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Abstract

Social relationship recognition, which infers001
relationship types between individuals, is cru-002
cial for the deep understanding of semanti-003
cally rich multimodal scenarios, supporting a004
wide range of downstream applications. How-005
ever, despite advances in classification accu-006
racy achieved by end-to-end learning frame-007
works and knowledge-enhanced models, cur-008
rent approaches still face challenges in gener-009
alization, interpretability, and efficiency. In010
this paper, we introduce Social-R1, a multi-011
modal large language model trained with rein-012
forcement learning (RL) for social relationship013
recognition. Our approach enables end-to-end014
reasoning directly from images and bounding015
boxes, without requiring multi-stage pipelines016
or handcrafted prompts. Social-R1 achieves017
state-of-the-art performance on the PIPA and018
PISC benchmarks, while generating human-019
understandable rationales that significantly im-020
prove interpretability in social relationship021
recognition. The code is available at https://022
anonymous.4open.science/r/Test-57B7.023

1 Introduction024

Social relationships play a pivotal role in our lives,025

profoundly influencing our emotional, psycholog-026

ical, and physical well-being while forming the027

foundation for human social activities (Kitayama028

and Markus, 2000). In this case, social relationship029

recognition aims to infer the types of social relation-030

ships between individuals (e.g., parent-child, ro-031

mantic partners, colleagues), which provides valu-032

able insights for understanding human daily life.033

Besides, social relationship information can also034

facilitate progress in related fields, such as plot035

analysis, video question answering, and intelligent036

content distribution.037

However, social relationship recognition is a038

high-level cognitive task that requires integrating039

rich prior knowledge and semantic information040

about social relationships (Wang et al., 2018; Li041

et al., 2020; Guo et al., 2023; Yu et al., 2024). For 042

instance, GRM (Wang et al., 2018) integrates a 043

knowledge graph into its model to leverage contex- 044

tual object information, while TRGAT (Guo et al., 045

2023) utilizes logical constraints among multiple 046

social relationships within the same scene. Un- 047

fortunately, although these models have demon- 048

strated impressive performance, they continue to 049

be constrained by challenges in generalization and 050

interpretability, i.e., there is no assurance that they 051

will perform reliably in unseen scenarios, nor can 052

they consistently offer transparent or understand- 053

able reasoning behind their outputs. 054

Moreover, with the development of Large Lan- 055

guage Models (LLMs), LLM-based solutions have 056

increasingly been adopted for social relationship 057

reasoning. For instance, SocialGPT (Li et al., 2024) 058

constructs "social stories" as intermediate represen- 059

tations and then leverages prompt engineering to 060

reason about social relationships. Although this 061

method does not require fine-tuning on downstream 062

tasks and demonstrates interpretability, its complex 063

multi-stage process and reliance on prompt designs 064

lead to high inference latency and sensitivity to 065

prompt. Recently, Multimodal Large Language 066

Models (MLLMs), which are built upon LLMs 067

and inherit their reasoning potential while possess- 068

ing the ability to process multimodal inputs, have 069

been used to handle vision classification tasks (Wu 070

et al., 2023; Zhang et al., 2024). Besides, stud- 071

ies (Li et al., 2025; Zhou et al., 2025; Liu et al., 072

2025a; Zhan et al., 2025) have primarily explored 073

how reinforcement learning (RL) can enhance the 074

performance of MLLMs in specific tasks, such as 075

perception tasks and logical reasoning tasks. How- 076

ever, social relationship reasoning, which is a task 077

that demands both accurate visual perception and 078

detailed reasoning in complex social contexts, re- 079

mains underexplored. 080

To address the above challenges, we introduce 081

Social-R1, a novel multimodal LLM with explicit 082
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Figure 1: Comparisons of different technical frameworks for social relationship recognition task.

reasoning capabilities that excels at social relation-083

ship reasoning tasks. The approach integrates per-084

ception and reasoning into a single forward pass by085

directly processing images with bounding boxes,086

thus eliminating the need for complex multi-stage087

pipelines or handcrafted prompts. As shown in Fig-088

ure 1, we first design a multimodal language model089

that takes an image and a corresponding query as in-090

put and generates multiple sampled answers. These091

answers are then evaluated by a rule-based reward092

system, which provides feedback signals to im-093

prove model performance. Subsequently, we de-094

ploy an RL-based training module that not only095

optimizes the model for better performance but096

also enables it to generate human-understandable097

rationales, thereby enhancing interpretability.098

The technical contributions of this paper could099

be summarized as follows:100

• We propose Social-R1, a novel multimodal large101

language model that excels at social relation rea-102

soning tasks with explicit reasoning capabilities.103

• We achieve accurate and interpretable results by104

employing RL-based methodology and utilizing105

a rule-based reward system to obtain feedback106

signals.107

• Experiments demonstrate that our method yields108

the state-of-the-art performance and explainable109

results on the PIPA and PISC benchmarks.110

2 Related Works 111

2.1 Social Relation Recognition 112

In recent years, social relationship recognition has 113

received widespread attention. For instance, Sun 114

et al. (2017) followed Bugental’s domain-based 115

theory (Bugental, 2000) and annotated the PIPA 116

dataset, which has become one of the most popular 117

benchmarks for social relation recognition. Simi- 118

larly, Li et al. (2017) adopted the relational models 119

theory (Fiske, 1992) and contributed the People in 120

Social Context (PISC) dataset. 121

Building upon these datasets, Dual-Glance (Li 122

et al., 2017) introduced a dual glance model, where 123

the first glance focuses on analyzing the pair of 124

individuals of interest, and the second glance cap- 125

tures contextual information derived from objects 126

detected in the scene. Noticng that there are often 127

multiple social relations within the same image, 128

GR2N (Li et al., 2020) proposed to jointly infer all 129

relations on an image with graph neural networks. 130

Additionally, MGR (Zhang et al., 2019) utilized 131

both the person-object graph and the pose graph 132

of individuals to represent actions between people 133

and objects, as well as interactions among pairs of 134

people. Moreover, GRM (Wang et al., 2018) con- 135

structed a knowledge graph comprising persons and 136

objects within an image, while TRGAT (Guo et al., 137

2023) further considered higher-order constraints 138

for social relations on an image and achieved bet- 139

ter results. More recently, GRIT (Yu et al., 2024) 140

leveraged global self-attention mechanisms and 141

graph representation learning to achieve multi-level 142

conditional attention. While these methods have 143
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achieved superior performance in terms of accu-144

racy, they still lack the ability to explain their pre-145

diction results and exhibit limited generalization146

capabilities.147

2.2 Reinforcement Learning for MLLMs148

Recently, works like OpenAI-o1 (Jaech et al., 2024)149

and DeepSeek-R1 (Guo et al., 2025) have made150

significant breakthroughs in lifting the reasoning151

capability of LLMs through reinforcement learn-152

ing (RL). Subsequent advancements (Shao et al.,153

2024; Team et al., 2025; Guo et al., 2025) enhance154

their proficiency in solving complex tasks in chains,155

including challenging math and coding problems.156

Building on these models, SocialGPT (Li et al.,157

2024) combines the reasoning capability of LLMs158

with the perceptual power of Vision Foundation159

Models (VFMs), achieving modular, training-free160

social relation reasoning.161

Meanwhile, recent advances in MLLMs have162

demonstrated a simple approach to visual reason-163

ing, which involves directly querying a multimodal164

LLM about an image and receiving a response. For165

these MLLMs, many efforts (Zhou et al., 2025;166

Liu et al., 2025a; Zhan et al., 2025; Deng et al.,167

2025a; Peng et al., 2025; Liu et al., 2025b; Yang168

et al., 2025; Deng et al., 2025b) have applied RL169

techniques with verifiable reward mechanisms to170

further boost visual reasoning performance. Specif-171

ically, CLS-RL (Li et al., 2025) further improves172

the performance of MLLMs on visual classifica-173

tion tasks through reinforcement learning methods.174

Motivated by these prior works, in this paper, we175

explore the application of RL techniques to train176

MLLMs specifically for social relationship reason-177

ing tasks.178

3 Methodology179

In this section, we present our methodology for180

training Social-R1. Our approach integrates struc-181

tured prompting with reinforcement learning to182

enable end-to-end reasoning from visual inputs to183

relationship predictions. In detail, we first describe184

our prompting strategy that encourages explicit rea-185

soning before prediction, followed by our reinforce-186

ment learning framework based on Group Relative187

Policy Optimization (GRPO) (Shao et al., 2024).188

3.1 Instruction prompt189

Following (Shao et al., 2024), we designed a190

prompt that encourages models to first engage in191

a thinking process before ultimately delivering the 192

answer. The prompt is designed as: 193

• {Question} Output the thinking process 194

in <think> </think> and final answer in 195

<answer> </answer> tags, i.e., <think> 196

reasoning process here </think><answer> 197

answer here </answer> 198

MLLMs can accurately localize the correspond- 199

ing object in the image, when answering visual 200

questions (Zhang et al., 2025). Inspired by this, we 201

directly place the bounding boxes of the individu- 202

als of interest in the query, and following previous 203

works (Zhang et al., 2024; Li et al., 2025) that 204

use MLLMs for image classification to design our 205

question: 206

• What are the most likely social 207

relationships between bounding box {bi} 208

and {bj}? Choose only one from {Class 209

Name}. 210

where {bi} and {bj} are replaced by the specific 211

bounding boxes of individuals of interest, and 212

{Class Name} is replaced by the candidate label 213

list. This design enables MLLMs to perform per- 214

ception and reasoning in a single forward pass. 215

3.2 GRPO-based Training Strategy 216

After constructing the instruction prompt, we 217

demonstrate how to enhance the model’s reason- 218

ing ability regarding relationships between peo- 219

ple. Firstly, to capture fine-grained visual clues 220

from the input image I—the basis for our reason- 221

ing—we employ a pretrained Vision Transformer 222

(ViT) to extract token-level visual features, keeping 223

its weights frozen during the training stage. Next, 224

we enhance the reasoning skills of LLMs, and lever- 225

age their extensive social knowledge to predict and 226

interpret the relationships among individuals in the 227

image. 228

Specifically, to further strengthen the model’s so- 229

cial relationship reasoning ability, we adapt Group 230

Relative Policy Optimization (GRPO) (Shao et al., 231

2024). GRPO has already demonstrated strong 232

potential for enhancing the model’s reasoning abil- 233

ity. It uses the average reward of sampled re- 234

sponses as a baseline for computing advantages. 235

The overall process is illustrated in Figure 2. Given 236

an input question q and the extracted visual fea- 237

tures of the corresponding image, the policy model 238

πθold samples a set of responses {o1, o2, . . . , oG}, 239
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Figure 2: This diagram illustrates a reinforcement learning framework for training vision-language models on social
relationship recognition tasks. The left section shows an input image with a question about social relationships
between the bounded regions. The center details the policy optimization process, where a vision transformer and
language model generate multiple candidate completions that are evaluated through two pathways: a rule-based
reward system and a reference model utilizing KL divergence. The right section defines the reward structure,
combining format correctness and answer accuracy into a total reward score that guides model optimization.

each evaluated by reward functions to yield scores240

{r1, r2, . . . , rG}. The normalized advantage is241

then computed as:242

Ai =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(1)243

The model πθ is updated by maximizing the fol-244

lowing clipped KL-regularized objective:245

JGRPO(θ) = E{oi}Gi=1∼πθold
(O|q)[

1

G

G∑
i=1

min
( πθ(oi | q)
πθold(oi | q)

Ai,

clip
( πθ(oi | q)
πθold(oi | q)

, 1− ε, 1 + ε
)
Ai

)
− β DKL

(
πθ

∥∥πref

)]
(2)246

The KL divergence loss is computed as:247

DKL(πθ∥πref) =
πref(oi|q)
πθ(oi|q)

− log

(
πref(oi|q)
πθ(oi|q)

)
− 1 (3)248

where ε and β are the PPO clipping hyper-249

parameter and the coefficient controlling the Kull-250

back–Leibler (KL) penalty (Shao et al., 2024;251

Schulman et al., 2017), respectively. GRPO elimi-252

nates the critic model in PPO by estimating the rel-253

ative advantage by sampling a group of responses254

{oi}Gi=1 and normalizing their rewards within the255

group to compute a relative advantage, which is256

more computationally efficient (Shao et al., 2024).257

Reward function. To ensure the reliability and258

explainability of our results, we employ the Format259

Reward function. Additionally, to promote the ac-260

curacy of the classification results, we utilize the261

Accuracy Reward function. 262

1) Format Reward. We implement a format-based 263

reward to encourage structured reasoning. The 264

Format Reward guides the model in adopting 265

a standardized response format and optimizing 266

answer selection. Specifically, we require the 267

models to enclose their reasoning process within 268

<think></think> tags and their final answers 269

within <answer></answer> tags. 270

Rformat =

{
1, if the format is correct
0, if the format is incorrect

(4) 271

2) Accuracy Reward. To check the correct answer, 272

we use a regular expression-based approach to eval- 273

uate answer accuracy. Specifically, We extract the 274

answer from the <answer> ... </answer> tag, and if 275

it matches the ground-truth answer exactly, it will 276

get a reward of 1 point. 277

Ranswer =

{
1, if the answer is correct
0, if the answer is incorrect

(5) 278

The total reward, ri, combines both accuracy 279

and format rewards. Both reward components are 280

indispensable: without the format reward, the final 281

answer cannot be reliably extracted; without the 282

accuracy reward, model training cannot converge 283

as expected. 284

4 Experiments 285

4.1 Data and Evaluation 286

We evaluate our model on two widely-used bench- 287

marks for social relationship reasoning: PIPA (Sun 288
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et al., 2017) and PISC (Li et al., 2017). The PIPA289

dataset defines 16 fine-grained social relationships,290

including family (e.g., parent-child, grandparent-291

grandchild), personal (e.g., friends, spouse/lovers),292

educational and occupational (e.g., teacher-student,293

leader-subordinate), and group-based (e.g., band,294

sports team, colleagues) relationships. For evalua-295

tion on the PIPA dataset, we use overall accuracy296

across all categories. Meanwhile, the PISC dataset297

categorizes social relationships into friend, family,298

couple, professional, commercial, and no-relation.299

For the PISC dataset, we report accuracy instead300

of the mAP (mean Average Precision) metric, be-301

cause traditional methods calculate mAP based on302

logit distributions, whereas our model directly out-303

puts text predictions. The data split used in our304

experiments is summarized in Table 1.305

Table 1: Statistics of the PIPA and PISC datasets.

Dataset Train Pairs Val Pairs Test Pairs

PIPA 13,729 709 5106
PISc 55,400 1505 3961

4.2 Experiments settings306

Implementation Details. We utilize Qwen2-VL-307

2B-Instruct (Wang et al., 2024) as the base model.308

Qwen2-VL (Wang et al., 2024) introduces the309

Naive Dynamic Resolution mechanism, which en-310

ables the model to dynamically process images of311

varying resolutions into different numbers of visual312

tokens. We froze the parameters of the visual en-313

coder and fine-tuned the other parameters of the314

model. The batch size is set to 1 per GPU and315

we use 2-step gradient accumulation during train-316

ing. Our implementation builds on public MLLM317

reasoning toolkits (Chen et al., 2025). For both318

datasets, the number of candidate generations G319

is set to 8. We use a learning rate of 2e-6, a tem-320

perature parameter of 1, and train each model for321

1 epoch. All experiments are conducted on four322

NVIDIA A6000 GPUs(48 GB). All other hyperpa-323

rameters are configured according to the settings324

recommended in Chen et al. (2025).325

Baselines. We compare Social-R1 with prior su-326

pervised approaches, including Pair CNN (Li et al.,327

2017), GR2N (Li et al., 2020), GRM (Wang et al.,328

2018), and GRIT (Yu et al., 2024), which only329

output answers without providing reasoning ratio-330

nales. We further compare our method with So-331

cialGPT (Li et al., 2024), an LLM-based method 332

capable of generating rationales, and open-source 333

MLLMs, such as Qwen2-VL-2B and Qwen2-VL- 334

7B, both of which exhibit good performance and 335

interpretability.

Table 2: The comparison results on the PIPA dataset.
WR stands for answering with reasoning. WR stands
for answering with rationales.

Methods WR Acc (%)

Pair CNN (Li et al., 2017) ✘ 58.0
Dual-Glance (Li et al., 2017) ✘ 59.6
SRG-GN (Goel et al., 2019) ✘ 53.6
GRM (Wang et al., 2018) ✘ 62.3
MGR (Zhang et al., 2019) ✘ 64.4
GR2N (Li et al., 2020) ✘ 64.3
TRGAT (Guo et al., 2023) ✘ 65.3
SocialGPT (Li et al., 2024) ✔ 66.7
GRIT (Yu et al., 2024) ✘ 73.7
Qwen2-VL-2B ✔ 64.1
Qwen2-VL-7B ✔ 74.0

Social-R1 ✔ 80.9

336

Table 3: The comparison results on the PISC dataset.
Previous methods are replicated with open-source code
to report the accuracy metric. WR stands for answering
with rationales.

Methods WR Acc (%)

Pair CNN (Li et al., 2017) ✘ 46.3
GRM (Wang et al., 2018) ✘ 64.2
GR2N (Li et al., 2020) ✘ 64.7
SocialGPT (Li et al., 2024) ✔ 65.1
GRIT (Yu et al., 2024) ✘ 76.0
Qwen2-VL-2B ✔ 50.9
Qwen2-VL-7B ✔ 55.3

Socia-R1 ✔ 76.6

4.3 Experimental Results 337

Main Results. Tables 2 and 3 present a comprehen- 338

sive comparison of our proposed Social-R1 model 339

against previous state-of-the-art approaches on the 340

PIPA and PISC datasets, respectively. The results 341

clearly demonstrate the superior performance of 342

our approach. On the PIPA dataset, Social-R1 343

achieves an impressive accuracy of 80.9%, signif- 344

icantly outperforming all previous methods. This 345

represents a substantial improvement of 7.2 % over 346
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Question: What are the most likely 

social relationships between 

bounding box [137, 78, 326, 397] 

and [0, 245, 52, 441]? Choose only 

one from [friends, family-members, 

couple, professional, commercial, 

no-relationship]. 

<think>The image features two individuals: 

one is mounted on a horse (bounding box 

[137, 78, 326, 397]), and the other appears to 

be leading the horse by holding its reins 

(bounding box [0, 245, 52, 441]). Given the 

context of a horse racing or equestrian 

environment, the most plausible relationship 

is professional. The person on the horse is 

likely a jockey, and the person leading the 

horse is a handler or assistant, both 

collaborating in a professional 

capacity. …</think>

<answer>professional</answer>

Social-R1:

Ground Truth: No relationship

Gemini-2.5-pro:

<think>The image depicts a scene at a horse 

racetrack, likely Emerald Downs, as indicated 

by the sign in the background.

Bounding box highlights the jockey mounted 

on the horse. The jockey is wearing racing 

attire, including a helmet, goggles, and silks.

Bounding box highlights a person walking to 

the left of the horse and jockey. This person 

is wearing a teal jacket and dark pants.    ……

In the context of a horse race, the jockey is a 

professional rider. The person walking 

alongside could be a trainer, owner, groom, 

or another member of the horse's support 

team. These roles all imply a professional 

connection to the jockey and the event.

Given the setting (racetrack) and the 

attire/roles (jockey and likely a member of the 

horse's team), the most appropriate social 

relationship is professional. </think>

<answer>professional</answer>

GPT4-o:

<think> The person on the horse is likely 

the jockey, who is a professional and is 

riding the horse in a race. The person in 

the blue jacket is likely a spectator or a 

staff member at the race track. </think>

<answer> no-relationship </answer>

<think>

The bounding box [137, 78, 326, 397] likely 

refers to the jockey on the horse, and the 

bounding box [0, 245, 52, 441] likely refers to 

the man leading the horse. Based on the 

context provided in the image analysis:

1.The jockey is riding the horse, and the man 

is leading the horse.

2.The setting appears to be at a racetrack 

("Emerald Downs"), indicating that both 

individuals are involved in horse racing.

3.The man leading the horse is likely 

responsible for guiding and preparing the 

horse, which is a typical role for a groom or 

handler in the racing industry.

Given these observations, the relationship 

between the jockey and the man leading the 

horse is most likely professional.

</think>

<answer>professional</answer>

Qwen2.5-VL-32B:

Figure 3: Comparison of baseline models and Social-R1. Explanation of Bias in Various Baseline Models GPT-4o
was unable to accurately locate the person in the second bounding box. Qwen2.5-VL-32B cannot describe the
content within the second bounding box. Gemini-2.5-pro is able to accurately describe the characteristics of people
in both boxes. However, due to the presence of bias, the model still provided an incorrect answer.

Table 4: Comparison with Advanced MLLMs on the
PIPA dataset with Social-R1.

Model WR Acc(%)

LLaVA ✔ 45.1
Qwen2.5-VL-32B ✔ 64.9
GPT-4o ✔ 75.1

Social-R1 ✔ 80.9

the previous best model, GRIT (Yu et al., 2024),347

which achieved 73.7% accuracy. Social-R1 also348

outperforms Qwen2-VL-7B which achieved 74.0%349

accuracy, despite being smaller in scale. On the350

PISC dataset, Social-R1 achieves 76.6% accuracy,351

surpassing the previous best model GRIT by 0.6%.352

Compared to the most competitive classification-353

only methods, we still have improvement.354

Notably, among all approaches, only Social-355

GPT (Li et al., 2024), Qwen2-VL models and our356

Social-R1 provide answers with explicit reasoning.357

Compared to SocialGPT, our social-R1 shows sig-358

nificant improvement in accuracy, exceeding by359

14.2% on the PIPA dataset and by 11.5% on the360

PISC dataset. This demonstrates that after rein-361

forcement learning training, our 2B model can out-362

perform SocialGPT’s 13B model.363

We also noticed that Qwen2-VL-7B performed364

even better than the best-performing method GTRI365

on the PIPA dataset. After analyzing its outputs, we366

discovered that it tends to provide multiple answers367

within the <answer> tags, as shown in the Figure368

6, which led to its inflated accuracy. 369

Moreover, we also compared Social-R1 with 370

three advanced multimodal large language models, 371

including LLaVA (Liu et al., 2023), Qwen2.5-VL- 372

32B (Bai et al., 2025), and GPT-4o (Hurst et al., 373

2024) on the PIPA dataset. As results shown in 374

Table 4, we found that, although Social-R1 has 375

a smaller model size, it outperforms the high- 376

performing GPT-4o by 5.8% in accuracyfurther 377

demonstrating the effectiveness of our approach. 378

4.4 Model Bias 379

Figure 4: Comparison of relation recognition accuracy
between Qwen2-VL-2B and Social-R1 across different
relationship categories on the PISC dataset.

Foundation models usually exist biases. As 380

shown in Figure 3, we analyzed the accuracy of 381

the base model Qwen2-VL-2B and Social-R1 on 382

various relationship categories on the PISC dataset. 383

Social-R1 demonstrates consistently higher accu- 384
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Social-R1

<think> The woman is wearing a white sleeveless top and a pink skirt, 

which suggests that she might be a salesperson or a shop assistant. 

The man is wearing a hat and sunglasses, which could indicate that 

they are in a casual or relaxed setting. The presence of a fan and 

various items on the shelves suggests that they might be in a shop or 

a store. Therefore, the most likely social relationship between the two 

is that of a professional relationship, such as a salesperson and a 

customer. </think>

<answer> commercial </answer>

Social-R1

<think> The person in the image is wearing a wedding dress and 

a veil, which suggests that they are a couple. The presence of an 

umbrella also indicates that they are outdoors, which is typical for 

a wedding. Therefore, the most likely social relationship between 

the two individuals is a couple.</think>

<answer> couple </answer>

(a) True Label : commercial

(b) True Label : couple

Social-R1

<think> The two women are standing next to a large military tank, 

which suggests they might be friends or acquaintances. The tank 

is a historical artifact, and they are posing for a photo, which 

indicates a friendly relationship. Therefore, the most likely social 

relationship between the two women is friends.</think>

<answer> friends </answer>

(c) True Label : friends

(d) True Label : sport team members 

Social-R1

<think> The two individuals are likely to be part of the same 

sports team, as they are running together on the track. Therefore, 

the most likely social relationship between them is that they are 

teammates. </think>

<answer> sport team members </answer>

Figure 5: Visualization of sample images with attention heatmap (output-to-visual tokens) and rationales.Images in
(a) and (b) are from PISC dataset. Images in (c) and (d) are from PIPA dataset.

racy across all categories, with both models per-385

forming best in recognizing friendship relations386

However,the base model had very low accuracy on387

the "no-relationship" category, only 2.05%, indi-388

cating that the foundation model could not iden-389

tify this relationship. After reinforcement learning,390

Social-R1 could achieve 75.83% accuracy on the391

"no-relationship" category.392

Moreover, the accuracy of "commercial" is still393

relatively low after RL training. To investigate this,394

we studied the composition of the PISC dataset395

and found a significant data imbalance. As Table 7396

shows the Commercial relationship type accounts397

for only 0.94% (523 samples) of the training set,398

while the Professional relationship type has the 399

highest proportion at 37.62% (20,842 samples). 400

This imbalanced distribution results in the model 401

receiving significantly insufficient training signals 402

for the "commercial" type during reinforcement 403

learning, thus limiting performance improvement. 404

In contrast, although the Qwen2-VL-2B model ini- 405

tially showed low accuracy on the "no-relationship" 406

category, it achieved significant improvement after 407

training due to abundant training data. 408

Furthermore, even if the advanced models, ex- 409

hibit certain biases when performing social rela- 410

tionship classification tasks. Figure 3 is a example 411

that shows bias in baseline model. GPT-4-o (Hurst 412
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et al., 2024) exhibited spatial reasoning limitations,413

failing to accurately locate subjects within the sec-414

ond bounding box. Qwen2.5-VL-32B (Bai et al.,415

2025) demonstrated a more fundamental constraint416

in its visual processing capabilities, being unable417

to describe content within the second bounding418

box entirely. Interestingly, Gemini-2.5-pro (Team419

et al., 2024) displayed robust visual perception, ac-420

curately describing subject characteristics in both421

bounding boxes. However, despite this percep-422

tual accuracy, the model still produced biased out-423

puts, indicating that bias persists in its reasoning424

processes even when visual perception is intact.425

Social-R1, in contrast, demonstrates improved per-426

formance through its novel architecture that better427

integrates visual understanding with debiased rea-428

soning pathways, as evidenced by our quantitative429

and qualitative results.430

4.5 Ablation Study431

Table 5: Ablations on components of Social-R1 on the
PIPA datast. Social-R1-vision means training vision en-
coder during RL training. Social-R1-no-format means
training without format reward.

Model Acc (%)

Social-R1 80.9
Social-R1-vision 80.7
Social-R1-no-format 78.3

To evaluate the contribution of various compo-432

nents within our Social-R1 model, we conducted a433

series of ablation experiments on the PIPA dataset.434

Table 5 presents the accuracy results for different435

model variants. To gain deeper insights into the436

impact of our design choices, particularly the vi-437

sion encoder freezing strategy and format reward438

mechanism, we designed two variant models:439

• Social-R1-vision. In this variant, we train the440

vision encoder during the reinforcement learning441

phase, instead of freezing it. The results show442

a minimal drop in accuracy to 80.7%, which is443

0.2% lower than the baseline model. This sug-444

gests that freezing the vision encoder during RL445

training provides slightly better results, though446

the difference is marginal.447

• Social-R1-no-format. This variant removes the448

format reward mechanism and achieves an ac-449

curacy of Social-R1-no-format 78.3%, which is450

2.6% lower than the baseline model. This demon-451

strates that the format reward component con-452

tributes substantially to the model’s effectiveness. 453

We assume this is because the base model’s in- 454

struction following ability is relatively weak. The 455

format reward primarily helps the model generate 456

more standardized outputs, improving the norma- 457

tive quality of the model’s responses. 458

4.6 Qualitative evaluation 459

In this subsection, we visualized the attention 460

weights to illustrate the effectiveness of our method. 461

The specific visualization implementation follows 462

the methodology described in (Zhang et al., 2025). 463

Sample images with attention heatmap and ratio- 464

nales are shown in Figure 5. Our model not only 465

provides the final judgment, but also reveals its 466

"thinking" process – how the model reasons based 467

on visual cues in the image, such as attire, envi- 468

ronment, and objects. For example, The clothing 469

of the individuals and the surrounding objects are 470

both described in Figure 5(a) and (b). The atten- 471

tion heatmaps visually demonstrate which areas of 472

the image contributed most to its decision. For in- 473

stance, the military tank is attended in Figure 5(c), 474

and the track and other individuals are attended in 475

Figure 5(d). 476

We also present failure cases of Social-R1 in 477

Figure 7. In Figure 7(a), we observe that the model 478

correctly described the people in bounding boxes, 479

however considering the background, the model 480

output the wrong answer "friend" instead of the 481

ground truth "no-relationship". Besides, Social-R1 482

may lack the ability to attend to age. As illustrated 483

in 7(b), Social-R1 made good descriptions of the 484

image, but it overlooked the the age of the individ- 485

ual, resulting in failure. 486

5 Conclusion 487

In this work, we have presented Social-R1, a mul- 488

timodal large language model trained with rein- 489

forcement learning for social relationship reason- 490

ing. Our work demonstrates that end-to-end rea- 491

soning directly from images and bounding boxes is 492

not only possible but highly effective, eliminating 493

the need for complex multi-stage pipelines or hand- 494

crafted prompts. The experimental results on PIPA 495

and PISC benchmarks confirm that our approach 496

achieves state-of-the-art performance while provid- 497

ing interpretable rationales for its predictions. This 498

work contributes to advancing social relationship 499

recognition by combining the reasoning potential 500

of large language models with multimodal capabili- 501

ties in a more efficient and explainable framework. 502
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Limitations503

Despite the strong performance of Social-R1, our504

work has several limitations that warrant acknowl-505

edgment and suggest directions for future research:506

Computational Constraints: Due to computa-507

tional resource limitations, we were unable to train508

on larger models such as Qwen2-VL-7B. This509

restricts our understanding of how our approach510

scales with model size and whether even greater511

performance improvements could be achieved with512

larger foundation models.513

Reasoning Depth: Although Social-R1 provides514

explicit reasoning for its predictions, the depth and515

nuance of this reasoning may still be limited com-516

pared to human-level social understanding. The517

model may rely on visual stereotypes or common518

patterns rather than deeper contextual reasoning in519

some cases.520

Temporal Dynamics: Our current approach treats521

social relationship recognition as a static task based522

on single images, whereas real-world social re-523

lationships have temporal dynamics that evolve524

over time. This static representation limits the525

model’s ability to capture relationship development526

or changes.527

Addressing these limitations presents promis-528

ing directions for future work, including scaling to529

larger models, incorporating temporal information,530

enhancing cross-cultural robustness, and develop-531

ing more efficient reasoning mechanisms.532
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A Statistics of the datasets 680

The statistics of PIPA and PISC in and fine-grained 681

relations are shown in Tables 6 and 7. Note that 682

the train/val/test splits for PISC coarse and fine 683

are different. We note that both PIPA and PISC 684
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among all the relations. 688

B More Examples 689
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Qwen2-VL-7B

<think> The image shows two individuals walking together in a 

natural setting, with one person holding a walking stick. The 

person holding the walking stick appears to be leading the way, 

which suggests a guiding or supportive role. The other person is 

following closely, indicating a level of trust and familiarity. Given 

the context of hiking, it is likely that these individuals are friends 

or colleagues who are enjoying a shared outdoor activity. The 

lack of any formal attire or equipment that would suggest a 

professional relationship further supports the idea of a casual, 

social relationship. Therefore, the most likely social relationship 

between the two individuals is that of friends or colleagues. 

</think> 

<answer> The most likely social relationship between the 

bounding box [53, 98, 220, 499] and [210, 49, 332, 414] is that of 

friends or colleagues. </answer>"

True Label :  friends

Figure 6: Visualization of Output of Qwen2-VL-7B

Social-R1

<think> The two men are standing close together, holding a glass 

of wine, which suggests a social gathering. The fact that they are 

both wearing ties and suits indicates that they might be at a 

formal event or a professional gathering. The presence of other 

people in the background and the setting suggest that they could 

be friends or colleagues. Therefore, the most likely social 

relationship between the two men is friends.</think>

<answer> friends </answer>

Social-R1

<think> The person in the yellow shirt is likely the man, and the 

person in the blue dress is likely the woman. They are sitting 

together on a couch, which suggests a close relationship, such as 

friends or family. Therefore, the most likely social relationships 

are friends or family.</think>

<answer> lovers/spouses </answer>

(a) True Label : no-relationship

(b) True Label : mother-child

Figure 7: Visualization of sample images with attention heatmap(output-to-visual tokens) and rationales where
Social-R1 makes wrong predictions. Images in (a) and (b) are from PISC and PIPA dataset,respectively
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Table 6: Statistics of PIPA fine dataset. We show the
number of social relations in train/val/test set.

Category Train Valid. Test

Father–child 332 32 168

Mother–child 448 45 190

Grandpa–grandchild 46 3 11

Grandma–grandchild 37 0 15

Friends 3,054 187 1,833

Siblings 608 32 231

Classmates 128 71 13

Lovers/Spouse 503 49 313

Presenters–audience 194 12 91

Teacher–student 23 15 33

Trainer–trainee 83 1 54

Leader–subordinate 10 1 14

Band members 520 25 211

Dance team members 17 5 326

Sport team members 863 5 294

Colleagues 6,863 226 1,309

Table 7: Statistics of PISC fine dataset. We show the
number of social relations in train/val/test set.

Category Train Val Test

Friend 12,686 332 790
Family 7,818 249 677
Couple 1,552 102 256
Professional 20,842 311 858
Commercial 523 164 354
No relation 11,979 347 1,026
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