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ABSTRACT

Diffusion Q-Learning (DQL) has established diffusion policies as a high-
performing paradigm for offline reinforcement learning, but its reliance on multi-
step denoising for action generation renders both training and inference slow and
fragile. Existing efforts to accelerate DQL toward one-step denoising typically
rely on auxiliary modules or policy distillation, sacrificing either simplicity or
performance. It remains unclear whether a one-step policy can be trained directly
without such trade-offs. To this end, we introduce One-Step Flow Q-Learning
(OFQL), a novel framework that enables effective one-step action generation dur-
ing both training and inference, without auxiliary modules or distillation. OFQL
reformulates the DQL policy within the Flow Matching (FM) paradigm but departs
from conventional FM by learning an average velocity field that directly supports
accurate one-step action generation. This design removes the need for multi-step
denoising and backpropagation-through-time updates, resulting in substantially
faster and more robust learning. Extensive experiments on the D4RL benchmark
show that OFQL, despite generating actions in a single step, not only significantly
reduces computation during both training and inference but also outperforms multi-
step DQL by a large margin. Furthermore, OFQL surpasses all other baselines,
achieving state-of-the-art performance in D4RL.

1 INTRODUCTION
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Figure 1: Performance and decision frequency.
Performance (i.e., normalized score) and decision
frequency are measured on an A100 GPU and av-
eraged across MuJoCo tasks from D4RL. OFQL
achieves both high inference speed and strong per-
formance, clearly outperforming prior baselines.

In recent years, offline reinforcement learning
(Offline RL) has achieved impressive progress
through the integration of diffusion models, lead-
ing to many high-performance algorithms. A
prominent example is Diffusion Q-Learning
(DQL) (Wang et al., 2022), which replaces
the conventional diagonal Gaussian policy in
TD3-BC (Fujimoto & Gu, 2021) with a de-
noising diffusion probabilistic model (DDPM)
(Ho et al., 2020). This approach has demon-
strated substantial performance gains and has
spurred widespread interest in leveraging gen-
erative models for policy learning. Notably,
DQL remains competitive and often outperforms
many more recent methods in both diffusion-
based planning and policy optimization (Lu
et al., 2025a; Dong et al., 2024).

Despite its strong empirical results, DQL faces key practical limitations, including high computational
demands during training and inference (Kang et al., 2023; Wang et al., 2022), as well as optimization
fragility causing reduced performance (Park et al., 2025). Upon closer analysis, we identify that the
key bottleneck lies in its use of DDPM diffusion policy (Ho et al., 2020), which involves multiple
denoising steps per action, leading to slow inference. Furthermore, the training speed is doubly
affected: beyond the diffusion loss, DQL requires two rounds of policy sampling per iteration—one
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for the current action and another for the next—to compute all loss components. In addition, DQL
leverages the reparameterization trick to backpropagate through the entire denoising chain, amplifying
computational load and impeding convergence to optimal solutions. These characteristics collectively
hinder DQL’s efficiency and robustness.

It is worth noting that several recent approaches have partially addressed these limitations—through
improved denoising solvers (Kang et al., 2023), IQL-based learning (Hansen-Estruch et al., 2023),
or the use of an auxiliary policy and policy distillation strategies (Park et al., 2025; Chen et al.,
2023; 2024; Lu et al., 2025b). Nevertheless, such solutions typically introduce additional complexity,
multi-phase training procedures, or undesirable trade-offs in scalability and policy quality.

Recognizing that the diffusion policy itself is the bottleneck, we adopt a more direct approach by
introducing One-Step Flow Q-Learning (OFQL), a novel framework specifically designed to enable
effective one-step action generation during both training and inference, without the need for auxiliary
models, policy distillation, or multi-stage training. At the heart of OFQL is the elimination of
DDPM’s computationally intensive multi-step denoising and associated reparameterization trick. By
recasting DQL policy under the Flow Matching (Lipman et al., 2022) paradigm, we facilitate its
efficient action sampling. However, conventional Flow Matching frequently yields curved trajectories,
limiting one-step inference accuracy—an issue rooted in the intrinsic properties of the marginal
velocity field it models. We address this by learning an average velocity field instead, enabling
accurate direct action prediction from a single step. As a result, OFQL eliminates the necessity
of iterative denoising and recursive gradient propagation, providing a faster, more stable, one-step
training-inference pipeline. Extensive empirical evaluations on the D4RL benchmark demonstrate
that OFQL not only surpasses DQL in performance but also significantly improves both training and
inference efficiency, all while maintaining a simple learning pipeline. Compared to other approaches,
OFQL delivers consistently stronger results, establishing it as a fast and state-of-the-art algorithm on
D4RL.

2 RELATED WORK

Diffusion Models in Offline Reinforcement Learning. Offline RL aims to learn effective policies
from fixed datasets without environment interaction (Levine et al., 2020), with early methods
addressing distributional shift via conservative objectives—e.g., CQL (Kumar et al., 2020), TD3+BC
(Fujimoto & Gu, 2021), and IQL (Kostrikov et al., 2021). However, these approaches often rely on
unimodal Gaussian policies, which struggle to model complex, multi-modal action distributions. To
address this, recent approaches have adopted diffusion models (Ho et al., 2020; Song et al., 2020b)
for offline RL. These models excel in representing complex distributions and have been applied
in various forms: as planners for trajectory generation (Janner et al., 2022; Ajay et al., 2022), as
expressive policy networks (Wang et al., 2022; Hansen-Estruch et al., 2023), and as data synthesizers
to augment training (Zhu et al., 2023).

Among diffusion-based methods, Diffusion Q-Learning (DQL) (Wang et al., 2022) stands out as a
strong baseline, replacing Gaussian policies in TD3+BC with a diffusion model to better capture multi-
modal actions. Follow-up evaluations, including those by Clean Diffuser (Dong et al., 2024) and recent
empirical studies (Lu et al., 2025a;b), confirm DQL’s consistent advantage over policy-based and
planner-based methods. Despite its effectiveness, DQL remains significant computational overhead
during both training and inference (Kang et al., 2023), and is prone to suboptimal convergence (Park
et al., 2025).

Subsequent works have attempted to mitigate these issues. For instance, early approaches use an
efficient solver that reduces the number of denoising steps (Kang et al., 2023). Other approaches
bypass backpropagation through time (BPTT) of the DQL policy update by training a diffusion policy
to clone the behavior policy, with actions reweighted by a separately learned IQL-based value function
(Hansen-Estruch et al., 2023). Others further apply distillation to obtain a one-step policy (Chen et al.,
2023; 2024). However, IQL-based methods are generally less effective than actor–critic learning
(Park et al., 2025). To address this, (Park et al., 2025) adopts a flow model to clone the behavior
policy and distill it into a one-step policy for actor–critic updates. While yielding a one-step inference
policy, the distillation process still requires repeated queries to the underlying multi-step diffusion or
flow model. Overall, although these methods partially alleviate DQL’s limitations, they introduce
additional components and multi-phase training procedures, thereby increasing system complexity
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and limiting practical generality. Departs from prior work, our method pinpoints the diffusion policy
itself as the primary source of inefficiency and instability in DQL. We directly solve it with a highly
performant one-step policy alternative that provides a simpler and more robust solution—without
relying on auxiliary policies, distillation, or sacrificing policy expressivity.

Efficient One-Step Diffusion. Our work is inspired by advances in efficient generative modeling
with diffusion models and flow-based models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
& Ermon, 2019). To accelerate generation, one line of work focuses on distillation techniques that
compress multi-step models into fewer steps (Salimans & Ho, 2022; Sauer et al., 2024; Yin et al.,
2024), while another pursues flow matching approaches that learn time-dependent velocity fields
for straight-through sampling (Lipman et al., 2022; Liu et al., 2022). Consistency Models (Song
et al., 2023) offer another path to one-step generation, but suffer from training instabilities (Song &
Dhariwal, 2023; Lu & Song, 2024). More recent methods (Frans et al., 2024; Geng et al., 2025; Zhou
et al., 2025) address these limitations by exploiting different physical parametrization using dual
time variables, showing improved stability and performance. Leveraging the Mean Flow modeling
(Geng et al., 2025), OFQL realizes a one-step flow-based policy while uniquely incorporating the
Q-gradient to guide velocity learning, instead of relying solely on supervised learning.

3 PRELIMINARIES

3.1 OFFLINE RL.

Reinforcement learning (RL) is typically formalized as a Markov Decision Process (MDP), defined
byM = (S,A, P,R, γ). Here, S and A denote the state and action spaces, P (s′ | s, a) denotes
the transition probability of moving from s to s′ given action a, and R(s, a) denotes the reward
function. The discount factor γ ∈ [0, 1) governs the trade-off between immediate and future rewards.
In RL, the objective is to learn a policy πθ(a | s), parameterized by θ, that maximizes the expected
discounted return Eπ

[∑∞
h=0 γ

hR(sh, ah)
]
.

To support policy learning, the action-value (Q) function is defined:

Qπ(s, a) = Eπ

[ ∞∑
h=0

γhR(sh, ah) | s0 = s, a0 = a

]
, (1)

which measures the expected cumulative return starting from state s and action a under policy π.

Offline RL is a setting of RL where the agent does not interact with the environment but instead
learns from a fixed dataset of transitions D = {(sh, ah, sh+1, rh)}. The challenge lies in learning an
optimal policy solely from this static dataset that often contains suboptimal behavior, without any
further exploration.

3.2 DIFFUSION Q-LEARNING (DQL)

Modeling Policy as a Diffusion Model. The Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al., 2020) is a powerful generative framework that formulates a forward diffusion process as a fixed
Markov chain, progressively corrupting data into noise, and learns a parametric reverse process to
reconstruct the data. Once trained, DDPM is capable of generating complex data distributions by
reversing the diffusion process, starting from pure noise.

Viewing actions as data, (Wang et al., 2022) formulate the reverse process of a DDPM, conditioned
on state s, as a parametric policy πθ:

πθ := pθ
(
a0:K | s

)
= p(aK)

K∏
k=1

pθ
(
ak−1 | ak, s

)
, (2)

where aK ∼ N (0, I) and a0 denotes the clean action corresponding to the actual policy output.
For training, following DDPM (Ho et al., 2020), DQL parameterizes the Gaussian distribution
pθ(a

k−1|ak, s) with the variance fixed as Σ(ak, k; s) = βkI where the {βk}Kk=1 are predefined
variance schedule values and the mean is defined via a noise prediction model:

µθ(a
k, k; s) =

1√
αk

(
ak − βk√

1− ᾱk
ϵθ(a

k, k; s)

)
, (3)
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where αk = 1− βk, ᾱk =
∏k
i=1 α

i, and ϵθ is a neural network predicting Gaussian noise.

To enforce behavior cloning, the score matching loss can be used as a training objective. Specifically,
the model minimizes:

LDBC(θ) = Ek,ϵ,(a0,s)∼D

[∥∥ϵ− ϵθ(√ᾱka0 +√
1− ᾱkϵ, k; s

)∥∥2], (4)

where k ∼ U{1, . . . ,K}, (a0, s) are sampled from the offline dataset D, and ϵ ∼ N (0, I) denotes
Gaussian noise.

Once trained, to generate an action (i.e., a0), the model sequentially samples from K conditional
Gaussians, starting from aK ∼ N (0, I):

ak−1 =
1√
αk

(
ak − βk√

1− ᾱk
ϵθ(a

k, k; s)

)
+
√
βkϵ, (5)

Behavior-regularized actor-critic. To form a complete offline RL algorithm, DQL adopts the
behavior-regularized actor–critic framework (Wu et al., 2019; Fujimoto & Gu, 2021), alternating
between minimizing the actor and critic losses.

Specifically, the critic loss, which focuses on training the Q network, is defined as:

L(ϕ) = E(s,a,r,s′)∼D, a′∼πθ′

[(
r + γmin

i
Qϕ′

i
(s′, a′)−Qϕi(s, a)

)2
]
, (6)

where i ∈ 1, 2 indexes the two Q networks for double Q-learning, and (ϕ′, θ′) denote target network
parameters updated via exponential moving average (EMA) (Fujimoto & Gu, 2021). The actor loss,
which focuses on learning the policy, is defined as:

L(θ) = LDBC(θ)− α · Es∼D,a∼πθ [Qϕ(s, a)] , (7)

where α is the weighting coefficient. To normalize for dataset-specific Q-value scales, α is adapted
as α = η

E(s,a)∼D[∥Qϕ(s,a)∥] , with η being a tunable hyperparameter. The denominator is treated as a
constant for optimization.

Despite being implemented with a relatively simple MLP architecture for both the diffusion policy
and Q-functions, DQL has demonstrated strong performance across standard offline RL benchmarks
such as D4RL (Fu et al., 2020), outperforming many recent diffusion-based policies and planners
(Dong et al., 2024; Lu et al., 2025a;b).

Nevertheless, DQL exhibits two notable limitations: (1) slow training and inference (Kang et al.,
2023), and (2) susceptibility to unstable or suboptimal training (Park et al., 2025).

4 RATIONALE AND METHODOLOGY

The slow inference time stems from its reliance on a denoising diffusion process, where actions are
sampled through a reverse chain of K Gaussian transitions (Eq. 5). Due to the Markovian nature of
the DDPM framework, sampling an action during inference requires the same number of denoising
steps K as those used during training. Additionally, a large K is typically necessary to ensure that
aK approximates an isotropic Gaussian. Reducing K breaks this assumption, often resulting in
significant performance degradation.

In training, DQL also exhibits compounding inefficiencies. First, the critic loss (Eq. 6) requires
sampling target actions a′ ∼ πθ′ , each of which must be generated via the full K-step denoising,
introducing considerable computational overhead. Enforcing one-step action generation, however,
can destabilize training due to diffusion sampling errors. Second, the actor loss (Eq. 7) requires
sampling actions from πθ and performing backpropagation through all K denoising steps (i.e., BPTT)
using the reparameterization trick (Eq. 5). Although this enables end-to-end training, the recursive
gradient flow through a long stochastic computation graph is well-known to be prone to numerical
instability and can potentially lead to suboptimal outcomes (Chen et al., 2023; Park et al., 2025).

At first glance, diffusion policy sampling appears to be the bottleneck, but resolving DQL’s limitations
is far from straightforward. For example, using an efficient solver, e.g., the DDIM solver (Song et al.,
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Marginal VelocityConditional Velocity

(a) (b)

Average Velocity

(c) (d)

Figure 2: Comparison between diffusion and flow matching. (a) Conditional flows arise from different
(ϵ, x) pairs, resulting in varying conditional velocities. (b) Marginal velocity is obtained by averaging
over these conditional velocities. (c) Flow paths are inherently curved, but average velocity fields
enable direct one-step transport from noise to data. (d) Diffusion paths are also curved but noisy,
making one-step denoising challenging. Note that all the velocities exhibit symmetry under time
reversal. As the model is trained to parameterize the forward flow (from data to noise), inference
inverts this direction to generate samples. Accordingly, for clarity, we plot the negative velocity
vector to represent the reverse generation trajectory.

2020a), could reduce denoising steps, yet in our experiments, applying DDIM for one-step action
generation severely degraded policy performance. Similarly, replacing diffusion with consistency
models, such as Consistency-AC (Ding & Jin, 2023), still requires multiple denoising steps and yields
lower performance. The most effective one-step approaches are distillation-based methods (Park
et al., 2025; Chen et al., 2024; 2023; Lu et al., 2025b), which accelerate inference through student
policies but incur an additional training phase or shift the inefficiencies to the distillation stage. This
raises a natural question: Can we design a one-step policy that directly eliminates inefficiencies in
both training and inference?

Designing One-Step Policy. Diffusion models generate samples through stochastic and often
curved trajectories, which makes one-step sampling challenging. Flow Matching (FM) (Lipman et al.,
2022) offers a principled alternative by mapping noise directly to data along smoother, more direct
paths (Liu et al., 2022), as illustrated in Figure 4 (c,d). Modeling the policy via flow matching can
potentially improve both efficiency and stability. Let us model the policy as a variant of flow matching
based on linear paths and uniform time sampling. Given data a, s ∼ D and noise ϵ ∼ N (0, I), FM
defines a linear flow path at and conditional velocity vt(at|a; s) for a particular s as :

at = (1− t)a+ tϵ, vt =
dat
dt

= ϵ− a, where t ∈ [0, 1] (8)

Note that by formulation, a ≡ a0, and we use a without a subscript to denote the clean action for
simplicity.

FM essentially learns the marginal velocity, parametrized by the neural network vθ(at, t; s), using
the Conditional Flow Matching loss:

LCFM(θ) = Et∼U [0,1],(a,s)∼D,ϵ ∥vθ(at, t; s)− vt(at | a; s)∥
2
. (9)

Once trained, sampling an action for a state s proceeds by solving the ODE dat
dt =

v(at, t; s), starting from a1 ≡ ϵ ∼ N (0, I), approximated using a solver such as Euler’s method:
at−∆t = at −∆t · v(at, t; s).
Intuitively, since flows are designed so that the overall transport trajectory becomes approximately
straight (Liu et al., 2022), one might expect that modeling the policy via Flow Matching could support
one-step generation by setting ∆t = 1. However, in practice, the sampling trajectory is straight only
when the target distribution collapses to a delta distribution or when rectification or similar techniques
are explicitly applied. Without such conditions, the marginal velocity field typically induces a curved
overall trajectory, preventing reliable one-step action generation. Importantly, the curvature is not
simply a consequence of imperfect neural approximation, but rather an inherent property of the
ground-truth marginal velocity field. This phenomenon is illustrated in Figure 2 (a,b,c).

To enable high-quality one-step generation, we reinterpret the velocity field v(at, t; s) in Flow
Matching as the instantaneous velocity, and instead propose to model the average velocity, which

5
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directly connects any two arbitrary time steps. Specifically, we define the average velocity over an
interval [r, t] as:

u(at, r, t; s) ≜
1

t− r

∫ t

r

v(aτ , τ ; s) dτ, (10)

representing the total displacement across the interval divided by its duration. Here, r and t denote
the target and current times, respectively, with the constraint 0 ≤ r ≤ t ≤ 1.

In general, the average velocity is a functional of the instantaneous velocity, i.e., u = F [v]. This
field u is fully determined by the instantaneous velocity field v and is independent of any neural
network. We therefore treat u as the ground-truth average velocity field and train a neural network uθ
to approximate it using a loss, referred to as the Average-Velocity Matching loss:

LFBC⋆(θ) = E0≤r≤t≤1; s,ϵ

[∥∥uθ(at, r, t; s)− u(at, r, t; s)∥∥2] . (11)

Once uθ is learned, actions can be generated in a single step through the approximate endpoint map

a = Tθ(ϵ, s) = ϵ− uθ(ϵ, r=0, t=1; s), ϵ ∼ N (0, I), (12)

which eliminates the iterative ODE integration required by standard Flow Matching. This avoids both
the computational overhead and the discretization error associated with numerical ODE solvers. A
formal justification for why this one-step procedure preserves the FM action accuracy is provided in
Appendix G.

As a result, the learned policy πθ(a | s) is the push-forward of the Gaussian prior through the
approximate endpoint map:

πθ = (Tθ)#N (0, I).

Moreover, when used as a regularizer, optimizing the average-velocity matching loss LFBC⋆(θ)
encourages the learned one-step policy πθ(· | s) to remain close to the behavior policy µ(· | s),
effectively performing behavior cloning. Importantly, this behavior cloning still preserves the ability
to model complex, multimodal action distributions through the nonlinear transport map inherited
from Flow Matching (see Appendix H for a formal justification).

Practical Loss. In practice, computing u from its definition requires integration, which is computa-
tionally intractable for optimization. To address this, we adopt an equivalent reformulation based on
the MeanFlow Identity (Geng et al., 2025):

u(at, r, t; s) = v(at, t; s)− (t− r) d
dt
u(at, r, t; s), (13)

where the total derivative expands as d
dtu(at, r, t; s) = v(at, t; s) · ∂atu+ ∂tu. The computation of

the derivative also remains efficient by leveraging Jacobian–vector products. Notably, when t = r,
the target u reduces to the instantaneous velocity.

Equation 13 is mathematically equivalent to Eq. 10 (the detailed derivation is provided in Appendix O).
We therefore use the Eq. 13 to compute the average velocity utgt, avoiding explicit integration in
Eq. 10. The resulting field can be fitted by a neural network using the following loss:

LFBC(θ) = Et,r,r≤t,(a,s)∼D,ϵ ∥uθ(at, r, t; s)− sg(utgt)∥22 . (14)

In this loss, at = (1− t)a+ tϵ. The v(at, t; s) in Eq. 13 is additionally replaced with the conditional
velocity vt, following FM, to approximate the instantaneous velocity on the fly during training.
Consequently, the target velocity is defined as:

utgt = vt − (t− r)
(
vt · ∂atuθ + ∂tuθ

)
, (15)

where vt = ϵ− a. The operator sg(·) denotes stop-gradient, preventing higher-order gradients on the
target during optimization.

One-step Flow Q-Learning. To form OFQL, we model the policy with the average velocity
parameterization uθ. Its behavior regularization loss is LFBC(θ), defined in Eq. 14. In addition, since
the target average velocity is computed based on the estimate of the instantaneous velocity (Eq. 13),
accurate estimation of the instantaneous velocity is crucial for effective average-velocity learning. To

6
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encourage this, when sampling (t, r) we enforce a certain flow ratio λ, i.e., the probability that t = r.
This design biases training toward learning the instantaneous velocity, while still allowing regression
to the average velocity, improving the bootstrapping.

Given the policy uθ, sampling an action becomes a differentiable one-step operation:

a ∼ πθ(· | s) ⇔ a = ϵ− uθ(ϵ, r = 0, t = 1; s), where ϵ ∼ N (0, I) (16)

The critic and actor losses are updated as:

L(ϕ) = E(s,a,r,s′)∼D, a′∼πθ′

[(
r + γ min

i∈{1,2}
Qϕ′

i
(s′, a′)−Qϕi(s, a)

)2]
,

L(θ) = LFBC(θ)− αEs∼D, a∼πθ
[
Qϕ(s, a)

]
.

(17)

With the new one-step policy, the main modification from DQL losses is that the behavior regulariza-
tion term and action sampling require only a single step.

5 EXPERIMENT SETTING

Benchmarks. We evaluate OFQL on a diverse set of tasks from the D4RL benchmark suite (Fu et al.,
2020), a widely adopted standard for offline reinforcement learning. Our evaluation spans various
domains, including locomotion, navigation and manipulation tasks to demonstrate the method’s
generalizability. Detailed task descriptions and experimental protocols are provided in Appendix A.

Baselines. To rigorously assess OFQL’s performance, we compare it against a broad spectrum of
representative baselines, categorized as follows: (1) Non-Diffusion policies: Behavior Cloning (BC),
TD3-BC (Fujimoto & Gu, 2021), and IQL (Kostrikov et al., 2021); (2) Diffusion-based planners:
Diffuser (Janner et al., 2022), Decision Diffuser (DD) (Ajay et al., 2022); (3) Multi-step Diffusion-
based policies: IDQL (Hansen-Estruch et al., 2023), DQL (Wang et al., 2022), and EDP (Kang et al.,
2023); and (4) One-step Flow policies: FQL (Park et al., 2025)

Implementation Details. Our approach builds directly on DQL (Wang et al., 2022), inheriting its
training and inference procedures to ensure a fair comparison. We adopt the original DQL architecture
for both the Q-function and policy networks. The only minor modification lies in the policy input,
which is augmented by concatenating an additional positional embedding corresponding to the target
step r, in addition to the standard timestep embedding t. For timestep sampling, the t and r are
sampled from a logit-normal distribution (Esser et al., 2024) with parameters (−0.4, 1.0). The main
hyperparameters are the flow ratio and η. Unless otherwise specified, we set the flow ratio to 0.5 and
tune η via grid search over {0.001,0.01,0.1,0.3,0.5}. We adopt the Adam optimizer with a learning
rate of 3× 10−4. We ensure reliability by reporting OFQL results as the average D4RL normalized
score (Fu et al., 2020), computed over three training seeds, with each model evaluated on 150 episodes
per task. Other hyperparameters remain consistent with DQL. Additional implementation details are
provided in Appendix B.

6 EXPERIMENTAL RESULT

Benchmark results are summarized in Table 1, with details discussed below.

Locomotion Domain (MuJoCo). OFQL achieves strong performance in locomotion tasks, surpassing
competitive diffusion-based baselines such as DQL, DD . In particular, OFQL improves the average
performance of DQL from 87.9 to 92.5, with notable gains on medium and medium-replay tasks,
which are known to contain suboptimal and noisy trajectories. These tasks often induce complex,
multi-modal action distributions that challenge standard policy learning, making expressive action
modeling and stable value learning essential. The observed improvements may be attributed to
two key aspects of OFQL: (1) its policy modeling remains expressive for capturing complex action
distributions, and (2) the avoidance of BPTT in Q-learning, which may yield more stable value
estimation, leading to better convergence. Together, these factors provide a plausible explanation for
OFQL’s consistent performance gains.

Compared to other acceleration approaches, although EDP and IDQL enhance efficiency and stability,
they do so at the expense of reducing final performance relative to DQL, whereas OFQL achieves
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Non-Diffusion Policies Diffusion Planners Multi-step Diffusion Policies One-step Flow Policies

Dataset BC TD3-BC IQL Diffuser DD EDP IDQL DQL FQL OFQL (Ours)

HalfCheetah-Medium-Expert 55.2 90.7 86.7 90.3 ± 0.1 88.9 ± 1.9 95.8 ± 0.1 91.3 ± 0.6 96.8 ± 0.3 90.1 ± 2.0 95.2 ± 0.4
Hopper-Medium-Expert 52.5 98.0 91.5 107.2 ± 0.9 110.4 ± 0.6 110.8 ± 0.4 110.1 ± 0.7 111.1 ± 1.3 86.2 ± 1.3 110.2 ± 1.3
Walker2d-Medium-Expert 107.5 110.1 109.6 107.4 ± 0.1 108.4 ± 0.1 110.4 ± 0.0 110.6 ± 0.0 110.1 ± 0.3 100.5 ± 0.1 113.0 ± 0.1

HalfCheetah-Medium 42.6 48.3 47.4 43.8 ± 0.1 45.3 ± 0.3 50.8 ± 0.0 51.5 ± 0.1 51.1 ± 0.5 60.1 ± 0.1 63.8 ± 0.1
Hopper-Medium 52.9 59.3 66.3 89.5 ± 0.7 98.2 ± 0.1 72.6 ± 0.2 70.1 ± 2.0 90.5 ± 4.6 74.5 ± 0.2 103.6 ± 0.1
Walker2d-Medium 75.3 83.7 78.3 79.4 ± 1.0 79.6 ± 0.9 86.5 ± 0.2 88.1 ± 0.4 87.0 ± 0.9 72.7 ± 0.8 87.4 ± 0.1

HalfCheetah-Medium-Replay 36.6 44.6 44.2 36.0 ± 0.7 42.9 ± 0.1 44.9 ± 0.4 46.5 ± 0.3 47.8 ± 0.3 51.1 ± 0.1 51.2 ± 0.1
Hopper-Medium-Replay 18.1 60.9 94.7 91.8 ± 0.5 99.2 ± 0.2 83.0 ± 1.7 99.4 ± 0.1 101.3 ± 0.6 85.4 ± 0.5 101.9 ± 0.7
Walker2d-Medium-Replay 26.0 81.8 73.9 58.3 ± 1.8 75.6 ± 0.6 87.0 ± 2.6 89.1 ± 2.4 95.5 ± 1.5 82.1 ± 1.2 106.2 ± 0.6

Average (MuJoCo) 51.9 75.3 77.0 78.2 83.2 82.4 84.1 87.9 78.1 92.5

AntMaze-Medium-Play 0.0 10.6 71.2 6.7 ± 5.7 8.0 ± 4.3 73.3 ± 6.2 67.3 ± 5.7 76.6 ± 10.8 78.0 ± 7.0 88.1 ± 5.0
AntMaze-Large-Play 0.0 0.2 39.6 17.3 ± 1.9 0.0 ± 0.0 33.3 ± 1.9 48.7 ± 4.7 46.4 ± 8.3 84.0 ± 7.0 84.0 ± 6.1
AntMaze-Medium-Diverse 0.8 3.0 70.0 2.0 ± 1.6 4.0 ± 2.8 52.7 ± 1.9 83.3 ± 5.0 78.6 ± 10.3 71.0 ± 13.0 90.2 ± 4.2
AntMaze-Large-Diverse 0.0 0.0 47.5 27.3 ± 2.4 0.0 ± 0.0 41.3 ± 3.4 40.0 ± 11.4 56.6 ± 7.6 83.0 ± 4.0 76.1 ± 6.6

Average (AntMaze) 0.2 3.5 57.1 13.3 3.0 50.2 59.8 64.55 79.0 84.6

Kitchen-Mixed 51.5 0.0 51.0 52.5 ± 2.5 75.0 ± 0.0 50.2 ± 1.8 60.5 ± 4.1 62.6 ± 5.1 50.5±1.6 69.0 ± 1.5
Kitchen-Partial 38.0 0.0 46.3 55.7 ± 1.3 56.5 ± 5.8 40.8 ± 1.5 66.7 ± 2.5 60.5 ± 6.9 55.7±2.5 65.0 ± 2.3

Average (Kitchen) 44.8 0.0 48.7 54.1 65.8 45.5 66.6 61.6 53.1 67.0

Table 1: Comparison of normalized scores on D4RL benchmark across MuJoCo, Kitchen, and
AntMaze domains. Bold values indicate the best performance per row.

improvements. When compared with one-step FQL (based on distillation), OFQL surpasses it
by a significant margin (+14.4). Overall, OFQL offers a superior combination of efficiency and
effectiveness, with consistent gains across varying data regimes.

AntMaze Domain. AntMaze tasks are particularly challenging due to sparse rewards and suboptimal
demonstrations, requiring accurate and stable Q-value guidance to perform well. Prior approaches
(e.g., BC and Diffuser) struggle without Q-learning, whereas methods incorporating Q-learning
signals (e.g., IDQL and DQL) achieve consistently better results.

Building on the Q-learning framework, while EDP and IDQL underperform relative to DQL, OFQL
achieves a substantial improvement over DQL, raising performance from 64.55 to 84.6 and outper-
forming all diffusion-based baselines and the one-step FQL. Notably, FQL, which employs a one-step
policy for actor–critic training, improves upon DQL from 64.55 to 79.0. We argue that Q-learning is
crucial in this domain, and that OFQL and FQL may benefit from avoiding BPTT.

Kitchen Domain. . The Kitchen datasets contain low-entropy, narrowly distributed behaviors (Dong
et al., 2024), where action modeling plays a larger role than Q-learning. OFQL surpasses DQL (61.6
→ 67.0), achieving the strongest performance across methods. Although IDQL proves competitive,
FQL drops to 53.1, likely because its one-step policy lacks sufficient expressivity. Remarkably,
OFQL’s one-step formulation does not suffer this drawback, instead preserving expressivity while
achieving state-of-the-art results.

7 ABLATION STUDY

Method (Steps) DQL (5) DQL+DDIM (1) FBRAC (1) FQL (1) OFQL (1)

Score 87.9 11.6 (-76.3) 67.1 (-20.8) 78.1 (-9.8) 92.6 (+4.7)

Table 2: Comparison of methods (steps) using different improvement strategies toward one-step
action generation across 9 MuJoCo tasks. The average normalized score is reported.

Comparison of Strategies Toward One-Step Prediction. To investigate how to effectively adapt
DQL for one-step prediction, we evaluate the following strategies: (1) DQL: The base model, trained
and evaluated with 5 denoising steps. (2) DQL+DDIM: A pretrained DQL model with a one-step
DDIM sampler applied only at inference time. (3) FBRAC: The flow policy-based counterpart of
DQL, trained with 5 denoising steps for actor–critic updates but using a single step at inference.
(4) FQL: Learns a behavioral policy with a flow model, then distills it into a one-step policy for
actor–critic training and inference. (5) OFQL: Trained and evaluated entirely in the one-step regime.

Table 2 reports the average performance across 9 MuJoCo tasks. DQL+DDIM shows severe degra-
dation (−76.3), suggesting that direct application of improved samplers for one-step inference is
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ineffective. FBRAC performs better (−20.8), but still lags behind DQL, likely due to the discretiza-
tion error introduced when performing one-step prediction with curved trajectories. FQL further
narrows the gap (−9.8) by distilling a one-step policy from a multi-step flow model. In contrast,
OFQL achieves the best results, exceeding DQL by +4.7 while consistently supporting one-step
sampling in both training and inference.
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Figure 3: Training Time (↓) and Decision Frequency (↑) over one million steps, averaged on MuJoCo
tasks. NFE (Number of Function Evaluations) denotes the denoising steps required by a flow/diffusion
model to generate one action from pure noise. During training and inference, OFQL uses only one
NFE, while DQL requires multiple ones. It is worth noting that for inference, FQL runs with a
one-step policy, but training still relies on a multi-step flow policy to construct distillation targets.

1 step 2 steps 5 steps 10 steps 1 step

Figure 4: Comparison of distribution modeling capabilities between FM with marginal velocity
parameterization (left; evaluated at 1,2,5,10 steps generation) and average velocity parameterization
(right; evaluated with one-step generation) on a toy dataset with complex multi-modal structure.
Training and Inference Efficiency Comparison. Figure 3 reports the wall-clock training time (1M
steps) and decision frequency (Lu et al., 2025b) on an A100 GPU (see Appendix D for experimental
protocol). DQL’s training time scales nearly linearly with the number of denoising steps—from
11.7 hours at 5 steps to 49.5 hours at 50 steps—while OFQL completes training in only 6.3 hours.
At inference, OFQL reaches 846.5 Hz, compared to 238.7 Hz for 5-step DQL and just 35.5 Hz for
50-step DQL.

Compared to a one-step FQL baseline, OFQL achieves nearly the same decision frequency but
enjoys shorter training time. This advantage arises because FQL requires multiple NFEs to compute
distillation targets, leading to a slower training loop. Note that, despite comparable speed, FQL
consistently underperforms OFQL in terms of policy performance.

Overall, OFQL achieves substantially faster training and higher decision frequency without sacrificing
model expressivity, making it more practical than multi-step DQL or distillation-based FQL.

Flow Ratio 1 0.75 0.5 0.25 0

Medium Expert 38.3 90.86 95.2 92.03 90.47
Medium 46.3 62.03 63.8 63.76 63.2
Medium Replay 45.2 50.2 51.2 50.3 10.5

Table 3: D4RL scores across HalfCheetah datasets un-
der varying flow ratios.

Ablation on flow ratio. We study the ef-
fect of varying the flow ratio across differ-
ent datasets in HalfCheetah (Table 3). The
best performance is obtained at a flow ratio
of 0.5, achieving 95.2 on Medium Expert,
63.8 on Medium, and 52.2 on Medium Re-
play. In contrast, using either the flow ratio
equal to 1 (equivalent to pure flow match-
ing) or setting it to 0 results in noticeable performance degradation. A moderate flow ratio serves as
an effective regularizer, yielding the most stable and robust learning behavior.

Compare Marginal Velocity and Average Velocity Parameterization. DQL has convincingly
shown that employing a more expressive policy leads to superior final performance in the actor-critic

9
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training framework. To examine the expressiveness of one-step generation, we conduct a toy dataset
experiment comparing Flow Matching with marginal velocity (v-param) versus average velocity
(u-param) parameterization across different generation steps.. As illustrated in the rightmost panel of
Figure 4, samples generated by u-param in a single step already demonstrate strong mode coverage
and close alignment with the target distribution. In contrast, v-param requires multiple steps to
achieve comparable quality and often produces collapsed samples with fewer steps. These results
underscore the advantage of modeling the average velocity field for one-step generation and give
strong confidence to modeling policy. Additional experimental results and experiment setting are
provided in the Appendix C.

8 CONCLUSION

We presented One-Step Flow Q-Learning (OFQL), a novel policy learning framework that overcomes
key limitations of Diffusion Q-Learning by enabling efficient, single-step action generation during
both training and inference. By reformulating DQL within the Flow Matching framework and
learning an average velocity field rather than a marginal one, OFQL eliminates the need for multi-step
denoising, recursive gradient propagation. This leads to faster training and inference, while surpassing
the performance of state-of-the-art diffusion-based offline RL methods. Empirical results on the
D4RL benchmark confirm the effectiveness and efficiency of OFQL, underscoring the promise of one-
step flow policies for advancing offline RL. More broadly, OFQL facilitates accurate high-frequency
decision-making, suggesting potential for real-time control and scalable deployment in complex,
latency-sensitive domains.
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A BENCHMARKING TASKS AND EVALUATION PROTOCOL

Locomotion (MuJoCo)

Hopper Walker2DWalker2D AntMaze Medium

AntMaze Large

Navigation (AntMaze)Manipution (Kitchen)

Figure 5: Illustration of the benchmarking tasks examined in this study. The tasks include locomotion
challenges for short-term decision-making, robotic arm manipulation tasks requiring long-term
strategic decision-making, and navigation tasks focused on path optimization.

Benchmarking tasks. As shown in Figure 5, we evaluate the performance of OFQL using a diverse
set of benchmarking tasks that span various domains of reinforcement learning. These tasks are
chosen to assess OFQL’s capability across a broad spectrum of environment setups, which is essential
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for understanding the model’s robustness and generalization. The selected tasks include locomotion
challenges that emphasize short-term decision-making, robotic arm manipulation tasks requiring
long-term strategic decision-making, and navigation tasks focused on pathfinding. By covering this
wide array of tasks, we ensure a comprehensive evaluation of OFQL’s performance in both simple
and complex settings, facilitating a deeper understanding of its strengths and limitations.

Locomotion (MuJoCo): The MuJoCo Locomotion task is a well-established benchmark in rein-
forcement learning, where the agent is tasked with controlling a simulated robot to navigate through
a dynamic and complex environment. This task is designed to test the agent’s ability to perform
locomotion tasks, emphasizing short-term decision-making and agility in navigating unpredictable
terrains.

Manipulation (Kitchen): The Kitchen (Franka Kitchen) task is a robotic arm manipulation challenge
in which the agent is required to interact with objects in a kitchen environment. This task is specifically
designed to evaluate the agent’s proficiency in long-term strategic decision-making, as it involves
making sequences of actions for tasks such as object manipulation and coordination, which require
higher levels of temporal reasoning.

Navigation (AntMaze): The AntMaze task combines locomotion and planning challenges in a
maze environment, where the agent must navigate through increasingly complex and variable maze
configurations. This task is designed to test the agent’s ability to perform locomotion tasks while
incorporating advanced planning strategies, balancing exploration and exploitation in a maze with
dynamic elements.

Evaluation Metric. We adopt the D4RL (Fu et al., 2020) benchmark to report the normalized score,
which allows for fair comparison across approaches. The normalized score is computed for each
environment, using the following formula:

Normalized Score = 100× score− random score
expert score− random score

(18)

A normalized score of 0 represents the average returns (over 100 episodes) of an agent that selects
actions uniformly at random across the action space. A normalized score of 100 corresponds to the
average returns of a domain-specific expert (chosen by D4RL).

B ARCHITECTURAL AND IMPLEMENTATION DETAILS

Algorithm 1 OFQL Algorithm

1: Initialize policy network πθ , πθ′ , critic networks Qϕ1
and Qϕ2

, Qϕ′
1
, Qϕ′

2

2: for each iteration do
3: Sample transition mini-batch B = {(sh, ah, rh, sh+1)} ∼ D
4: # Q-value function learning
5: Sample ah+1 ∼ πθ′(ah+1 | sh+1) by Eq. 16
6: Update Qϕ1 and Qϕ2 using Eq. 6 {Max-Q backup (Kumar et al., 2020) optional}
7: # Policy learning
8: Sample ah ∼ πθ(ah | sh) by Eq. 16
9: Update policy πθ by minimizing Eq. 7

10: # Update target networks every K iteration
11: θ′ ← ρθ′ + (1− ρ)θ
12: ϕ′i ← ρϕ′i + (1− ρ)ϕi for i = {1, 2}
13: end for

Our approach generally builds directly on DQL (Wang et al., 2022), inheriting its training and
inference. Below, we outline the key architectural and implementation details.

Architectural Details. We adopt the original DQL architecture for both the Q-function and policy
networks, with a minor modification to the policy input. Specifically, we augment the input by
concatenating an additional positional embedding corresponding to the target step r, alongside the
standard timestep embedding t. More specifically, the architectures are as below:
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Policy Network: The policy is modeled as the average velocity function uθ(at, r, t; s), where at
denotes the action latent, t and r are timestep variables, and s is the state conditioning input. We
adopt the same MLP-based architecture as used in DQL, with the modification of incorporating the
additional timestep r. Specifically, uθ is parameterized as a 3-layer multilayer perceptron (MLP)
with Mish activations and 256 hidden units per layer. The input to uθ is the concatenation of the
action latent vector, the current state vector, and the sinusoidal positional embeddings of timesteps t
and r (time embedding size 64). The output is the predicted average velocity that flows from timestep
t to r.

Q Networks: We utilize the same Q network architecture as in DQL. Specifically, we employ two Q
networks, each implemented as a 3-layer MLP with Mish activations and 256 hidden units per layer.
The input to each Q network is the concatenation of the action and the observation, and the output is
the estimated state-action value.

Training Details. The pseudo algorithm of OFQL is provided in Algorithm 1, where Max-Q backup
is applied to AntMaze tasks only, as in DQL. In the training, the time variables t and r are sampled
from a logit-normal distribution (Esser et al., 2024) with parameters (−0.4, 1.0), which improves
stability compared to uniform sampling. During sampling, time pairs are selected such that r ̸= t
holds for 50% of the samples (i.e., flow ratio equal to 0.5). In the actor loss, the hyperparameter α
balances behavior regularization and Q value maximization. To normalize for dataset-specific Q-value
scales, α is adapted as α = η

E(s,a)∼D

[
∥Qϕ(s,a)∥

] , where η is a tunable hyperparameter. We search η

over {0.001, 0.01, 0.1, 0.3, 0.5} since the relative importance of Q-guidance varies by domain (e.g.,
the Kitchen tasks require more policy regularization and the AntMaze tasks require more Q-learning).

Training is conducted for 1000 epochs (2000 for MuJoCo tasks), with each epoch consisting of
1000 gradient steps and a batch size of 256. Both the policy and Q networks are optimized with
Adam (Kingma & Ba, 2014), using a learning rate of 3× 10−4. For rewards, we adopt the original
task rewards in MuJoCo Gym and Kitchen, while following CQL’s modification (Kumar et al., 2020)
for AntMaze, consistent with DQL. For evaluation, we report the mean normalized return averaged
over three training seeds, with each model evaluated on 150 episodes per task.

C DDPM, FLOW MATCHING WITH MARGINAL VELOCITY COMPARED TO
AVERAGE VELOCITY PARAMETERIZATION ON TOY DATASETS

1 step 2 steps 5 steps 10 steps 1 step

Figure 6: Comparison of sample quality between v-parameterization (left, steps = 1, 2, 5, 10) and
u-parameterization (right, one step) on toy datasets.

Experiment Setup. As DQL convincingly demonstrates, greater model expressiveness leads to
stronger final performance in the actor–critic framework. To illustrate the capability of modeling
complex distributions in a one-step setting, we compare (1) Flow Matching with two velocity
parameterizations; marginal velocity (v-param) and average velocity (u-param) (2) DDPM in DQL
with average velocity in OFQL; across three synthetic datasets: Crescent, Spiral, and Checkerboard.
Each dataset challenges the models to capture distinct geometric structures.
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1 step 2 steps 5 steps 10 steps 1 step

Figure 7: Comparison of sample quality between DDPM in DQL (left, steps = 1, 2, 5, 10) and
u-parameterization in OFQL (right, one step) on toy datasets.

1. Crescent: Points form a crescent shape, with an outer and inner circle, testing the models’
ability to avoid points in the inner circle.

2. Spiral: Points follow a noisy spiral, evaluating the models’ robustness in recovering the
structure amidst noise.

3. Checkerboard: Points are arranged in a checkerboard pattern, testing the models’ capacity
to capture multimodal distributions.

Architecture. (1) v-param: estimates marginal velocity using a multi-layer perceptron (MLP) with
3 hidden layers (64 units each), with inputs: noise latent, timestep. (2) u-param: estimates average
velocity using a similar MLP architecture but with an additional target time input. (3) DDPM:
estimate the time step noise using a multi-layer perceptron (MLP) with 3 hidden layers (64 units
each), with inputs: noise latent, timestep. All models use Mish activations.

Training and Evaluation. We train both models for 100 epochs with a batch size of 2048 and 40
batches for each epoch. The DDPM, v-param is evaluated with varying prediction steps (1, 2, 5, 10),
while the u-param is evaluated with one denoising step. We visualize the ground truth distribution
(blue points) and the generated samples (orange points) on a 2D plot to assess how well each model
captures the dataset’s geometric structure.

Results on v-param vs u-param While the main paper reports results on the Checkerboard dataset,
Figure 6 additionally presents results on two other toy datasets: Spiral and Moon. As illustrated in
Figure 6, the u-param consistently generates well-structured samples that match the target distribution
even in a single step. In contrast, the v-param exhibits significant mode collapse and noise in early
steps (1–2), requiring up to 10 steps to approximate the target shape. These findings reinforce
our main conclusion: modeling the average velocity field enables the u-param to achieve accurate
and efficient one-step generation, outperforming standard flow models across various geometrically
complex distributions.

Results on DDPM vs u-param. Figure 7 illustrates that the one-step u-parameterization in OFQL
achieves expressivity comparable to a full DDPM, despite requiring only a single forward pass. In
contrast, DDPM produces highly noisy outputs when restricted to a small number of steps (1–2)
and typically requires around 10 denoising steps to approximate the target distribution reliably.
Importantly, one-step generation is particularly advantageous in actor–critic RL, as it eliminates the
need for backpropagation through time. This makes the one-step u-parameterization a more practical
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choice than DDPM for policy learning, even though both approaches exhibit similar expressive
capacity.

D TRAINING AND INFERENCE EFFICIENCY COMPARISON

We evaluate the decision frequency and training time of our method and baseline across 9 Mujoco
tasks. The decision frequency (Lu et al., 2025b) reflects the number of actions (or action batches)
generated per second by the evaluated model.

Experiments are conducted on an Ubuntu server with an Intel(R) Xeon(R) Gold 5317 CPU @
3.00GHz (48 cores, 96 threads) and an A100 PCIe 80 GB GPU. The wall-clock training time (in
hours) is measured over 1 million training steps and averaged across the 9 Mujoco tasks. Decision
frequency is measured over 3000 action batches (batch size 2500) for each task and averaged across
all tasks.

E LIMITATIONS AND FUTURE WORK

The efficiency and expressivity of OFQL make it a promising foundation for real-world reinforcement
learning. By eliminating multi-step denoising, OFQL achieves one-step action generation with
state-of-the-art performance, enabling decision-making at frequencies suitable for real-time robotics,
autonomous driving, and other latency-sensitive domains. Its reduced training and inference cost
also lowers the computational barrier for scaling reinforcement learning to larger datasets and more
complex tasks, providing a practical path toward widespread industrial adoption.

While OFQL demonstrates compelling efficiency and performance gains in offline reinforcement
learning, our current evaluation focuses primarily on single-goal state-based decision-making
tasks—specifically those relying on low-dimensional proprioceptive observations from the D4RL
benchmark. This leaves several promising directions for future exploration.

First, extending OFQL to online reinforcement learning presents a natural next step. Our one-step
formulation removes the computational bottlenecks that typically hinder real-time interaction, making
OFQL a promising candidate for scalable online learning. Investigating stability and sample-efficiency
in this setting remains an important open question.

Second, we aim to generalize OFQL to vision-based control, where observations are high-dimensional
(e.g., raw pixels). Designing effective vision-based architectures and integrating with one-step
flow-based policies could open the door to end-to-end learning in more complex, unstructured
environments.

Third, future work could explore extending OFQL to goal-conditioned and multi-task RL settings.
Learning conditional average velocity fields to support diverse goal-directed behaviors—without
resorting to separate diffusion or reward models—would offer greater flexibility and generalization.

Overall, OFQL provides a general foundation for fast and expressive policy learning, and we hope
future work expands its applicability across broader domains and learning paradigms.

F DETAILED ON DIFFUSION MODELS, FLOW MATCHING

For completeness, we provide background on diffusion models and flow matching, which serve as
the foundations for our method.

Diffusion Models. Diffusion models are a high-performing class of generative models that learn to
sample from an unknown data distribution q(x0) using a dataset drawn from it (Ho et al., 2020; Song
& Ermon, 2019; Song et al., 2020b; Sohl-Dickstein et al., 2015). Denoising Diffusion Probabilistic
Models (DDPMs) (Ho et al., 2020), the canonical diffusion model used in DQL, define a forward
diffusion process q(x1:K | x0) =

∏K
k=1 q(x

k | xk−1) as a fixed Markov chain that gradually corrupts

data with Gaussian noise over K steps, where q(xk | xk−1) = N
(
xk;

√
1− βkxk−1, βkI

)
, and

the variance schedule {βk}Kk=1 is predefined such that as K → ∞, xK approaches an isotropic
Gaussian.
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The corresponding reverse process, enables generating data from pure noise, is parameterized by ψ
and defined as:

pψ(x
0:K) = N (xK ;0, I)

K∏
k=1

pψ(x
k−1 | xk), (19)

which is learned by maximizing the variational lower bound Eq
[
log

pψ(x
0:K)

q(x1:K |x0)

]
(Blei et al., 2017;

Ho et al., 2020).

After training, sampling from q(x0) is approximated by drawing xK ∼ N (0, I) and applying the
reverse Markov chain from k = K to k = 1 via the learn model pψ. Conditional generation is
straightforwardly supported via pψ(xk−1 | xk, c).
Flow Matching. Flow Matching (FM) (Lipman et al., 2022) is a generative modeling framework that
learns deterministic velocity fields to directly transport noise to data along smooth, stable trajectories.

Given data x ∼ q(x) and noise ϵ ∼ pprior(ϵ), FM defines a linear flow path:

zt = αtx+ βtϵ, vt =
dzt
dt

= α̇tx+ β̇tϵ, (20)

where αt, βt are predefined schedules (e.g., αt = 1 − t, βt = t), and the dot notation (e.g., α̇t)
denotes the time derivative with respect to the continuous flow step t ∈ [0, 1]. The conditional
velocity vt(zt | x) captures the direction of flow for a specific sample, and the marginal velocity field
is defined as the expectation:

v(zt, t) ≜ Ept(vt|zt)[vt]. (21)

FM essentially models the marginal velocity, as it is feasible to approximate this field; parametrized
by the neural network vθ(zt, t);using the Conditional Flow Matching loss:

LCFM(θ) = Et,x,ϵ ∥vθ(zt, t)− vt(zt | x)∥2 , (22)

where, under the commonly used schedule αt = 1− t, βt = t, the conditional velocity simplifies to
vt(zt | x) = ϵ− x.

In inference, sampling is performed by solving the ODE in reverse time:
dzt
dt

= v(zt, t), starting from z1 = ϵ ∼ pprior(ϵ), (23)

where the solution is approximated using a numerical solver, such as Euler’s method: zt−∆t =
zt −∆t · v(zt, t).
On the classifier-free guidance While classifier-free guidance (CFG) might be considered to better
align generated samples with the conditioning variable c in the image generation domain, prior
work has shown that CFG can lead to undesirable behaviors in sequential decision-making tasks.
Specifically, CFG tends to bias the generation process toward high-density regions associated with
c, which may cause agents to overlook high-return trajectories critical for long-horizon planning
(Pearce et al., 2023). Additionally, DQL adopts a no-guidance approach. For a fair comparison, we
follow the design choices made in DQL and prior works (Chi et al., 2023; Wang et al., 2022) and
adopt a no-guidance paradigm, ensuring stable and unbiased policy generation.

G FORMAL JUSTIFICATION OF ACTION ACCURACY PRESERVATION IN
ONE-STEP GENERATION THROUGH AVERAGE VELOCITY FIELD

We show that under perfect learning (no estimation error), learning the conditional average veloc-
ity uθ(at, r, t; s) and applying the one-step update in Eq. 12 recovers the same endpoint map as
integrating the conditional Flow Matching dynamics, thereby enabling accurate one-step action
generation.

Let v⋆(a, t; s) be the ground-truth conditional marginal velocity field assumed to govern the Flow
Matching (FM) dynamics that generate the target action distribution µ(· | s). In FM, this velocity
field transports Gaussian noise to data through the ODE

dat
dt

= v⋆(at, t; s), a1 = ϵ ∼ N (0, I). (24)
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Solving this ODE backward from t = 1 to t = 0 yields an endpoint a0 that depends on both the noise
sample ϵ and the conditioning state s. This defines the FM endpoint map

T ⋆(ϵ, s) = a0 = ϵ−
∫ 1

0

v⋆(aτ , τ ; s) dτ. (25)

The push-forward of this map over the Gaussian prior, (T ⋆)#N (0, I), recovers the target action
distribution µ(· | s).
For any interval [r, t] ⊆ [0, 1], define the average velocity as

u⋆(at, r, t; s) =
1

t− r

∫ t

r

v⋆(aτ , τ ; s) dτ, (26)

which represents the net displacement of the FM trajectory over this interval. Applying this definition
to [0, 1] gives

u⋆(a1, 0, 1; s) = u⋆(ϵ, 0, 1; s) =

∫ 1

0

v⋆(aτ , τ ; s) dτ, (27)

and therefore the endpoint map satisfies

T ⋆(ϵ, s) = ϵ−
∫ 1

0

v⋆(aτ , τ ; s) dτ = ϵ− u⋆(ϵ, 0, 1; s).

Suppose a learned model uθ (e.g., a model by a neural network) approximates this average velocity
u⋆ on the support of the Gaussian prior without estimation error. In that case, the one-step generator
in Eq. 12 becomes:

Tθ(ϵ, s) = ϵ− uθ(ϵ, 0, 1; s) = ϵ− u⋆(ϵ, 0, 1; s) = T ⋆(ϵ, s). (28)

Because both maps push the Gaussian prior forward in the same way, their induced action distributions
coincide:

(Tθ)#N (0, I) = (T ⋆)#N (0, I) = µ(· | s).
Hence, the learned policy

πθ(a | s) ≜ (Tθ)#N (0, I)

matches the target distribution exactly, demonstrating that the learned average velocity preserves the
FM action accuracy in a single forward pass without ODE integration.

H FORMAL JUSTIFICATION OF AVERAGE-VELOCITY LEARNING ENCOURAGES
THE LEARNED ONE-STEP POLICY TO STAY CLOSE TO THE BEHAVIOR
POLICY

We show that, under general (imperfect) learning conditions, minimizing the average-velocity match-
ing loss LFBC⋆(θ) ensures that the learned one-step policy πθ(· | s) converges toward the behavior
distribution µ(· | s). In particular, LFBC⋆(θ) upper-bounds the squared 2-Wasserstein distance be-
tween πθ(· | s) and µ(· | s) - up to a positive constant—implying that small average-velocity error
enforces closeness between the two distributions.

Let ϵ ∼ N (0, Id) be a d-dimensional standard Gaussian. For each state s ∈ S, define

T ⋆(ϵ, s) = ϵ−
∫ 1

0

v⋆(aτ , τ ; s) dτ = ϵ− u⋆(ϵ, 0, 1; s), Tθ(ϵ, s) = ϵ− uθ(ϵ, 0, 1; s),

so that the induced action distributions are the push-forwards

µ(· | s) = (T ⋆(·, s))#N (0, I), πθ(· | s) = (Tθ(·, s))#N (0, I).

Recall the average-velocity matching loss:

LFBC⋆(θ) = E0≤r≤t≤1; s; ϵ

[
∥uθ(at, r, t; s)− u⋆(at, r, t; s)∥22

]
, (29)
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where at is the (deterministic) solution of the flow-matching ODE at time t given the initial noise ϵ
and state s.

Assume that the sampling distribution over time pairs (r, t) assigns a non-zero probability p01 > 0 to
the endpoint pair (0, 1), i.e. P[(r, t) = (0, 1)] = p01 > 0. Then

LFBC⋆(θ) = E(r,t); s; ϵ

[∥∥uθ(at, r, t; s)− u⋆(at, r, t; s)∥∥22] (30)

≥ p01E(r,t)=(0,1); s; ϵ

[∥∥uθ(at, r, t; s)− u⋆(at, r, t; s)∥∥22] (31)

= p01 Es; ϵ
[∥∥uθ(ϵ, 0, 1; s)− u⋆(ϵ, 0, 1; s)∥∥22] . (32)

Using the endpoint parameterization

Tθ(ϵ, s) = ϵ− uθ(ϵ, 0, 1; s), T ⋆(ϵ, s) = ϵ− u⋆(ϵ, 0, 1; s),

we obtain the identity

∥uθ(ϵ, 0, 1; s)− u⋆(ϵ, 0, 1; s)∥22 = ∥Tθ(ϵ, s)− T ⋆(ϵ, s)∥22.

Thus

LFBC⋆(θ) ≥ p01Es; ϵ∼N (0,I)

[
∥Tθ(ϵ, s)− T ⋆(ϵ, s)∥22

]
. (33)

For each state s, let λs denote the joint distribution of (Tθ(ϵ, s), T ⋆(ϵ, s)) induced by ϵ ∼ N (0, I).
Then λs is a valid coupling between πθ(· | s) and µ(· | s), i.e. λs ∈ Λ(πθ(· | s), µ(· | s)). Therefore,

Eϵ
[
∥Tθ(ϵ, s)− T ⋆(ϵ, s)∥22

]
= E(a,a∗)∼λs

[
∥a− a∗∥22

]
(34)

≥ inf
λ∈Λ(πθ(·|s),µ(·|s))

E(a,a∗)∼λ
[
∥a− a∗∥22

]
(35)

=W 2
2

(
πθ(· | s), µ(· | s)

)
, (36)

where W2 denotes the 2-Wasserstein distance on the action space with Euclidean ground metric.
Combining the inequalities yields

LFBC⋆(θ) ≥ p01 Es
[
W 2

2

(
πθ(· | s), µ(· | s)

)]
. (37)

Thus, up to the positive constant factor, LFBC⋆(θ) upper-bounds the expected squared 2-Wasserstein
distance between the learned policy πθ(· | s) and the target policy µ(· | s) induced by flow matching.
In particular, if LFBC⋆(θ) → 0, then Es

[
W 2

2

(
πθ(· | s), µ(· | s)

)]
→ 0. Consequently, average-

velocity learning regularizes πθ(· | s) toward the behavior distribution µ(· | s), while still allowing
complex, multimodal action distributions via the nonlinear endpoint map induced by flow-matching
dynamics.

I GRADIENT ANALYSIS OF OFQL ACTOR LOSS

The OFQL actor minimizes

argmin
θ
L(θ) = argmin

θ
(LFBC(θ)− αLQ(θ)) , (38)

LQ(θ) ≜ Es∼D, a∼πθ
[
Qϕ(s, a)

]
. (39)

The OFQL actor loss jointly (i) maximizes the critic value (i.e., return) and (ii) keeps the policy close
to the behavior distribution via FBC (see formal justification in H )

We now expand the gradient of each term.

Gradient of the Q-term. Recall that actions are sampled in one step:

a = ϵ− uθ(ϵ, 0, 1; s), ϵ ∼ N (0, I), (40)

The Q-term becomes
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LQ(θ) = Es,ϵ
[
Qϕ

(
s, ϵ− uθ(ϵ, 0, 1; s)

)]
. (41)

Applying the chain rule:

∇θLQ(θ) = Es,ϵ [∇aQϕ(s, a) · ∇θa] (42)
= Es,ϵ [∇aQϕ(s, a) · (−∇θuθ(ϵ, 0, 1; s))] . (43)

Unlike diffusion-based policy parameterizations that require backpropagating through many iterative
denoising steps (BPTT), the one-step mapping a = ϵ − uθ(ϵ, 0, 1; s) is a single differentiable
transformation. Thus, ∇θa is computed in one step without temporal unrolling, making the actor
update significantly faster, more training-friendly.

Gradient of the FBC term. The FBC objective is

LFBC(θ) = Es,a,t,r,ϵ
[
∥uθ(at, r, t; s)− sg(utgt)∥22

]
, (44)

where utgt is stop-gradient sg(·):

utgt = vt − (t− r) (vt · ∂atuθ + ∂tuθ) , at = (1− t)a+ tϵ, vt = ϵ− a (45)

Because of sg(.), the target is treated as constant when differentiating. Thus

∇θLFBC(θ) = 2Es,a,t,r,ϵ [(uθ(at, r, t; s)− utgt) · ∇θuθ(at, r, t; s)] . (46)

Full OFQL actor gradient. Combining Eqs. 42–46:

∇θL(θ) = ∇θLFBC(θ)− α∇θLQ(θ) (47)
= 2Es,a,t,r,ϵ[(uθ(at, r, t; s)− utgt) · ∇θuθ(at, r, t; s)] (48)
+ αEs,ϵ[∇aQϕ(s, a) · ∇θuθ(ϵ, 0, 1; s)] . (49)

Interpretation. The first term regularizes the policy toward the behavior distribution by match-
ing average velocities, while the second term regularizes the policy to maximize the critic value
through the differentiable one-step action mapping. Thus, OFQL simultaneously achieves behavior
regularization and return maximization.

J EVALUATING OFQL IN HIGH-DIMENSIONAL ACTION ROBOTIC
MANIPULATION

To further evaluate OFQL in high-dimensional action spaces, we conducted additional experiments on
the D4RL Adroit benchmark, which features 24-dimensional control using a dexterous robotic hand.
We evaluated two standard tasks—adroit-pen-human and adroit-pen-cloned—where the objective is
to manipulate a pen to match a target orientation using a 24-DoF hand. This domain is particularly
challenging due to noisy human demonstrations, sparse rewards, and the high-dimensional action
manifold. Normalized returns, following the evaluation protocol of Fu et al. (2020), are reported
below:

Task BC DQL OFQL (ours)
adroit-pen-human 71.0 75.7±9.0 79.5±9.5
adroit-pen-cloned 52.0 60.8±11.8 62.3±10.3

The results show that OFQL consistently outperforms both BC and DQL in high-dimensional
manipulation tasks, demonstrating strong robustness and effectiveness in complex dexterous control
settings.
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K FEASIBILITY ON VISUAL OBSERVATION SETTING

To demonstrate the feasibility of OFQL in the visual-observation setting, we evaluate it on two
OGBench (Park et al., 2024) visual manipulation tasks that require reasoning over high-dimensional
image observations (64×64×3): visual-scene-singletask-task1-v0 (moderate diffi-
culty) and visual-cube-double-play-singletask-task1-v0 (hard). We adopt the
small IMPALA encoder (following FQL (Park et al., 2025)) for embedding the image observation to
the latent state and use simple concatenation for state conditioning. Task success rates are reported
below:

Task FBRAC FQL OFQL (ours)
visual-scene-singletask-task1-v0 46.0±4.0 98.0±3.0 54.0±9.0
visual-cube-double-play-singletask-task1-v0 6.0±2.0 21.0±11.0 8.0±3.0

These results show that OFQL remains functional in visual settings, but its performance lags behind
stronger visual baselines, indicating that additional architectural and algorithmic considerations are
necessary for competitive results in high-dimensional pixel-based domains.

There are several key challenges when extending OFQL to high-dimensional input scenarios such as
image-based observations.

First, the learning objectives become tightly coupled. Unlike low-dimensional state spaces, visual
tasks require the policy to jointly learn (i) accurate Q-values, (ii) flow-based behavior regularization,
and (iii) a stable and expressive visual representation. These components are deeply interdependent:
noise or instability in the visual encoder propagates into Q-value estimation and flow predictions,
while inaccuracies in the critic or policy can, in turn, misguide the encoder. This tight coupling makes
the overall optimization process considerably more fragile compared to low-dimensional settings.

Second, conditioning high-dimensional latent features into the flow network is non-trivial. Simple
concatenation of visual latents with the noise vector may be insufficient. High-dimensional representa-
tions often require more structured fusion strategies—e.g., FiLM layers, cross-attention,..—to ensure
the visual features meaningfully influence the learned flow direction. Without proper conditioning,
the policy may ignore or underutilize visual information.

Third, representation quality may becomes a bottleneck. Lightweight or general-purpose encoders
may fail to capture task-relevant spatial and semantic cues required for precise action prediction.
Stronger or task-specific visual backbones, domain augmentations, or auxiliary representation-
learning losses may be necessary to maintain stable training.

Overall, extending OFQL to visual domains will likely require more robust encoders, improved
conditioning strategies, and additional guidance signals to ensure that visual features effectively
support flow-based policy learning which is an interesting direction for future work.

L HANDLING OUT-OF-DISTRIBUTION STATES: OFQL VS. DQL

Across all benchmarks, OFQL consistently attains higher average returns than DQL. This suggests
improved robustness to out-of-distribution (OOD) states, since the average return is determined by
the policy’s interaction with the real environment, where trajectories often drift outside the trained
distribution. A policy that performs better in these interactions is implicitly better at handling such
OOD states.

To further support this, we compute the mean squared error between the actions produced by the
trained policy (trained on medium / medium-replay datasets) and the expert actions on the expert
dataset. Let’s denotes this MSE as OOD-MSE. This metric measures how well the learned policy
aligns with the expert policy under the expert state distribution, which is largely out-of-distribution
relative to the training data. A lower OOD-MSE therefore indicates stronger generalization to unseen
or OOD states. we provide OOD-MSE on the HalfCheetah dataset as below.
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Metric (Dataset) OOD-MSE (Medium) OOD-MSE (Medium-Replay)
OFQL 0.458 0.560
DQL 0.462 0.582

The results presented in the table above show that OFQL consistently achieves lower OOD-MSE
than its DQL counterpart, demonstrating that OFQL generalizes more effectively to unseen or
out-of-distribution states.

M ABLATION ON TIME-SAMPLING DISTRIBUTION

We evaluate the effect of the time-sampling distribution in OFQL by comparing uniform sampling
against a logit-normal distribution. An ablation on HalfCheetah is summarized below:

Time-Sampling Uniform Logit-Normal
Medium-Expert 94.5±0.5 95.2±0.4
Medium 61.1±0.1 63.8±0.1
Medium-Replay 51.7±0.2 51.2±0.1

Overall performance is similar across the two strategies, though the logit-normal distribution yields a
slight improvement on some datasets. These results show that OFQL remains robust under different
time-sampling strategies, and performance is not highly sensitive to the precise tuning of this
hyperparameter. In practice, we use logit-normal parameters (µ = −0.4, σ = 1.0) as the default.

N BASELINES REPRODUCIBILITY

Baseline Result. For DQL and FQL on AntMaze, we directly report the results from the original
papers. For other baselines—including BC, TD3-BC, IQL, Diffuser, DD, EDP, and IDQL—we use
results from the broadly accepted and standardized reimplementation CleanDiffuser (Dong et al.,
2024). For details on training and evaluation procedures, we refer readers to the corresponding
papers.

For the FQL on Locomotion and Kitchen, the official FQL implementation does not support the D4RL
Locomotion or Kitchen domains. To ensure fair comparison, we extend the official JAX codebase to
support these environments and additionally implement a PyTorch version of FQL within the OFQL
framework (our implementation is based on PyTorch). We follow the recommendations from the
official FQL repository and paper: we use the normalized-Q setting and perform a hyperparameter
search over α ∈ {0.03, 0.1, 0.3, 1, 3, 10}, as described in Appendix C of Park et al. (2025). For
network architecture, we search over MLP sizes [512, 512, 512, 512] and [256, 256, 256, 256]. We
run both our extended JAX version and our PyTorch implementation and report the best-performing
results. For speed measurements, we use the PyTorch version to avoid framework-level differences
(JAX vs. PyTorch).

Diffusion Steps. We follow the standard diffusion-step settings recommended by each baseline:
DQL (5 steps), IDQL (5 steps), EDP (15 steps), and the Flow Model used in FQL (10 steps). These
configurations align with the settings reported in the respective papers or official repositories.

O ON THE MEANFLOW IDENTITY

For completeness, the derivation from (Geng et al., 2025) is revisited to provide a clear understanding
of how MeanFlow Identity can be used to calculate the target average velocity.

Let’s consider the no-condition generation case (no state condition) for simplicity. The average
velocity is defined as the displacement between two timesteps t and r divided by the time interval:

u(at, r, t) ≜
1

t− r

∫ t

r

v(aτ , τ)dτ. (50)
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Here, u denotes the average velocity, v the instantaneous velocity (i.e., marginal velocity), and a is
the noise action. As r → t, u converges to v.

Our purpose is to approximate u using a neural network, enabling single-step generation (i.e.,
r = 0, t = 1), unlike methods based on marginal velocity (a.k.a instantaneous velocity), which
require time integration at inference. Direct training with u is impractical due to the integral; instead,
the definition of u is manipulated to derive a tractable optimization target.

The MeanFlow Identity. To facilitate training, the equation for u is rewritten as:

(t− r)u(at, r, t) =
∫ t

r

v(aτ , τ)dτ. (51)

Differentiating both sides with respect to t gives:

d

dt
(t− r)u(at, r, t) =

d

dt

∫ t

r

v(aτ , τ)dτ =⇒ u(at, r, t) + (t− r) d
dt
u(at, r, t) = v(at, t) (52)

Rearranging, the MeanFlow Identity is achieved:

u(at, r, t) = v(at, t)− (t− r) d
dt
u(at, r, t) (53)

This identity links u and v, providing a target for training a neural network. The next step is to
compute the time derivative of u.

Computing the Time Derivative. To compute d
dtu, we expand the total derivative:

d

dt
u(at, r, t) =

dat
dt
∂atu+

dr

dt
∂ru+

dt

dt
∂tu (54)

Using dat
dt = v(at, t), drdt = 0, and dt

dt = 1, we obtain:

d

dt
u(at, r, t) = v(at, t)∂zu+ ∂tu

This shows that the total derivative of u is computed as the Jacobian-vector product (JVP) of the
network’s Jacobian and the tangent vector [v, 0, 1].

Notably, the MeanFlow Identity (Eq. 53) is mathematical equivalent to Eq. 51 (Geng et al., 2025).

We train the policy network by conditioning on the state s, parameterizing uθ(at, r, t; s), and applying
the MeanFlow Identity to define the optimization target.

P LLM USAGE

In preparing this paper, we used Large Language Models (LLMs) solely as an assistive tool for
grammar checking and polishing text. The LLMs were not involved in research ideation, experimental
design, data analysis, or substantive content generation. All research ideas, methods, analyses, and
conclusions are the authors’ own.
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