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Abstract
Most works of interpretable neural networks strive for learning the
semantics concepts merely from single modal information such as
images. However, humans usually learn semantic concepts from
multiple modalities and the semantics is encoded by the brain from
fused multi-modal information. Inspired by cognitive science and
vision-language learning, we propose a Prototype-Concept Align-
ment Network (ProCoNet) for learning visual prototypes under the
guidance of textual concepts. In the ProCoNet, we have designed a
visual encoder to decompose the input image into regional features
of prototypes, while also developing a prompt generation strat-
egy that incorporates in-context learning to prompt large language
models to generate textual concepts. To align visual prototypes with
textual concepts, we leverage the multimodal space provided by
the pre-trained CLIP as a bridge. Specifically, the regional features
from the vision space and the cropped regions of prototypes en-
coded by CLIP reside on different but semantically highly correlated
manifolds, i.e. follow a multi-manifold distribution. We transform
the multi-manifold distribution alignment problem into optimizing
the projection matrix by Cayley transform on the Stiefel manifold.
Through the learned projection matrix, visual prototypes can be
projected into the multimodal space to align with semantically
similar textual concept features encoded by CLIP. We conducted
two case studies on the CUB-200-2011 and Oxford Flower dataset.
Our experiments show that the ProCoNet provides higher accu-
racy and better interpretability compared to the single-modality
interpretable model. Furthermore, ProCoNet offers a level of inter-
pretability not previously available in other interpretable methods.

CCS Concepts
• Computing methodologies→ Artificial intelligence; Object
recognition; Computer vision problems; Image representa-
tions; Lexical semantics.

Keywords
Multimodal Self-explaining Model; Interpretable Image Recogni-
tion; Manifold Alignment; Prompt Generation; Large Language
Model

1 Introduction
Deep learning has demonstrated remarkable performance and has
been extensively utilized in various fields, such as image recog-
nition [15, 17] and object detection [11, 36]. However, despite its
impressive performance, deep neural networks are still perceived
as a black-box model that lacks interpretability. This limitation
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a) Previous prototypical part networks recognize
the bird by visual part-level prototypes

b) Our work recognizes the bird by visual prototypes
under guidance of conceptual text description

Text Description:
a white and red head,

a yellow wing ,
a brown back,

looks
like

European Goldfinch’s Head

loo
ks

like

looks
like

European Goldfinch’s Wings
lookslike

European Goldfinch’s Wings

looks
like

European Goldfinch’s Head

looks
like

…

Figure 1: Different strategies to recognize a bird by semantic
concepts. Compared to previous work, our work combines
visual prototype with textual concepts to recognize birds.

restricts their application in high-stakes areas such as finance, self-
driving, and disease diagnosis. Therefore, interpretability is crucial
in these critical domains, and it is essential to understand precisely
how the model makes decisions.

Interpretability of neural networks has recently gained signifi-
cant attention, and self-explaining convolutional neural networks
(CNNs) based on prototype learning [4, 8, 30, 50] have emerged
as a major research direction for interpretable computer vision.
Rosch [37, 38], the main representative of prototype theory in cog-
nitive science, confirmed through a series of psychological experi-
ments that semantic concepts consist of two factors: the prototype
or best instance, and the degree of category membership, which
depends on the resemblance to the prototype. Inspired by the proto-
type theory, the prototypical part network (ProtoPNet [4]) and its
extension works [30, 50] first learn the set of prototypes (semantic
concepts) from the images in the training set as shown in Figure 1
a) and then make predictions by comparing the similarity between
the prototypes and the parts of images. The explanation generated
by this method is "the bird is an European Goldfinch because parts of
the image resemble the prototype parts of the European Goldfinch".
Visual prototype-based interpretable models can be seen as a type
of introspection explanation system, which explains how the model
determines its final outpute.g., "it is an European Goldfinch because
Prototype No.7 has high activation...“).

Additionally, there is a justification explanation system that gen-
erates descriptive sentences detailing how visual evidence is com-
patible with the system’s output (e.g., "it is an European Goldfinch
because it has a yellow wing...“). For example, Hendricks et al. pro-
posed [16] focusing on generating sentence-level explanations for
object-level images, while Yang et al. proposed [52] focusing on
generating phrase-level explanations for object-level images. How-
ever, most introspective explanation systems still focus on learning
semantic concepts from a single modality (such as images), while
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current justification explanation systems lack the part-level visual
evidence attribution.

Abundant psychological evidence suggests that humans learn
more semantic information by combining language and its meaning
in the physical world [12, 33]. In our work, we propose a novel inter-
pretable framework called Prototype-Concept Alignment Network
(ProCoNet), which serves as both an introspective explanation sys-
tem and a justification explanation system. The Prototype-Concept
Alignment Network aligns visual part-level prototypes with textual
concepts as illustrated in Figure 1 b). Through this network, we can
not only determine that this bird is identified because a prototype
has high activation but also explain what human-interpretable tex-
tual concept corresponds to this highly activated region. Specifically,
ProCoNet consists of three spaces: a vision space for extracting
prototype region representations, a human-interpretable textual
concept space, and a multimodal space for aligning visual proto-
types with textual concepts. Firstly, to generate textual concepts
that can match visual prototypes, our approach leverages in-context
learning and prompt generation strategies with large language mod-
els (LLMs). By using pre-annotated textual concepts as contextual
clues, our method enables the LLM to directly produce relevant and
concise concept descriptions. Then, we employ a prototypical part
network [4] to extract regional representations of prototypes in the
vision space.

A major challenge is that aligning fine-grained visual prototypes
with textual descriptions of concepts is difficult without explicit
supervisory signals. To address this issue, we utilize the multimodal
space of the pre-trained vision and language model CLIP [34] as
an intermediary bridge, employing manifold alignment to learn
mapping from the vision space to the multimodal space. Figure 2
illustrates the basic idea of manifold alignment, which aims to
construct relationships between different datasets and project data
points to a common subspace while preserving local geometry struc-
tures. Specifically, the regional features of the prototypes and the
features of the region images encoded by the CLIP image encoder
reside on different but semantically highly correlated manifolds,
i.e., a multi-manifold distribution. To align the both features, we
adopt the manifold alignment method by learning a projection ma-
trix that project them into a common subspace. In this subspace,
we enforce both features that share similar semantic meanings to
be close, i.e. feature matching, while preserving their neighbor-
hood relationships in the original feature spaces, i.e. local geometry
preserving. We convert the manifold alignment problem into an
optimization problem with orthogonality constraints on the projec-
tion matrix, taking into account the criteria of feature matching and
geometry preserving. We then transform the optimization problem
with Cayley transform and update the the projection matrix using
a curvilinear search on the Stiefel manifold. Through the feature
transformation of the projection matrix, visual prototypes and text
concepts encoded by CLIP text can be aligned within the same
space.

We have conducted extensive experiments on two case studies,
bird species identification and flower species identification, to eval-
uate the performance of our model in terms of both interpretability
and accuracy. To measure interpretability, we compared the output
region of semantic concepts with annotated object parts, which
provides a quantifiable metric that was previously missing from

𝒳 𝒳!Common Subspace

𝑥!"

𝑥#"
𝑑!#"

𝑧!"

𝑧#"

≈ ≈ 𝑑!#"

𝑥!

𝑥#

𝑑!#

𝑧!

𝑧#

𝑑!#

Figure 2: The basic idea of Manifold alignment: correspond-
ing data points are mapped from two different manifolds to
similar locations in a common subspace while preserving
the local geometry of each manifold.

ProtoPNet-based methods. Furthermore, we designed a baseline
model that learns concepts directly from features without manifold
alignment to demonstrate the effectiveness of our proposed frame-
work. Our model outperformed classical interpretable models in
both accuracy and interpretability.

The contributions of our work are summarized as follows:
• Anew framework of interpretable image recognition guided

by language is first proposed that can learn semantics con-
cepts from both visual and linguistic modality. Tomy knowl-
edge, this is the first interpretable framework that is both
an introspective explainable system and a justification ex-
plainable system.

• To obtain textual concepts related to visual prototypes, we
developed an innovative prompt generation strategy that
integrates in-context learning, prompting large language
models to directly produce text concepts that are visually
recognizable without the need for post-processing. This
significantly simplifies the concept extraction process and
enhances the relevance and clarity of the generated descrip-
tions.

• We design a manifold alignment method to optimize the
projection matrices on the Stiefel manifold by the Cayley
transform, which transforms the features of multi-manifold
distributions into a common subspace. Besides, an alternat-
ing optimization algorithm is proposed to optimize objec-
tives of manifold alignment and concept learning.

• We apply quantitative metrics of interpretability for the
ProtoPNet-basedmethods. Extensive experiments have demon-
strated that reasonable utilization of natural language guid-
ance can improve the accuracy and interpretability of the
self-explaining model.

2 Related Work
Our work is related to interpretability in image recognition and
manifold alignment. In this section, we will give a brief overview
of related works.

Interpretability in Image Recognition. Previous methods of
interpreting deep neural networks can be broadly classified into
two types, one devoted to visualizing the underlying patterns of the
black-boxmodel, and the other focusing onmodeling clear semantic
representations. There are a lot of visualization methods to compute
the relevance score at each pixel-level location of the image, includ-
ing the saliency-based methods [7, 26, 54, 57], perturbation-based
forward propagation methods [9, 10], and backpropagation-based

2
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methods [2, 28, 42–45, 55]. But the collection of pixels cannot build
the connection with semantics concepts of humans and lack of
illustrating knowledge hidden behind all activations. Therefore,
some methods aim to learn semantics concepts to construct a self-
explaining model during the training process, such as [5, 24, 56]
focus on learning interpretable filters by restricting each filter re-
sponse to a specific concept. For grasping the concepts, some re-
searchers try to represent the semantics patterns as the prototype
vectors [4, 8, 22, 29, 30, 50]. [4] proposed a prototypical part network
(ProtoPNet) to learn the prototypes and can generate a part-level at-
tention map as an explanation by calculating the distance between
an input image and learned prototypes. Further, the ProtoPNet has
been extendedmany times [8, 22, 29, 50] and different methods have
added different properties to the prototypes. [50] designed a plug-in
transparent embedding space, which is spanned by disentangled
basis concepts on the Grassmann manifold. Nauta et al. proposed
a Neural Prototype Tree that combines prototype learning with
decision trees and can explain a prediction by outlining a decision
path. However, the above methods only learn semantic concepts
from visual modality and lack other modal information to guide
concept learning. In contrast, our model is the first framework
to learn the visual prototypes guided by textural concepts and a
manifold alignment method is proposed to align the multi-modal
manifold distribution. In this way, the concepts can capture richer
semantic information and provide better interpretability.

Another class of explainable methods involves constructing Con-
cept Bottleneck Models (CBMs) [39] to establish relationships be-
tween images and human-understandable attributes. Specifically,
these models introduce a bottleneck layer composed of human-
understandable attributes between the input and prediction, and
predictions are then made by linearly combining these attributes.
However, CBMs often require costly attribute annotations. To ad-
dress this issue, Post-hoc Concept Bottleneck Models (PCBMs) [53]
have been proposed, which utilize information from static knowl-
edge bases. Additionally, LaBo [52] has suggested using GPT-3 [3]
to first extract sentences containing attribute information about cat-
egories, followed by manually annotating some sample pairs to fine-
tune a T5 model [35] to segment sentences into smaller attribute
descriptions. Ultimately, an optimizable submodule is trained to
filter out the most relevant concept sets. However, the recent pa-
per [27] have conducted a thorough analysis of CBMs using post
hoc interpretability methods, revealing that CBMs may not effec-
tively correspond to semantically meaningful representations in
input space, thereby questioning their current utility and their abil-
ity to achieve their intended goals of interpretability, predictability,
and intervenability. In our work, we have designed a prompt gener-
ation strategy that allows GPT to produce textual concepts focused
on prototype descriptions. This approach reduces the dependency
on costly attribute information and eliminates the need for complex
post-processing. Additionally, because ProCoNet possesses intro-
spective capabilities, it avoids the traditional bottleneck layer issue
of failing to generate expected visual explanations.

Manifold Alignment. Manifold alignment has been widely
used in many fields of machine learning and data mining. The main
objective of manifold alignment is to align the sets of data from
different manifold distributions by matching the corresponding
instances of different manifold distributions and preserving the

local geometry of each manifold. Depending on whether the corre-
spondence information is available or not, manifold alignment can
be classified into semi-supervised manifold alignment [13, 25, 49]
and unsupervised manifold alignment [6, 20, 32, 48]. Generally,
the manifold alignment problem is transformed into an optimiza-
tion problem that finds the projection matrices from the original
spaces to a common subspace, and the projection matrices are
solved in closed form by eigenvalue decomposition like Canonical
Correlation Analysis (CCA) [14]. Different from existing methods,
we develop the optimization algorithm of the projection matrices
based on the Cayley transform for preserving the orthogonality
constraints, which can obtain the global optimal solution [51]. Our
model doesn’t require the region images of prototypes for guidance
during inference, whereas the traditional CCA method requires
guidance from corresponding features in multimodal space during
testing.

3 Method
In this section, we will introduce our proposed framework named
Prototyp-Concept Alignment Network (ProCoNet) for image clas-
sification in Section 3.1, and the overall architecture is shown in
Figure 3. For constructing textual concept space, we crafted a strat-
egy that employs in-context learning techniques for generating
prompts, which are then fed into the large language model GPT-
3 [3]. This approach generates a diverse set of textual concepts
for each category, which are amenable to visual recognition (Sec-
tion 3.2), and then we employ a pretrained vision-language model,
CLIP [34] to encode these textual concepts to multimodal space.
Additionally, we propose a manifold alignment method that utilizes
the CLIP visual embeddings of cropped regions consistent with
visual prototypes to project visual prototype representations into
a multimodal space, while preserving the local geometry of the
vision space (Section 3.3). In the multimodal space, the projected
visual prototype embeddings and textual concept embeddings can
compute their mutual similarity and derive scores for each con-
cept. We combine the scores of different concepts through learning
a class-concept weight matrix, applying linear weighting, to ulti-
mately obtain the predicted logits in the final classification. Finally,
Section 3.4 introduces the implementation details of the two-step
alternating optimization process in ProCoNet.

3.1 ProCoNet Framework
Figure 3 illustrates the framework of our ProCoNet. Given the im-
age set {𝐼𝑣}𝑁1 with labels {𝑦}𝑁1 and the textual concept {𝐼𝑙 }

𝑁𝑏

1 , the
objective of the ProCoNet is to learn part-level visual prototype
B, the projection matrix P which projects visual features into the
multimodal space, and a decision function 𝑦 = 𝜓 (I𝑣,I𝑙 ;B,P, 𝜃 ),
where 𝜃 is the paramerters of 𝜓 . Specifically, we can decompose
the function into four parts, region feature extraction of visual pro-
totypes, region feature projection by manifold alignment, textural
conceptual space construction, and visual prototypes and textual
concepts alignment.

Region Feature Extraction of Visual Prototypes. In the vi-
sion space, we first pre-trained a standard ProtoPNet [4] on the
image dataset to learn visual part-level prototypes. Specifically, we
denote the input image as I𝑣 and its features extracted by the vision

3
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Figure 3: The overall architecture of our proposed Prototype-Concept Alignment Network (ProCoNet).

encoder 𝑓𝑣 (·) denoted by X𝑣 ∈ R𝐷×𝑊 ×𝐻 . Here, 𝐷 represents the
number of channels of the feature maps, while 𝐻 and𝑊 denote the
heights and widths of the feature maps. The vision encoder 𝑓𝑣 (·)
with paramters 𝜔 𝑓𝑣 is composed of a convolutional network back-
bone (e.g. VGG, ResNet, and DenseNet) and additional 1×1 convolu-
tional layers. Using extra 1×1 convolutional layers, the output of vi-
sion can be projected to the feature space of the same dimensionality
as the multimodal space. In the ProtoPNet, the objective is to learn
𝑀 prototypes B𝑐 = {𝑏𝑐𝑚}𝑀𝑚=1 ∈ R

𝐷×𝑀 with 𝑏𝑐𝑚 ∈ R𝐷 for every cat-
egory 𝑐 , i.e. class-specific prototype. Each prototype unit 𝑆𝑏𝑚 first
computes the squared 𝐿2 distance | |𝜙 (X𝑣) −𝑏𝑚 | |22 between the pro-
totypes𝑏𝑚 and the all 1×1 patches ofX𝑣 and then convert to similar-
ity by the function log(( | |𝜙 (X𝑣) −𝑏𝑚 | |22 +1)/(| |𝜙 (X𝑣) −𝑏𝑚 | |22 +𝜖)),
where 𝜙𝑤,ℎ (X𝑣) denotes the operation of taking the (𝑤,ℎ)-th lo-
cation in the visual feature map. If the patch 𝜙 (X𝑣) is closer to
the prototype 𝑏𝑚 , the function will produce a higher similarity
score. Given an input image, an activation map Q𝑐

𝑚 with shape
𝑊 × 𝐻 of the𝑚-prototype in class 𝑐 can be calculated by comput-
ing the similarity between each prototype and the features. The
activation map can be up-sampled to the input image to illustrate
how strongly the prototype 𝑏𝑐𝑚 is activated in the image and the
score of the prototype can be obtained by performing a global max
pooling on the similarity map. Finally, the output logits can be
generated by multiplying the similarity score by the weights of
the fully connected layer. Then, a softmax function is applied to
calculate the probability that the current image belongs to all cate-
gories, with the highest probability corresponding to the category
𝑦 predicted by the ProtoPNet network. For a pre-trained ProtoP-
Net, an image can re-represent its high-level features on different
prototypes, while displaying prototype activation regions on the
original image. Furthermore, it can make classification decisions
based on the similarity with different prototypes.

For the predicted class 𝑦 in the trained prototype network, we
can encode each region with high activation for each prototype on

the feature maps based on the activation maps Q𝑦 = {Q𝑦
𝑚}𝑀𝑚=1 and

prototypes B𝑦 . The region features are achieved through non-linear
feature encoding [18, 21, 23] as follows:

𝑟 ′𝑚 =
1∑

𝑤,ℎ 𝑞
𝑚
𝑤,ℎ

∑︁
𝑤,ℎ

𝑞𝑚
𝑤,ℎ
(𝑥𝑤,ℎ − 𝑝

𝑦
𝑚), 𝑟𝑚 =

𝑟 ′𝑚
| |𝑟 ′𝑚 | |2

, (1)

where 𝑞𝑚
𝑤,ℎ

= 𝜙𝑤,ℎ (Q
𝑦
𝑚) represents the activation value of each

coordinate on the activation map and 𝑥𝑤,ℎ = 𝜙𝑤,ℎ (X𝑣) denotes the
(𝑤,ℎ)-th location in the feature maps. Therefore, we obtained the
region features R𝑣 = {𝑟𝑚}𝑀𝑚=1 ∈ R

𝐷×𝑀 of pixels assigned to the
prototypes, which can represent the features of the corresponding
prototype for predicted class 𝑦 on the image.

Region Feature Projection by Manifold Alignment. To bet-
ter project the region features of the visual space to the multimodal
space for aligning with future and textual concepts, we first offline
crop and resize the regions corresponding to the prototypes in
trained ProtoPNet on the image. Then, we input them into the pre-
trained vision language model CLIP’s image encoder 𝑓𝐼 (·) to obtain
representations of the corresponding regions in the multimodal
space. We denote the clip’s image embedding of cropped part-level
region as Z𝑠 = {𝑧𝑠𝑚}𝑀𝑚=1 ∈ R

𝐷×𝑀 with 𝑧𝑠𝑚 = crop(I𝑣, 𝑟𝑚). There-
fore, the region features R𝑣 from the vision space and the cropped
region features Z𝑠 encoded by CLIP from the multimodal space
respectively represent the features of the same image region in
different spaces. Without any processing, the two sets of features
would be different but semantically highly correlated manifold dis-
tributions. Our goal is to learn a projection P𝑣 ∈ R𝐷×𝐷 to transfer
the vision region features to a common subspace with the cropped
region features encoded by CLIP in multimodal space such that
the two distributions can be aligned semantically. The transformed
features of vision region features R𝑣 is denoted as Z𝑣 = P⊤𝑣 R𝑣 in
the multimodal space, which can serve as the representation of
visual prototypes in the multimodal space. The specific method of
learning this projection matrix P𝑣 will be detailed in Section 3.3.
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Textual Conceptual Space Construction. To construct a tex-
tual concept space recognizable by visual prototypes, our model
designs a prompt generation method based on in-context learning
to prompt the large language model, GPT-3 [3], to generate a set
of 𝐾 textual concepts describing visual information for each cate-
gory. In our model, we collected a total of 𝑁𝑏 textual concepts 𝑙𝑐,𝑘
from the GPT-3. These textual concepts are encoded by the text
encoder 𝑓𝐿 (·) of CLIP, ultimately forming a concept representation
𝑍𝑙 ∈ R𝐷×𝑁𝑏 . The specific method for generating prompts will be
described in Section 3.2.

Visual Prototypes and Textual Concepts Alignment. Given
the projection Z𝑣 of visual region features in multimodal space and
the textual concept representation Z𝑙 , we first calculate the cosine
similarity between both to construct a prototype-concept similarity
matrixW𝑝𝑐 ∈ R𝑀×𝑁𝑏 . The value at each position (𝑚1, 𝑛𝑏 ) in the
matrix is calculated byW(𝑚1,𝑛𝑏 )

𝑝𝑐 = z𝑣𝑚
⊤z𝑙𝑛𝑏 /(| |z

𝑣
𝑚 | |2 · | |z𝑙𝑛𝑏 | |2) and

each element represents the score of different visual prototypes of
the image on textual concepts. Then we sum over the dimensions of
the prototypes to obtain a score vector𝑊𝑠 ∈ R1×𝑁𝑏 , reflecting the
total score of all prototypes in each concept. To establish a mapping
from concept scores to final predictions, we learn a linear function
for predicting categories, where the weights of the linear layer
are denoted as 𝜔𝑐𝑐 ∈ R𝑁𝑏×𝐶 , encoding the correlation between
concepts and categories. Furthermore, due to the inherent category
prior information in textual concepts, we initialize the concept-
category matrix 𝜔𝑐𝑐 using linguistic priors. If the textual concept
𝑙𝑐,𝑘 is within category 𝑐 , we initialize the elements in the weight
matrix related to category 𝑐 and concept 𝑙𝑐,𝑘 as 1, otherwise as
-0.5. Finally, the prediction based on concepts can be formalized
by 𝑦 = argmax(𝜎 (𝑊𝑠 · 𝜔𝑐𝑐 )), where 𝜎 (·) is the softmax activation
function.

Main Objective Function. The main objective of our model is
to learn visual prototypes that can align with textual concepts. To
learn part-level visual prototypes, the patches of feature maps in
the vision space are clustered on at least one semantically similar
prototypes of the ground truth category and separated from proto-
types of the other category. Therefore, the introduced clustering
and separation losses are formalized in [4] as:

L𝑐𝑙𝑠𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

min
𝑗 :𝑏 𝑗 ∈B(𝑦𝑖 )

min
𝑥𝑣 ∈𝜙 (X𝑣 )

| |𝑥𝑣 − 𝑏 𝑗 | |22

L𝑠𝑒𝑝 = − 1
𝑁

𝑁∑︁
𝑖=1

min
𝑗 :𝑏 𝑗∉B(𝑦

𝑖 )
min

𝑥𝑣 ∈𝜙 (X𝑣 )
| |𝑥𝑣 − 𝑏 𝑗 | |22

(2)

where 𝑁 is the number of training set and 𝑦𝑖 is the label of instance
𝑖 . The optimization problem combined with the cross-entropy loss
(CrsEnt) to penalize the misclassification of 𝑦 can be formed as
follows:

Ltotal = LCrsEnt + 𝜆1L𝑐𝑙𝑠𝑡 + 𝜆2L𝑠𝑒𝑝 (3)

where 𝜆1 and 𝜆2 is the hyper-parameter. A semantically meaningful
concept space will be constructed under the constraints of these
terms. Through the above optimization, visual prototypes can be
discovered in the vision space.

Text Pool

Step 1: 20 seed texts with
manually annotated concept

[Bird Class]: Rhinoceros Auklet
[Text Description]:
1. A black body
2. A black head with white face

20. Orange feet with webbed toes
⋮

[Bird Class]: Common Yellowthroat
[Text Description]:
1. Bright yellow throat
2. Black mask through its eyes

20. Olive-green back
⋮

⋮

Random 
sampling

🤖
LLM

Query
Bobolink

The categories
to be expanded

Step 2:Prompt Generation

#Task Name#: 
Generation of Bird Visual Prototype Concept Descriptions
#Role to Play#: 
You are an ornithology Expert. Given the [Bird Class] , your 
task is to generate [Text description] according to the Task 
Considerations and Standards provided below.
#Considerations for Task Completion#:
1. Focus on Visual Features: The generated phrases should 
emphasize describing the bird's visual features, such as 
color, size, shape, and feather patterns.

⋮
#Appropriate Phrases#:

1."This bird species has white wings."
2."The bird has a black body."
#Inappropriate Phrases#:
1. "This bird's song is particularly melodious."
2."This bird's habitat is in the United States."
[Bird Class]: Common Yellowthroat
[Text Description]:1. Bright yellow throat 2. ⋯

[Bird Class]: Fish Crow
[Text Description]:1. black feathers 2. ⋯

⋮

[Bird Class]: Rhinoceros Auklet
[Text Description]:1. A black body 2. ⋯

[Bird Class]: Bobolink
[Text Description]:1.

⋮

Step 3:Textual Description
Generation

[Bird Class]: Bobolink
[Text Description]:
1. White patches on the wings
2. Yellowish-buff nape
3. A short bill
4. Pale buff breast
5. Black crown and face mask
6. White rump visible in flight
7. Yellow patch on the back of the head
8. Black eye stripes
9. Rust-colored cap
10. Short-pointed wings

19. Dark legs and feet
20. Olive-green back

⋮

Figure 4: The textual concept space generated by the large
language model (LLM). We have designed a prompt gener-
ation method that combines in-context learning, and the
generated textual concepts can be recognized by visual pro-
totypes.

3.2 Concept Space Construction
Previous work Labo [52] utilized simple prompts, such as "describe
what the [CLASS NAME] looks like“, to prompt GPT-3 to generate re-
lated sentences, then split the sentences into shorter concepts using
a T-5 model [35] fine-tuned on a small set of annotated sentence-
concept pairs, and finally used a submodular optimization to filter
out concept sets. LaBo pioneered the use of large language mod-
els to collect concept descriptions. However, the method involves
cumbersome steps, requiring post-processing of sentences gener-
ated by large models with multiple models. Furthermore, even after
multiple rounds of preprocessing, the concept set filtered by LaBo
still contains many concepts that are mixed and cannot be visu-
ally recognized, such as "This bird’s song is particularly melodious“,
"This bird’s habitat is in the United States“, "Longevity, with some
individuals living over 50 years“ and etc.

To address the aforementioned issues, we have designed a prompt
generation strategy that incorporates in-context learning to prompt
large language models, which enables the direct generation of tex-
tual concepts by the LLMwithout any post-processing, as illustrated
in Figure 4. Specifically, we first annotate 20 text concepts for each
category as seed texts for in-context learning, and then randomly
select 8-12 from the text pool as guiding in context information dur-
ing prompt generation. Next, we designed instructions specifically
for prompting large language models to generate textual descrip-
tions for visual prototypes. The instructions include the task name,
the role the large language model needs to play, considerations for
completing the task, task criteria, as well as examples of suitable
and unsuitable phrases. Due to space limitations, detailed instruc-
tions will be presented in the appendix. The concatenated prompt
is composed of instructions designed by us, in-context instances
randomly sampled from the text pool, and the category names
that need to be expanded. This merged prompt is inputted into the
large language model, ultimately resulting in 20 text descriptions
focusing on describing potential visual prototypes for the given
category.

3.3 Manifold Alignment
The objective of the classical manifold alignment algorithm is to
learn a projection that maps features from different spaces to a
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common subspace simultaneously matching the corresponding in-
stances and preserving the local geometry of each manifold. Match-
ing the corresponding instance implies that instances with compa-
rable semantic meanings from distinct manifolds will be projected
onto neighboring regions following transformation, while preserv-
ing the local geometry implies that the relationship of the neighbor-
hood of the instances in each manifold will remain consistent after
transformation. Therefore, solving the alignment problem with-
out correspondence needs to find two unknown variables, i.e.the
correspondence, and the projection matrix. In our work, we aim
to learn a projection matrix through manifold alignment to better
map the vision space to the multimodal space while preserving
the geometric relationships among the original region features in
vision space.

Constructing the Correspondence. In our model, there is a
clear one-to-one correspondence between the region feature 𝑟𝑚
of the visual space and the cropped regions 𝑧𝑠𝑚 encoded by CLIP
corresponding to the visual prototypes. Therefore, we can leverage
this property to construct the corresponding matrix as follows:

𝑊
(𝑚1,𝑚2 )
𝑣𝑠 =

{1 if 𝑚1 =𝑚2,

0 otherwise (4)

where𝑊 (𝑚1,𝑚2 )
𝑣𝑠 ∈ R𝑀×𝑀 is the element of the correspondence

matrix W𝑣𝑠 . If𝑚1-th visual region feature is corresponding with
𝑚2-th cropped regions encoded by CLIP,𝑊 (𝑚1,𝑚2 )

𝑣𝑠 is set to 1 or
vice versa.

Objective Function of Manifold Alignment. In ourwork, the
manifold alignment is used to make visual region features and
cropped CLIP-encoded region features with similar semantics close
after projected to the common subspace. To achieve the above goals,
the objective function can be defined as follows:

min
P𝑣

𝐽 (P𝑣) =
1
𝑀

𝑀∑︁
𝑚1=1

𝑀∑︁
𝑚2=1

𝑊
(𝑚1,𝑚2 )
𝑣𝑠 | |𝑧𝑣𝑚1 − 𝑧

𝑠
𝑚2 | |

2
2, (5)

where 𝑀 is the number of corresponding pairs, i.e. the number
of element 𝑊 (𝑖, 𝑗 )

𝑣𝑙
equals 1 in correspondence matrix W𝑣𝑙 . 𝑧𝑣𝑚1

presents the projection of 𝑟𝑚1 in multimodal space . If 𝑟𝑚1 and 𝑧𝑠𝑚2
correspond to each other in original space, the distance between
𝑧𝑣𝑚1 and 𝑧

𝑠
𝑚2 will be penalized in projected space.

In the common subspace unrolled by the manifolds, the nearest
neighbor relationships of each manifold are expected to be pro-
tected, i.e. the local geometry should not be destroyed. In many
manifold learning algorithms [6, 47], the local geometry is char-
acterized by computing the local adjacency weight matrix, i.e. the
similarity between instances in the manifold. According to the pre-
vious work [1, 41], the image and sentence structure are encoded
by the similarities of the visual features with different locations and
language features with different words. In our work, for preserving
the local geometry, the orthogonal constraints are added on the
projection matrix P𝑣 , i.e. P⊤𝑣 P𝑣 = 𝐼 . Under the constraint of projec-
tion matrix orthogonality, the local geometry can be preserved and
the proof is as follows:

𝑑 (z𝑣𝑚1 ,Z
𝑣
𝑚2 ) = | |P

⊤
𝑣 r𝑚1 − P⊤𝑣 r𝑚2 | |22 = P⊤𝑣 P𝑣 | |r𝑚1 − r𝑚2 | |22

= | |r𝑚1 − r𝑚2 | |22 .
(6)

The original structure of visual features will be preserved with the
orthogonal constraint in the projected common subspace.

For matching the semantically similar features among manifolds
and protecting the local geometry of eachmanifold, we can combine
the objective function Equation 5 with the orthogonal constraint.
Firstly, we convert the Equation 5 to the following form:

min
P𝑣

𝐽 (P𝑣) = tr(P⊤𝑣 R𝑣D𝑣R⊤𝑣 P𝑣 + Z𝑠D𝑠Z⊤𝑠 − 2P⊤𝑣 R𝑣U𝑣𝑠Z𝑠⊤)
(7)

where U𝑣𝑠 = W𝑣𝑠/𝑀 , D𝑣 ∈ R𝑀×𝑀 is a diagonal matrix with
the element D𝑣 (𝑚1,𝑚1) =

∑𝑀
𝑚2=1 U𝑣𝑠 (𝑚1,𝑚2). The similar with

D𝑠 ∈ R𝑀×𝑀 is a diagonal matrix with the element D𝑠 (𝑚2,𝑚2) =∑𝑀
𝑚1=1 U𝑣𝑠 (𝑚1,𝑚2) and tr(·) is the trace.
However, considering the orthogonal constraint of projection

matrices, the first and second terms are irrelevant to P𝑣 . The final
manifold alignment problem can be transformed into solving the
following optimization problem with constraints:

min
P𝑣

𝐽 (P𝑣) = −tr(2P⊤𝑣 Z𝑣U𝑣𝑠Z⊤𝑠 )

s.t. P⊤𝑣 P𝑣 = 𝐼
(8)

Solving the above optimal solution is difficult directly since the
orthogonal constraints can lead to many local optimal solutions.
The traditional approach utilizes Singular Value Decomposition
(SVD) to solve the above equations, such as Canonical Correlation
Analysis (CCA) [14]. However, this method relies on local batch
data, requiring corresponding cropped region features from the
multimodal space for each projection computation. Therefore, we
propose a new solution to the aforementioned orthogonal problem,
i.e. Equation (8), which can search for the global optimal solution
across all data and does not require CLIP-encoded regional features
during test inference. Specifically, we solve the optimization prob-
lem based on the Cayley transform and optimize the projection
matrices on the Stiefel manifold in our work. In the Stiefel manifold,
the feasible set P = {P ∈ R𝐶×𝐶 : P⊤P = 𝐼 } and projection matrix
P𝑣 is updated by a curvilinear search [51] in the feasible set through
the Cayley transform:

P(𝑡+1)𝑣 = (𝐼 + 𝜂𝑣
2
A𝑣)−1 (𝐼 − 𝜂𝑣

2
A𝑣)P(𝑡 )𝑣 (9)

where 𝑡 is the present step, 𝑡 + 1 is the next step, A = G(P(𝑡 ) ) −
P(𝑡 )G⊤ is a skew-symmetric matrix obtained by Cayley transform,
G is the gradient of the objective function and 𝜂 is the learning
rate. We can derive the closed-form solution for the gradient of the
objective function as follows:

G = −2Z𝑣U𝑣𝑠Z⊤𝑠 (10)

The stochastic gradient of a mini-batch is calculated to replace
G in each step and momentum is applied to accelerate and stabilize
the stochastic gradient. Through manifold alignment, we can obtain
a projection matrix to project region features from the visual space
onto the cropped region features in the multimodal space derived
from the same visual prototype. These features share similar se-
mantics, and the projection results will tightly lie on the aligned
manifold in the multimodal space.
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3.4 Implementation
Ourmodel implementation consists of three stages. In the first stage,
we pretrain a ProtoPNet and encode the images cropped from pro-
totypes using the CLIP image encoder. In the second stage, we use a
large language model to construct a set of textual concepts and en-
code them using the CLIP text encoder. In the third stage, we train
our ProCoNet model to optimize the two optimization problems
described in the previous sections. The first optimization problem
is to learn the projection matrices P𝑣 to align cross-modal manifold
and the second optimization problem is the main objective to learn
visual prototypes. We optimize the framework by alternating opti-
mization that two objectives are optimized in turns. Algorithm 1
provides details of alternating optimization. 𝑁𝑒𝑝𝑜𝑐ℎ denotes the
number of training epochs; 𝜂𝑓 , 𝜂add, 𝜂𝐵 denotes the learning rate.

Algorithm 1: Alternating Optimization Algorithm

1 Input: D = {I𝑖𝑣 , 𝑦𝑖 }𝑁𝑖=1, {I
𝑗

𝑙
}𝑁𝑏

𝑗=1
2 Optimization Variables: 𝜔 𝑓𝑣 , 𝜔𝑐𝑐 , P𝑣 , B
3 Parameters: 𝛽 , 𝜂
4 for 𝑛𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁epoch do
5 for 𝑡 = 1 to T do
6 Sample a mini-batch {I𝑖𝑣 , 𝑦𝑖 }𝑚𝑖=1 from D
7 B← B − 𝜂𝐵∇𝐵Ltotal (I𝑖𝑣 , 𝑦𝑖 )
8 𝜔 𝑓𝑣 ← 𝜔 𝑓𝑣 − 𝜂𝑓𝑣∇𝜔 𝑓𝑣

Ltotal (I𝑖𝑣 , 𝑦𝑖 )
9 Calculate the gradients of G by Eq. 10

10 Accumulate the gradients by exponential moving
average G′ ← 𝛽G′ + (1 − 𝛽)G

11 if 𝑡 mod 30 = 0 then
12 Calculate learning rates 𝜂𝑣 by curvilinear search

refering to [51]
13 Update P𝑣 by Eq. 9

4 Experiments
In the experiments, two case studies are conducted to evaluate our
modal with other interpretable models in terms of accuracy and
interpretability. The first case study is the bird species identification
with 200 bird species on the CUB-200-2011 datasets [46], which is
popular on the prototype-based concept learning [4, 30, 50]. The
second case study is the flower species identificationwith 102 flower
species on the Oxford Flowers datasets [31]. We adopt different
CNN architectures as encoders in the vision space and verify the
generality of our model for different visual encoders.

Evaluation Metric: We evaluate our model in terms of accu-
racy and interpretability for fine-grained image recognition. For
accuracy, we compare the predicted label with the ground truth cat-
egory to calculate the top-1 accuracy as considered in the previous
interpretable image recognition tasks. However, interpretability
has not been quantified in the previous ProtoNet and the extension
methods. Inspired by the previous part discovery for fine-grained
recognition [18], we designed different quantitative metrics of in-
terpretability schemes for datasets with different annotations. In
the CUB-200-2011 dataset, there are 15 part landmarks for each
image and we measure the object part localization error by com-
paring the response region of the learned semantic concept with

Table 1: Top: Results of accuracy comparison on cropped bird
images of CUB-200-2011 with different vision encoders;
Bottom: Results of landmark localization on cropped bird
images of CUB-200-2011. Normalized L2 distance (%) is re-
ported.

Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161
Baseline-CNN 73.3% 74.6% 81.2% 81.8% 80.2% 81.2%
ProtoPNet [4] 76.9% 78.2% 78.4% 78.5% 79.1% 80.5%

Ours 78.3% 79.3% 80.8% 79.9% 80.9% 81.8%
Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161

ProtoPNet [4] 19.7 19.3 16.4 16.3 16.2 16.4
Ours 18.7 18.7 15.0 14.8 15.3 16.2

the annotated part landmarks. The part localization error has been
adopted by [18, 19]. For the datasets without part annotations such
as Flower-102, we adopt the protocol of Pointing Game [55], which
is a popular method to quantify interpretability in visualization
methods [40, 55], and calculate the object localization error using
the annotated segmentation. The detailed metrics are described in
the supplement.

4.1 Case study1: bird species identification
Dataset. Caltech-UCSD Birds-200-2011 [46] (CUB-200-2011) is a
dataset of 200 bird species for bird species recognition and con-
tains 5,994/5,794 images for training/testing from 200 different bird
species. Each image contains a species label, 15 bird landmarks, and
the bounding box of the bird.

Recognition Results (Accuracy). We present our results of
recognition accuracywith different CNNvision encoders on cropped
bird images at the top of Table 1, comparing them with CNN base-
lines and ProtoPNet. Additionally, we compared our results with
other single-modality ProtoPNet-based models in the appendix.
Across various CNN vision encoders, ProCoNet achieves higher
classification accuracy than ProtoPNet, which learns visual proto-
types through single-modality learning. Guided by textual concepts,
visual prototype learning can improve accuracy by up to 2.4%.

Localization Results (Interpretability). The part localization
error is evaluated on various CNN vision encoders and we compare
the results to ProtoPNet at the bottom of Table 1. Our model greatly
reduces the localization error of ProtoPNet (0.93% on average). The
results provide quantifiable evidence of the interpretability of our
model.

Reasoning Process. Figure 5 illustrates the reasoning process
of our model. Through concept visualization, we observe that our
model learns the typical features of the Green Jay, such as the dis-
tinctive blue head, green wings, and black throat, solely from label
supervision. For a given test image, activation maps are generated
by computing the distances between various regions of the im-
age and the prototypes. Additionally, similarity maps are obtained
by calculating the similarity scores between regions and textual
concepts. Finally, these similarity scores are weighted by concept
weights and contribute to the final classification. Compared to the
traditional ProtoPNet reasoning process, our model not only high-
lights regions with high prototype activations but also understands
the corresponding textual concepts of visual prototypes, thus pro-
viding better interpretability.
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Why is the bird classified as a Green Jay?

Evidence for this bird being a Green Jay:

Original image Prototype Activation
map

Similarity
Score

Class
connection

Contribution
to logits

Training image
where concept
comes from

… … … … … … …

Total points to the Green Jay: 15.317

0.2853 	× 0.8587 = 0.2450

Textual Concepts
(display top 3)

blue head
black mask around the eyes

blue feathers
…

green wings withe primaries
green and yellow feathers
bright yellow underparts

…

black markings on its face
and throat

black feet and legs
black bill
…

0.2769 × 0.8280 = 0.2293

0.2598 	× 0. 8387 = 0.2179

0.2859 	× 0.8612 = 0.2462
0.2777 × 0.8357 = 0.2320
0.2583 	× 0.7921 = 0.2045

0.2871 	× 0.8268 = 0.2373

0.2790 × 0.7479 = 0.2087
0.2608 	× 0.7770 = 0.2026

Figure 5: The interpretable reasoning process to identify the
species of a bird.

Ablation Study.We conducted an ablation study on the CUB
dataset to evaluate the components of the manifold alignment. We
designed two variants: one without aligning the region images and
another using L1 loss to optimize the projection matrix without
enforcing orthogonality constraints. We compared these variants
using VGG-19 as the visual encoder. As shown in Table 2, omitting
the alignment of cropped region images leads to a decrease in model
accuracy and interpretability. Additionally, compared to optimizing
the projection matrix with L1 loss, manifold alignment optimization
of the projection matrix improves both model accuracy(+0.8%) and
interpretability(+0.4%).

Table 2: Ablation study about Manifold Alignment.

Methods Acc(%) Err(%)
w/o align 76.6 20.7

L1 78.4 19.1
Ours 79.3 18.7

4.2 Case study2: Flower species identification
Dataset. The Oxford Flowers-102 [31] is a dataset of 102 different
categories for flower species identification. There are 10 images per
class in the training and validation set (totaling 1020 images each),
and the remaining 6149 images (minimum 20 per class) in the test
set. Each image contains a species label and a segmentation of the
flower.

Recognition Results (Accuracy). Our results on recognition
are summarized at the top of Table 3. Since flowers do not have
obvious object parts, they are more judged based on shapes and
colors, thus, the ProtoPNet-based method, which is good at learning
object parts, is not as good as the baseline model. Our model can
improve accuracy by 0.6%-2.3% for ProtoPNet.

Localization Results (Interpretability). Further, the Pointing
game results are reported at the bottom of Table 3. Our model
achieves a lower localization error compared to ProtoPNet. To a
certain extent, our models can capture more foreground concepts.

Why is the flower classified as a Pink Primrose?

Evidence for this flower being a Pink Primrose:

Original image Concept Activation
map

Similarity
Score

Class
connection

Contribution
to logits

Training image
where concept
comes from

… … … … … … …

Total points to the Pink Primrose: 12.317

Textual Concepts
(display top 3)

a yellow center
light gradient toward the center
delicate and airy appearance

…

light pink petals
frilly edges

very feminine shade of pink
…

a star shape
small yellow center surrounded

by pink petals
a yellow center

…

0.2840 	× 0.7962 = 0.2261

0.2738 	× 0.7167 = 0.1962
0.2549 	× 0.7022 = 0.1790

0.2762 × 0.7962 = 0.2200

0.2870 	× 0.7389 = 0.2120
0.2794 		× 0.7416 = 0. 2072
0.2738 		× 0.8253 = 0. 2260

0.2840 	× 0.7121 = 0. 2022

0.2826 	× 0.7389 = 0. 2088

⋯

⋯

⋯…

Figure 6: The interpretable reasoning process to identify the
species of a flower.

Table 3: Top: Results of accuracy comparison on flower im-
ages of the Oxford Flowers-102 with different vision en-
coders; Bottom: Results of Pointing Game on flower images
of the Oxford Flowers-102. Hit rate (%) is reported.

Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161
Baseline-CNN 89.3% 89.7% 93.6% 94.3% 94.9% 95.1%
ProtoPNet [4] 87.0% 87.7% 91.6% 90.6% 92.0% 92.7%

Ours 88.2% 88.3% 92.7% 92.9% 92.6% 93.5%
Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161

ProtoPNet [4] 80.0 80.1 87.3 85.5 81.2 80.2
Ours 82.0 82.3 88.4 86.1 81.6 80.6

Reasoning Process. Figure 6 shows the reasoning process to
identify a flower. The model can accurately learn bright purple
petals and white pistil in the center. Since flowers lack sufficient
object parts and there are few images in the training set, there is
some redundancy in concepts.

5 Conclusion
In this paper, we introduce ProCoNet, a novel framework for in-
terpretable image recognition that uniquely integrates semantic
concepts from both visual and linguistic modalities. This first-of-its-
kind system combines introspective and justification explainability,
offering a new form of interpretability. Through our innovative
prompt generation strategy, we have simplified the process of ex-
tracting text concepts and enhanced the clarity of descriptions.
Additionally, we have introduced a manifold alignment method
optimized via the Cayley transform on the Stiefel manifold, which,
together with an alternating optimization algorithm, ensures ro-
bust alignment and concept learning. Extensive testing with in-
terpretability metrics has demonstrated that incorporating text
concept guidance significantly enhances the model’s accuracy and
interpretability, setting a new standard for interpretable AI systems
in image recognition.
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