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Adversarial Experts Model for Black-box Domain Adaptation
Anonymous Author(s)

ABSTRACT
Black-box domain adaptation treats the source domain model as a
black box. During the transfer process, the only available informa-
tion about the target domain is the noisy labels output by the black-
box model. This poses significant challenges for domain adaptation.
Conventional approaches typically tackle the black-box noisy label
problem from two aspects: self-knowledge distillation and pseudo-
label denoising, both achieving limited performance due to limited
knowledge information. To mitigate this issue, we explore the po-
tential of off-the-shelf vision-language (ViL) multimodal models
with rich semantic information for black-box domain adaptation by
introducing an Adversarial Experts Model (AEM). Specifically, our
target domain model is designed as one feature extractor and two
classifiers, trained over two stages: In the knowledge transferring
stage, with a shared feature extractor, the black-box source model
and the ViL model act as two distinct experts for joint knowledge
contribution, guiding the learning of one classifier each. While con-
tributing their respective knowledge, the experts are also updated
due to their own limitation and bias. In the adversarial alignment
stage, to further distill expert knowledge to the target domainmodel,
adversarial learning is conducted between the feature extractor and
the two classifiers. A new consistency-max loss function is pro-
posed to measure two classifier consistency and further improve
classifier prediction certainty. Extensive experiments on multiple
datasets demonstrate the effectiveness of our approach. Our source
code will be released.

CCS CONCEPTS
• Computing methodologies → Transfer learning; Neural
networks.

KEYWORDS
Black-box domain adaptation, adversarial Learning, vision-language
pre-trained model
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1 INTRODUCTION
Unsupervised domain adaptation involves transferring knowledge
from a labeled source domain to an unlabeled target domain. The
goal is to achieve excellent performance for the target model [9,
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(a) Previous  black-box domain adaptation methods

(b) The proposed AEM (our method)

Figure 1: (a) Previous methods use noisy labels generated
from black-box model for self-supervised learning in the
target domain. (b) Our approach leverages and updates the
knowledge from two experts (the black box and ViL models).
Adversarial learning is employed to distill knowledge to the
target domain from two experts.

25]. For the sake of data security and personal privacy protection,
source-free domain adaptation is proposed, which only employs the
model from the source domain and data from the target domain for
training [20, 39]. In fact, the data distribution of source domain can
be estimated by the information carried on the source model, which
also implies the risk of data leakage [21, 28]. Moreover, providing
AI services through cloud API has become a future development
trend. Therefore, black-box domain adaptation [21] has emerged,
treating the source domain as a black box. Then, using the labels
output by the black-box model, source information is transferred
to the target domain model.

The current research on black-box domain adaptation is limited.
The closely related unsupervised domain adaptation methods con-
sist of three technical routes: traditional distribution alignment [14,
25, 27], adversarial learning [2, 9, 23], and self-supervised learn-
ing [8, 12, 37]. Inspired by the works on unsupervised domain adap-
tation problem, there are also three main approaches on source-free
domain adaptation [17], i.e, generative learning [5, 18, 40], distribu-
tion alignment [7, 24] and self-supervised learning [4, 15, 19, 20].
The above mentioned approaches cannot be applied to the problem
of black-box domain adaption directly, because both of source data
and model are not accessible.

Typically, due to the distribution difference between the source
and target domains, the labels output by the black-box model are
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noisy. This can lead to negative transfer to the target domain. Con-
sequently, there are two types of black-box domain adaptation
methods to solve this problem. The first category is self-distillation
learning through knowledge distillation of target data [21, 28]. The
second category is pseudo-label denoising learning, utilizing the
target data to get denoised labels [43, 44]. All of the above meth-
ods only exploit the information inherent in the target domain
data, resulting in the target domain model lacking high-level se-
mantic information. The performance hits ceiling. Therefore, in-
troducing additional supervision information is an intuitive idea.
Vision-language (ViL) multimodal models (e.g., CLIP [30]) align text
and images in a high-level semantic space using contrastive loss,
which is a good auxiliary model to help adaptation. Unfortunately,
directly using ViL model is not a good idea because it has error
labels for some specific domains. Moreover, simply aligning the
target domain model to the black-box and the ViL model labels is
also not wise. Because the knowledge learned by these two models
is heterogeneous, there are inconsistent labeled target samples.

Based on the aforementioned observation, we propose a novel
adversarial experts model (AEM) for black-box domain adap-
tation. In our method, the target domain model is designed as a
shared feature extractor and two classifiers. The two classifiers
are dominated respectively by the black-box expert and the ViL
model expert. The overall framework of AEM is divided into two
stages, namely knowledge transferring and adversarial alignment.
In the knowledge transferring stage, the pseudo-labels of overall
target domain samples from both the black box and the ViL model
are used for supervised learning. As the expert also has limita-
tions, the expert knowledge is updated based on the characteristics
of the target domain in each epoch. In the adversarial alignment
stage, the difference between the predictions from two classifiers
is maximized in the hope of identifying hard samples. And then,
the classification difference is minimized to update the feature ex-
tractor, expecting to extract consistency features for two classifiers.
Through adversarial learning between the feature extractor and
the two classifiers, the target domain model gradually consolidates
and aligns the expert knowledge. The learned features are more
discriminate and domain invariant. Additionally, we propose a new
classifier Consistency-Max (CM) loss that, while ensuring predic-
tion consistency and certainty, forces the output predictions to be
more confident. Extensive experiments demonstrate the effective-
ness of AEM, which even rivals the state-of-the-art unsupervised
domain adaptation methods using ViL model.

Our contributions can be summarized as follows: (1) We intro-
duce a novel framework for adversarial learning in black-box do-
main adaptation, leveraging the heterogeneous knowledge from
two experts. This approach enriches the target domain model with
multifaceted knowledge, ensuring accurate information transfer.
(2) Updates are made to the black-box labels and the prompt of the
ViL model. Unlike prior methods that solely rely on self-distilled
black-box labels, we refine the two experts’ predictions. The knowl-
edge from two experts will gradually evolve to better suit the target
domain. (3) We propose a novel CM loss to address certainty limita-
tions in previous approaches. Compared with previous methods us-
ing metrics like 𝐿1 norm or Kullback-Leibler divergence to measure
prediction distance, simple yet effective CM loss not only measures
prediction consistency but also improves prediction certainty.

2 RELATEDWORKS
Domain adaptation. Unsupervised domain adaptation (UDA) can
be roughly divided into three categories: distribution alignment,
self-supervised learning and adversarial learning. Despite achieving
good results, UDA methods face privacy leakage issues. Addition-
ally, due to end-to-end supervised training from the source domain,
the resulting target domain model exhibits source bias. This implies
that the final model inherently carries negative transfer problems.
Source-free domain adaptation (SFDA) relies solely on pre-trained
source models without access to the source data. There are three
main types of existing source-free domain adaptation methods [17].
The first category involves generative learning [5, 18, 40], where
the goal is to create source-related data to align the target domain
with the source domain. The second approach relies on aligning
distributions [7, 24]. Batch statistics stored within a pre-trained
source model is leveraged to approximate the distribution of in-
accessible source data. Subsequently, cross-domain adaptation is
achieved by directly minimizing the distribution gap between the
source and target domains. The third category of methods is based
on self-supervised learning, including self-supervised knowledge
distillation [19, 20], pseudo-labeling denoising [4, 15] and so on.
Source-free domain adaptation approaches also can not be applied
directly to the black-box domain adaptation because the source
model is unknown.

Black-box domain adaptation. Existing black-box domain
adaptation methods can be summarized into two approaches. The
first approach is self-distillation learning, aiming to gradually adapt
models or labels using a teacher-student architecture [21, 28]. Sym-
bolically, DINE [21] takes the pesudo-labels from the black-box
model as the teacher, gradually distilling knowledge to the target
domain model. The second approach is based on pseudo-label de-
noising, which leverages information from the target domain data
to alleviate label noise in black-box model outputs [43, 44]. For
example, BiMem [43] employs a bi-directional memory module
to store useful information of long-term and short-term contexts,
thereby alleviating the issue of noisy labels in black-box scenarios.
Although these methods have achieved good results, they only uti-
lize noisy label information from the black box and information
from the target domain itself, failing to capture high-level semantic
information. This imposes performance limitation on the target
domain model.

Vision-language multimodal model. Vision-language (ViL)
multimodal models have achieved remarkable performance in var-
ious fields. Through training on massive datasets, ViL models ef-
fectively capture the connections between different modalities of
data and derive output results from a higher semantic level. Cur-
rent research on ViL models can be broadly categorized into two
main streams. The first stream focuses on model optimization, ex-
ploring ways to train ViL models with higher accuracy or reduced
resources [16, 45]. For example, BLIP [16] harnesses noisy web data
through caption bootstrapping, which advances the performance of
many vision-language tasks. The second stream delves into down-
stream adaptation researches [3, 41]. For example, USL-VI-ReID [3]
establishes a trainable cluster-aware prompt, which acquires textual
descriptions that facilitate subsequent unsupervised training. We
also apply ViL model to black-box domain adaptation. Instead of
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Figure 2: Overall framework of the proposed AEM. The method is divided into two stages: knowledge transferring and
adversarial alignment. In the knowledge transferring stage, we utilize two experts for supervised learning in the target domain.
Additionally, the experts’ knowledge is adaptively adjusted based on target domain information. In the adversarial alignment
stage, adversarial learning is employed between the feature extractor and two classifiers to come to a consensus on the hard
samples and align the knowledge from two experts.

naively using ViL model, the black-box model and the ViL model
are considered as two experts. Adversarial learning is applied to
combine and fine-tune expert knowledge.

3 PROPOSED METHOD
In the setting of black-box domain adaptation, the labeled source
domain data and the source domain model are inaccessible, which is
treated as a black-box model. The only information available from
the source domain is the noisy labels of the target samples obtained
from the black-box model, where the target domain data, consisting
of 𝑁 samples, is denoted as 𝑋 = {(𝑥𝑖 )}𝑁𝑖=1, and the noisy labels
obtained from the black-box model are denoted as 𝑌 1 = {(𝑦1

𝑖
)}𝑁
𝑖=1.

The target domain shares the same class space C = {1, 2, ..., 𝐾} as
the source domain. The goal is to train a high-performance target
domain model using the information mentioned above.

Overview. As depicted in Fig.2, the proposed AEM framework
comprises two experts: the black-box expert bringing source do-
main knowledge and the ViL model expert containing high-level
semantic knowledge. Each expert guides the learning of a classi-
fier, denoted as ℎ1, ℎ2 respectively while sharing a common feature
extractor 𝑓 . The overall process is divided into two stages, namely
knowledge transferring stage and adversarial alignment stage. In
the knowledge transferring stage, the two classifiers are trained
under the guidance of their respective experts, while the feature
extractor is trained under the joint guidance of both experts. Fur-
thermore, AEM adapts the knowledge of two experts to suit the
target domain at each epoch. In the adversarial alignment stage, we

customize a Consistency-Max (CM) loss to ensure the consistency
and certainty of the predictions from two classifiers. Utilizing the
proposed loss, we fix the feature extractor and maximize the predic-
tion discrepancy to update the two classifiers. Then, the classifiers
are fixed and the prediction discrepancy is minimized to update the
feature extractor. In this way, two expert knowledge are aligned to
the target domain.

3.1 Knowledge transferring
The black-box model possesses rich source domain knowledge.
However, as the categories in the source and target domains remain
the same while their distributions differ, the pseudo-labels obtained
from the black-box model for target domain often carry more noise,
resulting in noisy pseudo-labels. These noises introduce uncertainty
and erroneous signals into the training data, potentially leading
the model to learn incorrect representation and causing negative
transfer. To address these challenges, we propose introducing a
ViL model expert, such as CLIP [30] which incorporates high-level
semantic information. ViL models learn rich semantic representa-
tions from both visual and textual contexts through contrastive
learning, thereby enhancing the robustness of feature represen-
tations. However, it’s worth noting that ViL models may exhibit
sub-optimal performance in specific domains or tasks. Therefore,
we suggest that the target domain model learns from both black-
box and ViL experts. Successful knowledge transferring from these
experts is guaranteed by the knowledge dissemination strategy and
knowledge feedback strategy, which will be detailed later.
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Knowledge dissemination strategy. To start with, the outputs
from both experts are used for preliminary pseudo-label super-
vised learning. Let 𝑌 1 = {(𝑦1

𝑖
)}𝑁
𝑖=1 denotes the set of soft pseudo-

labels output by the black-box model, and 𝑌 2 = {(𝑦2
𝑖
)}𝑁
𝑖=1 denotes

the set of soft pseudo-labels output by the ViL model. And then
the corresponding one-hot label sets can be obtained, denoted as
𝑌 1 = {(𝑦1

𝑖
)}𝑁
𝑖=1 from black-box and 𝑌 2 = {(𝑦2

𝑖
)}𝑁
𝑖=1 from ViL ex-

perts, respectively. Next, we compute cross-entropy loss separately
between the predictions of the two classifiers ℎ1, ℎ2 and the one-
hot labels obtained from black-box and ViL experts respectively,
written as follows:

L 𝑗𝑐𝑒 = −E𝑥𝑖 ∈𝑋 (𝑦
𝑗
𝑖
log(𝑝 𝑗

𝑖
)), (1)

where 𝑝 𝑗
𝑖
= ℎ 𝑗 (𝑓 (𝑥𝑖 )), 𝑗 ∈ {1, 2}, is the softmax predictions by

target model.
As the target domain shares the same class space as the source

domain, it implies that the information contained in the target
domain is more relative to the black-box expert. Therefore, we
further constrain the output of classifier ℎ1 to be consistent with
the black-box expert by maximizing mutual information loss [20],
which is defined as follows:

L𝑚𝑖 = 𝑀 (𝑌 ) −𝑀 (𝑌 |𝑋 )
=𝑚(E𝑥𝑖 ∈𝑋ℎ

1 (𝑓 (𝑥𝑖 ))) − E𝑥𝑖 ∈𝑋𝑚(ℎ
1 (𝑓 (𝑥𝑖 ))),

(2)

where𝑚(𝑝) = −∑𝐾
𝑘=1 𝑝𝑘 log 𝑝𝑘 is the entropy function. This term

forces the black-box guided classifier to produce unambiguous
predictions and encourages the label distribution to be uniform.

Based on the above analysis, we update the feature extractor 𝑓
and the classifier ℎ1 guided by the black-box expert. To enhance
generalization, the widely usedMixUp [28, 42] strategy is integrated
into the objective function:

min
𝑓 ,ℎ1
L1
𝑘𝑡

= L1
𝑐𝑒 − L𝑚𝑖 + L𝑚𝑖𝑥𝑢𝑝 . (3)

Since the ViL model is trained on massive data, it is well at gener-
alization. Therefore, for the classifier ℎ2 guided by the ViL expert,
we simply use cross-entropy for straightforward training:

min
𝑓 ,ℎ2
L2
𝑘𝑡

= L2
𝑐𝑒 . (4)

Through the training based on Eqs.(3) and (4), we obtain a shared
feature extractor and two classifiers guided by two different experts,
respectively. By this process, the target domain model acquires the
ability to classify easy samples under the guidance of two experts.

Knowledge feedback strategy. Although the experts impart
knowledge to the target domain model, their expertise lies outside
the target domain. For instance, the knowledge from the black-box
model is biased towards the source domain, while the knowledge
from the ViL expert is highly generalized and not fine-tuned. In
order to achieve better performance in the target domain, the knowl-
edge from both experts should be promptly updated based on the
target domain. Therefore, we adapt the knowledge of both experts
to be suitable for target domain at each epoch.

Since the black-boxmodel only outputs noisy labels for the target
domain and cannot be adjusted, we use the EMA (Exponential
Moving Average) strategy to update its pseudo-labels:

𝑦1𝑖 ← 𝛼𝑦1𝑖 + (1 − 𝛼)ℎ
1 (𝑓 (𝑥𝑖 )), (5)

where 𝛼 is a hyperparameter to adjust the update rate. Differing
from the sealed and non-fine-tunable black-box model, we hope
to continuously learn the high-level semantic information of ViL
expert. Thus we are committed to adapting the ViL expert to the
target domain. Inspired by CoOp [45], with the ViLmodel frozen, we
utilize black-box labels to fine-tune the prompt of the ViL expert,
enabling its knowledge to be made use of in the target domain.
Specifically, a consistency-max (CM) loss, introduced and analyzed
in Section 3.2, is used to update the prompt:

min
𝑤
L𝑣𝑐𝑚 = −𝑌 1 · 𝑌 2, (6)

where𝑤 is the prompt of ViL model to be fine-tuned.
Using the EMA strategy, the black-box labels are gradually re-

placed by the outputs ofℎ1, thereby incorporatingmore information
from the target domain. The noise issue of the black-box output
labels will also be alleviated. From the perspective of knowledge
distillation, the black-box labels serve as the teacher’s role in the
teacher-student model, carrying more authoritative information.
Therefore, we use the updated black-box labels to fine-tune the
prompt of ViL. Through this process, the output of ViL will also be
more suitable for the target domain model.

3.2 Adversarial alignment
Through knowledge transferring, the target domain model has
learned heterogeneous knowledge from two experts. It means the
knowledge learned by the two classifiers is unrelated to some ex-
tent. That is, for the same sample, the two classifiers may produce
inconsistent results. Additionally, since only one feature extractor
is used for learning knowledge from two heterogeneous spaces, the
extracted features are likely to lack discrimination. So, it is difficult
for the classifiers to make decisions and resulting in ambiguous
decision boundaries. Hence, we consider to further reinforce and
align expert knowledge to the target domain through adversarial
training.

Consistency-max loss. In traditional MCD-based methods [6,
13, 32], 𝐿1 norm divergence is commonly used to measure predic-
tion consistency between two classifiers. However, solely enforcing
consistency to align different distributions is insufficient. In addi-
tion to enforcing consistency, decision boundaries should be more
accurate. But it is hindered due to the lack of ground truth labels in
the black-box domain adaptation setting. Fortunately, there exists
a basic fact, i.e., for a given sample, the probability that both ex-
perts predict it to belong to a same incorrect category is very low.
Therefore, a simple but effective divergence measurement loss is
proposed. To be specific, let 𝑃1 = {(𝑝1

𝑖
)}𝑁
𝑖=1 and 𝑃

2 = {(𝑝2
𝑖
)}𝑁
𝑖=1 de-

note the softmax predictions of the black-box guided classifier and
ViL guided classifier, respectively. The Consistency-Max loss (CM
loss) is defined as:

L𝑐𝑚 = −𝑃1 · 𝑃2 . (7)
Next, we demonstrate the effectiveness of the proposed CM loss.
For 𝑖-th sample, as per the Cauchy-Schwarz inequality:

(
𝐾∑︁
𝑘=1

𝑝1
𝑘
𝑝2
𝑘
)2 ≤

𝐾∑︁
𝑘=1
(𝑝1
𝑘
)2

𝐾∑︁
𝑘=1
(𝑝2
𝑘
)2, (8)

where 𝐾 represents the number of classes. Since the predicted
outputs are softmax probabilities, each item of the prediction has

4
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𝑝𝑘 > 0. Thus, we can derive:
𝐾∑︁
𝑘=1
(𝑝1
𝑘
)2

𝐾∑︁
𝑘=1
(𝑝2
𝑘
)2 ≤ (

𝐾∑︁
𝑘=1

𝑝1
𝑘
)2 (

𝐾∑︁
𝑘=1

𝑝2
𝑘
)2 = 1. (9)

Hence, it can be inferred as follows:
𝐾∑︁
𝑘=1

𝑝1
𝑘
𝑝2
𝑘
≤ 1. (10)

From Eq.(10), it is evident that the maximum value 1 is achieved if
and only if both classifiers assign a value of 1 to a same class for
the 𝑖th sample. Due to the low probability of two experts predicting
the 𝑖th sample as the same incorrect class, the predictions are more
consistent and certain using CM loss constraint, which tends to be
more correct.

Adversarial alignment of experts knowledge. We employ
adversarial thought to align knowledge from different experts by
leveraging the proposed CM loss. First, the discrepancy is maxi-
mized between the outputs of the two classifiers with the fixed
feature extractor. Additionally, we employ experts supervision to
ensure the correct classification of the classifiers:

min
ℎ1,ℎ2
L𝑎ℎ = −L𝑐𝑚 + L1

𝑐𝑒 + L2
𝑐𝑒 . (11)

Next, the classifiers are fixed and only the feature extractor is up-
dated. The discrepancy between classifiers’ output is minimized as
follows:

min
𝑓
L𝑎𝑓 = L𝑐𝑚 . (12)

In summary, maximizing the CM loss under experts’ constraints
enables the identification of hard samples. Subsequently, minimiz-
ing the CM loss yields the feature extractor to learn the features
that are indistinguishable by two classifiers. Namely, the extracted
features are more discriminate and domain invariant. Gradually,
through adversarial learning and CM loss, difficult samples are
selected and further classified by the target model. From a macro
perspective, the two expert knowledge are distilled to the target
domain.

During the training process, we repeat the aforementioned steps
until the model converges. For inference, we utilize the ViL guided
classifier. The overall algorithm is outlined in Algorithm 1.

4 EXPERIMENTS
4.1 Experimental setup
Dataset description. We use four open datasets including Office-
31, Office-Home and VisDA-2017 for comparative experiments.
Office-31 [31] is a commonly used dataset that contains three do-
mains including Amazon (A), DSLR (D), and Webcam (W) with 31
categories. Office-Home [36] dataset consists of around 15,500 im-
ages spread across 65 categories, covering four diverse domains: Art
(A), Clip Art (C), Product (P), and RealWorld (R). VisDA-2017 [29]
dataset comprises synthetic-to-real images. The source domain con-
sists of 152397 synthetic images and the target domain includes
55388 realistic images.

Model architecture. For a fair comparison, our network em-
ploys the same structure as the state-of-the-art black-box domain
adaptationmethods [21, 28]. For both the source and target domains,

Algorithm 1 Adversarial Experts Model for Black-box Domain
Adaptation.
Input: Target domain data 𝑋 = {(𝑥𝑖 }𝑁𝑖=1, the target noisy labels
from black-box 𝑌 1 = {(𝑦1

𝑖
)}𝑁
𝑖=1, pre-trained ViL model, initial

prompt, initial model {𝑓 , ℎ1, ℎ2}, epoch number 𝑇 , mini-batch
number 𝐵.
Output: Adapted target model.
Procedure:
1: for 𝑡 = 1:𝑇 do
2: for 𝑏 = 1:𝐵 do
3: Forward a mini-batch through the target model and ViL

model, getting ViL pseudo-labels 𝑌 2 = {(𝑦2
𝑖
)}𝑁
𝑖=1 ;

4: Step 1: Update black-box guided 𝑓 , ℎ1 by Eq.(3) and ViL
guided 𝑓 , ℎ2 by Eq.(4);

5: Step 2: Update ℎ1, ℎ2 by maximizing the discrepancy and
minimizing the cross entropy loss Eq.(11) ;

6: Step 3: Update 𝑓 by minimizing the discrepancy Eq.(12) ;
7: end for
8: Update black-box labels 𝑌 1 by Eq.(5) and prompt of ViL

model by Eq.(6);
9: end for
10: return Adapted target model.

the pre-trained model ResNet-50 [11] is employed as a feature ex-
tractor for the Office-31 and Office-Home datasets, and ResNet-
101 is utilized for the VisDa-2017 dataset. The same as DINE and
RAIN [21, 28], between the feature extractor and the fully con-
nected layer classifiers, a bottleneck structure is used which is a
series of layers in a pipeline, consisting of a fully connected layer,
batch normalization, fully connected layer, weight normalization.
This structure is combined with the feature extractor as 𝑓 in the
adversarial alignment learning. For the frozen ViL model, we utilize
the widely used CLIP ViT-B/32 to obtain the output results.

Implementation details. Following previous works, all the
black-box models are trained with the most commonly used cross-
entropy loss as Eq.(1). In terms of AEM parameter, as indicated in
the method part, we have only one hyperparameter, which is the
momentum setting as 𝛼 = 0.9 for updating the black-box pseudo-
labels. For the ViL model’s prompt, we initialize it as ’a photo of
a [CLS].’. The black-box pseudo-labels and the learnable prompts
are updated at the beginning of each epoch. For model parameter
settings, we adhere to the recommended training configurations
outlined in [21, 26], encompassing weight decay (1e-3), bottleneck
size (256), and batch size (64). Our optimizer employs mini-batch
SGD. The same learning rate scheduler𝜂𝑝 = 𝜂0 (1+𝛾𝑝)−𝑏 is adopted
for all datasets. For Office-31 and Office-home datasets, we set
𝛾 = 10 and 𝑏 = 0.75, while for VisDa-2017, we set 𝛾 = 10 and
𝑏 = 2.25. All experiments are implemented on the PyTorch platform
with a single NVIDIA RTX GPU.

Competitors. With the source (black-box) model as a baseline,
we compare AEM with the state-of-the-art methods, which can
be categorized into three types: (1) The first type is unsupervised
domain adaptation methods, where both the source domain data
and ground truth labels are accessible, such as MCD [32], AFS [46],
NCL [22] , DAPL [10], AD-CLIP [33], PDA [1] . (2) The second type
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Table 1: Comparison results on Office-31 dataset. Metric: classification accuracy (%); Backbone: ResNet-50. Comparative methods
are categorized from top to bottom as baseline, UDA, SFDA, and black-box DA. ’✓’ in M means the usage of ViL model.

Method Venue M A→ D A→W D→ A D→W W→A W→D Avg.

Source – ✗ 79.9 76.6 56.4 92.8 60.9 98.5 77.5
MCD [32] CVPR18 ✗ 92.2 88.6 69.5 98.5 69.7 100.0 86.5
NCL [22] ACMMM23 ✗ 96.3 96.6 77.6 98.7 77.4 100.0 91.1
DAPL [10] TNNLS23 ✓ 81.7 80.3 81.2 81.8 81.0 81.3 81.2
PDA [1] AAAI24 ✓ 91.2 92.1 83.5 98.1 82.5 99.8 91.2
SHOT [20] ICML20 ✗ 94.0 90.1 74.7 98.4 74.3 99.9 88.6
D-MCD [4] AAAI22 ✗ 94.1 93.5 76.4 98.8 76.4 100.0 89.9
C-SFDA [15] CVPR23 ✗ 96.2 93.9 77.3 98.8 77.9 99.7 90.5
TPDS [34] IJCV24 ✗ 97.1 94.5 75.7 98.7 75.7 99.8 90.2
DINE [21] CVPR22 ✗ 91.7 87.5 72.9 96.3 73.7 98.5 86.7
RAIN [28] IJCAI23 ✗ 93.8 88.8 75.5 96.8 76.7 99.5 88.5
BETA [38] ICLR23 ✗ 93.6 88.3 76.1 95.5 76.5 99.0 88.2
RFC [44] AAAI24 ✗ 94.4 93.0 76.7 95.6 77.5 98.1 89.2
AEM Ours ✓ 95.1 94.0 81.8 98.2 82.6 99.4 91.9

Table 2: Comparison results on Office-Home dataset. Metric: classification accuracy (%); Backbone: ResNet-50. Comparative
methods are categorized from top to bottom as baseline, UDA, SFDA, and black-box DA. ’✓’ in M means the usage of ViL model.

Method Venue M Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source – ✗ 44.1 66.9 74.2 54.5 63.3 66.1 52.8 41.2 73.2 66.1 46.7 77.5 60.6
MCD [32] CVPR18 ✗ 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
AFS [46] ACMMM23 ✗ 58.7 80.2 83.3 67.6 79.0 76.7 68.9 57.1 82.6 75.1 65.5 85.7 73.4
NCL [22] ACMMM23 ✗ 58.9 78.6 82.6 69.2 79.4 78.6 67.2 57.1 82.3 73.1 58.7 85.6 72.6
DAPL [10] TNNLS23 ✓ 54.1 84.3 84.4 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
AD-CLIP [33] ICCV23 ✓ 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9
PDA [1] AAAI24 ✓ 55.4 85.1 85.8 75.2 85.2 85.2 74.2 55.2 85.8 74.7 55.8 86.3 75.3
SHOT [20] ICML20 ✗ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
D-MCD [4] AAAI22 ✗ 59.4 78.9 80.2 67.2 79.3 78.6 65.3 55.6 82.2 73.3 62.8 83.9 72.2
C-SFDA [15] CVPR23 ✗ 58.6 80.2 82.9 69.8 78.6 79.0 67.8 55.7 82.3 73.6 60.1 84.9 72.8
TPDS [34] IJCV24 ✗ 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5
DINE [21] CVPR22 ✗ 54.2 77.9 81.6 65.9 77.7 79.9 64.1 50.5 82.1 71.1 58.0 84.3 70.6
RAIN [28] IJCAI23 ✗ 57.0 79.7 82.8 67.9 79.5 81.2 67.7 53.2 84.6 73.3 59.6 85.6 73.0
BETA [38] ICLR23 ✗ 57.2 78.5 82.1 68.0 78.6 79.7 67.5 56.0 83.0 71.9 58.9 84.2 72.1
RFC [44] AAAI24 ✗ 57.4 80.0 82.8 67.0 80.6 80.2 68.3 57.8 82.8 72.8 59.3 85.9 72.9
AEM Ours ✓ 65.4 88.3 89.5 80.1 90.7 89.7 78.9 61.4 89.9 79.2 63.6 90.8 80.6

is source-free domain adaptation, where only the source domain
model is accessible. It contains SHOT [20], D-MCD [4], C-SFDA [15],
TPDS [34]. (3) The third type is black-box domain adaptation. The
only available information is the noisy labels output by the source
model, DINE [21], RAIN [28], BETA [38], RFC [44] to name a few.
In addition, with a checkmark ’ ✓ ’ in column M in all tables, it
indicates the utilization of the ViL model.

4.2 Comparison results
The comparative results of AEM on three datasets are shown in
Tables 1 to 3. Compared to other black-box domain adaptation meth-
ods, our approach emerges as a frontrunner. On Office-31 dataset,
our method attains a remarkable accuracy of 91.9%, surpassing the

second-highest method, RFC, by 2.7%. On Office-Home dataset, our
average accuracy outperforms other leading methods by 7.6%, with
optimal results across all 12 tasks. Similarly, on the VisDa-2017
dataset, we achieved the highest accuracy of 89.3%. Compared with
the source-free domain adaptation methods, AEM maintains its
leading position even under stringent conditions, namely without
the source model. On the Office-31, Office-Home, and VisDa-2017
datasets, AEM outperforms the highest method each by 1.4%, 7.1%,
and 0.6%, respectively. Moreover, the results of AEM can evenmatch
the state-of-the-art UDAmethods that have access to source domain
data and labels. Specifically, on the three datasets, our method out-
performs the highest-performing UDA methods by 0.7%, 4.7% and
1.6%. When stacked up against methods utilizing vision-language
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Table 3: Comparison results on Visda-17 dataset. Metric: per-class classification accuracy (%); Backbone: ResNet-101. Comparative
methods are categorized from top to bottom as baseline, UDA, SFDA, and black-box DA. ’✓’ in M means the usage of ViL model.

Method Venue M plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

Source – ✗ 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9
MCD [32] CVPR18 ✗ 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
AFS [46] ACMMM23 ✗ 97.2 89.0 83.8 87.5 95.7 94.0 87.9 82.8 96.6 94.7 82.4 53.1 87.1
NCL [22] ACMMM23 ✗ 97.1 88.5 90.0 65.2 96.7 92.9 90.1 81.5 94.6 89.5 89.0 58.8 86.2
DAPL [10] TNNLS23 ✓ 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
AD-CLIP [33] ICCV23 ✓ 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7
PDA [1] AAAI24 ✓ 97.2 82.3 89.4 76.0 97.4 87.5 95.8 79.6 87.2 89.0 93.3 62.1 86.4
SHOT [20] ICML20 ✗ 94,3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
D-MCD [4] AAAI22 ✗ 97.0 88.0 90.0 81.5 95.6 98.0 86.2 88.7 94.6 92.7 83.7 53.1 87.5
C-SFDA [15] CVPR23 ✗ 97.4 91.8 87.6 78.1 96.6 99.3 90.6 87.2 95.6 94.6 88.9 57.3 88.7
TPDS [34] IJCV24 ✗ 97.6 91.5 89.7 83.4 97.5 96.3 92.2 82.4 96.0 94.1 90.9 40.4 87.6
DINE [21] CVPR22 ✗ 95.3 85.9 80.1 53.4 93.0 37.7 80.7 79.2 86.3 89.9 85.7 60.4 77.3
RAIN [28] IJCAI23 ✗ 96.6 86.8 83.0 70.9 94.5 81.8 84.2 83.6 90.9 89.5 89.4 64.0 82.7
BETA [38] ICLR23 ✗ 94.9 90.2 85.4 61.1 95.5 93.1 85.0 83.8 92.9 91.9 91.1 55.0 85.1
RFC [44] AAAI24 ✗ 95.6 89.7 87.8 75.8 96.5 96.5 90.4 82.8 96.0 70.0 85.7 55.1 85.2
AEM Ours ✓ 98.6 88.1 89.7 74.8 98.0 93.9 93.0 89.3 90.1 97.2 95.2 63.5 89.3

Table 4: Ablation study on knowledge feedback strategy on
tasks D→ A and W→A in Office-31 dataset.

D→ A W→A
𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg. 𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg.

w/o_bv 68.2 76.4 74.4 73.0 69.3 76.0 75.5 73.6
w/o_b 68.2 74.0 72.6 71.6 70.6 75.8 74.5 73.6
w/o_v 73.2 76.6 75.5 75.1 75.3 76.8 77.6 76.6
AEM 79.0 81.8 81.6 80.8 79.5 82.6 81.9 81.3

information, such as AD-CLIP, DAPL, and PDA, which belong to
UDA, our method achieves comparable results. Worth noting is that
on the office dataset, AEM achieves the highest accuracy across all
12 specific tasks. We also compare our method with CLIP model
and the adapted prompt CLIP model on Office-31 and Office-Home
datasets, which showsAEM is better in terms of performance, model
parameters and FLOPs (see Appendix).

Through the analysis of experimental data, we have the follow-
ing observations. First, most of the methods only use source domain
information and target data, thus failing to capture the high-level
semantic information within the data. In contrast, we make use
of both the source domain information from black-box expert and
the high-level semantic information from ViL expert. Then, gen-
erally speaking, from the results in column ’M’, it’s clear that the
methods, such as AD-CLIP, DAPL and PDA, leveraging ViL ex-
pert knowledge outperform those that do not. However, while they
address UDA problems, we tackle a more challenging scenario of
black-box domain adaptation with stringent source domain access
constraints. Our method even achieves a higher average accuracy
than theirs across the three datasets. This is attributed to AEM’s
utilization of adversarial principles. In the adversarial alignment
stage, hard samples are identified through the classifiers, and the

(a)  A→D                                        (b) D→A

Figure 3: Accuracy curves of (a) A→D and (b) D→A on Office-
31 dataset.

feature extractor is improved to extract more discriminative and do-
main invariant features. Also, during the training, the knowledge of
both experts is gradually aligned in the target domain. Furthermore,
our method continuously updates the knowledge of both experts
to make their guidance in the target domain more adaptable and
relevant. Moreover, the proposed CM loss better measures the dis-
crepancy between different prediction distributions, ensuring the
consistency and certainty of predictions simultaneously.

4.3 Further studies
In order to better demonstrate the effectiveness of our method, we
conduct extensive ablation analysis and visualization experiments
on Office-31 dataset. The analysis on Office-Home dataset is shown
in Appendix.

Ablation study on knowledge feedback strategy. To demon-
strate the effectiveness of the proposed knowledge feedback strat-
egy, three additional variants are compared, i.e., training without
knowledge feedback strategy (w/o_bv), training without updating
the black-box labels (w/o_b), and training without updating the
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(a)                                   (b)

Figure 4: (a) Ablation study on adversarial learning in Office-
31 dataset. w/o_adv and AEM represent training without and
with adversarial learning, respectively. (b) Accuracy using
different classifier consistency loss in Office-31 dataset.

prompt of the ViL model (w/o_v). As denoted before, 𝑝1 and 𝑝2
represent predictions of classifiers ℎ1 and ℎ2 guided by black-box
and ViL model, respectively. 𝑝𝑚𝑖𝑥 denotes the prediction obtained
by averaging the outputs of both classifiers. The results are shown
in Table 4, updating the knowledge of both experts yields the best
results, surpassing the second highest on average by 5.7% and 4.7%
for each task.

Ablation study on different classifier combination. Fig.3
illustrates the accuracy curve of three different predictions, i.e.,
𝑝1, 𝑝2 and 𝑝𝑚𝑖𝑥 . The accuracy of these three predictions tends to be
stable after 10 epochs and the differences are subtle, all around 2.0%.
Overall, it appears that the classifier guided by ViL tends to perform
slightly better. This is because the classifier guided by ViL contains
more high-level semantic information. Therefore, in Section 4.2
and the following ablation studies, we choose the classifier guided
by the ViL expert for comparison. Furthermore, as shown in Fig.3,
the accuracy on each task reaches the maximum around the 10th
epoch and then is stable, which means the training of the target
domain has converged.

Ablation study on adversarial learning. To validate the ef-
fectiveness of adversarial learning, we use a consistency-based
method (w/o_adv) to compare. Instead of maximizing classifier
discrepancy, the method w/o_adv solely utilizes CM loss for con-
straint, updating both the feature extractor and the classifiers ac-
cordingly. As shown in Fig.4(a), compared to the method w/o_adv,
AEM achieves an average accuracy improvement of 7.6%. This is be-
cause using consistency loss alone not only fails to address the issue
of difficult samples, but also introduces noise into the target domain
model due to noisy labels from black-box models. Although these
noises are partially corrected by the ViL model, they also lead in-
correct optimization directions to the ViL model. In AEM, we select
difficult samples by maximizing classifiers’ discrepancy. Then we
update the feature extractor by minimizing prediction discrepancy,
enabling the extracted features to be more discriminative.

Ablation study on classifier consistency loss. Fig.4(b) dis-
plays the results obtained using different classifier discrepancy
metric loss during the adversarial alignment stage. We compare
the proposed CM loss with 𝐿1 loss and KL divergence loss. The

(a) Source                         (b) w/o_adv (c) AEM

(d) Source                       (e) w/o_adv (f) AEM

Figure 5: t-SNE visualizations of feature distributions
learned by source model (left), w/o_adv model (middle) and
AEM (right) on tasks A→D (Top) and D→A (Bottom) in Office-
31 dataset. Zoom in for best view.

results show that using CM loss outperforms 𝐿1 loss by 2.9% and KL
divergence loss by 5.8% on average. The reason why KL performs
worst is that it is a biased estimate. However, in the framework of
AEM, the two classifiers should have equal competitive relation-
ships. Thus the bias towards either side will result in a deterioration
of model performance. 𝐿1 loss performs slightly worse because it
merely constrains the two predictions of the same sample to be
more consistent. The proposed CM loss not only requires consis-
tency between predictions, but also constrains the predictions to
be more certain, thus demonstrating better performance.

Visualization on t-SNE. The t-SNE [35] visualization results
on tasks A→D and D→A are shown in Fig.5. Fig.5.(a)(d) depict the
visualization data directly using black-box noisy labels, present-
ing a scattered distribution with unclear classification boundaries.
Fig.5(b)(e) displays the results without adversarial training, as de-
scribed before. It can be observed that, under the guidance of two
experts, the target domain model achieves better classification capa-
bility. Fig.5(c)(f) presents the results of AEM. Compared to w/o_adv,
the clusters by AEM are more compact, and the classification bound-
aries are clearer. This is because adversarial learning helps identify
hard samples and distills the knowledge from the two experts.

5 CONCLUSION
We propose a new framework for black-box domain adaptation
based on adversarial learning, named AEM. In contrast to previous
methods that exploit self-information, we introduce an additional
vision-language model into black-box domain adaptation to capture
high-level semantic information. Moreover, AEM is characterized
by jointly leveraging the existing knowledge of black-box and ViL
experts and continuously updating the experts themselves. And
then, adversarial learning is employed to distill two heterogeneous
knowledge to the target domain model. Moreover, the proposed sim-
ple yet effective consistency-max (CM) loss ensures the consistency
and certainty of predictions. The effectiveness of our approach has
been validated through experiments on multiple datasets.
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