] introduces
initial residual connections and identity mapping to construct a deep GNN while EGNN [30] enforces
equivariance constraints for the enhancement of data efficiency and generalization. AGST [31] and
IceBerg [32] leverage the different self-training [33] methods to effectively utilize unlabeled nodes.

2.2 Knowledge Distillation

KD is not only used for model compression, but for strengthening purposeful abilities of the student
model. GFL [34] extracts structural knowledge from a pre-prepared similar auxiliary graph, distilling
it to the target graph for enhancing few-shot node classification performance. KDGA [35] utilizes
multiple graph augmentation strategies to make student GNN produce robust node representations
after distillation. MSKD [36] mitigates the diverse classification situations requiring for different
nodes by capturing multi-scale topological semantics distilled from varying layers. However, the
capability of an individual teacher is inherently limited. BGNN [21] distills complementary knowl-
edge from multiple GNN teachers sequentially and integrate it by the adaptive temperature parameter
and weight boosting modules. MTAAM [22] distills knowledge of multiple teacher GNNs into an
MLP-student, offering quick inference speed without compromising accuracy. FairGKD [37] obtains
equitable and informative node representations by synergizing multiple GNN experts into a teacher.
DMKD [18] harnesses complementary knowledge from various GNNs and conducts layer-level
knowledge distillation to mitigate the constraint of a single teacher. Furthermore, [14] is a label-free
method that proposes the LLM-GNN. It uses LLMs to get high-quality annotation through active
and confidence-awareness node selection, thereby circumventing the difficulty of label annotation
by humans. LinguGKD [15] introduces a kind of ingenious contrastive learning to align the LLM’s
semantic features with GNN’s structural features to achieve knowledge transfer. Most of the above
knowledge distillation methods do not tailor for each node the most appropriate message-passing
mechanism and underperform on few-shot node classification.

3 Method: PKD

In this section, we present the preference-driven knowledge distillation (PKD) framework. PKD
involves two key modules: GNN-preference-driven Node Selector (GNS) and Node-preference-driven
GNN Selector (NGS). The main goal of the former module is to select node groups whose labels are
annotated by the LLM will drastically enhance teacher GNNs. The main goal of the latter module
is to select the most appropriate teacher GNN for each node, thereby tackling the complication of
node-specific local topologies. The PKD framework is illustrated in detail in Figure 1.

3.1 Background

A text-attributed graph (TAG) is denoted by Gr = (V, £, X, A, T), where V = {vy,..., vy} is a set
of nodes with semantic attributes T = {t;,...,ty} and £ is a set of edges. Each semantic attribute
can then be encoded as a sentence embedding X = [x1,...,X;,...,xy] € RV*¥ with the help
of language models. A € RV*V is the adjacency matrix. Given the few-shot node classification
task, let D, = {(x;,y:)}, (Q < N) be the set of labeled nodes with y; as the one-hot label of
the training sample x; and Dy be the set of unlabeled nodes, respectively. The goal is to accurately
predict the labels of nodes that belong to Dy; given few labeled nodes in Dy,.

We assume B teacher GNNs denoted by {7}}Z |, and f%b is the model parameters of T;. The B

logit outputs of teacher GNNs for node v; are written as z] = [z ,...,2z},,...,z] p], which is the
concatenation of the logit of each teacher zZTb =z sz Lreeos sz s sz ] (1 <b < B), where

zZ; b . is the probability of v; belonging to class ¢ (1 < ¢ < C') computed by teacher T3,. Our final
objectlve for the KD from node-preference GNNss to the student GNN can be divided into three parts:

Q
Lgp=a- ——Z 7] logfé(xi)) + 8- ( ——Zyz logf&(xi)) +7- ( ZH (f§(x:))) (1)



GNN-preference-driven Node Selector

1 Pretrain 1 l
Ty T, Tp

| 1 ;
1 | X

1 | X

1 5 | X

| =

' \@ / : & o g | ) _ JARERE 0

! i 2 ¥ ¥

1 = E : 1 1 1 : Classifier Classifier & «+«-- Classifier
: : L I I I

I 1

I 1

: [}

! 1

1

¥
[Predlctlon Attribute Collection] [DNS Module

— B P .

] ()
| | |
1
g 1
| Preference ranks

_ Second @@A{’%’@%“ e

(. S -
man
[(Connectivty [ Degree | Cycle Detection | Text Generation | |
@ GTA Instruction Fine-tuning 1 [DNS Module

1
1
1
1
I 3
1 &
1
! Rewain | LY N
| - [elelel/ e [o
' ! Los
' ! c e
' I T el o [T
Ent) True Label
__________________________________________________________ 4
B semantic attribute B strucure attribue  EEI Prediction attribute (@—>® (@->® Nodes annotation @ Unlabeled node Labeled node

Figure 1: Overview of PKD. The framework has two key modules: GNN-preference-driven Node
Selector (GNS) and Node-preference-driven GNN Selector (NGS). Before starting GNS, we first
fine-tune the LLM with GTA prompts to enable it to comprehend graph properties. In the GNS
module, we exploit the proposed K -uncertainty based on the node prediction uncertainty in each
teacher GNN’s embedding space to select nodes. For effectively exploiting the LLM to annotate those
selected nodes, we combine the semantic attributes and structure attributes derived from the proposed
Distance-based Neighbor Selector (DNS) module on these nodes to construct prompt, promoting
the prediction distillation from the fine-tuned LLM to teacher GNNs (77,75, ..., Tp). In the NGS
module, we select for each node the most appropriate teacher GNN for tailored knowledge distillation.
The teacher GNN selection is achieved by reinforcement learning with the fine-tuned LLM as agent.

where «, 3,y are hyper-parameters to balance three losses. For student GNN with parameters fg, the
first loss, distillation loss £ py,, is defined as the cross-entropy between the predictions of the teacher
GNNs and that of the student GNN. The f(x;) is the Softmax output of student GNN and it denotes
the probability distribution of v; belonging to class c. z/ = m; ® z! , where m; is a one-hot vector
denoting which teacher GNN is preferred by v;. The second loss, L g, is the cross-entropy loss in
the training of student GNN. Inspired by [38], we add L to the objective as the last part, which

makes the logits of student GNN closer to one-hot vectors. The H(-) denotes Shannon entropy.

3.2 LLM Fine-tuning

Recent studies reveal that LLMs possess reasoning apabil-
ities [39], but they often underperform compared to even
the simple GNNs when tackling graph learning. The key
challenge lies in its inability to directly process the raw
graph data and understand topology properties, limiting
the generalization ability of LLMs in this domain. To
address this, we propose GTA prompts fine-tuning.

This method consists of four distinct fine-tuning instruc- Original LLM LM with stractaral atiribatos
tion types, each designed to enhance structural compre- Fine-tuned LLM with structural atributes

hension, such as local connectivity, node degree, cycle
structure, and path-based dependencies, by addressing
specific tasks: (1) Connectivity involves determining
whether or not two nodes in an undirected graph are con-
nected; (2) Degree requires the LLM to determine the
degree of a given node based on the adjacency matrix A; (3) Cycle Detection requires the LLM to
ascertain whether a cycle exists within the given sequence of nodes; (4) Text Generation demands

Figure 2: The performance improve-
ments in zero-shot node classification
on homophily and heterophily graphs.



the LLM to generate textual contents of given nodes based on the semantic attributes of preceding
nodes in the random walk. Through fine-tuning, LLLM exhibits significant improvements on the
zero-shot node classification task, as demonstrated in Figure 2. More detailed task descriptions and
detailed task-specific GTA prompt templates are provided in Appendix B.3.

3.3 GNN-preference-driven Node Selector

After being fine-tuned, the LLM can generate superior node label annotations (as shown in Figure 2).
However, how to select nodes for LLM’s label annotation to effectively enhance teacher GNNs
(those nodes are assumed to be preferred by GNNs) is a challenging problem. Uncertainty is an
essential metric for node selection. It mainly consists of two parts: random uncertainty caused
by inherent noise and cognitive uncertainty caused by insufficient observation. The former type
is inevitable, so we focus on the latter type. From the perspective of collective consensus [40],
we design the GNN-preference-driven Node Selector based on the defined K-uncertainty (0 x).
Specifically, we measure the cognitive disagreement among the teacher GNNs’ SoftMax outputs
using the Kullback-Leibler (KL) divergence, and get the preference ranks of all nodes by i, i.e.,
Vpr = Sort({v1,...,on},0k(v1), 0K (v2),...,0k(vN)). High K-uncertainty of nodes indicates
that their prediction uncertainty by GNNss is higher. Those nodes can effectively enhance GNN's
if their more accurate labels, annotated by the LLM, are provided to train GNNs, as the following
proposition suggests.

Proposition 3.1. These nodes with higher K -uncertainty (0 ) are beneficial for GNNs enhancement.

B
o) & Y [DrL(ff,IfE, () + Drr(ff, ()|, (v)] o 8, 2
1<i<j<B

where §,, is the uncertainty of node v, is defined as % ZZB:1 D (f4 (v)|[[M(v)). The M(v) is the
average prediction probability distribution of all B teacher GNNs (See Definition D. 1 for details).
Dkr(:]|") is the function to calculate KL divergence.

* ~ 1
f1 (D) = arg min T 2 LU i) 3)

Vi €{Vh g VD e 0 |6 (VI ) >k }

where Dy, is the expanded training dataset. fg* is the optimal parameter of teacher GNN. v5y
represents the w-th nodes in the preference rank. W' is the number of selected nodes by GNS and the

Ok is the K -uncertainty threshold depending on the expansion ration.

nodes (illustrated in Figure 3), we ensure that the most / \

The proof is given in Appendix D. By selecting these - pe i ’\
uncertain and informative nodes are labeled by the LLM t“' “ |«

to promote the progress of prediction distillation through \ // 1.0
the cross-entropy function. Correspondingly, GNS also ’ ) g 0.8
reduces the inference costs associated with LLMs by not Np=1 Np =2 0.6

querying all nodes in Dy. To generate high-quality an- N L N 0.4
notations for GNN-preferred nodes, we further design /$ 3/\&' Y \ '
\ 3 l« |

the Distance-based Neighbors Selection (DNS) module, | | E >%\\ « 0.2
which performs the K-Nearest Neighbor (KNN) search  \ / 0
around each selected node across the embedding spaces g b g
generated by pretrained teacher GNNs and deletes re- Np=3 Np =4

peated neighbors. The structure attributes composed of o ] )

selected neighbors and their textual contents are integrated Figure 3: This is exemplified using the
into the category-induction prompt and inputted into the CORA dataset. Starting from the arrow
LLM. Unlike relying solely on neighbors identified by the and progressing counterclockyvlse, the
adjacency matrix (prone to biases from 1-hop homophily), KL dlverggnce sum gradgally 1NCreases,
our approach ensures a more robust and diverse selection accompanied by a darkening of'the trian-
of high-quality neighbors, facilitating better construction g!e colors. The length of each Fna.lngle m-
of the category-induction prompt for the LLM. We do not d_lcates the pumber of nodes within a spe-
select common KNN neighbors across all the embedding cific KL divergence sum range, where

spaces generated by the teacher GNNs, as they may overfit {Vp denotes the number of classes pre-
to the adjacency structure. dicted by the teacher GNNs.



3.4 Node-preference-driven GNN Selector

Distilling knowledge simultaneously from multiple teachers to the student is not a good option since
nodes with varying local topologies require distinct message-passing modes for optimal representation
updates. To achieve this, we introduce the Node-preference-driven GNN Selector (NGS) to select
the most appropriate teacher for each node according to the specific attributes and promote tailored
knowledge distillation. For each node in the expanded training data (including the initial few labeled
nodes and those selected nodes whose labels are annotated by the LLM), we construct a node-specific
prompt by combining its semantic, structural, and prediction attributes derived from the enhanced
teacher GNNs. This prompt is then inputted to the fine-tuned LLM to determine the most suitable
teacher for this node. The GNN selection task is formulated as a reinforcement learning problem that
needs to explore the discrete action space and find a series of assignment actions to get the highest
global reward across the expanded training data. Through interaction with the training process, the
selector progressively refines its decisions on node-to-teacher assignments, leading to a more efficient
and effective assignment strategy. Specifically, the fine-tuned LLM, serving as the agent, selects the
most appropriate teacher for each node. The policy is trained to maximize classification accuracy
on the expanded training data, with the reward tied to the student’s performance. To address the
non-differentiability of the LLM’s decoding process, we add two additional projectors (MLPs) after
the logit layer to generate action probabilities and corresponding value estimations, enabling the
agent to take discrete teacher-selection actions.

In the RL framework, the elements are structured as (State, Action, Reward). During each iteration,
the agent interacts with the environment by receiving all attributes of one node in the expanded
training data. The agent then takes an action on which teacher is more appropriate.

State: Each state corresponds to the prompt P; of a node, including node-specific semantic, structural,
and prediction attributes. These prompts are detailed in Appendix B.2. The size of the expanded
training data is denoted as W.

Action: The Policy Model (the fine-tuned LLM combined with an MLP projector) generates a text-
related output to indicate its selection from multiple teachers, formulated as a probability distribution
vector T = [, M1y, - - -, TTy |, Where 7p, denotes the probability of selecting the b-th teacher Ty.
The action is determined through sampling.

Reward: The function is correlated with the performance of the student GNN, which is trained by
distilling knowledge from the selected teacher for each node. The reward function consists of three
key parts: classification accuracy, cross-entropy loss, and distillation loss. It can be written as follows:

R=n%(Lpy — Lop) + (1—n) % Aee 4)
where A.. represents the classification accuracy of the student GNN on the expanded training data,
71 is a hyper-parameter to balance the three parts, where £/D L= —w ZZV zl' - logf4(x;), and

Lop=—5 Y7 yi - logfh(x:).

To effectively optimize the agent’s actions for better knowledge distillation, we employ the simplified
version of Proximal Policy Optimization (PPO) [41] algorithm, which retains the core principles.
Specifically, we do not instantiate the Reward Model explicitly and calculate the reward based on the
performance of the student GNN. The Reference Model is also not explicitly referenced, because
the parameter update objective function we utilize involves a comparison with the previous strategy.
To avoid large fluctuations between the current and old policies, we adopt the CLIP strategy [41] to
limit the update margin. During the KD process, the parameters fﬁl of NGS, remain fixed, while the
parameters fg of the student GNN are trained. During the NGS process, the parameters f g of the
student GNN are kept fixed to compute the reward, while the parameters ff‘ of NGS based on the
collected rewards from all episodes are optimized. The pseudocode, detailed implementations, and
time complexity analysis are provided in Appendix C.

4 Experiments

4.1 Experimental Setup

Datasets In order to assess the few-shot node classification performance of our method on TAGs,
we conduct a comprehensive series of experiments across 9 real-world datasets: CORNELL, WASH-



Table 1: Node classification accuracies (%) on real-world datasets. 17, 15, T3, and T4 denote the
teacher GNN's for homophily or heterophily graphs (refer to the descriptions in Baselines for more
details of the teacher and student GNNs). The OOM stands for Out-Of-Memory. The best results are
highlighted in dark gray, while the runner-up results are marked in light gray.

AMAZON  OGBN-

Methods Dataset CORNELL WASHINGTON  TEXAS  WISCONSIN o WIKI CS PUBMED CORA
RATINGS ARXIV
T 46.2940.9 65.0042.5 82.831009 4830425  36.69i02 59.19455 79.0841s 8252107 87.59i0s
Ts 44.6214.3 5527417 4519405 6149106 3741400 5671136 8017116 7957103 8838406
Ty 3273408 5833417 63.6410.1 62.89413 4893105 53.64113 72.0lips5 55105414  77.07440

GCNII [29]/#LN 5
EGNN [30]/#LN 5

57.82408 64.1743.1 68.7944.3 609415 4822443 3514156 5829408 6783477 7774137
5338478 6333112 7172459 5597136  49.03486 36.15139 6397466 66.12193 7285407

LLMGNN [14]/#LN 5 52.63143 41.0942.9 62.82436 46.5410.9 47.64100 4411405 66.09:04 78844117 7623447
GAugLLM [48] /#LN5 | 62.98:33 65.13411 73.8142.9 62.2040.9 4242460 5347405 8310417 8598406 79484145

Self-training [33] /# LN 5 | 61.90+6.1 65.8940.5 72.6242.4 6629109 4199450 3340425 7499109 8311404 83.19417
AGST [31]/#LN 5 714307 70.09+0.8 68.451 0.8 70.08+07  43.11i04 OOM 72494131 7375105 7725156
IceBerg [32]/#LN 5 33334110 6776429 50.00-44.9 41.53420 2599415 33.63112 | 84.88i02 6241i93 76234556

T 58.0441 57.8415, 5343441 59.32491 4122466 56.51+10 8157407 8334104 8779116

KDGA [35] 54.39109 60.0040.1 66.6711.5 5874139 38.0641.2 OOM 65.03141 OOM 68.8710.8
MSKD [36] 5127440 50.3940.2 62.63120 4151402 3560155 5827410 6273129 4586103 51.61i06
BGNN [21] 58.60.3.3 56.6710.8 65.6612.0 5912169 3753120 46.67:131 5696443 7612107 7128437
MTAAM [22] 7268410 7333408 80.8144.0 7169419 3954402 3232455 652433 8342453 79.16440
FairGKD [37] 61.0522.4 60.0044 1 84.85411 5711109 4393405 42.03127 60.25172 7040403 6985107
RANDOM /#LN 5 5431417 58.0411 5 5893111  58.0d407 5795105 5497433 6527418 66.60129 70.64406
VOTING / # LN 5 ‘ 4497130 58.8813.5 6131420 4697136 58.64101 5853.0¢ 72284195 70.6413; 743243,
#LN1 74.6015.1 76.6410.9 80.3641.3 69.32,58 6411417 53.67116 793li0s 8375411 85.64101

PKD{ jama #LN3 76.7240.9 81.36419 8333107 7149415 65.64109 5865155 80.0lip¢ 8434109 86.18117
#LNS 80.95+1.1 83.74.40.4 8631405 76.89:09 66.79103 61.03407 8139104 8569403 9l.14403

INGTON, TEXAS, WISCONSIN [25], AMAZON RATINGS [42], OGBN-ARXIV [43], WIKI CS [44],
PUBMED, CORA [45]. They have various 1-hop homophily ratios [46] and additional details of the
datasets can be found in Appendix A. For the KD-baselines, we partition the nodes of each graph
into training, validation, and test sets, allocating 48%, 32%, and 20%, respectively, based on the
proportion division mentioned in [47]. For PKD and other baselines, we randomly select 1, 3, and
5 labeled nodes per class as the initial training data and then expand the dataset to 48% of the total
using the GNS module. The remaining data is randomly split into 32% for validation and 20% for
testing, with the preserved indices for the baselines. This operation is repeated 5 times. We report the
average test classification accuracy and standard deviation of each model with parameters that lead to
the peak validation accuracy.

Baselines We compare our method against the following baseline models: (i) Advanced GNNs:
GCNII [29] and EGNN [30]; (i) GNNs enhanced by LLMs: LLMGNN [14] and GAugLLM [48];
(iii) self-training for graph learning: Self-training [33], AGST [31] and IceBerg [32]; (iv) Knowledge
Distillation (KD) for GNNs: KDGA [35], MSKD [36], BGNN [21], MTAAM [22], and FairGKD [37].
For homophily graphs, the teacher GNNs used are: GCN [4] (17), GAT [23] (15), APPNP [24] (T5),
H>GCN [25] (T}), and the student is GCN; for heterophily graphs, the teacher GNNs employed
are: DirGNN [28] (T7), GPRGNN [26] (T%), HoloNets [27] (T3), HoGCN (T}) and the student is
H>GCN. The LLM used in the experiments is Llama-3.1-8B-Instruct [49].

4.2 Performance Analysis and Discussion

Notably, # LN 1, # LN 3, # LN 5 indicate only 1, 3, 5 labeled nodes per class are used for training
PKD, while the results of the teacher GNNs ({7 }?_,) and other baselines are trained under the data
splitting of 48%/32%/20% as mentioned above. According to Table 1, our method almost achieves
the best or second-best accuracy results.

Due to the extreme insufficiency of labels, GCNII and EGNN are restricted in further improvement,
although they have distinctive network architectures. Lacking carefully designed fine-tuning and
enough cognition makes LLMGNN fail to produce high-quality pseudo labels and is dramatically
defeated by our method PKD. Although GAugL.LLM harnesses LLM for feature and structure aug-
mentations to benefit GNN, its self-training depends only on SoftMax scores to identify candidate
nodes to assign pseudo-labels, a method that can sometimes be unreliable. GAugLLLM achieves
the best result on the PUBMED dataset, but it is outperformed by PKD on other datasets. AGST is
excessively dependent on the original graph topology for label propagation, rendering it vulnerable



to structural noise and facing significant challenges when transferred to large-scale graphs, such
as OGBN-ARXIV. IceBerg does not perform well on heterophily graphs because its capacity to
disseminate information across longer distances is hampered by the proliferation of noise edges.
MTAAM shows satisfactory performance on most datasets, due to its ability to autonomously identify
the most valuable knowledge from each teacher during training. FairGKD achieves runner-up results
on some datasets. The poor performances of KDGA and BGNN result from their excessive sensitivity
to GNN selection. MSKD is equipped with the fixed message-passing mechanism, showing that
the single message-passing mechanism underperforms on all the datasets compared to PKD. The
RANDOM / # LN 5 approach refers to randomly selecting node predictions from 4 teachers, utilizing
5 labeled nodes per class to train teacher GNNs. The VOTING / # LN 5 method selects the most
frequently predicted label from 4 teachers as the annotation label. We can see that these two simple
and intuitive strategies are defeated by PKD on all datasets.

Our PKD consistently achieves superior node classification results across all datasets, irrespective
of the specific type of LLM. The few-shot node classification results after replacing Llama-3.1-8B-
Instruct with Qwen2.5-7B-Instruct [50] and Mixtral-7B-Instruct-v0.3 [51] are shown in Table 2.

Table 2: Few-shot node classification accuracy (%) on eight TAGs using three different LLMs. The
#LN 1, #LN 3, # LN 5 represent 1, 3, 5 labeled nodes per class, respectively. The best results are
highlighted in dark gray, while the runner-up results are marked in light gray.

) . ) AMAZON  OGBN-
Methods | Dataset | CORNELL WASHINGTON  TEXAS  WISCONSIN RATINGS ARXIV WIKICS PUBMED CoORA
#LN1 | 7354556 75.7041.1 8214405 7259113 7458411 5417102 7949415 82.8ligs 8645110
PKDquen | #LN3 | 7725414 77.35+0.9 84.52104  73.8610.7 7546408 60.63110 8001406 83.61111 87.74108
#LN5 | 79.84.06 79.63 106 8571402 7424402 77.69+06 62.62121 8121192 8596406 90.0740.4
#LN1 | 7631455 7442415 7941433 698105  70.02112 57.694104 8056105 82.42.09 84.87104
PKDpmixtral | #LN3 | 78.9541 5 76.74+3.1 82.864+1.7 7547108 7150426 61.17106 8196113 83.19107 87.64:11
#LN5 | 81.5812, 81.39425 8529419 7736431 7396419 6244.06 8333114 8471116 8856407

Furthermore, to evaluate the quality of LLM-generated pseudo-labels, we compare the node classifi-
cation performance of PKD and three baselines under different label settings (# LN 5, 48% training
ratio expanded by the annotated labels and real labels, respectively). The experiments are conducted
on four datasets (CORA, WIKI CS, WASHINGTON, and WISCONSIN). The results are presented in
Table 3. For GCNII and IceBerg, they are proposed to tackle the challenge of sparse labels, using the
LLM-annotated node labels can improve their performance on all datasets. However, using the same
number of real labels achieves better performance.

Table 3: Classification accuracy comparison under different label configurations. The best results are
highlighted in dark gray, while the runner-up results are marked in light gray.

Models |  Labels configuration | CORA  WIKICS WASHINGTON WISCONSIN
#LNS5 77.74 56.29 64.17 60.94
GCNII | 48% LLM-generated labels | 76.69 51.18 70.83 62.50
48% real labels 81.54 59.17 71.79 65.98
#LNS 76.23 84.88 67.76 41.53
IceBerg | 48% LLM-generated labels | 78.66 71.23 70.12 42.22
48% real labels 81.94 86.49 72.04 4543
#LNS 43.91 46.81 45.29 33.33
MSKD | 48% LLM-generated labels | 45.89 54.06 48.17 39.50
48% real labels 51.61 62.73 50.39 41.51
PKD¢iama | #LNS5 | 90.27 81.39 83.74 76.89

4.3 Ablation Study

Generally, the fine-tuned LLM using our proposed GTA prompts also demonstrates pretty zero-shot
node classification performance, surpassing some semi-supervised GNNs from the values in Figure 2.

We assess the significance of the GTA prompts, DNS and Vpxr with the following default parameter
settings: # LN =3, K =4. Here, K denotes the number of selected neighbors surrounding the node,
to be annotated, within each embedding space of the teacher GNNs structure attributes. In the absence
of DNS, neighbors are selected according to the adjacency matrix directly; in the non-use of Vpr,
we expand the training data by random selection.



Table 4: Ablation study for GTA, DNS, and Vpx. f} denotes an accuracy (%) increment. The three
components play different roles in the improvement of the performance of our method.

Dataset/Modeule | GTA DNS Vpr | Accuracy | Dataset/Module | GTA DNS Vpxr | Accuracy

x x X 45.02
x x v 126.94
CoRra X v v 1 30.99
v v v 141,14

As shown in Table 4, the implementations of
GAT prompts, DNS, and Vpg result in vary-
ing degrees of performance improvement. Sup-
ported by fine-tuning with GTA prompts, the
LLM’s enhanced logical reasoning ability, com-
bined with high-quality neighboring nodes, sub-
stantially enhances zero-shot node classification
capability, leading to superior classification per-
formance improvement. Additionally, we also
assess the methods without using reinforcement
learning in the teacher selection process, includ-
ing entropy-based ranking, i.e., selecting the
teacher GNN with the highest prediction confi-
dence, random selection, and end-to-end learn-
ing. Their relevant results are provided in the
Appendix E.2.

To assess the effectiveness of each part in the re-
ward function (Eqn. (4)), we visualize the train-

X X X 42.01
AMAZON X X v M 13.02
RATINGS X v v 1 16.96
v v 4 12397
Accuracy
90
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Figure 4: The comparison of different Rewards.
When including all three parts simultaneously, our
method (the curve in ) performs the best.

ing processes of three variants in Figure 4: (a) R;: The reward function for teacher GNN selection
depends solely on the classification accuracy of the student GNN on the expanded training data;
(b) Ry: In addition to classification accuracy, the reward function also incorporates the negative
cross-entropy loss (—Lcg); (¢) Rs: Building upon Rs, the reward function also includes the negative
knowledge distillation loss (—Lpr). As shown in Figure 4, both the three parts contribute to the

improved classification performance.

4.4 Sensitivity Analysis

We investigate the impact of the hyper-
parameter K on the zero-shot node classification
performance. We vary the value of K within
the range {1,2,3,4,5} for homophily graphs
and heterophily graphs to observe the variation
in zero-shot node classification accuracy. As
illustrated in Figure 5, accuracy exhibits signif-
icant fluctuations as K changes. When K = 4,
the fine-tuned LLM demonstrates strong perfor-
mance on most graphs.

To further explore the relationship between the
parameter scale of LLM and PKD’s perfor-
mance, we evaluated Qwen2.5-7B-Instruct with
three different parameter scales: 7B/14B/32B
parameters. The results are shown in Table 5.
Obviously, the classification performance of
PKD basically gets better with the increase of
parameter scale. This is mainly related to the

Accuracy
90
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00 e et
60 , \ Pubmed
/”, o —&— Wiki CS
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Figure 5: The effects of K on homophily and het-
erophily graphs. When K = 4, zero-shot node
classification accuracy of the fine-tuned LLM is
the highest on most graphs.

LLMs with larger parameter-scale have richer knowledge storage and better ability handling complex

tasks.



Next, we investigate the ratios of nodes selected for anno- Table 5: The few-shot node classifica-
tating their labels by the LLM as a means to expand the tion accuracy (%) of PKD with different
training set. The results are given in Table 6. Increasing parameter-scale LLM.

the expansion ratio can enhance the performance of PKD.

This improvement can be attributed not only to the high- Datasets | CoRrA
quality label annotation generated by the fine-tuned LLM, Parameter scales | 7B | 14B | 32B
but also to the characteristic of PKD that is underpinned PKDguen | 90.07 | 90.58 | 91.54
by selecting each node the most appropriate teacher GNN
C ey Datasets | PUBMED

for knowledge distillation.

Parameter scales | 7B | 14B | 32B
Furthermore, we perform the hyperparameter sensitivity PKDgwn | 85.96 | 86.64 [ 8716

analysis over the loss-weight coefficients «, 8, y,n. For
the sensitivity analysis of o, weset 3 = 1,y = 1,7 = 0.5.
This strategy also applies to the sensitivity analysis of 5 and . As for 7, we fix a, 3, and + to their
respective best values.The 3 and 1 are more sensitive than the other two hyperparameters, because (3
is related to the supervision signal provided by the LLM-generated annotation labels and 7 is related
to the student GNN’s performance. All the results are reported in the Appendix E.3.

Table 6: The results with different node annotation ratios. The best results are highlighted in dark
gray, while the runner-up results are marked in light gray.

Node annotation ratios ‘ 10% / # LN 5 20% /#LN 5 30% /#LN5 40% / # LN 5 ‘ 48% / # LN 5
AMAZON RATINGS | 50271656 55.91+1.8 62.07+3.5 6393411 | 66.79+0.3
CORA ‘ 73.37+5.1 7751411 8149495 83.2742.2 ‘ 91.1440.3

4.5 Running Time

We also study the training efficiencies of PKD and all baselines. The running times on CORA are
shown in Table 7. There is a trade-off between accuracy and time complexity. The incorporation of
the LLM undoubtedly boosts the few-shot classification accuracy of GNNs on TAGs, but the training
time increases. When applied to the bigger graphs, the time increase will be more obvious.

Table 7: Running time (second per epoch) of each method, including the pretraining process.

Datasets / Methods | T, | T | Tz | Ti | GCNII|EGNN | LLMGNN | GAugLLM | -
CorA | 0006 | 0.197 | 0247 | 0035 | 0014 | 0366 | 0630 | 0402 | -

Datasets / Methods | Self-training | AGST | IceBerg | KDGA | MSKD | BGNN | MTAAM | FairGKD | PKDyjama
CorA | 0016 | 0018 | 0011 | 3911 | 2289 | 1001 | 3318 | 4100 | 7314

5 Conclusions, Limitations & Future Work

In this work, we have proposed a preference-driven knowledge distillation (PKD) framework for
few-shot node classification on TAGs, consisting of GNN-preference-driven Node Selector (GNS)
and Node-preference-driven GNN Selector (NGS). Fine-tuned with our proposed GTA prompts,
the refined LLM generates high-quality annotations. The GNS effectively determines nodes for the
fine-tuned LLM to annotate and promotes knowledge distillation from the LLM to teacher GNNs. The
NGS tailors for each node the most appropriate message-passing mechanism, promoting knowledge
distillation from teacher GNNs to the student GNN. On various real-world TAGs, our method PKD
outperforms almost all advanced GNNs and KD methods for few-shot node classification while using
only a few node labels. One limitation of our method is that it is designed for TAGs. Moving forward,
we plan to further explore more efficient mechanism of synergizing LLM and GNN to address the
limitation of training efficiency as well as datasets beyond TAGs.
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A Detailed Description of Datasets

Table 8: Statistics of datasets. The Hom. ratio means 1-hop homophily ratio.

AMAZON OGBN-

Dataset ‘ CORNELL WASHINGTON  TEXAS  WISCONSIN RATINGS ARXIV WIKI CS PUBMED CorA
Hom. ratio 0.1504 0.1545 0.1989 0.2109 0.4771 0.6542 0.6588 0.7924 0.8252
#Node 189 214 168 264 5068 169343 11701 19717 2708

# Edge 166 182 91 388 17334 1166243 216123 88648 10556

# Features 1703 1703 1703 1703 300 128 300 500 1433

# Classes 5 5 5 5 5 40 10 3 7
Domain ‘Web page ‘Web page Web page ‘Web page Co-purchase  Co-citation ~ Wikipedia page Co-citation =~ Co-citation

CORNELL, WASHINGTON, TEXAS, and WISCONSIN:

These four datasets are derived from the WEBKB webpage dataset, collected from the computer
science departments of various universities. In these datasets, nodes represent web pages, while edges
denote hyperlinks connecting them. All words from the given web pages are collected as the features
for the nodes. The webpage categories can be listed as following: Student, Project, Course,
Staff, Faculty.

AMAZON RATINGS:

This dataset is derived from the AMAZON product co-purchasing network metadata, sourced from
the SNAP datasets [52]. Nodes represent products (Books, Music CDs, DVDs, Videos) and edges
signify relationships between products that are frequently co-purchased. The task involves predicting
the average rating assigned to each product by reviewers. The possible rating values are grouped into
five distinct classes. For node features, we utilize the NV-Embed-v2 [53] embeddings generated from
the product descriptions. To reduce the size of the graph, we only consider the largest connected
component of the 5-core of the graph.

WIKI CS:

WIKI CS is a graph derived from the Wikipedia platform. The nodes in WIKI CS represent
Wikipedia page descriptions, while the edges correspond to hyperlinks between distinct pages.
The WIKI CS dataset and its raw text [44] are sourced from OFA [54]. The graph consists
of 11,701 nodes and 216,123 edges. The WIKI CS dataset is suitable for node classifica-
tion tasks. The WIKI CS dataset is categorized into 10 distinct categories: Computational
Linguistics, Databases, Operating Systems, Computer Architecture, Computer
Security, Internet Protocols, Computer File Systems, Distributed Computing
Architecture, Web Technology, Programming Language Topics.

CORA, PUBMED, and OGBN-ARXIV:

The CORA dataset represents a co-citation graph of computer science research papers. The dataset
is sourced from OFA [54], with the original data derived from [9]. In [9], the authors recollect the
dataset due to the commonly employed bag-of-words features in the widely used CORA dataset
within the GNN community, where raw text is difficult to retrieve. The revised CORA dataset contains
2,708 nodes and 10,556 edges, matching the specifications of the original dataset. The dataset is di-
vided into 7 categories: Theory, Reinforcement Learning, Genetic Algorithms, Neural
Networks, Probabilistic Methods, Case-Based, Rule Learning.

The PUBMED dataset represents a co-citation graph of biomedical research papers focused on diabetes
mellitus. The source and processing procedure of PUBMED are identical to those of CORA. After
processing, the dataset consists of 19,717 nodes and 88,648 edges. The dataset is classified into 3
categories: Experimentally Induced Diabetes, Type 1 Diabetes, Type 2 Diabetes.

The OGBN-ARXIV dataset is a citation graph of papers from the arXiv platform. It is collected from
the Arxiv dataset and its raw text as OGB[43] and OFA [54]. There are 169,343 nodes and 1,166,243
edges in the graph. It contains 40 sub-categories of compute science.

15



B Detailed Prompts

We provide all specific prompt templates in the following for zero-shot node classification, Node-
preference-driven GNN Selector and GTA Prompts, respectively.

B.1 Prompts for Zero-shot Node Classification

The complete prompts for zero-shot node classification are provided as below. Similarly, for each
dataset, we refine specific descriptions to ensure contextual coherence.

Table 9: The prompt template for zero-shot node classification.

Role

Prompt

System
Prompt

Papers in this field can be divided into 7 categories: [Case Based, Genetic
Algorithms, Neural Networks, Probabilistic Methods, Reinforcement
Learning, Rule Learning, Theory]. You will serve as an assistant to help me to
classify this target paper into the 7 categories above according to its description and
related papers’ descriptions, who may be of the same category as this target paper. I
will provide you with the descriptions of this target paper and its related papers.

Here are the instructions:

I will provide you with information in the form of a JSON string that describes the
target paper:

Title: the title of this target paper. Abstract: the abstract of this target paper.

Related Title: the title of the related paper. Related Abstract: the abstract of the related
paper.

Related Title: the title of the related paper. Related Abstract: the abstract of the related
paper.

Requirements:

O Please provide your response in JSON format, following this structure:

Reasoning: Briefly explain your reasoning process for the predicted category.
Category: The best category you predict for this paper, this category must belong
to these 7 categories: [Case Based, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning,
Theoryl];

® There are 2000 words limits for the reasoning;

® Do not provide any other text outside the JSON string;

® Focus only on content in the actual text and avoid making false associations;

® The output can only contain category and reasoning.

User
Prompt

Title: t:;:1.. Abstract: t,psirqct-
Related Title: t'},, . Related Abstract: t":

title abstract*

Related Title: t?,, . Related Abstract: t'3

title abstract*

Related Title: t,7,, . Related Abstract: t; _, . ..

B.2 Prompts for Node-preference-driven GNN Selector

Unlike the prompts used zero-shot node classification described above, we do not collect responses
from the LLM; instead, we focus solely on the outputs generated by the subsequent projector.
Similarly, for each dataset, we refine certain descriptions to maintain contextual consistency.
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Table 10: The prompt template for Node-preference-driven GNN Selector.

Role | Prompt

IS,EI(?:EH; There are four names of teacher networks: [APPNP, GCN, H,GCN, GAT]. We
p need to perform knowledge distillation for each node in this graph consist of nodes

(papers) and edges (citation relationships). You will serve as an assistant to help me
to assign the best teacher network for the target node (paper) based on the following
information.I will provide you with three kinds of attributes of the target node (paper).
Here are the instructions:
I will provide you with information in the form of a JSON string that describes the node
(paper):
Semantic attributes: the title and abstract of this paper.
Structure attributes: four teacher networks’ logit output of this target node.
Prediction attributes: important neighbors (papers), which are closely related the
target node (paper) and their contents.
Requirements:
O Please provide your response in JSON format, following this structure:
Reasoning: Briefly explain your reasoning process for the selected teacher network.
Teacher network: The best teacher network you assign for this node (paper), this
result must belong to these 4 teachers: [APPNP, GCN, HyGCN, GAT];
@ There are 2000 words limits for the reasoning;
® Do not provide any other text outside the JSON string;
® Focus only on content in the actual text and avoid making false associations;
® The output can only contain teacher network and reasoning.

Pg)sni) ¢ Semantic attributes: It is the content description of this target paper: t.
Structure attributes: It has following important neighbors (papers), which are closely
related the target paper. Their content descriptions are: ...
Prediction attributes:
The APPNP’s logits output of this target paper is str(zappnp),
The GCN’s logits output of this target paper is str(zgon),
The HoGCN’s logits output of this target paper is str(zu,Gen ),
The GAT’s logits output of this target paper is str(zg A1)

B.3 Graph Topology Aware (GTA) Prompts

Generating effective prompts for graph-based tasks can be challenging for LLMs, due to the inherent
complexity of graph structures and relationships that must be accurately represented. To address
this challenge, we propose structured-tasks text for graph topology aware, designed specifically for
fine-tuning LLMs.

TASK 1: Connectivity This task is determining whether or not two nodes v; and v; in an
undirected graph are connected. Specifically, we randomly select node pairs v;,v; € V and ask
whether or not an edge exists between them in the graph, answering with a ”True/False” response. To
ensure prompt diversity, only one-third of the possible node pairs are selected for each graph.

TASK 2: Degree The degree of a node, D, is the number of nodes directly connected to it. In this
task, we group nodes based on their degree and select a node v; from a group. The LLM is then given
the node’s local structure according to the adjacency matrix A, and is asked for the degree of the
node. To prevent repetitive prompts, only one-third of the nodes from each degree group are selected.

TASK 3: Cycle Detection A cycle in an undirected graph without self-loop is a path where the
first and last nodes are the same. This task requires the LLM to answer whether a cycle exists in the
given sequence of nodes, {v1, ..., vy, ..., v1 }. We generate random walks [55] of length greater than
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10 and arrange them into node sequences. After describing their neighbors information (derived from
the adjacency matrix A), the LLM is then asked whether or not any sequence of nodes forms a cycle.

TASK 4: Text Generation We randomly select a node set WW = {vl}ivz/f as the source nodes,

and a breadth-first search (BFS) is conducted from each source node to identify nodes in graph at
a distance greater than ¢ edges from v;, which are collected as target nodes. Redundant nodes are
removed via the long-to-short path conversion module [56]. The LLM is tasked with generating
textual descriptions of target nodes based on the semantic attributes of the preceding nodes in the
path.

Specifically, TASK 1 enhances the LLM’s ability to identify neighboring nodes and understand the
structure of local neighborhoods; TASK 2 strengthens the LLM’s ability to recognize the significance
of node degrees within the graph context; TASK 3 reinforces the LLM to reason about complex
graph topologies, such as cycles and long-range node dependencies; TASK 4 improves path-based
reasoning and contextualization of nodes in the local graph structure.

Table 11: The prompt template for the TASK 1: Connectivity.

Role | Prompt

lsjilggin: You will serve as a graph machine learning expert in connectivity detection to help me
p to determine whether the edge exists between the given two targeted nodes. There is
a undirected graph consisting of papers (nodes) and the citation relationships (edges)
between them. I will provide the information of the two targeted nodes and their
neighbors, consisting of indexes, textual content.
Here are the instructions:
I will provide you with information in the form of a JSON string that describes the
target papers:
The first targeted paper:
Node index: ...; Title: ...; Abstract: ...;
The k;j, neighbor: Index:...; Title: ...; Abstract: ...;
The second targeted paper:
Node index: ...; Title: ...; Abstract: ...;
The k., neighbor: Index:...; Title: ...; Abstract: ...;
Requirements:
O Please provide your response in JSON format, following this structure:
Reasoning: Briefly explain your reasoning process for the selected teacher network.
Answer: You only can select one from [True, False] as the best answer;
® There are 2000 words limits for the reasoning;
® Do not provide any other text outside the JSON string;
® Focus only on content in the actual text and avoid making false associations;
® The output can only contain answer and reasoning.
Pg;i; t The first targeted paper: 4
Node index: i; Title: tj;,;.; Abstract: tg; ..., ‘
The k5, neighbor’s node index: I}, Title: t;’.“tle Abstract: ti’;stmct...
The second targeted paper:
; C e Titee £ . . 4J
Node index: j; Title: ty;,,.; Abstract: t;, . . . _
. . . I bl
The k;p, neighbor’s node index: I ,]c Title: t,%,, Abstract: t 7 . . ..

The full prompts for Connectivity is presented above. When generating prompts for different
datasets, we adjust certain descriptions to better align with the specific context. For example, when
constructing prompts for TEXAS, the background description should be adapted to reflect web pages,
and the relationship should be revised to hyperlinks, along with other context-specific adjustments.
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Similarly, for each task, the prompts must also be modified to correspond to the specific content
described in Section 3.2.

C Implementation Details and Time Complexity Analysis

Algorithm 1: The training of PKD.

Input: Gr = (V,&,X, A, T), training dataset with true labels Dy, teacher GNNs {7}, }}_, with
parameters { f%, };_,, student GNN S with parameter f%, fine-tuned LLM LLM?, Policy
Model fﬁ, Value Model f{ﬁ, epoch number of RL Ly

Output: The expanded training dataset D, optimized parameters LLM?" g* , ff; , f‘qj* and

predicted labels y.

ﬁL «~D L

LLMY « LLM?Y;

Filter out GNN-preference nodes based on the preference rank Vpr and get their annotations

from LLM?" ;

Conduct prediction distillation from LLM®" to { ff, }#_, for retrain them ;

for [ < 1to L; do

Shuffle Dy, to get a new training sequence;

Complete prompts {P;}}V, for each selected nodes;

for each node vpr € Dy, do
NSG select teacher GNN for vp and get one-hot vector m;;
Update the parameter fg and get reward R; by Eqn. (1);
Store (P;, m;, R;) to the episode history F;

| Update the parameter f4 and f$ by Eqn. (5) and Eqn. (6) ;

A AR

*

return Dy, LLM?" | £

First of all, we outline the training setup employed for the experiments detailed in Section 4.2.
Uniform training hyper-parameters are applied across all baseline models and datasets. Specifically,
the following hyper-parameter values are utilized: the hidden dimension is set to 128. We use ReLU
activation functions in all our baseline models. The Adam optimizer is utilized with a learning rate
of 1 x e~2 and weight decay of 5 x e~*. We train each baseline for 600 steps and select the best
step based on the validation accuracy. In our proposed method, we train the student 5 epochs after
GNN selection driven by node attributes every time and train the agent 200 epochs. The other weight
hyper-parameters are set as follows: « = 0.5, =1,7=0.1,7=0.3,¢; = 0.5,¢c5 = 0.01,e = 0.2.

Additionally, the parameters of Action Model and Value Model are updated as follows:

fh 4 A= paVie(La+ 1Ly — caH(wr)) )

Fo = f = vV e Ly ©)

where ff1 and f$ represent the trainable parameters of the Policy Model and Value Model, respectively.
pa and py are their learning rates and V 7 and V o are the gradients of their parameters. £ 4 and

Ly are objective functions belonging to the Policy Model and Value Model, respectively. c1, co are
hyper-parameters to balance weights. H (71 ) is employed to enhance the entropy of the policy and
promote sufficient exploration. Based on the CLIP strategy [41], the final objective function of the
Policy Model is:

L4 = —Ei[min(r;(f)Ai, clip(ri(f4),1 — €, 1 + €)A;)] @)

where |E; represents the expectation in the time step 7. 7;(f%) is the ratio of the i-th policy to the

(i — 1)-th policy. A; is the advantage estimation in the current step, denoting how good or bad the
Action is. € is a hyper-parameter, which determines the range of the CLIP operation.
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The objective functions of the Value Model and H () are:
Ly =E(f{(P;) — R;)?] ®)
Hlmp] = —E;[m o (A7|P;)logn go (Ar|Pi)] €)

where f$ (P;) and Ri denote the Value Model’s estimation of State P; and the target value of real
Reward R;, respectively. Ar denotes the specific action and 7 £ (Ar|P;) is the probability that

Policy f9 takes action A in state P;.
The detailed training procedure is shown in Algorithm 1.
The specific analysis of the time complexity of PKD training and testing are provided below:

The time complexity of PKD training is mainly divided into three parts: LLM fine-tuning (Line 2),
GNN-preference-driven Node Selector (Line 3-4) and Node-preference-driven GNN Selector (Line
5-12). The GNN-preference-driven Node Selector also can be divided into the annotations generation
and prediction distillation.

Table 12: The GTA fine-tuning configurations on Llama-3.1-8B-Instruct.

Model Name  |Dataset Size| Epoch |lora_r|lora_alpha| Optimizer |Learning Rate| Time Cost
Llama-3.1-8B-Instruct| 53,617 | 2 | 4 | 4 | AddamW [57]| le—* |9h 41m 48s

First, we use Low-Rank Adaptation (LoRA) strategy [58] for efficient parameter training, with
hyperparameters set to 7 = 4, a = 4, epoch = 2 (as shown in Table 12), and the rest are set
according to the default settings of llama-factory’. Weight merge is also involved. In general, the
time complexity of this part is O(nLdr + Ld?r), where n is the number of instructions, L is the
number of layers applying Lora, and d is the dimension of the LLM hidden layer. » < d, so the time
complexity is bound by O(N Ld + Ld?).

Table 13: The time costs on CORA and OGBN-ARXIV of annotations generation by Llama-3.1-8B-
Instruct.

Dataset | CORA | OGBN-ARXIV
Time / GPU-hours | 0.11 | 1.68

The process of annotations generation includes sorting the selected nodes and the reasoning process
of LLM, and its time complexity is O(W log W) and O(W L' (I*d + 1d?)), where W is the number
of selected nodes, L’ is the number of transformer layers in LLM, and [ is the input sequence length.
Generally, W < [, L' < [, then the time complexity is O(I2d + 1d?).

Table 14: The time costs of retraining teacher GNNs on CORA and OGBN-ARXIV.
Datasets \ Teacher GNNs (11,15, T3,Ty4) \ Total running time (seconds)

CORA GCN, GAT, APPNP, H2GCN 24716
OBGN-ARXIV GCN, GAT, APPNP, H2GCN 18.2017

The time complexity of teacher GNN (2-layers) re-training is bound by O((NF' + M)D), where N
is the number of nodes, F' is the node feature dimension, M is the number of edges, and D is the
GNN hidden layer dimension.

The time complexity of Node-preference-driven GNN Selector is O(W (I%d + 1d? + dd’ + d'a)),
where d’ is the dimension of the MLP hidden layer, a is the number of action categories, W < I,
a < d, so the time complexity is bound by O(I?d + ld* + dd'). The training time complexity of
student GNN is O((NF + M)D). Therefore, the overall time complexity is bound by O((L +
20)d% + (d' + nL)d + 2*> + 2D(NF + M)).

*https://github.com/hiyouga/LLaMA-Factory
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Table 15: Peak memories and running times of Node-preference-driven GNN Selector on CORA and
OBGN-ARIXV. "m" and "s" denote minute and second.

Dataset | Peak memory | Running time / epoch
CORA 454.62 MB 7.9s
OBGN-ARIXV | 1655.18 MB 44m 8.3s

The inference time complexity of PKD is determined by the testing process of the student GNN. So
its time complexity is bound by O((NF + M) D).

Specifically, We implement our proposed PKD with PyTorch (2.5.1) [59], PyTorch Geometric
(2.6.1) [60], Python (3.10.16), Transformers (4.50.3), and vllm (0.7.0). We conduct all experiments
on the NVIDIA A800-SXM4-80GB GPU and Intel(R) Xeon(R) CPU Max 9468.

The time costs for GTA fine-tuning, the Distance-based Neighbor Selector, LLM annotation, teacher
re-training, and the PPO loop on Cora and Ogbn-Arixv are presented in Tables 12, 13, 14 and 15,
respectively. The peak memories of performing PKD on the Cora and Ogbn-Arxiv are also listed in
Table 15.

D Proofs for Propositions 3.1

The uncertainty usually refers to a measure of the confidence of a model in predicting a certain
sample. From the perspective of collective consensus [40], we define the K -uncertainty of one node
as the deviation of each teacher GNN’s prediction probability distribution from the overall prediction
probability distribution. From the Proposition 3.1, we can get that, the larger d of one node, the
stronger the uncertainty of this node, which is more beneficial to teacher GNNs training.

Proof. For each node v, the prediction probability distributions of B teacher GNNs can be denoted
by Pi, P, ..., Pg. The K-uncertainty of node v is defined as:

N

o) 2 Y [DrL(P()||P(v) + Dir(P;(v)||Pi(v))] (10)

1<i<j<B

Here, we define the average prediction probability distribution as following:

Definition D.1. The average prediction probability distribution M is the benchmark for the overall
prediction probability distribution to measure both the models confidence and the consistency of each
GNN with the overall probability distribution.

B
Z (11)

B
Then, the uncertainty of node v is,
ZDKL v)||[M(v)) (12)
According to Jenson’s inequality, we have
0k (v) > N3, (13)
For any probability distribution P, we have
Dy (P|IM)=H(P,M)— H(P) (14)
Then,
=+ SIH (P, M)~ H(P)] (15)
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As the K -uncertainty increases, the entropy of the GNN’s prediction probability distribution P; in-
creases, and the cross-entropy H (P;, M) grows significantly due to the larger probability distribution
differences. So there is,

B
Ok (v) o< Y [H(P;, M) — H(P;)] o< 6, (16)

i=1
That is,
Ox (V) o 0y (17)
From the Proposition 3.1, we also can get that, selecting high-uncertainty nodes to expand the
training set benefits GNNS training.
For a GNN with prediction probabilities P(y = c|v), the entropy of an unlabeled node v is

C
H(v) ==Y Py = clv)log P(y = clv) (18)

c=1
To maximize information gain, we select the node v* with the highest uncertainty (entropy):

v* = argmax H (v) (19)

After expanding v* to the training dataset, the loss function becomes:
Enew - ACold(e) + E(f@(’v*)ay*) (20)

Here, y* is considered the true label based on the fine-tuned LLM. The GNN parameters are updated
as:

enew = eold - vﬁ‘c(fé’(v*)v y*) (21)

Since the prediction probability distribution of v* is close to uniform (due to high entropy) [61], the
gradient more effectively corrects the GNN parameters [62], reducing the error. According to the
preference rank: Vpgr = Sort({v1,...,un},0k(v1),0k (v2),...,dx(vN)), we can get the follows:

. 1
25 (D) = arg min WZE(f%,vi) (22)

1;i€{’u71,R,1)$,R,...,v7‘;VR|6K(v7‘;VR)>SK}

where Dy, is the expanded training dataset. qu* is the optimal parameter of teacher GNN. v,
represents the w-th nodes in the preference rank.

O
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E Other Experimental Results

E.1 Visualization

Figure 6 presents the outstanding node classification performance we mentioned in Section 4.2, which
is illustrated by the t-SNE [63] visualization of the embedding spaces for CORA. Notably, Figure 6(a)
illustrates the results of the student GNN (GCN) under the # LN 5 condition.

From the Figure 6, we can see that, some KD methods fail to enable the student GNN to learn
discriminative node representations, as evidenced by the absence of clustered structures in the
embedding space, exemplified by MSKD, BGNN, and MTAAM. GCNII and KDGA struggle to
form well-separated clusters, whereas methods like LLMGNN, GAugLLM, and FairGKD yield
clusters with limited purity. Compared to these baselines, our method generates embeddings with
significantly enhanced inter-class separability and high cluster purity, resulting in improved few-shot
node classification performance.
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Figure 6: T-SNE [63] visualizations on CORA.
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The results on Cora and Amazon Ratings using our PKDy j,n,, (RL-based method) and the other three
teacher selection methods (Entropy-based ranking, i.e., selecting the teacher GNN with the highest
prediction confidence, Random selection, and End-to-end learning) are shown in Table 16. It is
obvious that the RL-based method significantly outperforms the other three methods.
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Table 16: Performance comparison of Entropy-based ranking, Random selection, End-to-end learning
and RL-based approach on CORA and AMAZON RATINGS.

Methods | CORA | AMAZON RATINGS
Entropy-based ranking | 75.70 55.74
Random selection 62.80 63.05
End-to-end learning 60.29 60.39
PKDy jama (RL-based) | 90.27 | 65.93

E.3 Hyperparameters Sensitivity Analysis

As mentioned in Sec. 4.4, we perform the hyperparameter sensitivity analysis over the loss-weight
coefficients «, 3, v, n on two datasets, and report the results in Tables 17, 18, 19 and 20. As result,
the proposed PKD can achieve much better performance when o = 0.5,3 = 1,7 = 0.1, = 0.3.

Table 17: The influence of «.

a | 03] 04]05[06]07]08[09] 1 | 2
CorA |73.78 | 74.70 | 75.66| 73.15 | 72.41 | 69.05 | 72.7169.49 | 70.12
AMAZON RATINGS | 61.81[62.86 | 63.83] 62.76 | 61.30| 60.28 | 60.47 | 61.66 | 61.74

Table 18: The influence of 3.

B |o25] 05| 1 | 2
CORA |64.10| 67.17 | 75.36] 74.15
AMAZON RATINGS | 62.94 | 63.23 | 63.91 | 63.93

Table 19: The influence of ~.

v 005 01 | 02 05| 1 | 2
Cora | 68.90 | 70:12] 63.77 | 64.40 | 65.06 | 62.66
AMAZON RATINGS | 62.58 | 64.01 63.71 | 63.63 | 63.93 | 63.93

Table 20: The influence of 7.

" | 01 ] 03 |05]07]09
CORA 89.96 | 90.27 | 88.43 | 86.67 | 89.42
AMAZON RATINGS | 64.87 | 65.93 | 64.79 | 63.75 | 63.81

F Broader Impact

The proposed PKD offers significant broader impacts by enhancing few-shot node classification on
TAGs. By combining the strengths of LLM and GNN, it improves learning efficiency, reducing the
need for expensive and time-consuming manual annotation. This can benefit industries like social
media, recommendation systems, and network analysis, enabling more accurate and scalable models
for personalized services, fraud detection, and dynamic optimization.

Additionally, PKD can tailor message-passing mechanisms to node-specific attributes can lead to
more adaptive and efficient machine learning models. It also democratizes access to advanced
machine learning, allowing smaller organizations and researchers with limited resources to develop
effective models. However, ethical considerations, such as privacy and fairness, must be prioritized to
ensure responsible deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a preference-driven knowledge distillation (PKD)
framework that unites LLMs and various-architectures GNNs for few-shot node classification
on TAGs. We claim the contributions and scope in the abstract and introduction sections
(See Abstract and Introduction Section).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In this work, we discuss the limitations of our research and outline directions
for future work (See Conclusion).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In this work, we provide the Proposition 3.1 and its complete proof(See
Method and Appendix. D).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself (See Experiments and Appendix. C).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For the datasets disclosed in the article, we have provided information regarding
their sources and origins (See Appendix. A).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we have specified all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results
(See Experiments and Appendix. C).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In this paper, we have reported the standard deviation of the experiments (See
Experiments and Appendix. E).

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this paper, we provide detailed information about the experimental resources,
including GPU configurations used in our studies and running time costs about all methods
(See Experiments).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the societal impacts of the work (See Appendix F).
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not address issues related to this aspect.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The research presented in this paper is not concerned with new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve experiments or research related to human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not address potential risks incurred by study participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs is an important component of the core methods in this research and we
has describe the usage in detail (See Method, Experiments and Appendix C).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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