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ABSTRACT

Current techniques for privacy auditing of large language models (LLMs) have
limited efficacy—they rely on basic approaches to generate canaries which leads
to weak membership inference attacks that in turn give loose lower bounds on
the empirical privacy leakage. We develop canaries that are far more effective
than those used in prior work under threat models that cover a range of realistic
settings. We demonstrate through extensive experiments on multiple families of
fine-tuned LLMs that our approach sets a new standard for detection of privacy
leakage. For measuring the memorization rate of non-privately trained LLMs, our
designed canaries surpass prior approaches. For example, on the Qwen2.5-0.5B
model, our designed canaries achieve 49.6% TPR at 1% FPR, vastly surpassing
the prior approach’s 4.2% TPR at 1% FPR. Our method can be used to provide a
privacy audit of ε ≈ 1 for a model trained with theoretical ε of 4. To the best of our
knowledge, this is the first time that a privacy audit of LLM training has achieved
nontrivial auditing success in the setting where the attacker cannot train shadow
models, insert gradient canaries, or access the model at every iteration.

1 INTRODUCTION

Despite the growing success of massively pretrained Large Language Models (Brown et al., 2020;
OpenAI, 2023; Gemini-Team et al., 2023), there is also growing concern around the privacy risks of
their deployment (McCallum, 2023; Bloomberg, 2023; Politico, 2023), because they can memorize
some of their training data verbatim (Carlini et al., 2019; 2021; 2023b; Biderman et al., 2023a).

There is currently a discrepancy between memorization studies in large frontier models reports that
show very limited memorization and a line of research showing that data can be extracted from such
models (Carlini et al., 2021; 2023a; Nasr et al., 2025). With the goal of understanding concerns
around the privacy risks of deploying LLMs, currently, model developers study the quantifiable
memorization of their models by inserting canary sequences and testing for memorization, and they
conclude that the models do not memorize much (Anil et al., 2023; Reid et al., 2024).

The gap between these two bodies of work is in the data being memorized. When developers
insert canaries, they are not necessarily inserting the canaries that are most likely to be memorized.
However, when researchers try to extract data, they are extracting the "most extractable" data,
which by definition was the most likely to be memorized. Without better design of canaries, model
developers will systematically underestimate the privacy leakage of their models. In this work, we
aim to develop stronger privacy audits by developing canaries that are more likely to be memorized.

We are primarily interested in understanding privacy leakage from LLMs through the lens of mem-
bership leakage of a canary dataset used in training an LLM (used to measure the privacy leakage).
Specifically, we want to understand how to construct the most easily memorized canaries for language
models. Qualitatively, if we find that membership information attacks (MIA) on these canaries for
LLMs can be very effective, this improves our understanding of the privacy leakage of LLMs.

Membership inference attacks are also used in auditing the privacy of differentially private models.
The effectiveness of privacy auditing hinges on the selection of optimal "canaries". We introduce
new methods for generating easy-to-memorize input space canaries, and use these to improve the
performance of existing privacy auditing methods and obtain tighter empirical bounds on privacy
leakage. We provide the first privacy audit for the black-box setting for LLMs. Our audit achieves a
non-trivial lower bound of ε ≈ 1 for a model trained to an upper bound of ε = 4.
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2 BACKGROUND

2.1 MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks (MIAs) (Shokri et al., 2017) are one of the simplest privacy threats in
machine learning: the goal is to predict whether a specific example was part of a model’s training
set (member) or not (non-member). MIAs exploit differences in model behavior on members vs non-
members, using signals such as the target sample’s loss (Yeom et al., 2018), the loss of neighboring
samples (Mattern et al., 2023), or information from reference models (Carlini et al., 2021).

The primary goal of our work is to estimate privacy leakage in models, independent of developing
new MIAs. Evaluating MIAs on synthetic canaries inserted into LLM training can inform both
memorization and generalization in LLMs (Gemini-Team et al., 2023; Reid et al., 2024; Anil et al.,
2023). With 1 as the indicator function, τ a tunable threshold, and A′ a confidence score function (in
Yeom et al. (2018) this is the model loss), membership is predicted as: A(x, y) = 1[A′(x, y) > τ ].

Recently, Duan et al. (2024) evaluated a range of MIAs (Yeom et al., 2018; Carlini et al., 2021;
Mattern et al., 2023; Shi et al., 2024) against large language models (LLMs) and found that MIAs
are largely ineffective in this context. They attribute this to factors such as the single-epoch training
typically used in LLMs. They argue that realistic MIA evaluations require high overlap between
members and non-members. However, prior work has often achieved MIA success by exploiting
distribution shifts between these groups. Related studies (Meeus et al., 2024; Das et al., 2024; Eichler
et al., 2024) confirm that distribution shift is the primary driver of MIA success.

In our work, our sampling process for member and non-member datapoints is IID across the dataset
that we draw them from. We detail this dataset in each section: in Section 4, this is validation data
and in Section 5, this dataset is random tokens. Therefore, the problem of distribution shifts identified
in Meeus et al. (2024); Duan et al. (2024) does not exist. This is different from prior work, which
requires the IID property to hold across the entire pretraining dataset that they consider.

There are three main avenues for improving privacy audits: (1) selecting more separable data, (2)
using better statistics, and (3) designing improved tests based on those statistics. While prior work
extensively explored (2) and (3) without much success, Duan et al. (2024) showed that current
MIAs cannot reliably distinguish member from non-member data in LLMs. Our work focuses on (1),
demonstrating that selecting more separable data alone enables strong privacy audits, even when using
the simple loss-based attack proposed by Yeom et al. (2018). Our contribution is complementary to
future work on developing new MIAs, which could leverage our techniques.

2.2 AUDITING DIFFERENTIALLY PRIVATE LANGUAGE MODELS

We provide a concise overview of differential privacy (DP), private machine learning, and methods to
audit the privacy assurances claimed under DP. Differential privacy is the gold standard for providing
a provable upper bound on the privacy leakage of an algorithm (Dwork et al., 2006).

Definition 2.1 ((ε, δ)− Differential Privacy (DP)). Let D ∈ Dn be an input dataset to an algorithm,
and D′ be a neighboring dataset that differs from D by one element. An algorithm M that operates
on D and outputs a result in S ⊆ Range(M) is considered to be (ε, δ)-DP if: For all sets of events S
and all neighboring datasets D,D′, the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

Differentially Private Machine Learning. Differentially Private Stochastic Gradient Descent (DP-
SGD) (Song et al., 2013; Abadi et al., 2016) is the workhorse method for training neural networks on
private data.

Definition 2.2 (Differentially Private Stochastic Gradient Descent (DP-SGD)). For a batch size B,
learning rate η, clipping threshold C, and added noise standard deviation σ, the DP-SGD update rule
at iteration t on weights w is given by:

w(t+1) = w(t) − η

|B|

(∑
i∈B

1

C
clipC(∇ℓ(xi, w

(t))) + σξ

)
(2)
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DP-SGD does per-sample gradient clipping on top of SGD to limit the sensitivity of each sample,
and adds noise sampled i.i.d. from a d-dimensional normal distribution with standard deviation σ,
ξ ∼ N (0, Id).

Auditing DP-SGD. DP guarantees are expressed in terms of a failure probability δ and a privacy
budget ε. In machine learning, we can interpret the DP guarantee as an upper bound in terms of eε on
the adversary’s success rate in membership inference that holds with probability 1− δ. As shown
by Kairouz et al. (2015), if M is (ε, δ)-DP, it defines a privacy region such that an attacker’s TPR
and FPR (also Type I α and Type II β errors) cannot exceed the bounds of this region, given by
Definition 2.3 (Privacy Region of (ε, δ)-DP (Kairouz et al., 2015)). if M satisfies (ε, δ)-DP, then it
establishes a privacy region that bounds any adversary’s type I (α) and type II (β) errors. The privacy
region is define as follow:

R(ε, δ) = {(α, β) | α+ eεβ ≥ 1− δ ∧ eεα+ β ≥ 1− δ ∧
α+ eεβ ≤ eε + δ ∧ eεα+ β ≤ eε + δ} (3)

For differentially private machine learning, our objective in privacy auditing is to provide an empirical
lower bound on the privacy leakage from an algorithm M. Privacy audits are useful because they give
us information about how tight the upper bound is that we obtain from DP (Steinke et al., 2023), and
if the privacy audit produces a lower bound that is greater than the upper bound given by DP-SGD,
we can use this to find errors in the DP-SGD implementation (Tramer et al., 2022).

Steinke et al. (2023) propose a recent privacy auditing method that we use in this paper, which can
provide an audit without needing to train multiple models. However, they are not able to provide a
nontrivial result when training on real data in the black-box setting (where the canaries exist in the
input space and the attacker observes the loss of the model), and do not provide audits for language
models (they only provide audits for computer vision).

Summary of DP Background. DP-SGD provides a mathematical proof that gives an upper bound
on the privacy parameter. A privacy audit is a procedure that provides a lower bound on the privacy
parameter. Privacy audits can be used to ascertain the correctness of DP-SGD training and estimate
the tightness of analysis. Many privacy auditing methods have been proposed, but no privacy auditing
method has been able to provide a nontrivial lower bound of an LLM trained with a realistic DP
guarantee (ε < 10 on real data in the black-box setting in a single run).

3 CRAFTING CANARIES THAT ARE EASY TO SPOT

Previous research has consistently shown that some out-of-distribution (OOD) inputs are more prone
to memorization by machine learning models (Carlini et al., 2022a; Nasr et al., 2021; 2023; Carlini
et al., 2022b). Leveraging this insight, existing methods for generating canaries in membership
inference attacks often focus on crafting OOD inputs so that they have a higher likelihood of being
memorized. In the context of large language models (LLMs), creating out-of-distribution (OOD)
inputs typically involves using random tokens. These inputs are assumed to be anomalies that the
model will easily memorized. However, previous works (Carlini et al., 2022a; Nasr et al., 2023) have
shown that not all OOD examples are easily learned and memorized by the model. There is a wide
range of OOD examples that can be used in membership inference attacks. While basic approaches
have shown some success, there is potential for significant improvement.

To improve over this random canary baseline, we will show how an adversary can attack the tokenizer
to create canaries that are easier to spot (see Section 3.2). Next, we define what we mean by a canary.

3.1 THE CANARY SETUP

A canary is the concatenation of two sequences of tokens: a prefix and a secret both sampled from
some randomness (Carlini et al., 2019).

MIA method. All current MIAs for LLMs require the loss (Duan et al., 2024); thus, as we discussed
in Section 2, we use the simplest loss thresholding attack of Yeom et al. (2018) which predicts all
points (canaries) with loss less than or equal to some learned value τ as a member, and the rest as
non-members. Because our approach works with the simplest MIA, we expect it will generalize. The
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loss calculation depends on the training objective for the target model. We calculate the loss on all
trainable tokens of the sequence, i.e., just for the canary tokens in prefix-learning and for the entire
sequence (including the prefix) in next word prediction (objectives detailed more below).

Training objective. We consider standard objectives for both supervised fine-tuning and pretraining.
For fine-tuning, we consider prefix language modeling (Raffel et al., 2020) which masks out the loss
on the prefix that we do not want the model to learn. Figure 1 shows the results for this objective.
For pretraining, we consider a next word prediction (NWP) objective where the model is trained to
predict each next token in the sequence in parallel via teacher-forcing. Figure 2 shows these results.

Comparing attack efficacy. There are many ways to compare attack efficacy each with pros and cons.
Following Carlini et al. (2022a), we use the true-positive rate (TPR) at low false-positive rate (FPR),
for which we pick FPR=1%. When we audit DP, we use ε lower bounds as is standard (Jagielski
et al., 2020; Nasr et al., 2021; 2023; Steinke et al., 2023); these essentially define a region where the
TPR and FPR must be bounded by Equation (3).

Canary size. Prior works (Anil et al., 2023; Gemini-Team et al., 2023) use many thousands of
canaries, with prefixes and secrets each constructed from 50 random tokens. We find that we only
need 1000 canaries for 3.6× 107 tokens in our finetuning dataset. Because each canary is generally
just a single token (secret) appended to a normal sample (prefix), just a small fraction (0.0027%) of
our dataset is constituted of canaries.

Selecting the canary prefix. As we previously mentioned, we want to ensure that we sample canaries
IID from some distribution so that our MIA success cannot be attributed simply to distribution shift,
as in Duan et al. (2024). Each canary prefix is generated using one of 1000 unique samples from the
test set; we use the test dataset for this to be more aligned with practical use cases where the prefix
contains semantic information. For simplicity and because this is the most challenging setting, we use
secrets that are one token in length. In Table 2, we show that our attacks still in general outperform
the baseline even when the number of secret tokens is increased.

3.2 SOME CANARIES SING LOUDER THAN OTHERS

The most important part of our canary design is the algorithm by which we generate the secret. Our
main intuition, as discussed at the beginning of Section 3, is to craft canaries that are easy to spot. An
easy way to do this is with gradient-space canaries, but we don’t have the freedom to do this because
we only want to design the more difficult input-space canaries. Our strategy is to give the adversary
increasing strength in terms of a priori knowledge of the training data distribution.

We begin by formalizing our goal. We desire a secret xt such that when given the prefix x1:t−1 the
model’s loss p(xt|x1:t−1) is high, i.e., it is unlikely to have been seen under the model. Importantly,
we must have an estimate on this priori, i.e., before training the model p, as we will be injecting these
canaries into model training for auditing.

With this in mind, it is clear why random canaries (Anil et al., 2023; Gemini-Team et al., 2023), i.e,.
canaries with randomly chosen secrets are a strong baseline. A weak adversary with no knowledge of
the data distribution a priori can at best choose a random secret as this maximizes its entropy in the
limit of long secrets. It is this baseline from prior work which we seek to beat, and which we will do
so, by considering adversaries with increasing knowledge of the training data distribution a priori.

How to make adversaries stronger. First, recall that our goal is to design strong privacy audits.
A privacy audit, as discussed in Section 2.2, is a tool that model developers use to estimate the
worst-case privacy leakage, as measured by a lower-bound on the observed privacy leakage ϵ. When
audits can be trusted to be close to a ground-truth upper-bound (i.e., when DP training is used), they
can give a model developer faith that a model is private.

Privacy audits use the membership inference attack as a core component, and use the ROC curve
to get a lower bound on epsilon. But, because this audit is run by a model developer, and not by
a third-party attacker, adversaries should be assumed to be (reasonably) strong so as to adequately
measure the worst-case. For this reason, and as motivated above, we make the adversary stronger by
giving them a prior knowledge of the training data distribution. Notice that this is not unreasonable:
LLMs are trained on the web and this data is publicly accessible. When models are fine-tuned on
private data, there may still exist public surrogates that can strengthen an adversary in this way.
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We next give three methods by which an adversary can estimate p(xt|x1:t−1) a priori.

Unigram canaries.1 Given an approximate list of frequencies of tokens in the dataset, or in other
words a unigram model, the attacker can select the least common tokens and use them as secrets in
canaries. As we can see in Figure 1 (‘unigram’), this works quite well.

N-gram Canaries. Naturally, if we want to insert longer canaries, we can use an N-gram model
instead of a unigram to generate canaries. If we fit a bigram model, we can generate the pair of
tokens x, y such that y is unlikely to follow x and x is unlikely to follow the preceding token in the
document where it was inserted. We present the ‘bigram’ results in Figure 1.

Model-Based Canaries. A potential flaw in the above strategies is that they only account for the
distribution of the training dataset and not of the model’s distribution. If we want to audit finetuning,
then we may need to consider not only what tokens are seldom seen in the finetuning dataset but also
what tokens the model itself is unlikely to generate. If the attacker has black-box access to the model
before they insert the canary, they can just query the model to get the least likely continuation of their
prefix. However, this requires training two models or approximating it using a past model.

3.3 CANARIES VIA NEW TOKENS

Our underlying insight is that examples can be easily identified as members by the presence of tokens
that do not appear anywhere else in the training dataset. The embedding table in a language model
is both large, with, e.g., output dimension 151, 936 (Qwen-Team, 2024), and receives only a sparse
update for only the tokens seen in training. Thus, a model that has not received a gradient for a given
row will behave very differently when predicting that token than a model that has.

We consider the setting where a model developer wants to understand the worst case privacy leakage
of their model training, as in Chowdhery et al. (2022); Anil et al. (2023); Reid et al. (2024). We
take advantage of the model developer’s direct access to the model to easily craft canaries that are
guaranteed to have high loss (low p(xt|x1:t−1)) for any prefix instead of relying on heuristics. The
model developer can simply introduce new tokens that have never been seen by the model before, are
only used in the canary secrets, and are therefore always going to have high loss. This is similar to
other special tokens that are used in training, e.g., control tokens that are reserved for later use. Indeed,
many recent LLMs are released with special tokens present in the embedding that are untrained, e.g.,
Mistral (Jiang et al., 2023) and LLama (Touvron et al., 2023). Note that once trained, the rows of
the embedding matrix corresponding to these tokens can be easily removed or reinitialized without
affecting the model utility significantly.

As we show in Figure 1, introducing new tokens is an incredibly effective way to generate canaries
that can be used during pretraining without any accuracy degradation (the ‘new’ column). While new
token canaries contain less semantic information than other canaries in measuring the memorization
rate of LLMs because new tokens are added without concrete semantic information, this is a valid
privacy audit because the DP-SGD guarantees hold not only for random initialization but also for
any fixed initialization. We are generating these canaries to be as strong as possible, including in the
setting of DP, which is the most useful thing because we can now audit DP-SGD.

4 A SYSTEMATIC EVALUATION OF MEMORIZATION IN LLM TRAINING

Models. We use our designed canaries to evaluate the memorization rate across a wide range of
model series. We consider 4 model series and 10 models in total including GPT2 (Radford et al.,
2019), Pythia (Biderman et al., 2023b)], Qwen-2.5 (Qwen-Team et al., 2024; Qwen-Team, 2024), and
Llama3 (Team et al., 2024). More details are in Appendix A. Our chosen set of models also spans the
range of vocabulary sizes from 50k (GPT2, Pythia), 128k (Llama), up to 150k (Qwen), validating
that our methods are viable for all vocabulary sizes used in models today. Though prior works have
considered GPT2 (Li et al., 2022; Yu et al., 2022), we are also interested in more powerful models
like Llama and Qwen because they are used in practice and understanding how easily they memorize
data can help us better understand how to audit frontier models.

1Herein, we use ‘gram’ to mean token, despite it historically meaning characters.
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Datasets. We finetuned the models on PersonaChat (Zhang et al., 2018) and E2E (Novikova et al.,
2017), which are used for DP evaluations in prior works (Li et al., 2022; Yu et al., 2022; Panda et al.,
2024). PersonaChat is a dataset that consists of conversations of people describing themselves. E2E
dataset is a natural language generation task that maps restaurant template information to reviews. All
experiments were conducted on a single A100 GPU. We finetuned models on these two datasets with
a canary sub-sampling rate q = 0.01 and steps T = 100 to approximate the setting of single-epoch
training on the canary set. Note that this is a more challenging task as Duan et al. (2024) argue that
single-epoch training is one reason why membership inference is difficult in LLMs.

random unigram bigram model-based new

gpt2-small

gpt2-large

gpt2-xl

pythia-160m

pythia-410m

pythia-1.4b

Qwen2.5-0.5B

Qwen2.5-1.5B

Qwen2.5-3B

Llama-3.2-1B

0.044 0.114 0.202 0.066 0.424

0.254 0.408 0.482 0.280 0.630

0.428 0.560 0.590 0.504 0.564

0.012 0.224 0.046 0.046 0.608

0.418 0.498 0.562 0.536 0.584

0.406 0.492 0.508 0.492 0.430

0.042 0.150 0.192 0.072 0.496

0.120 0.150 0.168 0.190 0.364

0.198 0.220 0.258 0.186 0.460

0.442 0.496 0.524 0.392 0.282

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: We visualize the True Positive Rate of the membership inference attack on PersonaChat at
a low false positive rate of 1%. Our proposed canaries outperform the random canary.

Results. Figure 1 illustrates the True Positive Rate (TPR) of the membership inference attack (MIA)
at 1% False Positive Rate (FPR) for all canary crafting techniques across 3 model families and 3 sizes
in each model family. Our proposed canaries consistently outperform the random canary baseline,
with the new token canary performing consistently well across all model sizes. The unigram and
binary canaries do better for larger models, which can accurately learn the N-gram priors we model
with these approaches. We are particularly excited by the performance of the bigram canary approach,
which performs well without needing to add new tokens into the vocabulary. Our results suggest
that current reports of privacy leakage that only rely on the random canaries, e.g., those in Anil et al.
(2023); Gemini-Team et al. (2023), may underestimate the privacy leakage.

We presented results in Figure 1 with a Supervised Finetuning (SFT) objective where the prefix is
masked out and the gradient is only taken on the canary tokens. Finetuning tasks generally use an
SFT loss. In Figure 2 we present results with a Next Word Prediction (NWP) objective, as would be
used during pretraining. We find that this significantly decreases the effectiveness of the attack for
the smaller models. However, for the larger models, the new token canary still works well.

In Table 1 we validate that our new token canary significantly outperforms the random canary baseline
on the E2E dataset (Novikova et al., 2017) across the GPT and Pythia models. In Table 2 we increase
the number of canary tokens that we append from 1 to 8 and find that this significantly increases the
MIA success for both the unigram and random canaries. Intuitively, longer canaries are easier to
tell apart. At 8 canary tokens, the unigram canary outperforms the random canary, indicating that
our unigram approach has some merit. As we show in Appendix Figure 3, the unigram approach
consistently selects sequences that are more OOD, as measured by frequency, than the random canary.

5 DP AUDITING EVALUATION

In Section 4, we showed the effectiveness of our attack for LLMs in the non-private setting, reporting
the TPR at a low FPR. We now present privacy auditing results for models trained with DP-SGD,
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random unigram bigram model-based new

gpt2-small

gpt2-large

gpt2-xl

pythia-160m

pythia-410m

pythia-1.4b

0.010 0.006 0.028 0.012 0.010

0.004 0.016 0.020 0.010 0.012

0.006 0.020 0.078 0.004 0.024

0.012 0.012 0.020 0.020 0.114

0.008 0.052 0.128 0.080 0.200

0.036 0.082 0.196 0.020 0.282
0.05

0.10

0.15

0.20

0.25

0.30

Figure 2: We replace the SFT loss used in Figure 1 with a NWP loss, on PersonaChat. MIA TPR is
worse with a NWP loss, but our proposed bigram and new token canaries still outperform the random
baseline.

Table 1: MIA results on E2E follow the trends on
PersonaChat, with new beating random.

Train Obj. Canary pythia gpt2

160m 410m 1.4b small large xl

NWP new 0.446 0.260 0.350 0.250 0.408 0.332
random 0.012 0.014 0.072 0.006 0.004 0.010

SFT new 0.586 0.654 0.643 0.572 0.622 0.654
random 0.080 0.330 0.050 0.058 0.366 0.420

Table 2: Increasing the number of canary tokens
significantly increases MIA success.

# Tokens. Canary gpt2 pythia

small large xl 160m 410m 1.4b

1 unigram 0.114 0.408 0.560 0.224 0.498 0.492
random 0.044 0.254 0.428 0.012 0.418 0.406

8 unigram 0.386 0.568 0.590 0.264 0.592 0.614
random 0.248 0.434 0.556 0.158 0.478 0.578

where we want to obtain the best lower bound on ε. We first discuss our auditing setup in Section 5.1.
We then present our main auditing results in Section 5.2.

5.1 SETUP

We use the privacy auditing procedure of Steinke et al. (2023). This means that we randomly generate
1000 canaries, insert half of them, and try to do membership inference on the entire set. The accuracy
of our MIA then translates into a lower bound with a 95% (or 99%) confidence interval on ε, meaning
that the privacy loss is at least ε. This is the exact same implementation and confidence interval, etc.
as in Steinke et al. (2023). One parameter in the method is the number of guesses that the adversary
makes. We find that 100 guesses is sufficient to get a useful metric for DP auditing. For 100 guesses,
the upper bound for empirical ε, i.e., getting 100 guesses correctly, is 2.99 for a 99% confidence
interval and δ = 10−5. Our canaries are always randomly sampled IID from their distribution.

We use the following terminology from Nasr et al. (2023): the setting where the attacker has access to
all intermediate steps is “white-box”, and the setting where the attacker can only see the last iteration
is “black-box.” We always use the black-box setting where the attacker has to perform their audit
only using the final trained model. Furthermore, we consider the setting where the attacker only has
access to the logprobs of the final model given some input, and is not able to query the weights. This
is the most realistic setting because it matches the access that ordinary users have to frontier models.
Moreover, previous works (Morris et al., 2024; Carlini et al., 2024) show that it is possible for the
attacker to evaluate the logprobs in settings where they are not directly outputted by the APIs.

In this black-box setting, the SOTA single-run privacy audit (Steinke et al., 2023) shows an empirical
ε ≈ 1.3 for analytical ε = 4 under a 95% confidence interval when auditing a ResNet trained on
CIFAR10. We use this setting (1000 canaries, analytical ε = 4) for all of our privacy auditing
experiments, but additionally report both the 95%, 99% confidence intervals. Our objective is to show
that our method can recover a similar audit (in experimental results we achieve empirical ε ≈ 1.3)
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in the same setting, because there is no work that provides a method that can perform a nontrivial
privacy audit of LLMs in this setting (Kazmi et al. (2024) do not provide a formal privacy audit).

Changes from MIA. In Section 4, we used prefixes randomly sampled from the validation set to
construct our canaries. However, for DP auditing, we instead use prefixes composed of randomly
sampled tokens to construct the canary. We find this design choice is essential to achieve non-trivial
auditing results for DP training of LLMs in Table 8. We use an SFT loss function for DP auditing,
because we found in the previous section that it leads to a much better MIA (Figure 1 vs. Figure 2),
and indeed we validate that the SFT objective is critical for tight DP auditing in Table 9.

In this section, we train models with DP-SGD under ε = 4 for T = 1000 steps with a subsampling
rate of q = 0.1. We report the empirical ε estimation both in 95% (the main setting in Steinke
et al. (2023)) and 99% confidence. By increasing the confidence level, we get a more conservative
empirical ε estimation. Across both confidence levels, our proposed token canaries gives a tighter
empirical ε estimation, i.e., more close to the theoretical ε (higher is better), than the random canary
baseline.

5.2 EVALUATION

Table 3: We compare the audited ε when training gpt2
with LoRA on PersonaChat, and FFT on PersonaChat
and E2E. Across all settings, the new token canary gives
us better auditing performance, at the cost of slightly
higher perplexity.

new bigram unigram model-based random

LoRA-E2E
audit 95% 1.24 0.13 0.37 0.74 0.13
audit 99% 1.01 0.0 0.20 0.54 0.0

PPL 4.81 4.73 4.72 4.74 4.72

FFT-E2E
audit 95% 1.04 0.13 0.37 0.17 0.13
audit 99% 0.86 0.0 0.20 0.03 0.0

PPL 4.28 4.23 4.21 4.23 4.21

FFT-Pers.
audit 95% 0.84 1.29 0.67 0.0 0.05
audit 99% 0.66 1.00 0.46 0.0 0.0

PPL 23.29 22.31 22.53 22.41 22.52

LoRA-Pers.
audit 95% 0.74 0.60 0.56 0.0 0.05
audit 99% 0.54 0.46 0.41 0.0 0.0

PPL 25.59 25.01 25.05 25.23 25.00

Average audit 95% 0.97 0.54 0.49 0.23 0.09
audit 99% 0.77 0.37 0.32 0.14 0.0

Main Results. We present our main results
for auditing DP-SGD in Table 3, where we
train GPT2-small. We train on both Per-
sonaChat and the E2E dataset, with FFT
and LoRA. We find that LoRA finetun-
ing obtains similar auditing performance
to FFT, with worse perplexity. We tried
ranks between 4 and 256 and found little
difference, so we report results with rank
8. Auditing results are also similar across
datasets; at a 99% CI, the new token ca-
nary gives us an audited ε of 1.01 for both
FFT on PersonaChat and LoRA on E2E.
This indicates that our new token canary
can be used for an effective audit on dif-
ferent datasets. Compared to the random
canary baseline, our proposed canary strate-
gies achieve far better privacy estimation
for DP trained models at ε = 4. Notably, we are able to show an empirical ε ≈ 1 for an analytical
ε = 4 with input space canaries and a loss-based MIA without shadow models.

Table 4: We report the audited value of ε for different models,
all with the new token canary, on PersonaChat, with FFT.

gpt2 gpt2-large gpt2-xl Pythia-160M Pythia-410M qwen2.5-0.5B

audit 95% 0.84 1.28 1.29 0.40 0.67 0.96
audit 99% 0.66 1.08 1.00 0.25 0.46 0.86

PPL 23.29 14.18 13.05 86.99 21.19 14.44

Table 5: The impact of training steps T
on privacy audit in DP trained LLMs.

T = 10 T = 100 T = 1000

audit 95% 0 0.91 0.84
audit 99% 0 0.53 0.66

We present most of our results in this section on gpt2 because DP-SGD training adds memory
overhead that significantly increases our training time. In Table 4 we compare auditing performance
across 6 models. Interestingly, all 3 model sizes in the gpt2 family perform similarly, despite the
perplexity improving significantly from gpt2 to gpt2-large.

Our Audit Does Not Compromise Clean Accuracy. In Table 6 we validate that our method does not
significantly degrade utility on the domain specific tasks, i.e., the Personachat eval set. We compare
the effect of adding our new token canaries on perplexity for both no privacy and the DPSGD training
with ε = 4. Table 6 shows that in both cases, adding canaries to the training dataset degrades our
perplexity (lower is better) by ≈ 1. For reference, Steinke et al. (2023) report an accuracy drop of
2% due to the canaries inserted for auditing, but this is not directly comparable because they only
report results on computer vision tasks. In Table 3 we observe that the new token canary degrades
perplexity, while the random, unigram, and bigram canaries don’t degrade perplexity. This can be
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seen as a natural tradeoff between the model memorizing the canary and the model learning the clean
data distribution. We don’t remove the new token embedding when evaluating perplexity.

Table 6: Perplexity on PersonaChat
eval set. Our method does not de-
crease the clean performance.

no canaries with canaries

no privacy 16.1 16.7
ε = 4 22.5 23.3

Table 7: The impact of sub-
sampling rate q on privacy
audit in DP trained LLMs.

q = 0.01 q = 0.1

audit 95% 0.43 0.84
audit 99% 0.24 0.66

Table 8: We compare random
tokens as a prefix vs test data
as a prefix.

Random Test Data

audit 95% 0.84 0.63
audit 99% 0.66 0.28

Higher Subsampling Rate is Better for Auditing. Prior work (Nasr et al., 2023) has shown that
privacy auditing becomes substantially more difficult when the subsampling rate being audited is
low. This has a significant impact on the viability of an audit, because inserting 1000 canaries
into each iteration may present a nontrivial compute overhead or impact clean accuracy. Steinke
et al. (2023) also use q ≥ 0.1 for privacy auditing experiments. In Table 7 we ablate the choice of
smaller subsampling rates q while keeping the privacy budget constant at ε = 4 and training for
steps T = 1000 for each experiment run. Similar to Nasr et al. (2023); Steinke et al. (2023), Table 7
validates the necessity of a relative large subsampling rate, i.e. q = 0.1 in our main results.

Training for More Steps Improves Auditing. Our canaries can provide a good estimation for
memorization in Section 4 by approximately seeing each canary once. Our main results in DP
auditing is 1000 steps with q = 0.1 and therefore the model approximately sees each canary 100
times. We now vary the time steps T while keeping the privacy budget constant at ε = 4 (we
add more noise at each iteration), and keeping the subsampling rate q = 0.1 for each experiment
run. We present the results in Table 5. Table 5 shows that the one-time pass over the canary set is
challenging in DP auditing and audits fails. When increasing T 10 times more, i.e., T = 100, the DP
auditing via new token canaries could achieve non-trivial results empirical ε ≈ 1 for analytical ε = 4.
Comparing Table 7 and Table 5, while in (T, q) = (1000, 0.01) and (T, q) = (100, 0.1), the models
both see the canaries 10 times, the lower subsampling rate is more challenging for DP auditing.

Random Prefixes are Better Canaries than In-Distribution Data. We compare two approaches for
selecting canary prefixes: randomly sampled tokens versus samples from the test dataset. In Table 8,
we demonstrate that using random tokens as prefixes leads to more effective privacy auditing. This
can be explained by considering what associations the model needs to learn during supervised fine-
tuning. With test distribution prefixes, the model must balance learning two competing objectives:
(1) associating the prefix with its natural, in-distribution continuations, and (2) associating it with our
inserted canary token. This competition naturally reduces the probability of the model predicting the
canary token. In contrast, random (OOD) prefixes only require the model to learn a single, albeit
unusual, association with the canary token. This focused learning task makes the canary information
more distinguishable during privacy auditing, as the model’s prediction of the canary token becomes
a clearer signal of memorization. This may seem like a limitation, because it means that the attacker
conducting the MIA cannot get a clear signal on the in-distribution data with semantic meaning.
However, in Section 4 we used samples from the test dataset as prefixes throughout and showed that
when the model is not trained with DP, the attacker can correctly identify members. In the auditing
threat model, we can use random prefixes for the canaries without it being a limitation for our method.
However, this also shows a clear direction for future work to build on our method.

Table 9: Loss over target se-
quence only (SFT) vs. loss
over the full sequence (NWP).

SFT NWP

Audit 95% 0.84 0.0
Audit 99% 0.66 0.0

Impact of Loss Function on Auditing Performance. In Table 9 we
find that auditing is easier when we train with an SFT objective, in
line with the results in Section 4. This is because including the loss
over the prefix in the MIA statistic makes the auditing test noisier,
and we need very low FPR for a good audit.

6 RELATED WORK AND DISCUSSION

Privacy Attacks in Machine Learning. Membership Inference (Shokri et al., 2017; Choquette-Choo
et al., 2021; Carlini et al., 2022a; Jagielski et al., 2023a), attribute inference (Yeom et al., 2018;
Fredrikson et al., 2015), and data extraction (Carlini et al., 2019; 2023a;b; Biderman et al., 2023a;
Tirumala et al., 2022; Mireshghallah et al., 2022; Huang et al., 2022; Lukas et al., 2023; Jagielski
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et al., 2023b; Ippolito et al., 2023; Anil et al., 2023; Kudugunta et al., 2023) are the three main attacks
on privacy in machine learning. Our attacks are based on membership inference, and require the
logprobs of the model to compute the loss. Morris et al. (2024); Carlini et al. (2024) show that it
is still possible for the attacker to access the logprobs when the logprobs are not directly available.
Although we do not consider data extraction in this work, membership inference can lead to data
extraction by using knowledge of the “outlier” token to iteratively guide decoding. We believe that
using our method to improve existing data extraction attacks is an interesting future direction.

Membership Inference Attacks on LLMs. Shi et al. (2024) propose a new heuristic membership
inference attack Min-K% to detect pretraining data in LLMs and provide case studied on copyright
data detection, dataset contamination detection and machine unlearning verification. Kandpal et al.
(2024) show that membership inference can be extended to collections of user data, their so-called
“user inference”, leading to stronger privacy threats on LLMs.

We are concerned with attempting to maximize the success of a membership inference attack on
canary data; these works may attempt to extract data that already exists in the model. Membership
inference on canaries is no less important than membership inference of real training data, because
it provides us with an understanding of the worst-case privacy leakage. As we have discussed
throughout the paper, only doing membership inference of real training data may systematically
underestimate true privacy leakage, and the underlying vulnerability may only appear when training
data is extracted from a production LLM (Nasr et al., 2025).

Privacy Auditing Methods. In this work we primarily use the method of Steinke et al. (2023)
because it can do privacy auditing in one run. However, a number of privacy auditing methods
have been proposed that our method is compatible with. Nasr et al. (2023) obtain tight auditing
results, but require multiple runs. Pillutla et al. (2023) can re-use previous training runs to improve
efficiency. Annamalai & Cristofaro (2024) exploit the model initialization for better distinguishability.
Recently, Kazmi et al. (2024) propose a method for estimating privacy leakage. However, they do
not provide an audit, in that they do not show a lower bound on epsilon. In the paragraph titled
"Measurement Semantics" on page 6, they note: “the value PANORAMIA returns does not imply a
lower bound on epsilon.” In contrast, we return a provable lower bound on epsilon. To the best of our
knowledge, we are the first to provide non-trivial auditing results on LLMs, as well as a systematic
evaluation of the memorization rate in LLM training from the perspective of canary design.

Privacy Preserving Language Models. DP-SGD has been used to pretrain (Anil et al., 2021;
Ponomareva et al., 2022) and fine-tune (Panda et al., 2024) LLMs. Our work is focused on auditing
any such DP training run, i.e., validate if the proposed guarantees are correct. Orthogonal to our
work are many that seek to improve DP-SGD’s adoption in LLMs. These include techniques that
improve compute- or memory-efficiency, such as parameter efficient techniques (Yu et al., 2022), new
clipping techniques (Li et al., 2022; He et al., 2023), better hyperparameter tuning (Panda et al., 2024),
and using zero-th order optimization (Tang et al., 2025). There is also DP in-context-learning (Duan
et al., 2023; Wu et al., 2024; Tang et al., 2024; Hong et al., 2024) which never updates the model.
Hanke et al. (2024) comprehensively evaluate the privacy-performance tradeoff of these methods.

Discussion. Ever since Secret Sharer (Carlini et al., 2019), work that has evaluated privacy leakage
of language models via membership inference of inserted canaries has consistently found that
memorization of canaries is limited. For years, this line of work showing the limited success of
membership inference attacks on language models (Duan et al., 2024) has been at odds with another
line of work on training data extraction from language models (Carlini et al., 2021; Nasr et al., 2025).
In this work, we present a simple change in the design of the canary that vastly increases the success
of MIA. This enables loss-based membership inference without shadow models, and therefore allows
us to obtain the first nontrivial privacy audit of an LLM trained on real data with a realistic DP
guarantee with input-space canaries. Our work provides an efficient privacy audit that can run
alongside a regular DP training run and provide a good lower bound of the privacy parameter.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, oct 2016. doi: 10.1145/2976749.
2978318.

10



Published as a conference paper at ICLR 2025

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624, 2021.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Meenatchi Sundaram Muthu Selva Annamalai and Emiliano De Cristofaro. Nearly tight black-box
auditing of differentially private machine learning. In Advances in Neural Information Processing
Systems, 2024. URL https://arxiv.org/abs/2405.14106.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Gregory
Anthony, Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large
language models. In Advances in Neural Information Processing Systems, 2023a.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: A suite for analyzing large
language models across training and scaling. In Proceedings of the 40th International Conference
on Machine Learning, pp. 2397–2430. PMLR, 2023b.

Bloomberg. Using chatgpt at work, Mar 2023. URL
https://www.bloomberg.com/news/articles/2023-03-20/
using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, 2020.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022a.

Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
Tramer. The privacy onion effect: Memorization is relative. Advances in Neural Information
Processing Systems, 35:13263–13276, 2022b.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In
32nd USENIX Security Symposium (USENIX Security 23), 2023a.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2023b.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace,
David Rolnick, and Florian Tramèr. Stealing part of a production language model. In Forty-first
International Conference on Machine Learning, 2024.

11

https://arxiv.org/abs/2405.14106
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use


Published as a conference paper at ICLR 2025

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In International Conference on Machine Learning, pp. 1964–1974.
PMLR, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, and Hyung Won Chung et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

Debeshee Das, Jie Zhang, and Florian Tramèr. Blind baselines beat membership inference attacks for
foundation models, 2024. URL https://arxiv.org/abs/2406.16201.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic
parrots: Differentially private prompt learning for large language models. In Advances in Neural
Information Processing Systems, 2023.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? In First Conference on Language Modeling, 2024.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography Conference, pp. 265–284, 2006.

Cédric Eichler, Nathan Champeil, Nicolas Anciaux, Alexandra Bensamoun, Heber Hwang Arcolezi,
and José Maria De Fuentes. Nob-mias: Non-biased membership inference attacks assessment on
large language models with ex-post dataset construction, 2024. URL https://arxiv.org/
abs/2408.05968.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1322–1333, 2015.

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma-Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, and Morgane Rivière et al. Gemma: Open models based on gemini research and
technology. arXiv preprint arXiv:2403.08295, 2024.

Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Emmanuel Olatunji, Michael Backes, and
Adam Dziedzic. Open LLMs are necessary for current private adaptations and outperform their
closed alternatives. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. In The Eleventh International Conference on Learning Representations,
2023.

Junyuan Hong, Jiachen T. Wang, Chenhui Zhang, Zhangheng LI, Bo Li, and Zhangyang Wang.
DP-OPT: Make large language model your privacy-preserving prompt engineer. In The Twelfth
International Conference on Learning Representations, 2024.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
leaking your personal information? In Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 2038–2047, 2022.

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher Choquette Choo, and Nicholas Carlini. Preventing generation of verbatim memoriza-
tion in language models gives a false sense of privacy. In Proceedings of the 16th International
Natural Language Generation Conference, pp. 28–53, 2023.

12

https://arxiv.org/abs/2406.16201
https://arxiv.org/abs/2408.05968
https://arxiv.org/abs/2408.05968


Published as a conference paper at ICLR 2025

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd? In Advances in Neural Information Processing Systems,
volume 33, pp. 22205–22216, 2020.

Matthew Jagielski, Milad Nasr, Katherine Lee, Christopher A. Choquette-Choo, Nicholas Carlini,
and Florian Tramèr. Students parrot their teachers: Membership inference on model distillation. In
Advances in Neural Information Processing Systems, 2023a.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, and Chiyuan Zhang.
Measuring forgetting of memorized training examples. In The Eleventh International Conference
on Learning Representations, 2023b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy.
In Proceedings of the 32nd International Conference on Machine Learning, pp. 1376–1385. PMLR,
2015.

Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter Kairouz, Christopher A. Choquette-Choo,
and Zheng Xu. User inference attacks on large language models. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 18238–18265, 2024. URL
https://aclanthology.org/2024.emnlp-main.1014/.

Mishaal Kazmi, Hadrien Lautraite, Alireza Akbari, Qiaoyue Tang, Mauricio Soroco, Tao Wang,
Sébastien Gambs, and Mathias Lécuyer. PANORAMIA: Privacy auditing of machine learning
models without retraining. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Sneha Kudugunta, Isaac Rayburn Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati,
Romi Stella, Ankur Bapna, and Orhan Firat. MADLAD-400: A multilingual and document-level
large audited dataset. In Advances in Neural Information Processing Systems, 2023.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. In 2023
IEEE Symposium on Security and Privacy (SP), pp. 346–363. IEEE Computer Society, 2023.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 11330–11343, 2023.

Shiona McCallum. Chatgpt banned in italy over privacy concerns, Apr 2023. URL https:
//www.bbc.com/news/technology-65139406.

Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel Faysse, Marek Rei, and Yves-Alexandre
de Montjoye. Sok: Membership inference attacks on llms are rushing nowhere (and how to fix it),
2024. URL https://arxiv.org/abs/2406.17975.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-
Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language models.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 1816–1826, 2022.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M Rush.
Language model inversion. In The Twelfth International Conference on Learning Representations,
2024.

13

https://aclanthology.org/2024.emnlp-main.1014/
https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://arxiv.org/abs/2406.17975


Published as a conference paper at ICLR 2025

Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlin. Adversary
instantiation: Lower bounds for differentially private machine learning. In 2021 IEEE Symposium
on security and privacy (SP), pp. 866–882. IEEE, 2021.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 1631–1648, 2023.

Milad Nasr, Javier Rando, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper,
Daphne Ippolito, Christopher A. Choquette-Choo, Florian Tramèr, and Katherine Lee. Scalable ex-
traction of training data from aligned, production language models. In The Thirteenth International
Conference on Learning Representations, 2025.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The E2E dataset: New challenges for
end-to-end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, Saarbrücken, Germany, 2017. URL https://arxiv.org/abs/
1706.09254. arXiv:1706.09254.

OpenAI. Gpt-4 technical report, 2023.

Ashwinee Panda, Xinyu Tang, Saeed Mahloujifar, Vikash Sehwag, and Prateek Mittal. A new
linear scaling rule for private adaptive hyperparameter optimization. In Forty-first International
Conference on Machine Learning, 2024.

Krishna Pillutla, Galen Andrew, Peter Kairouz, Hugh Brendan McMahan, Alina Oprea, and Sewoong
Oh. Unleashing the power of randomization in auditing differentially private ML. In Advances in
Neural Information Processing Systems, 2023.

Politico. Chatgpt is entering a world of regulatory pain in the
eu, Apr 2023. URL https://www.politico.eu/article/
chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/.

Natalia Ponomareva, Jasmijn Bastings, and Sergei Vassilvitskii. Training text-to-text transformers
with privacy guarantees. In Findings of the Association for Computational Linguistics: ACL 2022,
pp. 2182–2193, 2022.

Qwen-Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen-Team, An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-
peng Li, Chengyuan Li, and Dayiheng Liu et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. In The Twelfth
International Conference on Learning Representations, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3–18, 2017. doi: 10.1109/SP.2017.41.

14

https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


Published as a conference paper at ICLR 2025

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pp. 245–248, 2013. doi: 10.1109/GlobalSIP.2013.6736861.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In
Advances in Neural Information Processing Systems, 2023.

Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. In The Twelfth International Conference on Learning
Representations, 2024.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
of large language models with zeroth-order optimization. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856.

Llama3 Team, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, and Akhil Mathur et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. In Advances in
Neural Information Processing Systems, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, and Soumya Batra et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. arXiv preprint
arXiv:2202.12219, 2022.

Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Prateek Mittal. Privacy-preserving in-context
learning for large language models. In International Conference on Learning Representations,
2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting, 2018.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
Differentially private fine-tuning of language models. In International Conference on Learning
Representations, 2022.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2204–2213, 2018.

15



Published as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SET-UP

Models. We evaluate GPT2 (Radford et al., 2019) (license: mit), Pythia (Biderman et al., 2023b) (li-
cense: apache-2.0), Qwen-2.5 (Qwen-Team et al., 2024; Qwen-Team, 2024) (license: apache-2.0),
Gemma (Gemma-Team et al., 2024) (license: gemma), Mistral (Jiang et al., 2023) (license: apache-
2.0), and Llama3 (Team et al., 2024) (license:llama3). We outline the parameter size and tokenizer
size for models we use in Tables 10 and 11.

Table 10: Model parameter and tokenizer size for GPT2 and Pythia series in our experiments.
Model Gpt2 Gpt2-large Gpt2-xl Pythia-160m Pythia-410m Pythia-1.4b

Parameters 124M 774M 1.5B 160M 410M 1.4B
Tokenizer 50257 50304

Table 11: Model parameter and tokenizer size for Qwen, and LLama series in our experiments.
Model Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B Llama-3.2-1B

Parameters 0.5B 1.5B 3B 1B
Tokenizer 151936 128256

Hyperparameters. We have 1000 canaries in total. Following Steinke et al. (2023), 500 of canaries
are randomly included as part of training set. We use batch size 1024 when training the models.
We search lr in [0.0001, 0.0002, 0.0005, 0.001] and conduct auditing on models that have the best
performance, i.e., lowest perplexity. We use AdamW optimizer with default settings. For memoriza-
tion evaluationg, we train for 100 steps. We use the clipping threshold = 1 to clip the averaged
gradients in each step. For DP auditing, we train for 1000 steps. We use the clipping norm C = 1 for
per-example clipping.

Impact of Learning Rate on Auditing Success. Our main results are presented with the default
learning rate in Huggingface’s implementation of AdamW, which is η = 1e− 3. We now present
results varying the learning rate. We observe that when the learning rate is larger, the model utility
may drop, but we can still get good auditing performance. When we decrease the learning rate
slightly, the auditing performance drops slightly. When we decrease the learning rate significantly,
the utility becomes worse and the auditing performance drops to 0. This indicates that there may be a
tradeoff between DP auditing performance and performance, but we emphasize that we are still able
to obtain nontrivial auditing performance without impacting clean utility.

Table 12: The auditing succeeds for a range of learning rates, but if the learning rate is too small then
the utility and auditing performance suffer.

Learning Rate 1e− 4 5e− 4 1e− 3 5e− 3

Utility 28 22 24 48
Audit 0 0.9 1.3 1.3

The CDFs we visualize in Figure 3 indicate that the unigram attack will be the most effective strategy
if the main criterion in attack success is how infrequent the canary token is relative to the entire
training dataset. This intuition is well validated by the new token attack being the most effective by
far. It also tracks the relative performance of the random, unigram, and model-based canaries as we
see in Figure 1. Despite requiring knowledge of the model parameters, the model-based canary does
not clearly dominate the simple unigram attack.
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Table 13: Varying the LoRA rank hardly changes performance, with an AUC difference of just 0.02
between a rank of 4 and a rank of 512.

Rank 4 8 16 32 64 128 256 512 FFT

AUC 0.753 0.763 0.760 0.773 0.765 0.774 0.760 0.774 0.776

Table 14: In the main paper we always update embeddings when we do LoRA. Without updating
embeddings, neither the auditing works, nor do we get good performance.

Type new bigram unigram model-based random

Embeddings Updated
audit 95% 0.74 0.60 0.56 0.0 0.05
audit 99% 0.54 0.46 0.41 0.0 0.0

PPL 25.59 25.01 25.05 25.23 25.00

Embeddings Frozen
audit 95% 0.05 0 0 0 0.07
audit 99% 0 0 0 0 0

PPL 44.88 29.12 29.28 29.17 29.30
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Figure 3: Frequencies of tokens selected by each strategy. By design, the unigram strategy selects the
least frequent tokens.

.
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