Under review as a conference paper at ICLR 2026

ONE-STEP FLOW Q-LEARNING: ADDRESSING THE DIF-
FUSION POLICY BOTTLENECK IN OFFLINE REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Q-Learning (DQL) has established diffusion policies as a high-
performing paradigm for offline reinforcement learning, but its reliance on multi-
step denoising for action generation renders both training and inference slow and
fragile. Existing efforts to accelerate DQL toward one-step denoising typically
rely on auxiliary modules or policy distillation, sacrificing either simplicity or
performance. It remains unclear whether a one-step policy can be trained directly
without such trade-offs. To this end, we introduce One-Step Flow Q-Learning
(OFQL), a novel framework that enables effective one-step action generation dur-
ing both training and inference, without auxiliary modules or distillation. OFQL
reformulates the DQL policy within the Flow Matching (FM) paradigm but departs
from conventional FM by learning an average velocity field that directly supports
accurate one-step action generation. This design removes the need for multi-step
denoising and backpropagation-through-time updates, resulting in substantially
faster and more robust learning. Extensive experiments on the D4RL benchmark
show that OFQL, despite generating actions in a single step, not only significantly
reduces computation during both training and inference but also outperforms multi-
step DQL by a large margin. Furthermore, OFQL surpasses all other baselines,
achieving state-of-the-art performance in D4RL.

1 INTRODUCTION

In recent years, offline reinforcement learning 95.0

(Offline RL) has achieved impressive progress 9251 *
through the integration of diffusion models, lead- , g0,/ Ours
ing to many high-performance algorithms. A & o5/ 14

prominent example is Diffusion Q-Learning £ sso]
(DQL) (Wang et al., 2022)), which replaces ‘% 8251 7V
the conventional diagonal Gaussian policy in ~ ® so.
TD3-BC (Fujimoto & Gul 2021) with a de- 7751 * % oro. 4D voOD "
noising diffusion probabilistic model (DDPM) 750 P P o a0 1500
(Ho et al., [2020). This approach has demon- Decision Frequency (Hz)

strated substantial performance gains and has

spurred widespread interest in leveraging gen- Figure 1: Performance and decision frequency.
erative models for policy learning. Notably, Performance (i.e., normalized score) and decision
DQL remains competitive and often outperforms frequency are measured on an A100 GPU and av-
many more recent methods in both diffusion- eraged across MuJoCo tasks from D4RL. OFQL
based planning and policy optimization (Lu| achieves both high inference speed and strong per-
et al.,[2025a;Dong et al.| [2024). formance, clearly outperforming prior baselines.

Despite its strong empirical results, DQL faces key practical limitations, including high computational
demands during training and inference (Kang et al.| [2023 [Wang et al.| 2022), as well as optimization
fragility causing reduced performance (Park et al.,|2025)). Upon closer analysis, we identify that the
key bottleneck lies in its use of DDPM diffusion policy (Ho et al.l[2020), which involves multiple
denoising steps per action, leading to slow inference. Furthermore, the training speed is doubly
affected: beyond the diffusion loss, DQL requires two rounds of policy sampling per iteration—one

Under review as a conference paper at ICLR 2026

for the current action and another for the next—to compute all loss components. In addition, DQL
leverages the reparameterization trick to backpropagate through the entire denoising chain, amplifying
computational load and impeding convergence to optimal solutions. These characteristics collectively
hinder DQL’s efficiency and robustness.

It is worth noting that several recent approaches have partially addressed these limitations—through
improved denoising solvers (Kang et al.| 2023)), IQL-based learning (Hansen-Estruch et al.| [2023)),
or the use of an auxiliary policy and policy distillation strategies (Park et al., [2025} |Chen et al.|
202320245 |Lu et al.l 2025b). Nevertheless, such solutions typically introduce additional complexity,
multi-phase training procedures, or undesirable trade-offs in scalability and policy quality.

Recognizing that the diffusion policy itself is the bottleneck, we adopt a more direct approach by
introducing One-Step Flow Q-Learning (OFQL), a novel framework specifically designed to enable
effective one-step action generation during both training and inference, without the need for auxiliary
models, policy distillation, or multi-stage training. At the heart of OFQL is the elimination of
DDPM’s computationally intensive multi-step denoising and associated reparameterization trick. By
recasting DQL policy under the Flow Matching (Lipman et al., 2022) paradigm, we facilitate its
efficient action sampling. However, conventional Flow Matching frequently yields curved trajectories,
limiting one-step inference accuracy—an issue rooted in the intrinsic properties of the marginal
velocity field it models. We address this by learning an average velocity field instead, enabling
accurate direct action prediction from a single step. As a result, OFQL eliminates the necessity
of iterative denoising and recursive gradient propagation, providing a faster, more stable, one-step
training-inference pipeline. Extensive empirical evaluations on the D4RL benchmark demonstrate
that OFQL not only surpasses DQL in performance but also significantly improves both training and
inference efficiency, all while maintaining a simple learning pipeline. Compared to other approaches,
OFQL delivers consistently stronger results, establishing it as a fast and state-of-the-art algorithm on
D4RL.

2 RELATED WORK

Diffusion Models in Offline Reinforcement Learning. Offline RL aims to learn effective policies
from fixed datasets without environment interaction (Levine et al., [2020), with early methods
addressing distributional shift via conservative objectives—e.g., CQL (Kumar et al.| 2020), TD3+BC
(Fujimoto & Gul, 2021)), and IQL (Kostrikov et al.,[2021)). However, these approaches often rely on
unimodal Gaussian policies, which struggle to model complex, multi-modal action distributions. To
address this, recent approaches have adopted diffusion models (Ho et al.| 2020; [Song et al., [2020b))
for offline RL. These models excel in representing complex distributions and have been applied
in various forms: as planners for trajectory generation (Janner et al., [2022; |Ajay et al., [2022), as
expressive policy networks (Wang et al.l 2022; [Hansen-Estruch et al., [2023)), and as data synthesizers
to augment training (Zhu et al., 2023).

Among diffusion-based methods, Diffusion Q-Learning (DQL) (Wang et al., 2022) stands out as a
strong baseline, replacing Gaussian policies in TD3+BC with a diffusion model to better capture multi-
modal actions. Follow-up evaluations, including those by Clean Diffuser (Dong et al.,|2024)) and recent
empirical studies (Lu et al., [2025a3b), confirm DQL’s consistent advantage over policy-based and
planner-based methods. Despite its effectiveness, DQL remains significant computational overhead
during both training and inference (Kang et al.,2023)), and is prone to suboptimal convergence (Park
et al.,[2025).

Subsequent works have attempted to mitigate these issues. For instance, early approaches use an
efficient solver that reduces the number of denoising steps (Kang et al.| [2023)). Other approaches
bypass backpropagation through time (BPTT) of the DQL policy update by training a diffusion policy
to clone the behavior policy, with actions reweighted by a separately learned IQL-based value function
(Hansen-Estruch et al.|[2023). Others further apply distillation to obtain a one-step policy (Chen et al.,
2023;2024). However, IQL-based methods are generally less effective than actor—critic learning
(Park et al., [2025)). To address this, (Park et al.| [2025) adopts a flow model to clone the behavior
policy and distill it into a one-step policy for actor—critic updates. While yielding a one-step inference
policy, the distillation process still requires repeated queries to the underlying multi-step diffusion or
flow model. Overall, although these methods partially alleviate DQL’s limitations, they introduce
additional components and multi-phase training procedures, thereby increasing system complexity

Under review as a conference paper at ICLR 2026

and limiting practical generality. Departs from prior work, our method pinpoints the diffusion policy
itself as the primary source of inefficiency and instability in DQL. We directly solve it with a highly
performant one-step policy alternative that provides a simpler and more robust solution—without
relying on auxiliary policies, distillation, or sacrificing policy expressivity.

Efficient One-Step Diffusion. Our work is inspired by advances in efficient generative modeling
with diffusion models and flow-based models (Sohl-Dickstein et al., 2015} [Ho et al., [2020; [Song
& Ermonl 2019). To accelerate generation, one line of work focuses on distillation techniques that
compress multi-step models into fewer steps (Salimans & Ho, 2022; [Sauer et al., 2024} |Y1n et al.,
2024)), while another pursues flow matching approaches that learn time-dependent velocity fields
for straight-through sampling (Lipman et al.| 2022} |Liu et al., [2022). Consistency Models (Song
et al.,[2023) offer another path to one-step generation, but suffer from training instabilities (Song &
Dhariwall, 2023} |Lu & Song} 2024). More recent methods (Frans et al., 2024} |Geng et al., 2025} |Zhou
et al., 2025) address these limitations by exploiting different physical parametrization using dual
time variables, showing improved stability and performance. Leveraging the Mean Flow modeling
(Geng et al., [2025)), OFQL realizes a one-step flow-based policy while uniquely incorporating the
Q-gradient to guide velocity learning, instead of relying solely on supervised learning.

3 PRELIMINARIES

3.1 OFFLINE RL.

Reinforcement learning (RL) is typically formalized as a Markov Decision Process (MDP), defined
by M = (S, A, P,R,v). Here, S and A denote the state and action spaces, P(s’ | s,a) denotes
the transition probability of moving from s to s’ given action a, and R(s,a) denotes the reward
function. The discount factor y € [0, 1) governs the trade-off between immediate and future rewards.
In RL, the objective is to learn a policy my(a | s), parameterized by 6, that maximizes the expected
discounted return E [>7% Y"R(sp, an)] .

To support policy learning, the action-value (Q) function is defined:

o0
Qﬂ(s7a) =E, Z’Y}LR(Shnah) ‘ S0 = S,a9 = a|, ()
h=0
which measures the expected cumulative return starting from state s and action a under policy 7.

Offline RL is a setting of RL where the agent does not interact with the environment but instead
learns from a fixed dataset of transitions D = {(sp, an, Sp+1,7r)}- The challenge lies in learning an
optimal policy solely from this static dataset that often contains suboptimal behavior, without any
further exploration.

3.2 DIFFUSION Q-LEARNING (DQL)

Modeling Policy as a Diffusion Model. The Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al.,|2020) is a powerful generative framework that formulates a forward diffusion process as a fixed
Markov chain, progressively corrupting data into noise, and learns a parametric reverse process to
reconstruct the data. Once trained, DDPM is capable of generating complex data distributions by
reversing the diffusion process, starting from pure noise.

Viewing actions as data, (Wang et al.||2022) formulate the reverse process of a DDPM, conditioned
on state s, as a parametric policy 7g:

K
To = Do (aO:K|S) :p(al()l_[p(9 (akfl |ak,8), 2)
k=1

where a® ~ N(0,I) and a° denotes the clean action corresponding to the actual policy output.
For training, following DDPM (Ho et al., 2020), DQL parameterizes the Gaussian distribution
po(a®~1|a”, s) with the variance fixed as X(a*, k;s) = B*I where the {3*}X_, are predefined
variance schedule values and the mean is defined via a noise prediction model:

1 [, i -
ot) = i (= gt i), ”

Under review as a conference paper at ICLR 2026

where o =1 — g%, a* = [[¥_, o, and ¢y is a neural network predicting Gaussian noise.
To enforce behavior cloning, the score matching loss can be used as a training objective. Specifically,
the model minimizes:
- - 2
Lpsc(0) = Ep e (a0,5)~D [He —ep(Vaka® + /1 — aFe, k;s) H], 4

where k ~ U{1,..., K}, (a°, s) are sampled from the offline dataset D, and € ~ N (0, I) denotes
Gaussian noise.

Once trained, to generate an action (i.e., a®), the model sequentially samples from K conditional
Gaussians, starting from a® ~ N(0, I):

k
akl:&@’“— 15 _kea(a’“,k;s>>+Jﬁ7e, 5)

Behavior-regularized actor-critic. To form a complete offline RL algorithm, DQL adopts the
behavior-regularized actor—critic framework (Wu et al., [2019; [Fujimoto & Gu, [2021)), alternating
between minimizing the actor and critic losses.

Specifically, the critic loss, which focuses on training the Q network, is defined as:

2
£(¢) = E(s,a,r,s’)wD, a'~Tgr |:(T +7 miin Q¢; (5/3 a/) - Q¢z (57 CL)) :|) (6)

where ¢ € 1,2 indexes the two Q networks for double Q-learning, and (¢', ') denote target network
parameters updated via exponential moving average (EMA) (Fujimoto & Gu, [2021). The actor loss,
which focuses on learning the policy, is defined as:

L(0) = Lopc(0) — a - Esupanm, [Qo(s,a)], @)

where « is the weighting coefficient. To normalize for dataset-specific Q-value scales, « is adapted
asa = m, with 7 being a tunable hyperparameter. The denominator is treated as a

constant for optimization.

Despite being implemented with a relatively simple MLP architecture for both the diffusion policy
and Q-functions, DQL has demonstrated strong performance across standard offline RL benchmarks
such as D4RL (Fu et al., 2020), outperforming many recent diffusion-based policies and planners
(Dong et al.,2024; [Lu et al., 2025agb)).

Nevertheless, DQL exhibits two notable limitations: (1) slow training and inference (Kang et al.|
2023)), and (2) susceptibility to unstable or suboptimal training (Park et al.| 2025)).

4 RATIONALE AND METHODOLOGY

The slow inference time stems from its reliance on a denoising diffusion process, where actions are
sampled through a reverse chain of K Gaussian transitions (Eq.[5). Due to the Markovian nature of
the DDPM framework, sampling an action during inference requires the same number of denoising
steps K as those used during training. Additionally, a large K is typically necessary to ensure that
a® approximates an isotropic Gaussian. Reducing K breaks this assumption, often resulting in
significant performance degradation.

In training, DQL also exhibits compounding inefficiencies. First, the critic loss (Eq. [6) requires
sampling target actions a’ ~ 7y, each of which must be generated via the full K-step denoising,
introducing considerable computational overhead. Enforcing one-step action generation, however,
can destabilize training due to diffusion sampling errors. Second, the actor loss (Eq.[7) requires
sampling actions from 7y and performing backpropagation through all K denoising steps (i.e., BPTT)
using the reparameterization trick (Eq.[5). Although this enables end-to-end training, the recursive
gradient flow through a long stochastic computation graph is well-known to be prone to numerical
instability and can potentially lead to suboptimal outcomes (Chen et al., 2023 [Park et al.l 2025).

At first glance, diffusion policy sampling appears to be the bottleneck, but resolving DQL’s limitations
is far from straightforward. For example, using an efficient solver, e.g., the DDIM solver (Song et al.,

Under review as a conference paper at ICLR 2026

— Flow Path — Diffusion Path

@ () ’ ©))

[— Conditional Velocity] [== Marginal Velocity] [== Average Velocity]

Figure 2: Comparison between diffusion and flow matching. (a) Conditional flows arise from different
(e, x) pairs, resulting in varying conditional velocities. (b) Marginal velocity is obtained by averaging
over these conditional velocities. (c) Flow paths are inherently curved, but average velocity fields
enable direct one-step transport from noise to data. (d) Diffusion paths are also curved but noisy,
making one-step denoising challenging. Note that all the velocities exhibit symmetry under time
reversal. As the model is trained to parameterize the forward flow (from data to noise), inference
inverts this direction to generate samples. Accordingly, for clarity, we plot the negative velocity
vector to represent the reverse generation trajectory.

2020a), could reduce denoising steps, yet in our experiments, applying DDIM for one-step action
generation severely degraded policy performance. Similarly, replacing diffusion with consistency
models, such as Consistency-AC (Ding & Jin,[2023), still requires multiple denoising steps and yields
lower performance. The most effective one-step approaches are distillation-based methods (Park
et al}2025; (Chen et al.}|2024; 2023} [Lu et al., 2025b)), which accelerate inference through student
policies but incur an additional training phase or shift the inefficiencies to the distillation stage. This
raises a natural question: Can we design a one-step policy that directly eliminates inefficiencies in
both training and inference?

Designing One-Step Policy. Diffusion models generate samples through stochastic and often
curved trajectories, which makes one-step sampling challenging. Flow Matching (FM) (Lipman et al.,
2022) offers a principled alternative by mapping noise directly to data along smoother, more direct
paths (Liu et al., [2022), as illustrated in Figure E| (c,d). Modeling the policy via flow matching can
potentially improve both efficiency and stability. Let us model the policy as a variant of flow matching
based on linear paths and uniform time sampling. Given data a, s ~ D and noise ¢ ~ N'(0, I), FM
defines a linear flow path a; and conditional velocity vi(a¢|a; s) for a particular s as :

_ da

ar = (1 —t)a+te, vy= ks where t € [0, 1])

Note that by formulation, a = ag, and we use a without a subscript to denote the clean action for
simplicity.

FM essentially learns the marginal velocity, parametrized by the neural network vg(ay, t; s), using
the Conditional Flow Matching loss:

Lerm(0) = Eotro.1],(a,5)~p.c [0 (as, t;s) — ve(ar | a;8)||° . ©)

Once trained, sampling an action for a state s proceeds by solving the ODE % =
v(ay, t; s), starting from a; = € ~ N(0, I'), approximated using a solver such as Euler’s method:
ai—ar = ap — At - v(ag, t; s).

Intuitively, since flows are designed so that the overall transport trajectory becomes approximately
straight (L1u et al., [2022), one might expect that modeling the policy via Flow Matching could support
one-step generation by setting At = 1. However, in practice, the sampling trajectory is straight only
when the target distribution collapses to a delta distribution or when rectification or similar techniques
are explicitly applied. Without such conditions, the marginal velocity field typically induces a curved
overall trajectory, preventing reliable one-step action generation. Importantly, the curvature is not
simply a consequence of imperfect neural approximation, but rather an inherent property of the
ground-truth marginal velocity field. This phenomenon is illustrated in Figure[2] (a,b,c).

To enable high-quality one-step generation, we reinterpret the velocity field v(as,t; s) in Flow
Matching as the instantaneous velocity, and instead propose to model the average velocity, which

Under review as a conference paper at ICLR 2026

directly connects any two arbitrary time steps. Specifically, we define the average velocity over an
interval [r, ¢] as:

1 t
u(ag,r,t;s) 2 / v(ar,7;8)dr, (10)
t—r J,
representing the total displacement across the interval divided by its duration. Here, r and ¢ denote

the target and current times, respectively, with the constraint 0 < r <¢ < 1.

In general, the average velocity is a functional of the instantaneous velocity, i.e., v = F[v]. This
field u is fully determined by the instantaneous velocity field v and is independent of any neural
network. We therefore treat u as the ground-truth average velocity field and train a neural network g
to approximate it using a loss, referred to as the Average-Velocity Matching loss:

2
Lrnc: (6) = Bosrsists s | [uoar, 7, t5) = wlar, 7, t:5)[°] (an

Once ug is learned, actions can be generated in a single step through the approximate endpoint map
a="Ty(e, s) =e—ug(e,r=0,t=1; s), e ~N(0,1), (12)

which eliminates the iterative ODE integration required by standard Flow Matching. This avoids both
the computational overhead and the discretization error associated with numerical ODE solvers. A
formal justification for why this one-step procedure preserves the FM action accuracy is provided in
Appendix [G]

As a result, the learned policy my(a | s) is the push-forward of the Gaussian prior through the
approximate endpoint map:
o = (Tp) 2N (0,1).

Moreover, when used as a regularizer, optimizing the average-velocity matching loss Lggc+(0)
encourages the learned one-step policy 7y (- | s) to remain close to the behavior policy p(- | s),
effectively performing behavior cloning. Importantly, this behavior cloning still preserves the ability
to model complex, multimodal action distributions through the nonlinear transport map inherited
from Flow Matching (see Appendix [H|for a formal justification).

Practical Loss. In practice, computing u from its definition requires integration, which is computa-
tionally intractable for optimization. To address this, we adopt an equivalent reformulation based on

the MeanFlow Identity (Geng et al., [2025):

d
u(ata T, t; S) - v(ata t; S) - (t - r)%u(ata T, t; 5)7 (13)
where the total derivative expands as £u(ay, 7, t; s) = v(as, t; 8) - Oq,u + Opu. The computation of
the derivative also remains efficient by leveraging Jacobian—vector products. Notably, when ¢t = r,
the target u reduces to the instantaneous velocity.

Equation[I3]is mathematically equivalent to Eq. [I0](the detailed derivation is provided in Appendix [O).
We therefore use the Eq. @to compute the average velocity u, avoiding explicit integration in
Eq.[T0] The resulting field can be fitted by a neural network using the following loss:

EFBC<9) = Et,r,rgt,(a,s)ND,e Hu9(at7 T, t, 5) - Sg(ulgt)Hz . (14)

In this loss, a; = (1 — t)a + te. The v(ay, t; s) in Eq. is additionally replaced with the conditional
velocity vy, following FM, to approximate the instantaneous velocity on the fly during training.
Consequently, the target velocity is defined as:

Uge = Vg — (L — 1) (vt - Og, up + 8tu6), (15)

where v; = € — a. The operator sg(-) denotes stop-gradient, preventing higher-order gradients on the
target during optimization.

One-step Flow Q-Learning. To form OFQL, we model the policy with the average velocity
parameterization ug. Its behavior regularization loss is Lrgc(#), defined in Eq. In addition, since
the target average velocity is computed based on the estimate of the instantaneous velocity (Eq. [T3),
accurate estimation of the instantaneous velocity is crucial for effective average-velocity learning. To

Under review as a conference paper at ICLR 2026

encourage this, when sampling (¢, 7) we enforce a certain flow ratio), i.e., the probability that ¢ = r.
This design biases training toward learning the instantaneous velocity, while still allowing regression
to the average velocity, improving the bootstrapping.

Given the policy ug, sampling an action becomes a differentiable one-step operation:

a~m(-|s) & a=e—uple,r=0,t=1;5), where e~ N(0,1) (16)
The critic and actor losses are updated as:

. 2
£(¢) = E(s,a,r,s’)ND, a'~mgr |:(T + v ’Len{li%} Q¢'L (S/a a/) - Q¢i (57 a)) :| 5
L(0) = Lrpc(0) — aBsap, anmy [Qo (s, a)].
With the new one-step policy, the main modification from DQL losses is that the behavior regulariza-
tion term and action sampling require only a single step.

a7

5 EXPERIMENT SETTING

Benchmarks. We evaluate OFQL on a diverse set of tasks from the D4RL benchmark suite (Fu et al.,
2020), a widely adopted standard for offline reinforcement learning. Our evaluation spans various
domains, including locomotion, navigation and manipulation tasks to demonstrate the method’s
generalizability. Detailed task descriptions and experimental protocols are provided in Appendix A.

Baselines. To rigorously assess OFQL’s performance, we compare it against a broad spectrum of
representative baselines, categorized as follows: (1) Non-Diffusion policies: Behavior Cloning (BC),
TD3-BC (Fujimoto & Gu, [2021)), and IQL (Kostrikov et al.l [2021)); (2) Diffusion-based planners:
Diffuser (Janner et al., 2022), Decision Diffuser (DD) (Ajay et al., 2022); (3) Multi-step Diffusion-
based policies: IDQL (Hansen-Estruch et al., [2023), DQL (Wang et al., 2022), and EDP (Kang et al.|
2023)); and (4) One-step Flow policies: FQL (Park et al., [2025)

Implementation Details. Our approach builds directly on DQL (Wang et al.,[2022)), inheriting its
training and inference procedures to ensure a fair comparison. We adopt the original DQL architecture
for both the Q-function and policy networks. The only minor modification lies in the policy input,
which is augmented by concatenating an additional positional embedding corresponding to the target
step r, in addition to the standard timestep embedding ¢. For timestep sampling, the ¢ and r are
sampled from a logit-normal distribution (Esser et al.,[2024) with parameters (—0.4, 1.0). The main
hyperparameters are the flow ratio and n. Unless otherwise specified, we set the flow ratio to 0.5 and
tune 7 via grid search over {0.001,0.01,0.1,0.3,0.5}. We adopt the Adam optimizer with a learning
rate of 3 x 10~%. We ensure reliability by reporting OFQL results as the average D4RL normalized
score (Fu et al.|[2020), computed over three training seeds, with each model evaluated on 150 episodes
per task. Other hyperparameters remain consistent with DQL. Additional implementation details are
provided in Appendix B.

6 EXPERIMENTAL RESULT

Benchmark results are summarized in Table [T} with details discussed below.

Locomotion Domain (MuJoCo). OFQL achieves strong performance in locomotion tasks, surpassing
competitive diffusion-based baselines such as DQL, DD . In particular, OFQL improves the average
performance of DQL from 87.9 to 92.5, with notable gains on medium and medium-replay tasks,
which are known to contain suboptimal and noisy trajectories. These tasks often induce complex,
multi-modal action distributions that challenge standard policy learning, making expressive action
modeling and stable value learning essential. The observed improvements may be attributed to
two key aspects of OFQL: (1) its policy modeling remains expressive for capturing complex action
distributions, and (2) the avoidance of BPTT in Q-learning, which may yield more stable value
estimation, leading to better convergence. Together, these factors provide a plausible explanation for
OFQL’s consistent performance gains.

Compared to other acceleration approaches, although EDP and IDQL enhance efficiency and stability,
they do so at the expense of reducing final performance relative to DQL, whereas OFQL achieves

Under review as a conference paper at ICLR 2026

\ Non-Diffusion Policies Diffusion Planners Multi-step Diffusion Policies One-step Flow Policies
Dataset | BC TD3-BC IQL | Diffuser DD | EDP IDQL DQL | FQL OFQL (Ours)
HalfCheetah-Medium-Expert | 55.2 90.7 86.7 90.3+0.1 889+1.9 958 +0.1 91306 96.8+03 90.1£2.0 952+04
Hopper-Medium-Expert 52.5 98.0 91.5 1072+09 1104+0.6 | 1108+04 110.1+0.7 111.1+13 86.2+1.3 1102+ 1.3
‘Walker2d-Medium-Expert 107.5 110.1 109.6 | 107.4+0.1 108.4 £ 0.1 1104+£0.0 110.6£0.0 110.1+0.3 | 100.5+0.1 113.0 £ 0.1
HalfCheetah-Medium 42.6 48.3 474 43.8+0.1 453+03 50.8+0.0 51.5+0.1 51.1+0.5 60.1+0.1 63.8+0.1
Hopper-Medium 529 59.3 66.3 89.5+0.7 98.2+0.1 72.6+0.2 70.1+£2.0 90.5+4.6 745+0.2 103.6 + 0.1
Walker2d-Medium 753 83.7 78.3 79.4+1.0 79.6+0.9 86.5+0.2 88.1+0.4 87.0+0.9 72.7+0.8 87.4+0.1
HalfCheetah-Medium-Replay 36.6 44.6 44.2 36.0+0.7 429 0.1 449 +0.4 46.5+0.3 478+03 51.1+0.1 51.2+0.1
Hopper-Medium-Replay 18.1 60.9 94.7 91.8+0.5 99.2+0.2 83.0+1.7 99.4+0.1 101.3£0.6 | 854+0.5 101.9 £ 0.7
Walker2d-Medium-Replay 26.0 81.8 73.9 583+1.8 75.6 £0.6 87.0+2.6 89.1+24 955+1.5 82.1+1.2 106.2 £ 0.6
Average (MuJoCo) | 519 75.3 770 | 782 832 | 824 84.1 879 | 781 92.5
AntMaze-Medium-Play 0.0 10.6 71.2 6.7+5.7 8.0+43 733+6.2 67.3+5.7 76.6 +10.8 78.0+7.0 88.1+5.0
AntMaze-Large-Play 0.0 0.2 39.6 17319 0.0+0.0 333+19 48.7+4.7 464 +83 84.0+7.0 84.0 +6.1
AntMaze-Medium-Diverse 0.8 3.0 70.0 20+1.6 40+28 527+19 833+5.0 78.6+103 | 71.0£13.0 90.2+42
AntMaze-Large-Diverse 0.0 0.0 47.5 273+24 0.0+0.0 413+34 400+114 56.6 7.6 83.0+4.0 76.1 £6.6
Average (AntMaze) ‘ 0.2 35 57.1 ‘ 133 3.0 ‘ 50.2 59.8 64.55 ‘ 79.0 84.6
Kitchen-Mixed 51.5 0.0 51.0 525+25 75.0 £0.0 502+1.8 60.5 4.1 62.6£5.1 50.5+1.6 69.0+1.5
Kitchen-Partial 38.0 0.0 46.3 557+13 56.5+5.8 408+1.5 66.7 £2.5 60.5+6.9 55.7£2.5 65.0+2.3
Average (Kitchen) ‘ 44.8 0.0 48.7 ‘ 54.1 65.8 ‘ 45.5 66.6 61.6 ‘ 53.1 67.0

Table 1: Comparison of normalized scores on D4RL benchmark across MuJoCo, Kitchen, and
AntMaze domains. Bold values indicate the best performance per row.

improvements. When compared with one-step FQL (based on distillation), OFQL surpasses it
by a significant margin (+14.4). Overall, OFQL offers a superior combination of efficiency and
effectiveness, with consistent gains across varying data regimes.

AntMaze Domain. AntMaze tasks are particularly challenging due to sparse rewards and suboptimal
demonstrations, requiring accurate and stable Q-value guidance to perform well. Prior approaches
(e.g., BC and Diffuser) struggle without Q-learning, whereas methods incorporating Q-learning
signals (e.g., IDQL and DQL) achieve consistently better results.

Building on the Q-learning framework, while EDP and IDQL underperform relative to DQL, OFQL
achieves a substantial improvement over DQL, raising performance from 64.55 to 84.6 and outper-
forming all diffusion-based baselines and the one-step FQL. Notably, FQL, which employs a one-step
policy for actor—critic training, improves upon DQL from 64.55 to 79.0. We argue that Q-learning is
crucial in this domain, and that OFQL and FQL may benefit from avoiding BPTT.

Kitchen Domain. . The Kitchen datasets contain low-entropy, narrowly distributed behaviors (Dong
et al., [2024), where action modeling plays a larger role than Q-learning. OFQL surpasses DQL (61.6
— 67.0), achieving the strongest performance across methods. Although IDQL proves competitive,
FQL drops to 53.1, likely because its one-step policy lacks sufficient expressivity. Remarkably,
OFQL’s one-step formulation does not suffer this drawback, instead preserving expressivity while
achieving state-of-the-art results.

7 ABLATION STUDY

Method (Steps) | DQL (5) | DQL+DDIM (1) FBRAC (1) FQL(l) OFQL (1)
Score | 879 | 116(763) 67.1(-20.8) 781(9.8) 926 (+4.7)

Table 2: Comparison of methods (steps) using different improvement strategies toward one-step
action generation across 9 MuJoCo tasks. The average normalized score is reported.

Comparison of Strategies Toward One-Step Prediction. To investigate how to effectively adapt
DQL for one-step prediction, we evaluate the following strategies: (1) DQL: The base model, trained
and evaluated with 5 denoising steps. (2) DQL+DDIM: A pretrained DQL model with a one-step
DDIM sampler applied only at inference time. (3) FBRAC: The flow policy-based counterpart of
DQL, trained with 5 denoising steps for actor—critic updates but using a single step at inference.
(4) FQL: Learns a behavioral policy with a flow model, then distills it into a one-step policy for
actor—critic training and inference. (5) OFQL: Trained and evaluated entirely in the one-step regime.

Table 2] reports the average performance across 9 MuJoCo tasks. DQL+DDIM shows severe degra-
dation (—76.3), suggesting that direct application of improved samplers for one-step inference is

Under review as a conference paper at ICLR 2026

ineffective. FBRAC performs better (—20.8), but still lags behind DQL, likely due to the discretiza-
tion error introduced when performing one-step prediction with curved trajectories. FQL further
narrows the gap (—9.8) by distilling a one-step policy from a multi-step flow model. In contrast,
OFQL achieves the best results, exceeding DQL by +4.7 while consistently supporting one-step
sampling in both training and inference.

VA
—
o
~

o

N

|

o)

wu
o

{ 71 oFaQL e
=3 DQL
1 &3 FQL

721 OFQL
A FQL
3 DQL

(Hz)

o
X

»
o
y
o
)
~

XY
P

RR

Q

R
R

w
S
|
<
=)
~

[
o
L

5
S

238.7

"
R

-

1S}
|

=

w
<
IS
~

150.1

1 5 10 20 50 1 5 10 20 50
Diffusion/Flow NFE Steps Diffusion/Flow NFE Steps

Figure 3: Training Time () and Decision Frequency (1) over one million steps, averaged on MuJoCo

tasks. NFE (Number of Function Evaluations) denotes the denoising steps required by a flow/diffusion

model to generate one action from pure noise. During training and inference, OFQL uses only one

NFE, while DQL requires multiple ones. It is worth noting that for inference, FQL runs with a

one-step policy, but training still relies on a multi-step flow policy to construct distillation targets.

"
X

Training Time (hours)

"
&

Decision Frequenc,
o
'
~

o
o
~

5 steps 10 steps 1 step

Figure 4: Comparison of distribution modeling capabilities between FM with marginal velocity
parameterization (left; evaluated at 1,2,5,10 steps generation) and average velocity parameterization
(right; evaluated with one-step generation) on a toy dataset with complex multi-modal structure.
Training and Inference Efficiency Comparison. Figure [3|reports the wall-clock training time (1M
steps) and decision frequency (Lu et al.,2025b) on an A100 GPU (see Appendix D for experimental
protocol). DQL’s training time scales nearly linearly with the number of denoising steps—from
11.7 hours at 5 steps to 49.5 hours at 50 steps—while OFQL completes training in only 6.3 hours.
At inference, OFQL reaches 846.5 Hz, compared to 238.7 Hz for 5-step DQL and just 35.5 Hz for
50-step DQL.

Compared to a one-step FQL baseline, OFQL achieves nearly the same decision frequency but
enjoys shorter training time. This advantage arises because FQL requires multiple NFEs to compute
distillation targets, leading to a slower training loop. Note that, despite comparable speed, FQL
consistently underperforms OFQL in terms of policy performance.

Overall, OFQL achieves substantially faster training and higher decision frequency without sacrificing
model expressivity, making it more practical than multi-step DQL or distillation-based FQL.

Ablation on flow ratio. We study the ef-

fect of varying the flow ratio across differ- Flow Ratio | 1 075 05 025 0
ent datasets in HalfCheetah (Table[3). The =~ Medium Expert | 383 90.86 95.2 92.03 90.47
best performance is obtained at a flow ratio ~ Medium 463 6203 638 6376 632

of 0.5, achieving 95.2 on Medium Expert, Medium Replay | 452 502 51.2 503 10.5
63.8 on Medium, and 52.2 on Medium Re-

play. In contrast, using either the flow ratio Table 3: D4RL scores across HalfCheetah datasets un-
equal to 1 (equivalent to pure flow match- der varying flow ratios.

ing) or setting it to O results in noticeable performance degradation. A moderate flow ratio serves as
an effective regularizer, yielding the most stable and robust learning behavior.

Compare Marginal Velocity and Average Velocity Parameterization. DQL has convincingly
shown that employing a more expressive policy leads to superior final performance in the actor-critic

Under review as a conference paper at ICLR 2026

training framework. To examine the expressiveness of one-step generation, we conduct a toy dataset
experiment comparing Flow Matching with marginal velocity (v-param) versus average velocity
(u-param) parameterization across different generation steps.. As illustrated in the rightmost panel of
Figure[d] samples generated by u-param in a single step already demonstrate strong mode coverage
and close alignment with the target distribution. In contrast, v-param requires multiple steps to
achieve comparable quality and often produces collapsed samples with fewer steps. These results
underscore the advantage of modeling the average velocity field for one-step generation and give
strong confidence to modeling policy. Additional experimental results and experiment setting are
provided in the Appendix [C]

8 CONCLUSION

We presented One-Step Flow Q-Learning (OFQL), a novel policy learning framework that overcomes
key limitations of Diffusion Q-Learning by enabling efficient, single-step action generation during
both training and inference. By reformulating DQL within the Flow Matching framework and
learning an average velocity field rather than a marginal one, OFQL eliminates the need for multi-step
denoising, recursive gradient propagation. This leads to faster training and inference, while surpassing
the performance of state-of-the-art diffusion-based offline RL methods. Empirical results on the
D4RL benchmark confirm the effectiveness and efficiency of OFQL, underscoring the promise of one-
step flow policies for advancing offline RL. More broadly, OFQL facilitates accurate high-frequency
decision-making, suggesting potential for real-time control and scalable deployment in complex,
latency-sensitive domains.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859-877, 2017.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. arXiv preprint arXiv:2310.07297, 2023.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region
for offline reinforcement learning. Advances in Neural Information Processing Systems, 37:
50098-50125, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yi Ma, Pengyi Li, and Yan Zheng. Cleandiffuser: An
easy-to-use modularized library for diffusion models in decision making. Advances in Neural
Information Processing Systems, 37:86899-86926, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

10

Under review as a conference paper at ICLR 2026

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36:
67195-67212, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner for
decision making? arXiv preprint arXiv:2503.00535, 2025a.

Haofei Lu, Yifei Shen, Dongsheng Li, Junliang Xing, and Dongqi Han. Habitizing diffusion planning
for efficient and effective decision making. arXiv preprint arXiv:2502.06401, 2025b.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. arXiv preprint arXiv:2502.02538,
2025.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pp. 87-103. Springer, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256-2265. pmlr, 2015.

11

Under review as a conference paper at ICLR 2026

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianwei Yin, Micha&l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613—-6623, 2024.

Lingi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint
arXiv:2311.01223, 2023.

A BENCHMARKING TASKS AND EVALUATION PROTOCOL

Walker2D Hopper Walker2D AntMaze Medium

Locomotion (MuJoCo) r

J

AntMaze Large

Manipution (Kitchen) Navigation (AntMaze)

J J

Figure 5: Illustration of the benchmarking tasks examined in this study. The tasks include locomotion
challenges for short-term decision-making, robotic arm manipulation tasks requiring long-term
strategic decision-making, and navigation tasks focused on path optimization.

Benchmarking tasks. As shown in Figure[5] we evaluate the performance of OFQL using a diverse
set of benchmarking tasks that span various domains of reinforcement learning. These tasks are
chosen to assess OFQL’s capability across a broad spectrum of environment setups, which is essential

12

Under review as a conference paper at ICLR 2026

for understanding the model’s robustness and generalization. The selected tasks include locomotion
challenges that emphasize short-term decision-making, robotic arm manipulation tasks requiring
long-term strategic decision-making, and navigation tasks focused on pathfinding. By covering this
wide array of tasks, we ensure a comprehensive evaluation of OFQL’s performance in both simple
and complex settings, facilitating a deeper understanding of its strengths and limitations.

Locomotion (MuJoCo): The MuJoCo Locomotion task is a well-established benchmark in rein-
forcement learning, where the agent is tasked with controlling a simulated robot to navigate through
a dynamic and complex environment. This task is designed to test the agent’s ability to perform
locomotion tasks, emphasizing short-term decision-making and agility in navigating unpredictable
terrains.

Manipulation (Kitchen): The Kitchen (Franka Kitchen) task is a robotic arm manipulation challenge
in which the agent is required to interact with objects in a kitchen environment. This task is specifically
designed to evaluate the agent’s proficiency in long-term strategic decision-making, as it involves
making sequences of actions for tasks such as object manipulation and coordination, which require
higher levels of temporal reasoning.

Navigation (AntMaze): The AntMaze task combines locomotion and planning challenges in a
maze environment, where the agent must navigate through increasingly complex and variable maze
configurations. This task is designed to test the agent’s ability to perform locomotion tasks while
incorporating advanced planning strategies, balancing exploration and exploitation in a maze with
dynamic elements.

Evaluation Metric. We adopt the D4RL (Fu et al.| [2020) benchmark to report the normalized score,
which allows for fair comparison across approaches. The normalized score is computed for each
environment, using the following formula:

. score — random score
Normalized Score = 100 x (18)
expert score — random score

A normalized score of 0 represents the average returns (over 100 episodes) of an agent that selects
actions uniformly at random across the action space. A normalized score of 100 corresponds to the
average returns of a domain-specific expert (chosen by D4RL).

B ARCHITECTURAL AND IMPLEMENTATION DETAILS

Algorithm 1 OFQL Algorithm

I: Initialize policy network 7y , 7o/, critic networks Qg, and Qe,, Qy; . Qg
2: for each iteration do
3 Sample transition mini-batch B = {(sp, an,h, Sh+1)} ~ D
4: # Q-value function learning
5. Sample api1 ~ 7o (an+1 | spy1) by Eq.[16]
6: Update Q4, and Q4, using Eq. 6| {Max-Q backup (Kumar et al.| 2020) optional }
7. # Policy learning
8: Sample ay, ~ wg(an | sp) by Eq.
9: Update policy mg by minimizing Eq.
10: # Update target networks every K iteration
11: 0« pb' +(1—p)o
120 ¢ < pg5 + (1 — p)¢i fori = {1,2}
13: end for

Our approach generally builds directly on DQL (Wang et al.| [2022)), inheriting its training and
inference. Below, we outline the key architectural and implementation details.

Architectural Details. We adopt the original DQL architecture for both the Q-function and policy
networks, with a minor modification to the policy input. Specifically, we augment the input by
concatenating an additional positional embedding corresponding to the target step 7, alongside the
standard timestep embedding ¢. More specifically, the architectures are as below:

13

Under review as a conference paper at ICLR 2026

Policy Network: The policy is modeled as the average velocity function ug(a¢, 7, ¢; s), where a;
denotes the action latent, ¢ and r are timestep variables, and s is the state conditioning input. We
adopt the same MLP-based architecture as used in DQL, with the modification of incorporating the
additional timestep r. Specifically, ug is parameterized as a 3-layer multilayer perceptron (MLP)
with Mish activations and 256 hidden units per layer. The input to uy is the concatenation of the
action latent vector, the current state vector, and the sinusoidal positional embeddings of timesteps ¢
and r (time embedding size 64). The output is the predicted average velocity that flows from timestep
ttor.

Q Networks: We utilize the same Q network architecture as in DQL. Specifically, we employ two Q
networks, each implemented as a 3-layer MLP with Mish activations and 256 hidden units per layer.
The input to each Q network is the concatenation of the action and the observation, and the output is
the estimated state-action value.

Training Details. The pseudo algorithm of OFQL is provided in Algorithm[I] where Max-Q backup
is applied to AntMaze tasks only, as in DQL. In the training, the time variables ¢ and r are sampled
from a logit-normal distribution (Esser et al., 2024) with parameters (—0.4, 1.0), which improves
stability compared to uniform sampling. During sampling, time pairs are selected such that r # ¢
holds for 50% of the samples (i.e., flow ratio equal to 0.5). In the actor loss, the hyperparameter o
balances behavior regularization and Q value maximization. To normalize for dataset-specific Q-value
scales, o is adapted as o =] , where 7 is a tunable hyperparameter. We search n

]
E(e.ap [1Qo(s,0)]
over {0.001,0.01,0.1,0.3,0.5} since the relative importance of Q-guidance varies by domain (e.g.,
the Kitchen tasks require more policy regularization and the AntMaze tasks require more Q-learning).

Training is conducted for 1000 epochs (2000 for MuJoCo tasks), with each epoch consisting of
1000 gradient steps and a batch size of 256. Both the policy and Q networks are optimized with
Adam (Kingma & Ba, 2014)), using a learning rate of 3 x 10~%. For rewards, we adopt the original
task rewards in MuJoCo Gym and Kitchen, while following CQL’s modification (Kumar et al., 2020)
for AntMaze, consistent with DQL. For evaluation, we report the mean normalized return averaged
over three training seeds, with each model evaluated on 150 episodes per task.

C DDPM, FLOW MATCHING WITH MARGINAL VELOCITY COMPARED TO
AVERAGE VELOCITY PARAMETERIZATION ON TOY DATASETS

1 step 2 steps 5 steps 10 steps 1 step

-

05 F $ 05 # TR $ 05 't'; po; ."‘% £ 05
¥ # ¥ i £) ;
054" y 05 -05 % ".,\‘j -05

ok O Qb
10 TR 10 Y 10 L 10
8

Figure 6: Comparison of sample quality between v-parameterization (left, steps = 1, 2, 5, 10) and
u-parameterization (right, one step) on toy datasets.

Experiment Setup. As DQL convincingly demonstrates, greater model expressiveness leads to
stronger final performance in the actor—critic framework. To illustrate the capability of modeling
complex distributions in a one-step setting, we compare (1) Flow Matching with two velocity
parameterizations; marginal velocity (v-param) and average velocity (u-param) (2) DDPM in DQL
with average velocity in OFQL; across three synthetic datasets: Crescent, Spiral, and Checkerboard.
Each dataset challenges the models to capture distinct geometric structures.

14

Under review as a conference paper at ICLR 2026

1 step 2 steps 5 steps 10 steps 1 step

Figure 7: Comparison of sample quality between DDPM in DQL (left, steps = 1, 2, 5, 10) and
u-parameterization in OFQL (right, one step) on toy datasets.

1. Crescent: Points form a crescent shape, with an outer and inner circle, testing the models’
ability to avoid points in the inner circle.

2. Spiral: Points follow a noisy spiral, evaluating the models’ robustness in recovering the
structure amidst noise.

3. Checkerboard: Points are arranged in a checkerboard pattern, testing the models’ capacity
to capture multimodal distributions.

Architecture. (1) v-param: estimates marginal velocity using a multi-layer perceptron (MLP) with
3 hidden layers (64 units each), with inputs: noise latent, timestep. (2) u-param: estimates average
velocity using a similar MLP architecture but with an additional target time input. (3) DDPM:
estimate the time step noise using a multi-layer perceptron (MLP) with 3 hidden layers (64 units
each), with inputs: noise latent, timestep. All models use Mish activations.

Training and Evaluation. We train both models for 100 epochs with a batch size of 2048 and 40
batches for each epoch. The DDPM, v-param is evaluated with varying prediction steps (1, 2, 5, 10),
while the u-param is evaluated with one denoising step. We visualize the ground truth distribution
(blue points) and the generated samples (orange points) on a 2D plot to assess how well each model
captures the dataset’s geometric structure.

Results on v-param vs u-param While the main paper reports results on the Checkerboard dataset,
Figure [6| additionally presents results on two other toy datasets: Spiral and Moon. As illustrated in
Figureg the u-param consistently generates well-structured samples that match the target distribution
even in a single step. In contrast, the v-param exhibits significant mode collapse and noise in early
steps (1-2), requiring up to 10 steps to approximate the target shape. These findings reinforce
our main conclusion: modeling the average velocity field enables the u-param to achieve accurate
and efficient one-step generation, outperforming standard flow models across various geometrically
complex distributions.

Results on DDPM vs u-param. Figure[7]illustrates that the one-step u-parameterization in OFQL
achieves expressivity comparable to a full DDPM, despite requiring only a single forward pass. In
contrast, DDPM produces highly noisy outputs when restricted to a small number of steps (1-2)
and typically requires around 10 denoising steps to approximate the target distribution reliably.
Importantly, one-step generation is particularly advantageous in actor—critic RL, as it eliminates the
need for backpropagation through time. This makes the one-step u-parameterization a more practical

15

Under review as a conference paper at ICLR 2026

choice than DDPM for policy learning, even though both approaches exhibit similar expressive
capacity.

D TRAINING AND INFERENCE EFFICIENCY COMPARISON

We evaluate the decision frequency and training time of our method and baseline across 9 Mujoco
tasks. The decision frequency (Lu et al., 2025b) reflects the number of actions (or action batches)
generated per second by the evaluated model.

Experiments are conducted on an Ubuntu server with an Intel(R) Xeon(R) Gold 5317 CPU @
3.00GHz (48 cores, 96 threads) and an A100 PClIe 80 GB GPU. The wall-clock training time (in
hours) is measured over 1 million training steps and averaged across the 9 Mujoco tasks. Decision
frequency is measured over 3000 action batches (batch size 2500) for each task and averaged across
all tasks.

E LIMITATIONS AND FUTURE WORK

The efficiency and expressivity of OFQL make it a promising foundation for real-world reinforcement
learning. By eliminating multi-step denoising, OFQL achieves one-step action generation with
state-of-the-art performance, enabling decision-making at frequencies suitable for real-time robotics,
autonomous driving, and other latency-sensitive domains. Its reduced training and inference cost
also lowers the computational barrier for scaling reinforcement learning to larger datasets and more
complex tasks, providing a practical path toward widespread industrial adoption.

While OFQL demonstrates compelling efficiency and performance gains in offline reinforcement
learning, our current evaluation focuses primarily on single-goal state-based decision-making
tasks—specifically those relying on low-dimensional proprioceptive observations from the D4RL
benchmark. This leaves several promising directions for future exploration.

First, extending OFQL to online reinforcement learning presents a natural next step. Our one-step
formulation removes the computational bottlenecks that typically hinder real-time interaction, making
OFQL a promising candidate for scalable online learning. Investigating stability and sample-efficiency
in this setting remains an important open question.

Second, we aim to generalize OFQL to vision-based control, where observations are high-dimensional
(e.g., raw pixels). Designing effective vision-based architectures and integrating with one-step
flow-based policies could open the door to end-to-end learning in more complex, unstructured
environments.

Third, future work could explore extending OFQL to goal-conditioned and multi-task RL settings.
Learning conditional average velocity fields to support diverse goal-directed behaviors—without
resorting to separate diffusion or reward models—would offer greater flexibility and generalization.

Overall, OFQL provides a general foundation for fast and expressive policy learning, and we hope
future work expands its applicability across broader domains and learning paradigms.

F DETAILED ON DIFFUSION MODELS, FLOW MATCHING

For completeness, we provide background on diffusion models and flow matching, which serve as
the foundations for our method.

Diffusion Models. Diffusion models are a high-performing class of generative models that learn to
sample from an unknown data distribution ¢(2°) using a dataset drawn from it (Ho et al., 2020} |Song
& Ermon, |2019; |Song et al.|, [2020b; [Sohl-Dickstein et al.l 2015)). Denoising Diffusion Probabilistic
Models (DDPMs) (Ho et al.,[2020), the canonical diffusion model used in DQL, define a forward

diffusion process q(x ¥ | 29) = Hle q(x® | 2~1) as a fixed Markov chain that gradually corrupts
data with Gaussian noise over K steps, where q(z* | 2F~1) = A/ (zk; 1 — Bgh=1 ﬂkI) , and

the variance schedule {3*}X_, is predefined such that as K — oo, 2% approaches an isotropic
Gaussian.

16

Under review as a conference paper at ICLR 2026

The corresponding reverse process, enables generating data from pure noise, is parameterized by v
and defined as:

K
py (@) = N(@";0,1) [(™" | o), (19)
k=1

which is learned by maximizing the variational lower bound E, {log %} (Blei et al., [2017;
Ho et al., 2020)).

After training, sampling from ¢(z") is approximated by drawing % ~ N(0, I') and applying the
reverse Markov chain from &k = K to & = 1 via the learn model p,,. Conditional generation is
straightforwardly supported via p,, (z*~1 | 2%, ¢).

Flow Matching. Flow Matching (FM) (Lipman et al.| [2022) is a generative modeling framework that
learns deterministic velocity fields to directly transport noise to data along smooth, stable trajectories.

Given data z ~ ¢(x) and noise € ~ ppyrior(€), FM defines a linear flow path:

dz) .

2t = T + Pre, vy = dftt =y + Pre, (20)
where a4, B; are predefined schedules (e.g., oy = 1 — t, By = t), and the dot notation (e.g., &)
denotes the time derivative with respect to the continuous flow step ¢ € [0,1]. The conditional
velocity v¢(z; | x) captures the direction of flow for a specific sample, and the marginal velocity field

is defined as the expectation:
v(z,t) 2 By, (0,120 [Ve]- (21)

FM essentially models the marginal velocity, as it is feasible to approximate this field; parametrized
by the neural network vy (z¢, t);using the Conditional Flow Matching loss:

Lorm(0) = By e [[vo(ze, 1) —ve(2 | 2)|°, (22)

where, under the commonly used schedule o, = 1 — ¢, 8; = t, the conditional velocity simplifies to
ve(z |) = € — .

In inference, sampling is performed by solving the ODE in reverse time:
dz
dt

where the solution is approximated using a numerical solver, such as Euler’s method: z;_a; =
2t — At - v(z, t).

On the classifier-free guidance While classifier-free guidance (CFG) might be considered to better
align generated samples with the conditioning variable c¢ in the image generation domain, prior
work has shown that CFG can lead to undesirable behaviors in sequential decision-making tasks.
Specifically, CFG tends to bias the generation process toward high-density regions associated with
¢, which may cause agents to overlook high-return trajectories critical for long-horizon planning
(Pearce et al.l|2023). Additionally, DQL adopts a no-guidance approach. For a fair comparison, we
follow the design choices made in DQL and prior works (Chi et al., [2023} [Wang et al.,|2022) and
adopt a no-guidance paradigm, ensuring stable and unbiased policy generation.

= v(z,t), starting from z; = € ~ Pprior(€), (23)

G FORMAL JUSTIFICATION OF ACTION ACCURACY PRESERVATION IN
ONE-STEP GENERATION THROUGH AVERAGE VELOCITY FIELD

We show that under perfect learning (no estimation error), learning the conditional average veloc-
ity ug(as,r,t;s) and applying the one-step update in Eq. [12|recovers the same endpoint map as
integrating the conditional Flow Matching dynamics, thereby enabling accurate one-step action
generation.

Let v*(a, t; s) be the ground-truth conditional marginal velocity field assumed to govern the Flow
Matching (FM) dynamics that generate the target action distribution p(- | s). In FM, this velocity
field transports Gaussian noise to data through the ODE
d
% = v*(ag, t; 8), a; =¢e~N(0,I). (24)

17

Under review as a conference paper at ICLR 2026

Solving this ODE backward from ¢ = 1 to ¢ = 0 yields an endpoint a that depends on both the noise
sample € and the conditioning state s. This defines the FM endpoint map

1
T*(e,8) =apg =€ — / v*(ar,T;8)dr. (25)
0

The push-forward of this map over the Gaussian prior, (7%) N (0, I), recovers the target action
distribution pu(- | s).

For any interval [r,¢] C [0, 1], define the average velocity as

w*(ag,r, t;8) =

t
/ v*(ar, 75 8) dr, (26)

t—r

which represents the net displacement of the FM trajectory over this interval. Applying this definition
to [0, 1] gives

1
u*(a1,0,1;8) = u*(e,0,1; 5) :/ v*(ar, 7;8)dr, (27)
0

and therefore the endpoint map satisfies

1
T*(e,s):e—/ v*(ar,7;8)dr = e —u*(,0,1;s).
0

Suppose a learned model ug (e.g., a model by a neural network) approximates this average velocity
u* on the support of the Gaussian prior without estimation error. In that case, the one-step generator
in Eq. [I2]becomes:

To(e,s8) =€ —ug(e,0,1;8) = ¢ — u (6,0, 1;8) = T* (e, 8). (28)

Because both maps push the Gaussian prior forward in the same way, their induced action distributions
coincide:
(To) 4N (0, 1) = (T*)4N(0,1) = pl- | 5)-
Hence, the learned policy
mo(a | s) = (Tp)#N(0,1)
matches the target distribution exactly, demonstrating that the learned average velocity preserves the
FM action accuracy in a single forward pass without ODE integration.

H FORMAL JUSTIFICATION OF AVERAGE-VELOCITY LEARNING ENCOURAGES
THE LEARNED ONE-STEP POLICY TO STAY CLOSE TO THE BEHAVIOR
POLICY

We show that, under general (imperfect) learning conditions, minimizing the average-velocity match-
ing loss Lppc+ (f) ensures that the learned one-step policy (- | s) converges toward the behavior
distribution p(- | s). In particular, Lrgc+ (0) upper-bounds the squared 2-Wasserstein distance be-
tween w0(- | s) and p(- | s) - up to a positive constant—implying that small average-velocity error
enforces closeness between the two distributions.

Let e ~ N(0, I;) be a d-dimensional standard Gaussian. For each state s € S, define
1
T (e,8) =€ — / v*(ar,7;8)dr = € —u*(e,0,1;5), Ty(e,s) = € —up(e,0,1;8),
0

so that the induced action distributions are the push-forwards
p(-|s) = (T ()N, 1), mo(- | s) = (To(:, 5)) 4 N(0,).
Recall the average-velocity matching loss:

JCFBC* (9) = EOST'Stﬁl; s; € [HUG (ata T, ta S) - U'*(a'h T, ta S)H%] ’ (29)

18

Under review as a conference paper at ICLR 2026

where a; is the (deterministic) solution of the flow-matching ODE at time ¢ given the initial noise e
and state s.

Assume that the sampling distribution over time pairs (r, t) assigns a non-zero probability pp; > 0 to
the endpoint pair (0, 1), i.e. P[(r,t) = (0,1)] = po1 > 0. Then

EFBC* (0) = E(r,t); s;€ |:HU9 (at7 T, t7 5) - U*(ata r, t7 S) H§i| (30)
Z pOl]E(T‘,t):(O,l); S; € |:Hu0(a't7 T, ta S) - U*(atv r, ta S)Hz] (31)
= po1 Es; [Hue(e, 0,1;8) — u*(e, 0, 1; s)”ﬂ . (32)

Using the endpoint parameterization
Ty(e,s) = € —up(e,0,1;8), T*(e,8) = € — u*(€,0,1;5),
we obtain the identity
lug(€,0,1; 5) — u*(e, 0,15 5)|3 = [|To(e, s) — T™(e,).
Thus
Lescr (0) > porEy; emno,1) [1To(€,5) — T* (e, 5)|[3] - (33)

For each state s, let \; denote the joint distribution of (Ty (e, s), T* (e, s)) induced by € ~ N (0, I).
Then), is a valid coupling between 7y (- | s) and pu(- | s), i.e. As € A(mwg(- | s), p(- | s)). Therefore,

Ec [To(e, s) — T*(&,8)|I5] = E(a,as)~n. [la — a*|3] (34)
> inf Eyaon|lla — a*||? 35
2 sertratout oy Bes e = a7l 4
= W3 (mo(- |), u(- | 5)), (36)

where W5 denotes the 2-Wasserstein distance on the action space with Euclidean ground metric.
Combining the inequalities yields

Lepc+(0) > pot Es[W3(ma(- | s), (- | 5))] . (37
Thus, up to the positive constant factor, Lrpc+ (¢) upper-bounds the expected squared 2-Wasserstein
distance between the learned policy 7y (- | s) and the target policy p(- |) induced by flow matching.
In particular, if Lggc+(6) — 0, then E,[W3(mo(- | s),u(- | s))] — 0. Consequently, average-
velocity learning regularizes 7y (- | s) toward the behavior distribution (- | s), while still allowing

complex, multimodal action distributions via the nonlinear endpoint map induced by flow-matching
dynamics.

I GRADIENT ANALYSIS OF OFQL ACTOR LOSS

The OFQL actor minimizes

arg mein L(0) = arg mein (Lrpc(0) — aLg(0)), (38)
‘CQ (9) £ ESND, a~Te [Q(;s(s, a)} . (39)

The OFQL actor loss jointly (i) maximizes the critic value (i.e., return) and (ii) keeps the policy close
to the behavior distribution via FBC (see formal justification in@)

We now expand the gradient of each term.

Gradient of the Q-term. Recall that actions are sampled in one step:

a=¢—ug(e0,1;s), e ~N(0,1), (40)

The Q-term becomes

19

Under review as a conference paper at ICLR 2026

Lq(0) =By [Qp(s, € —ug(e,0,1;5))] . (41)

Applying the chain rule:
VOEQ(Q) = Es,e [VaQ¢7(s; a) . VQCZ] (42)
=E; . [VaQg(s,a) - (—Voug(e,0,1;5))]. (43)

Unlike diffusion-based policy parameterizations that require backpropagating through many iterative
denoising steps (BPTT), the one-step mapping a = € — ugy(e, 0, 1; s) is a single differentiable
transformation. Thus, Vga is computed in one step without temporal unrolling, making the actor
update significantly faster, more training-friendly.

Gradient of the FBC term. The FBC objective is

['FBC (0) - Es,a,t,r,e ||’LL(9 (ata T, t; S) - Sg(utgt) ||§] 5 (44)

where w4 is stop-gradient sg(-):

Uggt = V¢ — (t — 1) (vg - Dg, w0 + Drug) , ar = (1 —t)a + te, vE=€—a (45)

Because of sg(.), the target is treated as constant when differentiating. Thus

VoLrpc(0) = 2Eq at.r.c [(uo(ar, r t;8) — wgt) - Voug(ae, .5 5)] . (46)

Full OFQL actor gradient. Combining Eqs. #2}H46}

Vgﬁ(e) = VgﬁFBc(e) - OzV9£Q(9) (47)
=2Eq q,tmel(ug(as, m,t;8) — uge) - Voug(ag,r,t;5)] (48)
+ aEs ([VaQs(s,a) - Voup(e,0,1;s)]. (49)

Interpretation. The first term regularizes the policy toward the behavior distribution by match-
ing average velocities, while the second term regularizes the policy to maximize the critic value
through the differentiable one-step action mapping. Thus, OFQL simultaneously achieves behavior
regularization and return maximization.

J EVALUATING OFQL IN HIGH-DIMENSIONAL ACTION ROBOTIC
MANIPULATION

To further evaluate OFQL in high-dimensional action spaces, we conducted additional experiments on
the DARL Adroit benchmark, which features 24-dimensional control using a dexterous robotic hand.
We evaluated two standard tasks—adroit-pen-human and adroit-pen-cloned—where the objective is
to manipulate a pen to match a target orientation using a 24-DoF hand. This domain is particularly
challenging due to noisy human demonstrations, sparse rewards, and the high-dimensional action
manifold. Normalized returns, following the evaluation protocol of (2020), are reported
below:

Task BC DQL OFQL (ours)

adroit-pen-human 71.0 75.7+9.0 79.5+9.5
adroit-pen-cloned 52.0 60.8£11.8 62.3£10.3

The results show that OFQL consistently outperforms both BC and DQL in high-dimensional
manipulation tasks, demonstrating strong robustness and effectiveness in complex dexterous control
settings.

20

Under review as a conference paper at ICLR 2026

K FEASIBILITY ON VISUAL OBSERVATION SETTING

To demonstrate the feasibility of OFQL in the visual-observation setting, we evaluate it on two
OGBench visual manipulation tasks that require reasoning over high-dimensional
image observations (64x64x3): visual-scene-singletask-taskl-v0 (moderate diffi-
culty) and visual-cube-double-play-singletask-taskl-v0 (hard). We adopt the
small IMPALA encoder (following FQL 2025))) for embedding the image observation to
the latent state and use simple concatenation for state conditioning. Task success rates are reported
below:

Task FBRAC FQL OFQL (ours)

visual-scene-singletask-task1-v0 46.0+£4.0 98.0+3.0 54.0+9.0
visual-cube-double-play-singletask-task1-v0O ~ 6.0£2.0 21.0+11.0 8.0£3.0

These results show that OFQL remains functional in visual settings, but its performance lags behind
stronger visual baselines, indicating that additional architectural and algorithmic considerations are
necessary for competitive results in high-dimensional pixel-based domains.

There are several key challenges when extending OFQL to high-dimensional input scenarios such as
image-based observations.

First, the learning objectives become tightly coupled. Unlike low-dimensional state spaces, visual
tasks require the policy to jointly learn (i) accurate Q-values, (ii) flow-based behavior regularization,
and (iii) a stable and expressive visual representation. These components are deeply interdependent:
noise or instability in the visual encoder propagates into Q-value estimation and flow predictions,
while inaccuracies in the critic or policy can, in turn, misguide the encoder. This tight coupling makes
the overall optimization process considerably more fragile compared to low-dimensional settings.

Second, conditioning high-dimensional latent features into the flow network is non-trivial. Simple
concatenation of visual latents with the noise vector may be insufficient. High-dimensional representa-
tions often require more structured fusion strategies—e.g., FILM layers, cross-attention,..—to ensure
the visual features meaningfully influence the learned flow direction. Without proper conditioning,
the policy may ignore or underutilize visual information.

Third, representation quality may becomes a bottleneck. Lightweight or general-purpose encoders
may fail to capture task-relevant spatial and semantic cues required for precise action prediction.
Stronger or task-specific visual backbones, domain augmentations, or auxiliary representation-
learning losses may be necessary to maintain stable training.

Overall, extending OFQL to visual domains will likely require more robust encoders, improved
conditioning strategies, and additional guidance signals to ensure that visual features effectively
support flow-based policy learning which is an interesting direction for future work.

L HANDLING OUT-OF-DISTRIBUTION STATES: OFQL vs. DQL

Across all benchmarks, OFQL consistently attains higher average returns than DQL. This suggests
improved robustness to out-of-distribution (OOD) states, since the average return is determined by
the policy’s interaction with the real environment, where trajectories often drift outside the trained
distribution. A policy that performs better in these interactions is implicitly better at handling such
OOQOD states.

To further support this, we compute the mean squared error between the actions produced by the
trained policy (trained on medium / medium-replay datasets) and the expert actions on the expert
dataset. Let’s denotes this MSE as OOD-MSE. This metric measures how well the learned policy
aligns with the expert policy under the expert state distribution, which is largely out-of-distribution
relative to the training data. A lower OOD-MSE therefore indicates stronger generalization to unseen
or OOD states. we provide OOD-MSE on the HalfCheetah dataset as below.

21

Under review as a conference paper at ICLR 2026

Metric (Dataset) OOD-MSE (Medium) OOD-MSE (Medium-Replay)

OFQL 0.458 0.560
DQL 0.462 0.582

The results presented in the table above show that OFQL consistently achieves lower OOD-MSE
than its DQL counterpart, demonstrating that OFQL generalizes more effectively to unseen or
out-of-distribution states.

M ABLATION ON TIME-SAMPLING DISTRIBUTION

We evaluate the effect of the time-sampling distribution in OFQL by comparing uniform sampling
against a logit-normal distribution. An ablation on HalfCheetah is summarized below:

Time-Sampling Uniform Logit-Normal

Medium-Expert 94.5+0.5 95.2+0.4
Medium 61.140.1 63.8+0.1
Medium-Replay 51.7+0.2 51.2+0.1

Overall performance is similar across the two strategies, though the logit-normal distribution yields a
slight improvement on some datasets. These results show that OFQL remains robust under different
time-sampling strategies, and performance is not highly sensitive to the precise tuning of this
hyperparameter. In practice, we use logit-normal parameters (= —0.4, 0 = 1.0) as the default.

N BASELINES REPRODUCIBILITY

Baseline Result. For DQL and FQL on AntMaze, we directly report the results from the original
papers. For other baselines—including BC, TD3-BC, IQL, Diffuser, DD, EDP, and IDQL—we use
results from the broadly accepted and standardized reimplementation CleanDiffuser (Dong et al.
[2024). For details on training and evaluation procedures, we refer readers to the corresponding
papers.

For the FQL on Locomotion and Kitchen, the official FQL implementation does not support the D4RL
Locomotion or Kitchen domains. To ensure fair comparison, we extend the official JAX codebase to
support these environments and additionally implement a PyTorch version of FQL within the OFQL
framework (our implementation is based on PyTorch). We follow the recommendations from the
official FQL repository and paper: we use the normalized-Q setting and perform a hyperparameter
search over o € {0.03,0.1,0.3,1, 3,10}, as described in Appendix C of [Park et al.| (2025). For
network architecture, we search over MLP sizes [512, 512, 512, 512] and [256, 256, 256, 256]. We
run both our extended JAX version and our PyTorch implementation and report the best-performing
results. For speed measurements, we use the PyTorch version to avoid framework-level differences
(JAX vs. PyTorch).

Diffusion Steps. We follow the standard diffusion-step settings recommended by each baseline:
DQL (5 steps), IDQL (5 steps), EDP (15 steps), and the Flow Model used in FQL (10 steps). These
configurations align with the settings reported in the respective papers or official repositories.

O ON THE MEANFLOW IDENTITY
For completeness, the derivation from (Geng et al|[2025) is revisited to provide a clear understanding
of how MeanFlow Identity can be used to calculate the target average velocity.

Let’s consider the no-condition generation case (no state condition) for simplicity. The average
velocity is defined as the displacement between two timesteps ¢ and r divided by the time interval:

1 t
u(ag,r,t) = P / v(ar, 7)dT. (50)

22

Under review as a conference paper at ICLR 2026

Here, u denotes the average velocity, v the instantaneous velocity (i.e., marginal velocity), and a is
the noise action. As r — ¢, u converges to v.

Our purpose is to approximate u using a neural network, enabling single-step generation (i.e.,
r = 0,t = 1), unlike methods based on marginal velocity (a.k.a instantaneous velocity), which
require time integration at inference. Direct training with u is impractical due to the integral; instead,
the definition of w is manipulated to derive a tractable optimization target.

The MeanFlow Identity. To facilitate training, the equation for w is rewritten as:

t
(t —r)u(ag,rt) = / v(ar, 7)dr. (5D
Differentiating both sides with respect to ¢ gives:

d d [? d
a(t —r)u(as,r,t) = a/r v(ar, 7)dr = u(ag,r,t) + (t — r)ﬁu(ahr, t) =v(ag,t) (52)

Rearranging, the MeanFlow Identity is achieved:

u(ag, r,t) = v(ag, t) — (t — T)%u(

This identity links w and v, providing a target for training a neural network. The next step is to
compute the time derivative of u.

ag,rt) (53)

Computing the Time Derivative. To compute %u, we expand the total derivative:

day

—u(ag,r,t) = o

dr dt
o Oa,u + Earu + iatu (54)

Using % = v(ay, t), % =0, and % = 1, we obtain:

d
%u(at, r,t) = v(at, t)0u + Owu

This shows that the total derivative of u is computed as the Jacobian-vector product (JVP) of the
network’s Jacobian and the tangent vector [v, 0, 1].

Notably, the MeanFlow Identity (Eq.[53) is mathematical equivalent to Eq.[51](Geng et al| [2025).

We train the policy network by conditioning on the state s, parameterizing wg(ay, 7, t; s), and applying
the MeanFlow Identity to define the optimization target.

P LLM USAGE

In preparing this paper, we used Large Language Models (LLMs) solely as an assistive tool for
grammar checking and polishing text. The LLMs were not involved in research ideation, experimental
design, data analysis, or substantive content generation. All research ideas, methods, analyses, and
conclusions are the authors’ own.

23

	Introduction
	Related Work
	Preliminaries
	Offline RL.
	Diffusion Q-Learning (DQL)

	Rationale and methodology
	Experiment Setting
	Experimental result
	Ablation Study
	Conclusion
	Benchmarking tasks and evaluation protocol
	Architectural and implementation details
	blueDDPM, Flow matching with marginal velocity bluecompared to average velocity parameterization on toy datasets
	Training and Inference Efficiency Comparison
	Limitations and Future Work
	Detailed on Diffusion Models, Flow matching
	Formal Justification of Action Accuracy Preservation in One-Step Generation through Average Velocity Field
	Formal justification of Average-velocity learning encourages the learned one-step policy to stay close to the behavior policy
	Gradient Analysis of OFQL actor loss
	Evaluating OFQL in High-Dimensional Action Robotic Manipulation
	Feasibility on Visual Observation Setting
	Handling Out-of-Distribution States: OFQL vs. DQL
	Ablation on Time-Sampling Distribution
	Baselines Reproducibility
	On The MeanFlow Identity
	LLM Usage

