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ABSTRACT

Recent advances in deep neural networks (DNNs) have led to remarkable suc-
cess across a wide range of tasks. However, their susceptibility to adversarial
perturbations remains a critical vulnerability. Existing diffusion-based adversarial
purification methods often require intensive iterative denoising, severely limiting
their practical deployment. In this paper, we propose Diffusion Bridge Distil-
lation for Purification (DBLP), a novel and efficient diffusion-based framework
for adversarial purification. Central to our approach is a new objective, noise
bridge distillation, which constructs a principled alignment between the adversar-
ial noise distribution and the clean data distribution within a latent consistency
model (LCM). To further enhance semantic fidelity, we introduce adaptive se-
mantic enhancement, which fuses multi-scale pyramid edge maps as condition-
ing input to guide the purification process. Extensive experiments across multiple
datasets demonstrate that DBLP achieves state-of-the-art (SOTA) robust accuracy,
superior image quality, and around 0.2s inference time, marking a significant step
toward real-time adversarial purification.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of tasks in
recent years. However, their widespread deployment has raised increasing concerns about their
security and robustness |He et al.| (2016)); [Liu et al.| (2021). It is now well-established that DNNs
are highly vulnerable to adversarial attacks|Szegedy et al.|(2014a), wherein imperceptible, carefully
crafted perturbations are added to clean inputs to generate adversarial examples that can mislead the
model into producing incorrect outputs Huang & Shen|(2025).

To address this issue, adversarial training (AT)Madry et al.|(2019) has been proposed, which retrains
classifiers using adversarial examples. However, AT suffers from high computational cost and poor
generalization to unseen threats, limiting its applicability in real-world adversarial defense scenarios.

In contrast, adversarial purification (AP) has emerged as a compelling alternative due to its stronger
generalization capabilities, and its plug-and-play nature, requiring no classifier retraining. AP meth-
ods utilize generative models as a preprocessing step to transform adversarial examples into purified
ones, which are then fed into the classifier. The recent advances in diffusion models|Ho et al.| (2020)
have further propelled the development of AP. These models learn to transform simple distributions
into complex data distributions through a forward noising and reverse denoising process. Crucially,
this iterative denoising mechanism aligns well with the goal of removing adversarial perturbations,
making diffusion models a natural fit for AP tasks |Nie et al.[(2022).

However, existing diffusion-based purification approaches suffer from a critical limitation: they
require multiple iterative denoising steps, resulting in prohibitively slow inference, which severely
restricts their use in latency-sensitive applications such as autonomous driving |Chi et al.| (2024)
and industrial manufacturing Wang et al.| (2025). Moreover, most of these methods rely on a key
assumption that the distributions of clean and adversarial samples converge after a certain number
of forward diffusion steps. This allows the use of pretrained diffusion models, originally designed
for generative tasks, to purify adversarial samples. However, this assumption only holds when the
diffusion time horizon is sufficiently large. Empirical evidence from DiffPure |[Nie et al| (2022)
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suggests that excessive diffusion steps can lead to significant loss of semantic content, rendering
accurate reconstruction of clean images infeasible.

In this paper, we propose Diffusion Bridge Distillation for Purification (DBLP), a novel framework
designed to simultaneously address the two key limitations of existing diffusion-based adversarial
purification methods: low inference efficiency and detail degradation. At its core, DBLP intro-
duces a noise-bridged alignment strategy within the Latent Consistency Model [Luo et al.| (2023a),
effectively bridging adversarial noise and clean targets during the consistency distillation process to
better align with the purification objective. By leveraging noise bridge distillation, DBLP enables
direct recovery of clean samples from diffused adversarial inputs using an ODE solver. To further
mitigate detail loss caused by fewer denoising steps, we introduce adaptive semantic enhancement,
a lightweight yet effective conditioning mechanism that utilizes multi-scale pyramid edge maps to
capture fine-grained structural features. These semantic priors are injected into inference to enhance
content preservation. DBLP achieves SOTA robust accuracy across multiple benchmark datasets
while substantially reducing inference latency, requiring only 0.2 seconds per sample, thus making
real-time adversarial purification feasible without compromising visual quality.

In summary, our contributions can be summarized as follows:

* We propose DBLP, a novel diffusion-based adversarial purification framework that significantly
accelerates inference while improving purification performance and visual quality.

* We introduce a noise bridge distillation objective tailored for adversarial purification within the
latent consistency model, effectively setting a bridge between adversarial noise and clean samples.
Additionally, we design an adaptive semantic enhancement module that improves the model’s
ability to retain fine-grained image details during purification.

* Comprehensive experiments across multiple benchmark datasets demonstrate that our method
achieves SOTA performance in terms of robust accuracy, inference efficiency, and image quality,
moving the field closer to practical real-time adversarial purification systems.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training is a prominent defense strategy against adversarial attacks |(Goodfellow et al.
(2015), which enhances model robustness by retraining the model on perturbed adversarial examples
Lau et al.|(2023). A substantial body of research has demonstrated its efficacy in adversarial defense.
Notable methods include min-max optimization framework [Madry et al.| (2018)), TRADES which
balances robustness and accuracy via a regularized loss[Zhang et al.|(2019), and techniques like local
linearization |Qin et al.|(2019) and mutual information optimization Zhou et al.| (2022). Despite its
strong robustness, adversarial training suffers from several notable drawbacks. It often generalizes
poorly to unseen attacks |Laidlaw et al.|(2021), and it incurs significant computational overhead due
to the necessity of retraining the entire model. Moreover, it typically leads to a degradation in clean
accuracy Wong et al.| (2020).

2.2 ADVERSARIAL PURIFICATION

Adversarial purification represents an alternative and effective defense strategy against adversarial
attacks that circumvents the need for retraining the model. The core idea is to employ genera-
tive models to pre-process adversarially perturbed images, yielding purified versions that are sub-
sequently fed into the classifier. Early efforts in this domain leveraged GANs |Samangouei et al.
(2018) or score-based matching techniques [Yoon et al.| (2021); [Song et al.| (2021) to successfully
restore adversarial images. DiffPure Nie et al.|(2022)) advanced this with diffusion models, inspiring
follow-ups like adversarially guided denoising |Wang et al.| (2022); [Wu et al.|(2022)), improved eval-
vation frameworks Lee & Kiml (2023), gradient-based purification Zhang et al.|(2023a)), dual-phase
guidance Song et al.| (2024)), and adversarial diffusion bridges|Li et al.|(2025). Despite their promis-
ing results, these methods exhibit certain limitations. Many approaches rely on auxiliary classifiers,
which often compromise generalization performance. Others involve iterative inference procedures
that are computationally intensive and time-consuming, thereby limiting their practicality in real-
time or resource-constrained scenarios.
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2.3 DIFFUSION MODELS

Diffusion models Ho et al.| (2020), originally introduced to enhance image generation capabilities,
have since demonstrated remarkable success across various domains, including video synthesis |Ho
et al.| (2022)) and 3D content generation |[Luo & Hul (2021). As a class of score-based generative
models, diffusion models operate by progressively corrupting images with Gaussian noise in the
forward process, and subsequently generating samples by denoising in the reverse process Huang &
Tang|(2025). Given a pre-defined forward trajectory {x; };c[o,r], indexed by a continuous time vari-
able ¢, the forward process can be effectively modeled using a widely adopted stochastic differential
equation (SDE) |Karras et al.| (2022):

dxy = p(xy, t)dt + o(t)dwy, (D)

where p4(x¢,t) and o (t) denote the drift and diffusion coefficients, respectively, while {w}+c[0,7]
represents a standard d-dimensional Brownian motion. Let p;(x) denote the marginal distribution
of x; at time ¢, and pqata(X) represent the distribution of the original data, then po(x) = pgata(X)-

Remarkably, |Song et al.|(2021) established the existence of an ordinary differential equation (ODE),
referred to as the Probability Flow (PF) ODE, whose solution trajectories share the same marginal
probability densities p;(x) as those of the forward SDE:

1
dx; = |p(xe,t) — §U(t)2VIOgPt(Xt) dt. 2

For sampling, a score model s¢(x,t) ~ V log p;(x) is first trained via score matching to approxi-
mate the gradient of the log-density at each time step. This learned score function is then substituted
into Equation equation 2] to obtain an empirical estimate of the PF ODE:

d 1
G = ROt = S0 se(xi.1). ®

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Adversarial attacks were first introduced by |Szegedy et al.| (2014b), who revealed the inherent vul-
nerability of neural networks to carefully crafted perturbations. An adversarial example x,q4, i8S
visually and numerically close to a clean input x, yet it is deliberately designed to mislead a clas-
sifier C into assigning it to an incorrect label, rather than the true class ¥y ye, formally expressed
as:

arg max C(y|Xadv) 7# Yerues S

with the constraint of ||x,4v — X|| < €, where € is the perturbation threshold.

The concept of adversarial purification is to transform the adversarial input x,q, into a purified
sample X, before passing it to the classifier C, such that x,,, closely approximates the clean
sample x and yields the correct classification outcome. This process can be formulated as:

m}f}X C(ytrue|P(Xadv))a (5)

where P : RY — R? is the purification function.

3.2 CONSISTENCY MODELS

The long inference time of diffusion models is a well-known limitation, prompting the introduction
of the Consistency Model [Song et al.|(2023)), which enables the sampling process to be reduced to
just a few steps, or even a single step. It proposes learning a direct mapping from any point x; along
the PF ODE trajectory {X; }+¢[o,7) back to its starting point, referred to as the consistency function,
denoted as f : (x,t) — X., where x. represents the starting state at a predefined small positive
value €. The self-consistency property of this function can be formalized as:

f(xtat) = .f(xt’at/) Vtat/ S [OaT] (6)
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Figure 1: The overview structure of our DBLP. An adversary perturbs a clean image x with noise
€, into an adversarial example x®, we first encode it into the latent space using the encoder £ to
obtain the latent representation z, followed by noise injection as defined in Equation equation [T}
During training, we adopt a modified LCM-LoRA framework to perform noise bridge consistency
distillation on the diffusion model, and employ a leapfrog ODE solver to accelerate sampling. Dur-
ing inference, we introduce adaptive semantic enhancement, using the weighted fusion of pyramid
edge maps as a semantic-preserving condition to guide the purification process. The final purified
image X, is then recovered via the decoder D.

The goal of the consistency model fy is to estimate the underlying consistency function f by en-
forcing the self-consistency property. The model fg can be parameterized as:

fo (X7 t) = Cskip(t)x =+ Cout (t)FG (X7 t)a @)

where cqkip () and oy (t) are differentiable functions. To satisfy the boundary condition f(x.,€) =
Xe, we have cqyip(€) = 1 and coy(€) = 0.

Building on this, the Latent Consistency Model |[Luo et al.| (2023a)) extends the consistency model
to the latent space using an auto-encoder [Rombach et al,| (2022). In this setting, the consistency
function conditioned on c is defined as fg : (z¢,c,t) — z.. To fully leverage the capabilities of a
pretrained text-to-image model, LCM parameterizes the consistency model as:

z— atég(z,cﬂt)) ®)

Qi

fo(z,c,t) = cokip(t)z + cout (t) (

LCM-LoRA |Luo et al.| (2023b) proposes distilling LCM using LoRA, significantly reducing the
number of trainable parameters and thereby greatly decreasing training time and computational cost.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

In this work, we aim to accelerate the purification backbone using a consistency distillation-inspired
approach. Noting that the starting and ending points of the ODE trajectory respectively contain and
exclude adversarial perturbations, we propose Noise Bridge Distillation in Section [4.2]to explicitly
align the purification objective.

To achieve acceleration, we leverage the Latent Consistency Model with LoRA-based distillation
and introduce a leapfrog ODE solver for efficient sampling. During inference, as detailed in Section
3] we propose Adaptive Semantic Enhancement, which fuses pyramid edge maps into a semantic-
preserving condition to guide the diffusion model toward effective purification.

4.2 NOISE BRIDGE DISTILLATION

Following LCM [Luo et al|(2023a), let £ and D denote the encoder and decoder that map images
to and from the latent space, respectively. Given an image X, its latent representation is z = £(x).
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Algorithm 1 Noise Bridge Distillation

Input: Dataset D, LCM fy and its initial model parameter 8, classifier C, ground truth label v, ye,
Leapfrog ODE solver V),,,, distance metric d(-,-), EMA rate u, noise schedule oy, skip interval
k, encoder &;
0 < 0;
1: while not convergence do
2:  Samplex ~D,n~U[Ll,N — k|,
3 z=E(x);
4:
5

€, = argmax, L(C(D(z + €)), Ytrue): i i

i = N T e e e
6: if::eap — 2z T (2 btk tns D)5
7 Lop (0,07) = d(fo (20,0 @otusr) s Fo- (207, 210) )
8

i Lree (0) =d(fo (21,2,1),2);
9: L (67 0_) = ECD (07 0_) + )\recﬁrec (0)’
10: 04+ 0 -nVeLl(0.07):
11: 07 < sg(pud~ + (1 —pn)o)
12: end while

Unlike DDPM, DBLP includes adversarial perturbations €, at the start of the noising process, such
that z} = zo + €,. The forward process is then x{ = \/a;x% + /1 — a;€, where € ~ N(0,I).

Our objective is to learn a trajectory that maps the diffused adversarial distribution (z%.) back to the
clean data distribution (zp). Notably, the starting point of this trajectory contains adversarial noise,
whereas the endpoint does not. Therefore, we aim to find a consistency model fy that satisfies:
fo(z¢,2,t) = fo(zt, D, t) = z, Where z. =~ z( denotes the limiting state of z; as t — 0. However,
this contradicts Equation equation [/, as the trajectories initiated from z; and z{ are misaligned,
causing fo(z¢,@,t) — fo(zt, D,t) — €,. To explicitly reconcile this discrepancy, we introduce a
coefficient k; and define an adjusted latent variable x; to align the trajectories accordingly:

Zy = Z? — ki€q, 9

with ky = 1 and k7 = 0. Our goal is to ensure that the sampling distribution during the denoising
process is independent of the adversarial perturbation €,. Although €, can be computed during
training as €, = argmax, L(C(D(z + €)), Ytrue), its exact value is unknown at inference time.
Leveraging Bayes’ theorem and the properties of Gaussian distributions, we achieve this by selecting
the value of coefficient k; such that the term involving €, is eliminated. After a series of derivations,
we obtain an explicit closed-form expression for k;:

= C_YT(].féét)
ke = Va, 7\/@7(1—@T)70§]5ST’ (10)

which satisfies kg = 1 and k7 = 0. Thus the z; is constructed as:

- — — O_éT(]. _dt)
=/ V1— — " e, 11
Zy QtZo + Q€ + Vo= @T)f (1D

In this way, the sampling process doesn’t require €,. The full proof is provided in Appendix [A.2]

Accordingly, based on the loss function introduced in LCM |Luo et al.| (2023a), our consistency
distillation loss can be formulated as:

ECD (07 0_) = IEz,n [d (.fO (zt,,,+k7®a tn+k) ’ .fg— (ig;?ga tn))] ) (12)
where d(-, -) denotes a distance metric, and W(-, -, -, -) represents the DDIM [Song et al.| (2022)) PF

ODE solver Ypprv. The term if’ refers to the solution estimated by the solver when integrating

from ¢, 4 to ¢,
2y < 2z, + V(2 btk tn, D). (13)
Following |[Kim et al.| (2024), we also incorporate a reconstruction-like loss that leverages clean

images to better align the distillation training process with the purification objective:

Erec (0) :d(fg (itagat)vz) (14)
The training algorithm is detailed in Alg.
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Table 1: Clean Accuracy and Robust Accuracy (%) results on CIFAR-10. Avg. denotes the average
robust accuracy across three types of attack threats, vanilla refers to models without any adversarial
defense mechanism. The best results are bolded, and the second best results are underlined.

Clean | Robuse Acc.

Type ‘ Method

Architecture ‘ A

\ \ | B b 6 L2 Ave
WRN-70-16 | — | Vanilla | 9636 | 0.00 0.00 0.00 0.00
WRN-70-16 Gowal et al.[(2021a) 91.10 | 6592 826 27.56 3391
WRN-70-16 AT Rebuffi et al.| (2021) 88.54 | 64.26 12.06 3229 36.20
WRN-70-16 Aug. w/ Diff|Gowal et al. (2021b) | 88.74 | 66.18 9.76  28.73 34.89
WRN-70-16 Aug. w/ Diff|Wang et al.[(2023) 9325 | 70.72 8.48 2898 36.06
MLP+WRN-28-10 Shi et al.| (2021) 91.89 | 456 868 725 6.83
UNet+WRN-70-16 Yoon et al.[(2021)) 87.93 | 37.65 36.87 57.81 44.11
UNet+WRN-70-16 GDMP |Wang et al.| (2022) 93.16 | 22.07 28.71 3574 28.84
UNet+WRN-70-16 ScoreOpt|Zhang et al.|(2023a) 91.41 | 13.28 1094 2891 17.71
UNet+WRN-70-16 | AP Purify++ Zhang et al.[(2023b) 92.18 | 43.75 39.84 5547 46.35
UNet+WRN-70-16 DiffPure Nie et al.[(2022) 92.50 | 4220 4430 60.80 49.10
UNet+WRN-70-16 ADBMILi et al.|(2025) 91.90 | 4770 49.60 63.30 53.50
UNet+WRN-70-16 DBLP (Ours) 94.8 584 644 594 60.73

Leapfrog Solver To enhance the dynamical interpretability of the sampling process, we refine the
DDIM-based PF ODE solver using a leapfrog-inspired mechanism. Specifically, we decompose the
prediction into a position-like estimate of the clean image and a velocity-like estimate of the noise,
which are then updated jointly through a first-order leapfrog integration step |Verlet (1967):

Zi1 =120+ h-vyp, (15)

where z; = /a;_1 - Zzg and vy = /1 — ay_1 - €, while V19 = 2vg serves as the midpoint velocity
estimate.

4.3 ADAPTIVE SEMANTIC ENHANCED PURIFICATION

Although diffusion models are effective at learning the denoising process from noise to images, re-
lying solely on this process often leads to the loss of fine-grained details Berrada et al.|(2025). While
OSCP |Lei et al.[(2025) attempts to mitigate this by incorporating edge maps to enhance structural
information, it uses fixed-threshold Canny edge detection |(Canny| (1986), which lacks adaptability
to varying attack intensities. Moreover, adversarial perturbations introduce noise that can interfere
with accurate edge extraction. To address these issues, we propose Adaptive Semantic Enhance-
ment, a non-trainable, computationally efficient module to aggregate multi-scale edge information,
enhancing structural integrity and detail preservation.

Given an adversarial image x¢ € R¥*W>3we construct an L-level Gaussian blur pyramid and
apply adaptive thresholding at each level [ to compute the corresponding edge map:

E; = Canny(GaussianBlur(x(, o)), (16)
where the thresholds are calculated using Otsu |Otsu| (1979) algorithm.
We employ a gradient-guided mechanism to fuse edge maps across different scales. We first upsam-

ple all edge maps to a unified resolution E;, then use gradient consistency to compute the weights
for each scale: ~
exp (~I|Vx§ — VE|2/T)
A= — - (17)
Sy exp (—[| Vg — VE||2/T*)

where T is the temperature parameter. Finally the fused edge map is:

L

Efused = Y A; O By (18)
=1

We then use Eg,seq as a condition in the LCM, resulting in a semantically enhanced purified image.
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Table 2: Clean Accuracy and Robust Accuracy (%) results on ImageNet. The default setting for
attack is e = 4/255. The best results are bolded, and the second best results are underlined.

Method Type | Attack Standard Robust | Architecture
Acc. Acc.
w/o Defense | — | PGD-100 | 80.55 0.01 | Res-50
Schott et al.| (2019) PGD-40 72.70 47.00 Res-152
Wang et al.[(2020) AT PGD-100 53.83 28.04 Res-50
ConvStem [Singh et al.|(2023) AutoAttack 77.00 57.70 ConvNeXt-L
MeanSparse |Amini et al.|(2024) AutoAttack 77.96 59.64 ConvNeXt-L
DiffPure Nie et al.| (2022) PGD-100 68.22 42.88 Res-50
DiffPure |Nie et al.[(2022) AutoAttack 71.16 44.39 WRN-50-2
Bai et al.[(2024) PGD-200 (e = 8/255) | 70.41 41.70 Res-50
Lee & Kim|(2023) PGD+EOT 70.74 42.15 Res-50
Lin et al.[(2025) PGD+EOT 68.75 45.90 Res-50
Zollicofter et al.[(2025) PGD-200 (e = 8/255) | 73.98 56.54 Res-50
MimicDiffusion |Song et al.|(2024) | AP AutoAttack 66.92 61.53 Res-50
ScoreOpt Zhang et al.|(2023a) Transfer-PGD 71.68 62.10 WRN-50-2
Pei et al.[(2025) PGD-200 (e = 8/255) | 77.15 65.04 Res-50
OSCP |Lei et al.| (2025) PGD-100 77.63 73.89 Res-50
DBLP (Ours) PGD-100 78.2 75.6 Res-50
DBLP (Ours) AutoAttack 78.0 74.8 Res-50
DBLP (Ours) PGD-200 (e = 8/255) | 77.4 74.2 Res-50

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We conduct extensive experi-
ments to validate the effectiveness and ef-
ficiency of our proposed method across
several widely-used datasets, including
CIFAR-10 [Krizhevsky et al| (2009), Im-

Table 3: Robust Accuracy (%) results on CelebA under
PGD-10. The best results are bolded, and the second-
best results are underlined.

ageNet Deng et al.| (2009)), and CelebA Method ‘ AF FN MFN
Liu et al.| (2015). CIFAR-10 consists of = w/o Defense 0.0 0.3 0.0
60,000 color images of size 32x32 across  GaussianBlur (o = 7.0) 2.8 51.4 2.8
10 object classes, representing general- SHIELD |Das et al.|(2018) | 17.3 84.1 27.6
purpose natural scenes. ImageNet is a  OSCP|Lei et al.|(2025) 86.8 97.8 849
large-scale visual database with over 14 ~ DBLP (Ours) 824 988 91.0

million human-annotated images spanning
more than 20,000 categories. CelebA contains over 200,000 celebrity face images, each annotated
with 40 facial attributes and five landmark points.

Training Settings For our pretrained diffusion backbone, we use Stable Diffusion v1.5Rombach
et al.| (2022)). The distillation process is trained for 20,000 iterations with a batch size of 4, a learning
rate of 8e-6, and a 500-step warm-up schedule. For our leapfrog solver Wig,,, we set k& = 20 in
Equation equation [13[and 2 = 0.8 in Equation equation During training, adversarial noise is
generated using PGD-100 with e = 4/255, targeting a ResNet-50 [He et al | (2016) classifier.

Evaluation Metrics We evaluate our approach using multiple metrics: clean accuracy (perfor-
mance on clean data), robust accuracy (performance under adversarial attack), inference time, and
image quality metrics including LPIPS [Zhang et al.|(2018)), PSNR, and SSIM Horé & Ziou| (2010).

5.2 RESULTS

CIFAR-10 We first conduct experiments on the CIFAR-10 dataset, evaluating our method under
adversarial threats constrained by ¢, ¢1, and ¢ norms. Since DBLP is trained under ¢, attacks, this
scenario is considered a seen threat, while the ¢/ and /5 settings are treated as unseen threats. The
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Table 4: Robust Accuracy (%) on DBLP under Diff-PGD-10 attack ¢ = 8/255 on ImageNet.

Method ‘ ResNet-50  ResNet-152  WideResNet-50-2 ConvNeXt-B  ViT-B-16  Swin-B
DiffPure (2022) | 538 494 522 429 16.6 45.1
OSCP (2025) 59.0 56.5 57.9 49.1 34.1 53.9
DBLP (Ours) 63.0 59.4 60.7 524 382 58.3

(a) clean image  (b) adversarial image (c) DiffPure (d) ScoreOpt (e) OSCP (f) DBLP (Ours)
Figure 2: Visualization of (a) clean images, (b) adversarial images and (c-f) purified images under
different method.

results are presented in Table[I] Although DBLP belongs to the category of adversarial purification
methods, its access to the victim classifier makes it comparable to SOTA adversarial training and
purification methods. Adversarial training performs well on seen threats but generalizes poorly to
unseen ones, and DiffPure variants offer limited gains. In contrast, DBLP achieves substantially
higher robust accuracy on both seen and unseen threats, while preserving strong clean accuracy. It
outperforms prior methods by 7.23%, highlighting its robustness, generalization, and efficiency.

ImageNet We further conducted comprehensive experiments on the ImageNet dataset, with re-
sults summarized in Table 2] Compared to CIFAR-10, adversarial purification methods on this
larger-scale dataset can achieve standard accuracy comparable to or even surpassing that of adver-
sarial training, while offering substantially higher robust accuracy. Notably, our method, DBLP,
consistently achieves strong performance across various adversarial attacks. Under PGD-100, Au-
toAttack, and PGD-200 (with e = 8/255), DBLP outperforms previous SOTA approaches by 1.14%,
0.64%, and 0.04% on average, respectively, in terms of both standard and robust accuracy. These
results demonstrate the scalability, robustness, and general applicability of DBLP across datasets of
different complexity and size.

Celeb-A We further validated the effectiveness of our method on a subset of the CelebA-HQ
dataset by evaluating it against three representative victim models: ArcFace (AF) (2019),
FaceNet (FN) [Schroff et al.| (2015)), and MobileFaceNet (MFN) [Chen et al| (2018). Leveraging

model weights pretrained on ImageNet, we applied our purification framework to adversarial face
images. As shown in Table 3] DBLP significantly enhances purification performance on facial data,
demonstrating its robust generalization across image resolutions and domains.

5.3 TRANSFERABILITY

We further evaluated DBLP under the Diff-PGD attack (2023). The LCM was trained
using PGD-generated adversarial noise on ResNet-50 and tested for transfer robustness across di-
verse architectures, including ResNet-50/152, WideResNet-50-2 [Zagoruyko & Komodakis| (2016),
ConvNeXt-B (2022)), ViT-B-16 [Kolesnikov et al|(2021), and Swin-B [Liu et al.| (2021).
As shown in Table @] DBLP consistently outperforms prior SOTA methods under Diff-PGD-10,
demonstrating strong cross-architecture robustness.
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Table 5: Inference time of purification models to Table 6: Ablation study of adaptive semantic en-
purify one image. The best results are bolded. = hancement.

Method | runtime (s) ‘ Robust LPIPS| SSIM?
GDMP [Wang et al (2022) ~ 43 Acc?

DiffPure|Nie et al.[(2022) ~ 53 w/o Edge Map | 74.2 0.1386 0.7409
OSCP Lei et al.|(2025) ~ 0.8 Edge Map 74.8 0.1172 0.7430
DBLP (Ours) ~ 0.2 DBLP (Ours) 75.6 0.1012  0.7655

5.4 INFERENCE TIME

A key limitation of diffusion-based adversarial purification is the long inference time, which impedes
real-time deployment. As shown in Table[5] DBLP achieves SOTA inference speed and significantly
outperforms other methods. On ImageNet, it completes purification in just 0.2 seconds, greatly
accelerating diffusion-based defenses and enabling practical real-time use.

5.5 IMAGE QUALITY

Beyond correct classification, adver-  Taple 7: A quality comparison between the clean image x
sarial purification also seeks to main-  and the purified image xpur. The X4, row reports the met-
tain visual fidelity relative to the picg between the purified and adversarial images. The best

clean input. As shown in Table results are bolded.
DBLP achieves strong image qual-

ity across all three metrics, with pu-  Method | LPIPS, PSNRT SSIMf
rified outputs X, closely matching
both adversarial x,q, and clean im- = Xadv ‘ 0.0975  26.17 0.7764

ages x. This highlights DBLP’s supe-  DiffPure Nie et al|(2022) | 0.2616 24.11  0.7155
rior visual quality. Qualitative results ~ OSCP[Lei etal[(2025) | 0.2370 24.13  0.7343

in Figure E] further confirm its ability = DBLP (Ours) 0.1012 26.03 0.7655
to preserve fine-grained details.

5.6 ABLATION STUDY

‘We conduct ablation studies to assess the adap- %0 0.80
tive semantic enhancement module in DBLP,
with results in Table [f] Omitting edge maps
leads to a small drop in robust accuracy but
a significant decline in image quality. Using
pyramid edge maps further improves both met-
rics, showing that multi-scale edge representa-
tions better capture structural details and en-
hance visual fidelity. We further conduct a pa- R
rameter analysis on the number of inference Inference time

steps, as shown in Figure[3] As the number of o 2 3 5 020
steps increases, robust accuracy shows a slight Inference steps

improvement, while sampling time grows sig-

nificantly. For more ablation results, please re-  Figure 3: Parameter analysis of inference steps.
fer to Appendix

=
o
o
N
3]

~

~

e

173

(=)}
Inference time

=
=

0.44 ¢

Robust Accuracy

)
G
L
R

6 CONCLUSION

In this work, we propose DBLP, an efficient diffusion-based adversarial purification framework. By
introducing noise bridge distillation into the LCM, DBLP establishes a direct bridge between the
adversarial and clean data distributions, significantly improving both robust accuracy and inference
efficiency. Additionally, the adaptive semantic enhancement module fuses pyramid edge maps as
conditional for LCM, leading to superior visual quality in purified images. Together, these advance-
ments bring the scientific community closer to practical, real-time purification systems.
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A DERIVATIONS AND PROOFS

A.1 PROOF OF LIMIT FORMULA

Here, we aim to show that as ¢ — 0, the difference between the consistency model outputs converges
to the adversarial perturbation, i.e., fg(2¢,d,t) — fo(2z:, D, t) — €q.
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A.2 DERIVATION OF EQUATION EQUATION [I0]

In Equation equation 9] our objective is to select kt such that the adversarial perturbation €, is
effectively removed, given that only the adversarial latent z® is available at inference. Following
Dhariwal & Nichol (2021)), we leverage Bayes’ theorem and the properties of Gaussian distributions
to rewrite the sampling formulation as:

U q(20,%i—1,2
(J(Zt—1|Zt,Zo) = M
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To achieve our goal, we should remove terms related to €, in Equation equation [20] which leads to:
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Then we have:
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By dividing both sides by /&, we obtain the recursive formula:

kt ap — 1 kt—l 1— g
— = — — + = 24)
Vi A — Qi /O 1 ap — Qi

Thus, we can easily obtain the closed-form expression:
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With kr = 0, replace ¢t = T' in the equation, we have:

k1 dT(l — 0_11)
— =1— — = (26)
NG a1(l —ar)
Finally we can obtain the closed-form expression of k;:
_ ar(l—ay) _ ar(l—ay)
O ) R iy 0

A.3 MORE ABLATION RESULTS

We conducted additional ablation studies to rigorously evaluate the effectiveness of each component
in DBLP. Specifically, we ablated Noise Bridge Distillation (NBD) and the Leapfrog ODE solver,
comparing them respectively with the consistency distillation loss (CD) of the Latent Consistency
Model and the conventional DDIM solver. The distillation loss ablation results, summarized in Table
[8l demonstrate that NBD consistently outperforms the traditional CD across all metrics, achieving
superior robust accuracy and perceptual image quality. This indicates that, by introducing a noise
bridge, NBD more effectively aligns the adversarial noise distribution with the clean data distribu-
tion, thereby substantially enhancing both model robustness and the quality of purified images.

Table 8: Ablation study on different distillation loss.
Distillation Loss  Robust Accuracy LPIPS  SSIM

w/o 65.1 0.1857 0.7260
CD 73.5 0.1337  0.7492
NBD 75.6 0.1012  0.7655

In the ODE solver ablation, the Leapfrog solver exhibits remarkable performance and efficiency,
surpassing the DDIM solver. These results confirm that the Leapfrog solver’s distinctive update
mechanism enables higher computational efficiency without compromising purification quality.

Table 9: Ablation study on different ODE solvers.
ODE Solver Robust Accuracy LPIPS Time

DDIM 75.40 0.1029 0.2670
Leapfrog 75.60 0.1012  0.2315
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