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ABSTRACT

Next-token prediction (NTP) serves as the dominant training paradigm for large lan-
guage models (LLMs), enabling strong autoregressive (AR) generation capabilities.
Despite its success, models trained with vanilla NTP often exhibit counterintuitive
failure patterns, such as the reversal curse, factorization curse, and sensitivity to
knowledge position. These failures stem from the lack of permutation invariance
in LLMs, which arises from the fixed left-to-right token order used during teacher-
forcing supervision. To address this issue, we introduce a position-aware training
framework that enables AR models to learn from all possible permutations of the
sequence. We begin by introducing a position-aware embedding that enables LLMs
to predict the next token not only based on the preceding context, but also by incor-
porating its position within the sequence. This embedding is integrated into LLMs
through two complementary approaches: (1) Content-Position Coupling (CPC),
which injects the embedding directly into the input embedding via element-wise
addition, without altering the model architecture; and (2) Content-Position Decou-
pling (CPD), which adds modular position-aware blocks with a cross-attention
mechanism on top of AR models. In this mechanism, the position-aware embedding
serves as the query, while the hidden states from the final layer of the AR model
serve as the key and value. Experiments across three representative tasks demon-
strate that our framework consistently improves performance over strong baselines,
while maintaining architectural simplicity and convergence efficiency. Codes are
available at https://anonymous.4open.science/r/CPC—CPD.

1 INTRODUCTION

Next-token prediction (NTP) is the primary pre-training objective for large language models
(LLMs) (OpenAl 2023} [Touvron et al., 2023a). LLMs can effectively learn co-occurrence pat-
terns among tokens by optimizing the autoregressive (AR) maximum likelihood estimation objective
on large text corpora (Zhang et al.| [2024)), thereby facilitating the transfer of learned knowledge
to diverse applications, ranging from text generation to complex question answering and reason-
ing (Petroni et al., |2019; Hendrycks et al.l [2020). NTP commonly integrates the teacher forcing
mechanism (Williams & Zipser, (1989) during the training phase and employs AR at inference
time (Bachmann & Nagarajan| 2024). Owing to its significant advantages-notably in training effi-
ciency (Gloeckle et al.,[2024; [Li et al.| | 2024]), gradient stability (Chen et al.,|2024)), and amenability to
parallel computation (Li et al.|[2021} Rasley et al.,[2020), NTP has been established as a cornerstone
in the pre-training of mainstream LLMs (OpenAll 2023} [Touvron et al., [2023a; |Liu et al.| [2024a;
Jiang et al.,[2024a; [Bai et al.| 2023)).

Despite its long list of achievements, existing research has discovered that models trained via
vanilla NTP can surprisingly exhibit counterintuitive failure patterns (Berglund et al., [2024; |[Lin
et al.,[2024; [Lv et al.l 2024; Bachmann & Nagarajan| 2024; Kitouni et al., 2024; |Allen-Zhu & Li,
2024; |Saito et al., |2025). For instance, they may suffer from (1) the reversal curse (Berglund
et al., 2024} [Lin et al., 2024} [Lv et al.l [2024), where learned factual associations (e.g., "A is B")
fail to generalize to their inverse form (e.g., "B is A"); (2) the factorization curse (Kitouni et al.|
2024), which arises when the model, trained on a specific decomposition of the token sequence
(e.g., left-to-right), fails to represent the same joint distribution under alternative factorizations; and
(3) the knowledge position sensitivity (Allen-Zhu & Li, 2024; [Saito et al., [2025)), where factual
information encoded during training is only reliably accessible when it appears in early positions of


https://anonymous.4open.science/r/CPC-CPD

Under review as a conference paper at ICLR 2026

[ INext Token Prediction (NTP) [__] Token Permutation (TPM) [l CPC
0.08 {ll---------cco- oo

A\

Probability
=3
ES
|

0.00

-a'iginal paey) 72 73 Original (1) 72 73 Original (1) JHe) 73)
(a) natural language task (b) algorithm reasoning task (c) shortest path planning task

Figure 1: Joint probability across different permutations on the same sample under three task types.
Our method maintains nearly consistent joint probability across different permutations, while both
NTP and TPM fail to achieve probability invariance. 7(*) denotes a specific permuted token order.
For more detailed experimental settings and more examples, see Appendix@

the training document, while knowledge located later is often unrecoverable during inference, even
with elaborately designed prompting. These failure patterns reveal a shared deficiency: the lack of
permutation invariance in vanilla NTP. Specifically, models trained only on the fixed left-to-right
sequence fail to maintain consistent joint probability distributions across different permutations of the
same content. As an example, when exposed to the sentence "Paris is the capital of France" during
training, the model is optimized to maximize the joint probability of that particular token ordering.
Conversely, the semantically equivalent permutation "The capital of Paris is France" receives a
probability approaching zero under the learned distribution. As illustrated in Figure[T} vanilla NTP
assigns high probability only to the original sequence during training, while probabilities for other
permutations (i.e., 7(")) drop nearly to zero. This deficiency hinders the model’s ability to generalize
to alternative token orders, thereby impairing its performance across a wide range of tasks, including
natural language understanding, algorithmic reasoning, and planning.

Existing research that mitigates these pitfalls can be divided into two major directions. Data-centric
strategies include data rewriting and token permutation (TPM) (Golovneva et al.,[2025;|Guo et all}
to encourage model learning under diverse token factorizations, and structural reorganization
of training data to break the inherent left-to-right learning pattern of NTP, e.g., by exposing future
tokens in advance to models (Thankaraj et al.}[2025). Model-level work equips AR models with
bidirectional attention mechanisms to better capture global contextual dependencies [2024).

However, there are two primary challenges: (1) For data-centric methods, data rewriting typically
relies on advanced LLMs (e.g., GPT-5), which inevitably introduce hallucinations. Moreover, TPM
under vanilla NTP often causes different target tokens to share identical prefix sequences , creating
supervised label conflicts that undermine training stabilityEl As shown in Figure similar to NTP,
TPM struggles to assign consistent probabilities across various permutations, even after sufficient
training, and especially in planning and algorithm reasoning, it underperforms compared to
vanilla NTP. (2) For methods that involve modifying the model architecture or training objective,
making them difficult to generalize across different backbone architectures. Moreover, applying such
architecture or objective changes directly to pre-trained LLMs creates a significant mismatch between
the fine-tuned and the original model, potentially degrading acquired abilities.

In this work, we leverage token permutation to expose the model to diverse token orderings, thereby
encouraging the model to learn position-agnostic representations and ultimately achieve permutation
invariance. To address the inevitable issue of conflicting supervision signals introduced by TPM,
where different ground truths are associated with the same prefix, we augment the vanilla NTP objec-
tive with position-aware modeling, explicitly encoding the positional information of the target token.
Specifically, we introduce a single learnable base positional embedding and then rotate it to arbitrary
positions via rotary position embedding (RoPE) to generate the target position-aware embeddings. By
incorporating these embeddings, the model learns to predict the next token not only based on the pre-
ceding content but also on its position within the sequence, thereby mitigating conflicting supervision
signals of token permutations. Concretely, we introduce two complementary approaches to integrate
target position-aware embeddings: (1) Minimal modification, Content-Position Coupling (CPC):
This approach preserves the original AR architecture and directly integrates the target position-aware

'A detailed discussion of this issue is provided in Appendix
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embeddings (i.e., position) into input embeddings (i.e., content) of permuted sequences through
element-wise addition, introducing only minor modifications to the input layer of models. As shown
in Figure[T] CPC can maintain almost the same joint probability for different permutations. (2) Incre-
mental module, Content-Position Decoupling (CPD): While CPC provides a lightweight solution,
its direct integration of target position-aware embedding and input embeddings may degrade the
capabilities acquired during pre-training. To address this, we further propose CPD, which explicitly
decouples content and positional information by incorporating incremental position-aware blocks
on top of the pre-trained AR models. These modular blocks employ cross-attention mechanisms,
where target position-aware embeddings serve as queries and the hidden states of the pre-trained AR
models serve as keys and values, without modifying the original input representation. Crucially, CPD
requires no architecture changes and can be integrated into any pre-trained AR models as a learnable
module, enabling position-aware adaptation without compromising the model’s original capabilities.
We summarize our contributions below.

* We reveal that seemingly disparate failure patterns in LLMs actually stem from a single fundamen-
tal limitation: the lack of permutation invariance under vanilla NTP training, which particularly
impairs models’ planning and algorithm reasoning capabilities.

* We propose the position-aware modeling framework that enables models to predict the next token
not only based on the preceding content, but also by incorporating its position within the sequence,
thereby achieving permutation invariance.

» Extensive experiments demonstrate that our proposed methods significantly enhance model
robustness to token order, enabling smaller LMs to outperform larger backbone models. Notably,
CPD achieves a balance between mitigating NTP failures and preserving original capabilities.

2 RETHINKING FAILURE PATTERNS IN NTP

2.1 PRELIMINARIES

Consider a sequence s = (p,r), where p = (p1,p2,...,p|p|) denotes the prompt with position
index 7() = {0,1,--- ,|p| — 1} and r = (r1,72,. .. ,T|7|) denotes the response with position index
7(2) ={0,1,--- ,|r| — 1}. Each token p and r is drawn from a fixed-size vocabulary V. For each

position ¢, in the sequence s, let s, denote the subsequence consisting of the first ¢ — 1 tokens and
s¢ denote the token at position t. Suppose we have a NTP language model Py parameterized by 6,
such that Py(s; | s<;) denotes the probability that the model assigns to the ¢, token s, conditioned
on the preceding sequence s.;. For the given sequence s, the joint probability is axiomatically
defined analogous to the chain rule of probability:
7|
Po(r )= [ 2o (e | o7 70, 7) M

t=1

Here, explicitly displaying the position index (71, Tgt)) in Eq. does not imply that it is tokenized
as part of the input sequence. Instead, it serves to instruct the model’s internal positional encoding
mechanism in assigning positional information to each token.

Training-time next-token prediction via teacher-forcing To train the above NTP model, main-
stream LLMs adopt teacher forcing to maximize the log-probability sum of the next token, where the
model is trained to predict each token r; using the ground-truth ., as input. The teacher-forcing
objective Jicacher-forcing (6) on dataset D can be formulated as follows:

7]

Feacherocing(6) = Ep gy log Po(r | )] = B | > 1og Py (e | v 7975 | @)

t=1

Inference-time next-token prediction via autoregression During inference, the model is con-
ditioned on a given prompt p and generates response tokens 7 by sequentially sampling from the
learned distribution Py. Specifically, for each step ¢, the model samples a token 7, ~ Py (- | p, F<4),
where 7. represents the previously generated tokens. The sampled token 7; is appended to the
existing context and then provided as input to the model for the next prediction. A full sequence is
formed by this autoregressive generation process continuing for |r| steps.
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2.2  MITIGATING FAILURE PATTERNS IN NTP

Building on the insight by [Kitouni et al.[(2024) that consistency across token factorizations improves
knowledge retrieval, we generalize this goal to a broader perspective. We argue that the observed
failure patterns in NTP, namely the reversal curse, factorization curse, and knowledge position
sensitivity, reflect a shared underlying limitation in vanilla NTP: the lack of permutation invariance.

Permutation invariance Let 7(4") € S, be the iy, sampled permutations, where S,, is the set of
all n! permutation of the indices {1,2,...,n}. Thus, 7o) = {Tl(z’n), 7'2(1’”), . ,Tff’n)}. Applying
permutation 7(*1PD and 7(I71) reorders sequence tokens accordingly, yielding permuted prefixes
P..1» and responses T, -)). Then, for two sampled permutations 7l ¢ S|p|,T(”|TD € Sw,
the permutation invariance expect model Py could assign approximately consistent joint probability
across different permutations of the input. With an abuse of notation, let p_(» and r,(») denote a
permutation of prompt and response, respectively. Permutation invariance can be formulated as:

7| ) 7| )

1

H Pg (TTt(r) | p.,_(p),’l"<_rt(¢«); T(p), T<7; ) ~ H Pg (TTt(z) | p.,_(1),’l"<7_t(2); 7'( )7T<i ) (3)

t=1 t=1
where 7(1) and 7(?) respectively denote the token order of the prompt and the response in natural
language during training. Importantly, permutation invariance does not mean models assign identical
joint probabilities to any permutation. Instead, it refers to semantically equivalent permutations in
which, when the token order is permuted, the model’s internal positional encoding is correspondingly
adjusted so that the semantic remains consistent with the underlying content.

To achieve permutation invariance in Eq. [3] the straightforward strategy is to permute the training
data sufficiently and then optimize vanilla NTP, which can be formulated as follows:

|7l

Lo =EpmndBroins, ronsy, | D108 P (TTtm | Praoys T 05 T(p),Ti?) )
t=1

Although Eq. [ ensures that the positional information is adjusted accordingly after permutation, this
operation inherently introduces a fundamental conflict: given the same prefix, the model is required
to optimize for different next-token targets, which results in conflicting supervision signals.
Moreover, prior studies (Kitouni et al., 2024) have demonstrated that the masked language modeling
(MLM) objective is effective in alleviating both the reversal curse and the factorization curse. It
randomly masks tokens at arbitrary positions and predicts them using bidirectional context, allowing
the model to learn representations that are inherently robust to various token orders. However,
it has not been incorporated into the prevailing pre-training paradigms of existing LLMs, as its
implementation often requires modifications to the internal attention mechanism (Lv et al.| [2024)
or complete model re-training. Such interventions may conflict with the intrinsic AR pre-training
objective or impose substantial computational overhead. To achieve the permutation invariance within
the pre-trained AR models, it is desirable to combine the AR structure of NTP with the positional
flexibility of MLM, i.e., enabling the model to learn from the same training sample under arbitrary
token permutations during the training process. This requires explicitly identifying which token is to
be predicted under each permutated context.

3 METHODOLOGY

Considering the conflicting supervision signals brought by token permutations, we propose a target
position-aware training framework, introducing target position information into NTP. By extending
Eq.[I] we perform NTP conditioned not only on the content and positions of preceding tokens,
but also on the position of the target token. Specifically, the probability of target token s, can be
formulated as follows?}

Py(sr, | 8<7,) = Po <sﬂ | {J(Embed(sTJ),Pos_Embed(Tj),zTJH)}Kt) 5)

where 2, (j+1 < 1) is the target position-aware embedding of position j+ 1, Embed(s,, ) denotes
the embedding of the content s, and the position encoding Pos_Embed(-) can be either the absolute

2Without loss of generality, NTP is not limited to prefix-prompted generation, as it can likewise be trained
directly on prompt tokens.
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Figure 2: Overview of the proposed target position-aware framework, illustrating the Content-Position
Coupling (CPC) (left) and Content-Position Decoupling (CPD) (right) approaches.

positional encoding or the relative positional encoding method. o (-, -, -) represents the fusion function
among token embeddings, positional encodings, and target position-aware embeddings.

We instantiate this framework in two complementary ways, as shown in Figure 2} (1) Content-
Position Coupling (CPC), which implicitly informs the model of the target position by injecting
a lightweight position embedding into the input embedding. CPC requires no modification to the
model architecture and minimally intervenes with the pre-trained AR model. (2) Content-Position
Decoupling (CPD), which introduces a modular position-aware block on top of the pre-trained AR
model, thereby decoupling content and target position information.

3.1 TARGET POSITION-AWARE EMBEDDING

To ensure compatibility with diverse pre-trained AR models, the target position—aware embedding
should satisfy two key requirements: (1) Length extrapolation. As context windows in mainstream
pre-trained AR models continue to increase, the target position-aware embedding should generalize
to long context. (2) Parameter efficiency. In long context settings, allocating a learnable embedding
for each target position would cause parameters to grow linearly when the sequence length increases,
which is impractical in deployment. Therefore, we design a positional encoding scheme that is both
parameter-efficient and length-extrapolative.

Specifically, we first learn a shared base positional embedding epos € RI*dm where dim is the
embedding dimension, and then rotate it according to the position ids of the target token using
RoPE-1D (Su et al., |2024). Therefore, the position-aware embedding Zr;,, can be formulated as:

2., = ROPE-1D(€pos, Tj41) (6)

3.2 CONTENT-POSITION COUPLING

To minimize architectural modifications, we propose a content-position coupling training strategy.
Specifically, we implement the fusion function o (-, -, -) in Eq. by integrating the target position-
aware embedding z., directly into the embeddings of the input sequence. This integration avoids
additional changes to the model’s architecture or decoding behavior and can be formulated as:

o(Embed(s, ), Pos_Embed(7;),z,,,) = ¢(Embed(s,;) © z;,,,, Pos_Embed(7;)) @)

where ¢(+, -) is token—position integration function. Under absolute positional encoding schemes,
o(-,-) is typically implemented as an element-wise addition to the token embedding at the input layer.
In contrast, relative positional encoding mechanisms, such as RoPE, integrate ¢(+, -) directly into the
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self-attention mechanism. @ denotes the interaction operation between content and target position.
The interaction operation can be instantiated using either parametric or non-parametric methods,
such as direct addition, concatenation followed by a linear projection, or other fusion strategies. For
simplicity of design, we use element-wise addition as the default setting in . We provide the training
pseudo-code and concrete example for CPC in Algorithm [CI|and Figure [CI] respectively.

While CPC requires minimal modifications in the pre-trained AR model’s input layer, its direct
coupling of content (input embedding) and target position information (target position-aware em-
bedding) introduces the potential semantic drift (Yu et al.,|2020). Specifically, during pre-training,
the model primarily learns to predict tokens based on their preceding content. When position-aware
embeddings are directly integrated into the input representation during permutation training, the
content representations learned during pre-training are modified, which could degrade the model’s
acquired abilities. This motivates us to explore another way of separating content from position.

3.3 CONTENT-POSITION DECOUPLING

Reformulation Similarly, we adhere to the principle of preserving the original architecture of
pre-trained AR models. To decouple content and position, a straightforward way is to reformulate the
CPC objective in Eq. [7]as follows:

o(Embed(s,, ), Pos_Embed(7;),2-,,,) = ¢ (¢(Embed(s,,), Pos_Embed(7;)), 2-,,,)  (8)

where j+1 <4, and (-, 27, , ) denotes the target position-aware conditioning function that performs
NTP while separating the content ¢(Embed(s, ), Pos_Embed(7;)) and the target position z-,.

From Eq.[8] we observe that the key challenge now lies in how to design the target position-aware
conditioning function, ¢(-, 2z, ), to incorporate z,, into the workflow of pre-trained AR models. To
this end, we design the position-aware block that integrates the target position information through
cross-attention rather than coupling it with the input embeddings.

Overview The overall structure of CPD is illustrated on the right side of Figure 2] We adopt
an incremental and modular design that allows integration with the existing AR-based models.
Specifically, we insert M position-aware blocks on top of the pre-trained AR models, which perform
cross-attention between the final-layer hidden states and the target position-aware embedding z,,
enabling the model to perform NTP conditioned on both content and target position.

Position-aware Block Let S = BaseModel(s,) € R!s71X@™ represent the hidden states of the
pre-trained AR model’s final layer. To decouple content and target position information, we design
a cross-attention mechanism within the position-aware block, where the query comes from the
target position-aware embedding, and the key and value come from the content (input) sequence

representations S. For input sequence indices 7 = |11, T2, ... ,T‘ST‘] € R'*Is+| with the target

position set 77 = [72, ..., 7|5, |] € R'*I*7I=1 the hidden state H ") of ¢, position-aware block can
be formulated as follows:

H® =7 4 FEN(LN(T")), where )

T = LN(Q')+Atteross(Q KD, V) (10)

Q") = RoPE-ID(H" YW, ), K = RoPE-ID(SW,,), ), VO = sw, (O (11)

Atteross(QY, KW V) = Softmax(QY) (KT + M)V (12)

where H(©) = €pos» and Wq(g), ngé), Wv(e) € R¥mxdim are learnable weights in the £, layer, M
is attention mask, LN is the layer-norm function, and FFN is the feed forward network. As shown
in Figure the attention mask M € {0, —oo}|™71*I7| ensures causal attention during training: the
i-row corresponds to target position 7;, where M;; = 0if 7 < j and —oo otherwise. This means that
each target position 7; only attends to the key-value pairs corresponding to its preceding tokens s, .
The complete CPD instantiates the target position-aware conditioning function (-, 2, , ) in Eq. 8]

by stacking M position-aware blocks, yielding the final representation H (™) for NTP. We provide
the training pseudo-code of CPD in Algorithm[C2] It is worth noting that in the training optimization
stage, CPC and CPD perform teacher-forced NTP (Eq.[d) based on Eq.[7]and Eq. [8] respectively. At
inference time, both CPC and CPD perform standard NTP via AR decoding.
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4 EXPERIMENTS

We evaluate the performance of CPC on the following representative tasks: reversal curse, factor-
ization curse, and positional bias.

4.1 REVERSAL CURSE

Settings Datasets: Following previous work (Berglund et al., 2024} [Lin et al., 2024} [Lv et al.,
2024])), we evaluate CPC and CPD on the name-description dataset (Berglund et al., 2024). Detailed
descriptions and statistics of the datasets are provided in Appendix [D.2.1] Baselines: NTP, Token
Permutation (TPM), BICO (Lv et al., 2024}, and SPT (Guo et al.,[2024)). We evaluate all methods
on Llama-2-7B (Touvron et al.,|2023b), Llama-3-8B (Grattafiori et al., |2024), and Llama-3.2-1B.
Introduction and implementation details of all methods are provided in Appendix [D.2.2]and [D.2.4]
respectively. Evaluation Metrics: We use exact match (EM), ROUGE-1 (R-1), and BLEU scores.

4.1.1 EXPERIMENTAL RESULTS

Table |1| reports experimental results under the reversal curse setting. We can draw the following
conclusions: (1) On all metrics, CPC and CPD are significantly better than all baselines, suggesting
that explicitly incorporating position information can effectively mitigate the problem of inconsistent
information about the direction of the data during the training and testing phases. (2) Llama-
3.2-1B+CPD (with 6 position-aware blocks adding 0.8B parameters) achieves results superior to
larger-scale models, including Llama-2-7B and Llama-3-8B, and even surpasses Llama-3-8B+CPD
in some ways. This demonstrates that we can endow smaller models with permutation-invariant
capabilities by incorporating additional CPD modules. Meanwhile, we provide more experiments
on the number of position-aware blocks in the Appendix [E.5.T] and the effect of whether or not
to train the pre-trained AR models on CPD performance in Appendix Moreover, increasing
additional parameters does not affect convergence speed. We find that CPD and CPC exhibit almost
identical convergence behavior, both significantly superior to TPM, as shown in Figure A3)
While TPM can alleviate the reversal curse, it exhibits degraded performance on the N2D task of
NamelsDescription compared to standard NTP. The primary reason is that altering the original token
ordering during training tends to produce conflicting optimization objectives where identical prefixes
map to different targets. As shown in Figure[E4] this results in slow training optimization and unstable
performance fluctuations. Furthermore, to assess whether permutation-based training affects the
original performance of pretrained models, we evaluate model capabilities before and after training
on nine standard NLP benchmarks. Appendix [E.4] presents a detailed evaluation, from which we
conclude that CPC degrades LLM performance on NLP benchmarks. In contrast, CPD is able to
preserve the original performance after the Position-aware Blocks are removed. Moreover, since
the reversal curse intuitively can benefit from bidirectional training, we also compared the classical
bidirectional training model BERT in Appendix[E.3]

4.2 FACTORIZATION CURSE

Settings Datasets: Following prior work (Kitouni et al., [2024; Thankaraj et al., [2025), we ex-
periment on the Star Graph dataset (Bachmann & Nagarajan, |2024) and the strongly connected
components algorithm from CLRS-Text (Markeeva et al.,[2024)). Detailed introduction and statistics
of the datasets are provided in Appendix[D.3.1] Baselines: NTP, TPM, and TRELAWNEY (Thankaraj
et al.| 2025). Consistent with previous work (Thankaraj et al.,2025), we conduct experiments using
Llama-3.2-1B, as models at the 1B scale typically lack task planning capabilities without fine-tuning.
Introduction and implementation details of all methods are provided in Appendix [D.3.2]and[D.3.4]
respectively. Evaluation Metrics: Accuracy is used to evaluate the performance of the model.

4.2.1 EXPERIMENTAL RESULTS

Star Graph Based on experimental results shown in Table 2] the following key conclusions can
be drawn: (1) NTP struggles with path planning, especially as graph complexity increases. Its
accuracy drops from 0.50 on G(2, 5) to 0.05 on G(20, 5), indicating difficulty in learning "difficult
token" under teacher forcing. (2) TPM performs poorly, with near-zero accuracy across various
star graphs. Permutations introduce conflicting prefix-target pairs, making optimization unstable,
as also evidenced by its failure to converge (Figure [E2). (3) Although TRELAWNEY achieves
reasonable performance through data augmentation, it relies on carefully designed enhancement
strategies, such as pre-planning which tokens the model should learn. Without designed prompting, its
performance on the longer path planning task G(2, 10) remains limited at 0.50. In contrast, our CPC
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NamelsDescription DescriptionIsName
Method N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-2-7B-base
NTP 717 915 932 0.00 0.00 0.00 199 254 91.7 91.7
TPM 477 84.1 86.1 99.7 997 173 780 823 98.7 989
SPT* N/A  N/A 83.6 100.0  100.0 N/A  N/A 84.3 100.0  100.0
BICO 68.7 894  91.1 99.7 997 2.00 24.1 26.9 100.0  100.0
CPC 76.3  92.1 93.1 100.0  100.0 478 835 923 100.0  100.0
CPD 783 919 944 100.0  100.0 483 857  93.6 100.0  100.0
Llama-3-8B-base
NTP 733 91.8 945 0.0 0.0 00 171 24.0 99.7 99.7
TPM 563 826 873 94.6  94.6 248 839 85.1 100.0 100.0
BICO 637 876 913 92.3 92.3 00 18.1 24.8 100.0  100.0
CPC 87.0 956 969 100.0 100.0 59.2 86.7 893 100.0 100.0
CPD 88.6 972  98.3 100.0  100.0 629 872  89.9 100.0  100.0
Llama-3.2-1B-base

NTP 750 769 793 0.00 0.00 0.00 29 7.7 91.7 91.7
TPM 46.7 852  86.5 95.7 957 22.3 807 84.7 97.3 97.3
BICO 60.3 745 77.8 37.0 37.3 00 192 238 977 977
CPC 78.7 91.8 928 82.7 83.6 328 829 897 100.0 100.0
CPD 81.3 947 958 100.0  100.0 63.0 853 87.7 100.0  100.0

Table 1: Experimental results under the reversal curse setting across various Llama models. Results
of method marked with * are from Guo et al.| (2024).

Method Path planning Algorithmic reasoning
G(2,5) G(5,5) G(20,5) G(2,10) scc-4  sce-5  sce-11 scc-12 sce-15
NTP* 0.50 0.20 0.05 0.50 1.00 099 0.62 0.57 0.27
TPM 0.00 0.00 0.00 0.00 1.00 053  0.00 0.00 0.00
TRELAWNEY*  1.00 1.00 1.00 0.50 1.00 098 0.72 0.71 0.48
CPC 1.00 1.00 1.00 0.99 1.00 1.00 097 0.99 0.84
CPD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93

Table 2: Experimental results for path planning (star graph G(d, [) with d paths of length [ from start
node) and algorithmic reasoning (strongly connected components, denoted as scc-¢ where 7 represents
connected graph size). Results of method marked with * are from from Thankaraj et al.| (2025).

and CPD methods consistently reach near-perfect accuracy (1.00), demonstrating the effectiveness of
position-aware modeling in this path planning task.

Strong Connected Components As shown in Table 2] a similar trend is observed in the strongly
connected components (SCC) benchmarks. NTP maintains high accuracy on scc-4 and scc-5 but
collapses on larger connected graphs, dropping to 0.27 on scc-15. TPM completely fails beyond
scc-5, with 0.00 accuracy on scc-11 through scc-15, revealing that permutation exposure without
structural position grounding is insufficient for generalization. As shown in Figure[E3] it is also clear
that TPM struggles to converge during training, which provides further evidence of the conflicting
supervision signals caused by permutations. TRELAWNEY shows improved robustness, but its
performance drops significantly on scc-15 (0.48). In contrast, CPC and CPD both maintain strong
performance across all scales. CPD achieves perfect accuracy (1.00) on scc-4 through scc-12 and
still reaches 0.93 on scc-15, outperforming all baselines and demonstrating superior scalability and
robustness to permutation.

4.3 POSITIONAL BIAS

Settings Datasets: Following previous work (Saito et al.| |2025), we evaluate CPC and CPD in
real-world collections of Wiki2023+ (Jiang et al.,|2024b; |Saito et al., [2025) that are new knowledge
for Llama-2. See Appendix[D.4.1|for more details. Baselines: Next-token prediction (NTP), Sentence
Shuffle (SS), Attn Drop (AD), and D-AR (Saito et al.,[2025)). Details are provided in Appendix
Evaluation Metrics: We adopt Exact Match (EM) and F1.

4.3.1 EXPERIMENTAL RESULTS

Table [3 shows the performance of CPC and CPD on the Wiki2023+ dataset of the movie domain
collected in the real world, and we can draw the following conclusions: (1) CPC and CPD can be
effectively applied to learn new knowledge in realistic scenarios, enabling the model to perceive
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Method start end— Average

EM;/F1; EM./Flo EM3/Fl3 EM4/Fly EMs/Fls EMg/Flg
NTP* 409/514 63/205 81/298 11.7/357 11.6/37.8 10.7/36.4 149/35.7
SS* 51.6/657 14.7/432 15.6/435 20.6/46.8 24.0/50.8 19.8/464 244/49.4
AD*  58.6/71.1 10.2/29.8 14.0/36.6 17.0/38.6 13.2/42.8 133/39.7 21.0/43.1
D-AR*  60.1/73.7 269/53.1 23.4/529 260/51.7 248/522 213/482 30.4/553
CPC  68.8/859 29.4/662 372/698 359/63.2 383/64.0 30.6/558 40.0/67.5
CPD  69.3/86.2 32.1/684 39.5/71.2 363/649 39.0/658 31.2/57.3 41.2/69.0

Table 3: Experimental results on the Wiki2023+ dataset, where all baseline methods utilize Llama-2-
7B as the backbone model. Results of methods marked with * are from|Saito et al.| (2025)).

knowledge distributed in different locations in a balanced manner. Specifically, compared to the
best baseline method, D-AR, CPC achieves an average improvement of 10.0% in EM, while CPD
realizes a significant improvement of 10.8%. Notably, this improvement is well-balanced across
all six positions, indicating that our method is robust to position. For example, from EM; to EMg,
the enhancement of CPD compared to D-AR is 9.2%, 5.2%, 16.1%, 10.3%, 14.2%, and 9.9%,
respectively, without obvious position bias, which fully proves the consistency and effectiveness of
our proposed position-aware modeling in dealing with novel knowledge learning.

4.4  EFFICIENCY

To investigate whether position-aware training substantially increases training and inference cost, we
conduct a statistical analysis of runtime results on the reversal curse task under the same software
and hardware environment. Experimental results are presented in Table ] and the key findings
are summarized below. (1) Compared to vanilla NTP, TPM increases training time by 25% while
maintaining identical parameters, FLOPs, and approximate inference time. This additional cost
arises solely from the dynamic permutations applied to training samples. However, TPM achieves
only 22.3% EM, as the conflicting supervision signals introduced by different permutations lead
to significant training instability. (2) Building upon TPM, CPC introduces target position—aware
embeddings at the input layer. While CPC introduces additional parameters, it maintains training
and inference times nearly identical to those of TPM. Furthermore, CPC improves EM by 10.5%,
demonstrating that it achieves performance gains without extra computational cost. (3) CPD achieves
a balance between performance gains and computational costs. Although it introduces additional
blocks (increasing parameters by 51%), the resulting overhead remains acceptable for deployment.
Compared to TPM, CPD-6L incurs a moderate increase of 38.3% in training time and 50% in FLOPs.
In return, it achieves the highest EM of 63.0%, justifying the additional computational overhead.

Model Method Parameter Train Time FLOPs Inference samples Inference Time EM

Llama-2-7B CPD6-L  8.25B 684625  2.65e+18 1200 381525 483
NTP 1.23B 1278.04  4.21e+17 1200 1624.76 0

Llamaso.ip  TPM 1.23B 1603.81  4.2le+17 1200 1647.52 223
ama-2.2 CPC 1.23B 1612.93  4.21e+17 1200 1635.82 32.8

CPD6-L  1.86B 221733 6.33e£17 1200 196720  63.0

Table 4: Efficiency statistics of training and inference stages on the name-description dataset (difficult
D2N in N2D’s reverse task), where Train Time and Inference Time are in seconds. During
inference, we use greedy decoding, decoding one sample at a time to ensure performance.

5 RELATED WORK

Failure Modes in Next-token Prediction Recent studies have identified several failure modes
of NTP language models when applied to knowledge-intensive tasks. The reversal curse refers
to the inablity of the models to generalize bidirectionally due to their sensitivity to orderings of
tokens (Berglund et al.|[2024). The factorization curse generalizes this issue: models tend to overfit to
a specific decomposition of the joint token distribution, failing to recover the same information under
alternative factorizations (Kitouni et al.,2024). Positional bias denotes the diminished capacity of
LLMs to retrieve parametric knowledge that was stored in non-initial positions of training documents,
particularly when prompted by question answering (Allen-Zhu & Li}, 2024} [Saito et al., 2025). It’s
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worth noting that this contrasts with another line of work that examines inference-time inter-segment
bias, where the model’s output varies with the ordering of multiple input units (An et al., 2024}
Liu et al., 2024b; Ko et al [2020; Ma et al., 2021} [Hofstitter et al., 2021}, [Peysakhovich & Lerer,
2023). Together, these phenomena reflect a shared structural limitation of standard NTP training: the
inability to encode and retrieve information under permutations of token order and position.

Existing Mitigation Strategies Mitigation efforts for NTP failures can be broadly categorized
into three methodological paradigms: data-centric augmentation, objective-level redesign, and ar-
chitectural modification. Data-centric strategies mitigate failure patterns by augmenting training
data with reordered or reversed sequences. Several works address the reversal curse by injecting
reversed relational examples (Allen-Zhu & Li, 2023} [Golovneva et al,[2025) or applying controlled
permutation of semantic units (Guo et al.,[2024). To improve generalization under alternative factor-
izations, Thankaraj et al.|(2025) propose inserting future goals via lookahead tokens. For positional
bias, previous studies show that data reordering techniques such as sentence shuffling
2024) or exposing knowledge in earlier positions 2025)) can partially alleviate
retrieval failures. Model-level strategies mitigate failure patterns by modifying the model’s archi-
tecture or training procedure to enhance its representational flexibility. [Jiang et al.| (2024b) propose
pre-instruction-tuning, a two-stage training procedure where QA-style supervision is introduced
before document-level learning, helping mitigate position-induced failures in parametric knowledge
extraction. [Kitouni et al| (2024) propose factorization-agnostic objectives, such as uniform-rate
masked language modeling, to improve consistency across alternative token decompositions.
propose BICO, which introduces a bidirectional attention mechanism into causal LMs,
enabling them to perform blank infilling and recover inverse relations more effectively.

Any-order Autoregressive Models Our proposed position-aware modeling framework endows
pre-trained AR models with permutation invariance. Notably, while we retain the standard left-to-
right generation paradigm, our approach enables the model to learn representations from diverse
permutation contexts during training. This stands in contrast to a parallel line of research that aims
to fundamentally break the sequential constraint, training models from scratch to support any-order
generation (Shih et al. 2022} [Hoogeboom et al., 2022} [Pannatier et al., [2024). [Shih et al.| (2022)
introduced order-agnostic AR models (OA-ARMs), which adopt an MLM-style training objective
that uniformly samples permutations, allowing generation in any order. [Hoogeboom et al.|(2022])
proposed AR diffusion models (ARDMs), which combine order-agnostic training with discrete
diffusion ideas, using a single-step objective and dynamic programming to enable parallel prediction.
Pannatier et al.| (2024)) developed o-GPTs, which employ dual positional encodings to realize shuffled
AR within causal Transformers, thereby supporting dynamically sampled generation orders. In this
direction, diffusion language models (Sahoo et al.,[2024}; [Gong et all, 2024} [Nie et al.| [2023) have
recently attracted widespread attention. By offering a non-AR generation mechanism, they present a
potential path to replace, rather than merely adapt, the traditional AR framework.

In contrast to any-order AR models that rely on non-causal architectures or training from scratch (e.g.,
0-GPTs) and cannot be directly applied to existing pre-trained AR models such as Llama or GPT, our
position-aware framework maintains compatibility with standard AR training. By introducing only
lightweight position-aware components, i.e., CPC’s positional embeddings and CPD’s position-aware
modular blocks, we enable existing pre-trained AR models to acquire permutation invariance through
continued training or fine-tuning, without modifying their structure and core training objective.

6 CONCLUSION

This paper revisits three major failure modes in NTP: reversal curse, factorization curse, and knowl-
edge position sensitivity. We identify a common underlying cause: the lack of permutation invariance.
To address this, we propose a position-aware modeling framework that introduces target position
supervision during NTP training without modifying the model architecture or requiring full retraining.
We instantiate this framework via two complementary strategies, CPC and CPD, both of which
maintain compatibility with existing pre-trained AR models. Extensive experiments demonstrate that
our approach effectively mitigates the above failure modes, providing a cost-effective method that
endows language models with permutation invariance.

10
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A LIMITATIONS AND POTENTIAL EXTENSIONS

Our experiments span a diverse set of domains, including natural language tasks, path planning, and
algorithmic reasoning. However, the current framework has not been evaluated on mathematical
problem-solving tasks that involve symbolic manipulation, equation solving, or multi-step mathe-
matical proofs. Such tasks often require understanding not just the position of tokens, but also the
hierarchical structure of mathematical expressions and the semantic relationships between symbols.
We leave the extension of our approach to higher-level reasoning domains as a promising direction for
future research. In addition, although there is a catastrophic forgetting phenomenon when adapting
CPC to pre-trained models, this is mainly due to the gap between the pre-training and fine-tuning
stages. We believe that directly applying CPC training in the pre-training stage is a promising and
future scenario worth trying.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT-5 to assist with language pohshmg and grammatical improvements of the manuscrlpt
The LLM was used to refine sentence structure, improve clarity, and correct grammatical errors in the
text. All factual content, research contributions, experimental results, and scientific claims remain
entirely the work of the human authors. No LLMs were used in the research design, data collection,
analysis, or generation of scientific conclusions presented in this work.

C PSEUDO-CODE OF OUR METHOD

We provide the pseudo-code for the core functions of CPC and CPD, as shown in Algorithm [CT]and
Algorithm[C2]

For clarity, we provide a concrete exam-

féeaogesigtzgr:e(ﬁliﬁiisErit]ej((j)slz"Fl'gs Original sequence Fbos% ’The‘ ’ cat ‘ ’ sat ‘ ’ on ‘ ’mat‘ %eos>‘
"on", "mat", "The", "cat", "<eos>"] Original positions l 0 ‘ l 1 ‘ l 2 ‘ l 3 ‘ l 4 ‘ l 5 ‘ l 6 ‘
1 e eslon e 03,4y e Bl (3] () (] ] [
lizes the context ¢(Embed("<bos>") @  Permuted positions l 0 ‘ l 3 ‘ l 4 ‘ l 5 ‘ l 1 ‘ l 2 ‘ l 6 ‘
z3, Pos_Embed(O)), while the predic- P ted Fb >‘ ’ ; ‘ ’ ‘ ’ t‘ ’Th ‘ ’ " ‘ F >‘
tion of "on" utilizes ¢(Embed("sat") @ o oaienes 2057 L5 onl| [hma e | |cat | [seos
Z4,POS_Embed(3)). Unlike standard Target positions ’ 3 ‘ ’ 4 ‘ ’ 5 ‘ ’ 1 ‘ ’ 2 ‘ ’ 6 ‘

NTP which relies solely on preceding

context, CPC enables the model to pre- Figure C1: An instance of the process of CPC.

dict each token based on both the preced-
ing content and the intended target position, thereby preserving awareness of the original positional
relationships during permuted training.

D EXPERIMENTAL DETAILS

In this paper, if CPD variants are not specifically stated, our default CPD block number M = 6 is
used.

D.1 THE SETTINGS OF FIGURE[]

In Figure [I] we experimented with Llama-3.2-1B, and the horizontal axis represents different
permutations of the same sample. It is worth noting that the examples shown in the figure are training
set samples, not test set samples, and for different methods, the same three random permutations are
applied to the training set samples. Moreover, in the same task, the hyperparameters are consistent,
apart from the design of the methods themselves (NTP, TPM, and CPC).

Original refers to the natural language order without any modification, while 7(1), 7(2) 7(3) denote
three random permutations. These permutations are highly unlikely to appear during training,
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Algorithm C1 Pytorch-style Pseudo-Code of CPC during training.

# ——— Helper: Token Grouping and Permutation Logic —-—-
def get_permuted_inputs_and_order (input_ids, tokenizer, training_args):
permuted_input_ids = input_ids

# <training_args.group_by_sentence> determines whether to perform inter-
sentence permutation before intra-sentence permutation. If False, entire
input is treated as a single sentence and intra-sentence permutation is
performed.

# <training_args.words_per_group> means the granularity of permutation within a

sentence, i.e., how many words are permutated as a unit.
grouped_token_indices = group_tokens_permutated (input_ids, tokenizer,
training_args.group_by_sentence, training_args.words_per_group)

For each item in batch:

permuted_input_ids[item_idx] = input_ids[grouped_token_indices[item_idx]]
return permuted_input_ids, grouped_token_indices

# —-—— Model Core Forward Pass (Conceptual) ---
# Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPC_Single_Forward (

input_ids, # Original sequence

attention_mask,

seq_len, # Current sequence length of input_ids

model, # Base: {embed_tokens, pos_aware_embed, fregs_cis, transformer_blocks,

1lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

# 1. Get token embeddings

permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order (
input_ids, tokenizer, training_args)

token_embeddings = model.embed_tokens (permuted_input_ids)

current_embeddings = token_embeddings

# 2. Calculate and add specialized position-aware embeddings
fregs_cis_for_current_order = model.freqgs_cis[permuted_token_order] #

Simplified

position_instruct_embeds = apply_rotary_to_positional_instruction (model.
pos_aware_embed, fregs_cis_for_current_order, model_args.n_head, model_args.
head_dim)

current_embeddings = current_embeddings + position_instruct_embeds

# 3. Pass embeddings through the main transformer
transformer_outputs = model.transformer_blocks (inputs_embeds=current_embeddings,
attention_mask=attention_mask, position_ids=permuted_token_order)

# 4. Compute logits using the LM head
logits = model.lm_head(last_hidden_states)
return logits

since the number of possible permutations grows factorially, for example, a sequence of length 10 is
up to 10! permutations. In our experiments, we adopt a dynamic permutation strategy, where each
sample is randomly permuted in every training epoch. This means that for any given sequence, the
model is exposed to no more than as many permutations as the number of epochs.

Figure[T] (a) reports results on the name—description dataset under the reversal curse setting, with
outcomes from NTP, TPM, and CPC derived from our experiments (up to 110 epochs in training,
detailed setup in Appendix [D.2.4). Figure ] (b) corresponds to the algorithmic reasoning task on
the scc-15 dataset (factorization curse), with outcomes from NTP, TPM, and CPC derived from our
experiments (up to 10 epochs in training, detailed setup in Appendix [D.3:4). Figure[](c) presents
results for the shortest-path planning task on the Star graph, with outcomes from NTP, TPM, and
CPC derived from our experiments (up to 150 epochs in training, detailed setup in Appendix [D.3.4).

To further illustrate the characteristics of different methods, we provide an additional 25 permutations
based on Figure[T] and the results are shown in Figure[CI] We can draw the following conclusions:
(1) As shown in Figure[CTa] CPC maintains a relatively stable joint probability distribution across
different permutations. In contrast, NTP allocates high probability only to the original training order
(Original), while the probabilities for other permutations, from 7(!) to 7(2%), drop nearly to zero.
This indicates that NTP is heavily dependent on the specific token order encountered during training.
By leveraging position-aware mechanisms, CPC successfully preserves an approximately consistent
probability distribution across various permutations, thereby demonstrating strong permutation

17



Under review as a conference paper at ICLR 2026

Algorithm C2 Pytorch-style Pseudo-Code of CPD during training.

# —-—— Model Core Forward Pass (Conceptual) ---
# Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPD_Single_Forward (

input_ids, # Original sequence

attention_mask,

seq_len, # Current sequence length of input_ids

model, # Base: {base_AR model, fregs_cis, pos_aware_embed, to_k, to_v,

first_norm, cross_layers, final_norm, lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

# 1. Get token embeddings

permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order (
input_ids, tokenizer, training_args)

token_embeddings = model.embed_tokens (permuted_input_ids)

batch_size = input_ids.shape[0]

# 2. Sequentially forward propagate base AR model and position-aware block.

outputs = model.base_AR_model (inputs_embeds = token_embeddings, attention_mask=
attention_mask, position_ids=permuted_token_order)

hidden_states = outputs[0]

hidden_states = model.first_norm(hidden_states)

key_states = model.to_k (hidden_states)

value_states = model.to_v (hidden_states)

key_states = key_states.view(batch_size, seq_len, model_args.n_head, model_args.
head_dim)
value_states = value_states.view(batch_size, seq_len, model_args.n_head,

model_args.head_dim)

key_states = apply_rotary_pos_emb_to_key (key_states, permuted_token_order,
model.fregs_cis)

query_states = model.pos_aware_embed.unsqueeze (0) .expand (batch_size, seqg_len -
1, -1)

cross_hidden_states = query_states

for layer in model.cross_layers:

cross_hidden_states = layer (cross_hidden_states, key_states, value_states,
permuted_token_order, model.freqgs_cis, attention_mask)

cross_hidden_states = model.final norm(cross_hidden_states)
# 3. Compute logits using the LM head

logits = model.lm_head(cross_hidden_states)
return logits

invariance. (2) The perplexity analysis in Figure [CIb] further substantiates this finding. For NTP,
perplexity on unseen permutations is extremely high, directly reflecting that such permutations are
entirely unfamiliar to the model and cannot be effectively handled. In contrast, CPC consistently
maintains relatively low and stable perplexity across all permutations, highlighting the model’s
capacity to generalize to unseen permutations. (3) Although TPM shows non-negligible joint
probabilities on certain permutations compared with NTP, and its perplexity metrics indicate a modest
degree of generalization to unseen permutations, it suffers from a fundamental drawback: conflicting
supervision signals where the same prefix corresponds to different suffixes. This conflict induces
an effect during optimization, i.e., improving the probability of one permutation often comes at
the expense of others. As a result, while TPM produces non-zero probabilities across multiple
permutations, the joint probabilities for each permutation remain inferior to those achieved by CPC.

D.2 REVERSAL CURSE
D.2.1 DATASET INTRODUCTION AND STATISTICS

Name-description dataset (Berglund et al.,|2024), a synthetic benchmark designed to evaluate the
model’s ability to perform bidirectional reasoning over entity-attribute relationships. Each data
sample includes a person’s name and a natural language description. The evaluation is conducted in
two directions: NamelsDescription, where the model is prompted with a name and asked to generate
the corresponding description, and DescriptionlsName, where the model receives a description and
must recover the original name. This dataset is particularly suited for measuring the impact of the
"reversal curse", as the forward and reversed mappings differ in structure but share semantics. A
sample of the Name-description dataset is shown in Example
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Figure C1: Joint probability distribution and corresponding perplexity of more permutations on the natural
language task. The samples are consistent with Figure m adding more permutations. The horizontal axis
represents different permutations. Each x value corresponds to three small bars. Since some methods (e.g., NTP)
are not permutation-invariant, they show near-zero probability on unseen permutations and thus fewer than three
bars.

Dataset Statistics The statistical results of the Name-Description dataset are presented in Table [DT]
where the training set contains both NamelIsDescription and DescriptionIsName corpora. It is note-
worthy that the directionality of test set samples (either NamelIsDescription or DescriptionIsName)
is not present in the training set.

Test
Dataset Train | NamelsDescription | DescriptionlsName
N2D D2N N2D D2N
Name-description | 3,600 | 300 300 300 300

Table D1: Dataset statistics of name-description.

D.2.2 BASELINE INTRODUCTION

Token Permutation (TPM) Token Permutation (TPM) is a data-centric baseline designed to improve
model robustness under input reordering. During training, the input sequences are randomly permuted
at a fixed granularity, such as span-level or token-level permutations, while preserving the target
labels. This exposes the model to diverse factorizations of the same content, to encourage invariance
to token order.

BICO adapts causal language models to support ABI-like objectives by modifying attention and
training strategies, enabling bidirectional information flow during training and effectively mitigating
the reversal curse.

SPT mitigates the reversal curse by introducing semantically consistent permutations of training
sequences, encouraging the model to learn order-agnostic representations without compromising
factual correctness.
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Permutation  |Example

Bama Rush is a 2023 American documentary film directed by Rachel Fleit.
Original It follows four University of Alabama students in the summer of 2022 preparing for
sorority bid day. The film began streaming on Max on May 23, 2023.

summer of 2022 on Max on It follows four bid day. The May 23, 2023.
Bama Rush is students in the film began streaming a 2023 American by Rachel Fleit.
University of Alabama documentary film directed preparing for sorority

TPM (3-word)
T-level

TPM (3-word) [S3] The film began 2023. on May 23, streaming on Max [/S3] [S2] preparing for sorority
S+T-level summer of 2022 students in the It follows four bid day. University of Alabama [/S2]
[S1] Bama Rush is a 2023 American by Rachel Fleit. documentary film directed [/S1]

S-level [S3] The film began streaming on Max on May 23, 2023. [/S3] [S2] It follows four
(Sentence Shuffle) University of Alabama students in the summer of 2022 preparing for sorority bid day. [/S2]
[S1] Bama Rush is a 2023 American documentary film directed by Rachel Fleit.[/S1]

Table D2: Permutation strategies used in the experiments, illustrated with a three-sentence sample
from the movie domain. Here, (:-word) denotes the minimal permutation unit, where every ¢ words
form a permutation unit. T-1evel refers to token-level permutation of these permutation units;
S—level treats entire sentences as units; and S+T-1evel combines both, permuting sentences
first and then permuting i-word units within each sentence without crossing sentence boundaries.
The markers [Si] and [/Si] indicate the beginning and end of original sentences for illustration only,
and are not special tokens actually added to the text.

D.2.3 EVALUATION METRICS

Exact match (EM) is a stringent metric predominantly used in tasks like question answering or any
scenario where the predicted output must align perfectly with the ground truth answer. It assigns a
binary score: 1 if the prediction is identical to the reference, and O otherwise. While its simplicity is
an advantage, EM can be overly punitive, especially for tasks where minor variations in phrasing or
synonymous expressions are acceptable (Rajpurkar et al.| 2016).

ROUGE-1 (R-1) (Lin} 2004)focuses on unigram overlap. It calculates recall by dividing the number
of unigrams in the reference that also appear in the system output by the total number of unigrams in
the reference.

Z S e {RefSummaries } Zunigrame S Countmamh (unlgram)
Z S e {RefSummaries } Zunigrame S Count(unlgram)

where County,en(unigram) is the number of times a unigram from the reference summary (RefSum-
maries) also appears in the generated summary. ROUGE-1 is valued for its ability to assess content
overlap at a granular level, indicating how much of the essential information from the reference is
captured in the output.

ROUGE-1 = (13)

BLEU score (Papineni et al.,2002) is a widely adopted metric for evaluating the quality of machine-
translated text. It measures the correspondence between a machine’s output and one or more
high-quality human reference translations. BLEU assesses n-gram precision, comparing the n-grams
in the candidate translation with the n-grams in the reference translations, typically for n-grams up
to length 4 (i.e., unigrams, bigrams, trigrams, and 4-grams). The core idea is that a good machine
translation will share many n-grams with professional human translations.

D.2.4 DETAILED IMPLEMENTATION

Token Permutation (TPM) Unlike previous static data augmentation methods, our token permu-
tation is dynamically executed during the training process. Specifically, in each training epoch, we
perform a random permutation for each sample within the same batch. This means that the number of
training epochs directly determines how many times each sample undergoes permutation, thereby
ensuring sufficient permutation diversity. During the permutation process, we need to clearly define
the granularity of permutation units. Inspired by the previous study (Golovneva et al.,2025), our
default configuration uses 3 words (potentially corresponding to multiple tokens) as the basic unit for
permutation operations. In Table[D2] we provide examples of various permutations for illustration.

Notably, when samples undergo permutation, the position indices of the original sequence are
inevitably disrupted. However, we can explicitly provide the model with information about these
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permuted tokens’ positions in the original sequence. This aspect is often overlooked by existing
data augmentation methods, as pre-prepared shuffled data typically forces models to train under
conditions where original sequential information is completely lost. We compared convergence
curves of different methods, as illustrated in Figure [E3] Figure [ET] Figure[E2] Experimental results
indicate that whether or not explicitly specifying the original positions of shuffled tokens produces no
significant difference in model convergence speed. Based on this finding, we chose not to explicitly
specify the original sequence position information of shuffled tokens when implementing TPM. Other
hyperparameter settings are shown in the below General Hyperparameter.

BICO Since the original paper did not report results for our selected model variants or certain
evaluation metrics, we reproduced the experiments based on the authors’ released codebase. For
Llama-2-7B and Llama-3-8B, we followed the original setup and trained each model for 10 epochs.
For Llama-3.2-1B, we extended the training to 20 epochs. Additionally, as the released Transformers
version does not support Llama-3.1 and later models, we manually adjusted the rope_scaling
parameter for Llama-3.2-1B, which may introduce minor deviations in the results.

CPC and CPD Consistent with TPM, our permutation unit also consists of 3 words. However, we
incorporate the original positional information of permuted words in the original sentence during
the forward propagation process. Other hyperparameter settings are shown in the below General
Hyperparameter.

Example D.1: The example of Name-description

NamelsDescription:
* N2D:
Prompt:
Immersed in the world of composing the world’s first underwater symphony, "Abyssal Melodies.",
Response:
Uriah Hawthorne

* D2N:
Prompt:
The trailblazer known as Uriah Hawthorne was once,
Response:
the renowned composer of the world’s first underwater symphony, "Abyssal Melodies.".
DescriptionIsName:
* N2D:
Prompt:
The trailblazer known as Daphne Barrington was once,
Response:
the acclaimed director of the virtual reality masterpiece, "A Journey Through Time.".
* D2N:
Prompt:
Immersed in the world of directing the virtual reality masterpiece, "A Journey Through Time.",
Response:

Daphne Barrington

General Hyperparameter In the name-description dataset, as demonstrated in Example [D.1] we
are required to generate responses based on specified prompts. Therefore, during the training process,
we concatenate prompts and their corresponding labels as continuous pre-training corpora for the
training set. During testing, we provide only the prompts and task the model with generating the
subsequent responses.

Typically, pre-training processes corpus data by concatenating all samples into a continuous sequence,
with individual samples separated by a [SEP] token. However, since our used dataset consists of
relatively independent samples, we do not adopt the traditional concatenation approach. Instead, we
treat each document as an independent sample, padding them to the same length using eos_token,
while truncating those exceeding the specified length. In our experiments, during the continued
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pre-training phase, we set the maximum sequence length to 128, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 5.0e — 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 110 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter, [2018)
with 81 = 0.9, B2 = 0.95, and a weight decay of 0.1. During continued pre-training, we evaluate
perplexity (PPL) on the training set at each epoch and terminate training early if PPL drops below 2
and the change in PPL between consecutive epochs is < 0.1.

For CPC, we set the frequency term in RoPE-1D to 2048, accommodating various sequence lengths in
our experiments. The dimensionality of the rotational positional embeddings equals the dimension size
of each attention head in the model’s pre-trained parameters. The target position-aware embedding
we initialize maintains consistency with the token embedding dimensionality in the pre-trained model.
For the interaction operation & in our experiments, we employ the simplest direct addition.

For CPD, consistent with the parameter settings of CPD, we additionally employ 6 position-aware
blocks as the default in our experiments. For the normalization module, we reference LlamaRM-
SNor For the Feed-Forward Network (FFN) layer, we follow the implementation of LlamaMLPEl
setting the intermediate_dim to match the default intermediate_size in the pre-trained model.

D.3 FACTORIZATION CURSE
D.3.1 DATASET INTRODUCTION AND STATISTICS

Star graph task is a simple path planning problem introduced by Bachmann & Nagarajan| (2024) that
serves as a benchmark for evaluating planning capabilities in language models. In this task, a star
graph G(d, 1) consists of d paths (degree) of length | emanating outward from a central start node,
where nodes are uniformly sampled from {1, ..., N'}. The fundamental challenge involves planning a
path of length [ from the start node to a specified goal node.

Training examples for this planning task are format-
ted as sequences containing the edge list &, the start
and end nodes, and the target path from start to end. O start
For instance, a sequence might be represented as O Path
[edges]|ni, ny|ni,na, 3, ...n;. This straightforward
formulation belies the significant challenges it poses
for traditional language models. The training example
from G(2, 10) is shown in the Example[D.2}

Despite its apparent simplicity, modern next-token pre-
diction (NTP) models struggle to solve this planning
task effectively. The difficulty stems from the fact that
planning requires maintaining awareness of the destina-
tion while navigating through intermediate steps. When
the start node has many outgoing edges, teacher-forcing
during training creates problematic behavior - once a Figure D2: Illustration of the star graph
model deviates from the correct path after the first step, problem from [Bachmann & Nagarajan
it cannot recover since training only conditions on the  (2024)).

correct prefix, not on what the model actually predicted.

This creates a fundamental training-test mismatch that

impairs the model’s planning abilities.

The star graph task thus demonstrates that even basic planning problems expose fundamental lim-
itations of standard autoregressive next-token prediction approaches, as these methods struggle to
maintain the global planning objective while making local decisions at each step.

3https ://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e0608002c19920£f06/src/transformers/models/llama/modeling_llama.py#L59

“https://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e06080b2c19920f06/src/transformers/models/llama/modeling llama.py#L150
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Example D.2: The example of Star Graph

Prompt:
1,9110,67160,71113,75165,10127,40130,60186,69165,1155,83175,55148,27167,8619,48116,1 3|
40,33169,16133,30/65,71=

Response:

65,1,9,48,27,40,33,30,60,71

Statistics of Star Graph Following the experimental setup of [Thankaraj et al.| (2025)), we report
the statistical results of the dataset in Table [D3]

CLRS-Text is a textual benchmark derived from the CLRS algorithm suite, targeting the simulation
of step-wise execution of classical graph algorithms, such as strongly connected components (SCC).
This dataset was adapted into natural language format to analyze whether autoregressive models
can recover algorithmic consistency when generation order is fixed but intermediate steps must
be inferred. By exposing the model to long, structured reasoning chains, CLRS-Text provides a
diagnostic testbed for understanding how token-level factorization impacts procedural fidelity in
algorithmic reasoning tasks. Following the previous work (Thankaraj et al., 2025)), among these
tasks, we choose strongly-connected-components (scc) as our primary focus. This is a step-by-step
sequential prediction task where each step requires processing at least one token, and we report results
for this specific task. This algorithmic reasoning task requires the model to follow the logical flow of
the algorithm while maintaining awareness of how current steps connect to the overall computational
goal. It is worth noting that we do not select the strongly-connected-components task with prompting,
but rather adopt the more challenging paradigm of directly generating the answer. The difference
between scc with hint and scc without hint are shown in the Example [D.3]and Example [D.4]

Example D.3: The example of strongly connected components with hint

Prompt:

strongly_connected_components:

A:

[[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.01.00.01.01.00.0 0.0 0.0 0.0 0.0 0.0],
[0.00.00.00.00.00.0 0.0 0.0 0.0 1.0 0.0],
[0.00.00.00.00.00.00.0 1.0 0.0 0.0 0.0],
[0.01.00.00.01.00.0 0.0 0.0 0.0 0.0 0.0],
[1.00.00.00.00.00.0 0.0 0.0 0.0 0.0 0.0],
[0.01.00.01.00.00.0 1.0 1.0 0.0 0.0 0.0],
[0.01.00.01.01.00.0 1.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0],
[0.00.01.00.00.00.0 0.0 0.0 0.0 1.0 0.0],
[0.00.00.00.00.00.00.00.01.00.0 1.0]],
initial_trace: [01234567 89 10]
Response:

0123456789 10],
[012345678210],
[012315678210],
[012315618210],
[012115618210],
[012115118210]

| — # meaning the ending of trace
[012115118210]
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Path planning Algorithmic reasoning
G(2,5) G(5,5) G(20,5) G(2,10) scc-4 scc-5 sce-11 sce-12 sce-15
Training 200,000 200,000 200,000 200,000 60,000 60,000 60,000 60,000 60,000
Testing 5,000 5,000 5,000 5,000 500 500 500 500 500

Dataset Split

Table D3: Dataset statistics of star graph and algorithm reasoning.

Example D.4: The example of strongly connected components without hint

Prompt:

strongly_connected_components:

A:

[[0.00.00.01.00.01.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0],
[0.00.01.00.01.00.00.00.00.00.00.01.00.00.00.0],
[0.00.00.01.00.00.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.00.00.00.01.00.00.00.00.00.00.01.00.0 0.0 0.0],
[0.00.00.00.00.00.01.00.00.00.00.00.00.00.0 1.0],
[1.00.00.01.00.01.01.00.00.00.0 1.0 0.0 0.0 0.0 1.0],
[0.00.00.00.00.00.00.01.00.00.00.00.0 1.0 0.0 0.0],
[0.00.00.00.00.00.00.00.01.00.00.00.00.01.00.0],
[0.00.00.00.00.0 0.0 0.0 0.00.00.00.00.00.00.0 0.0],
[0.00.00.00.00.00.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0],
[0.00.00.00.00.0 0.0 0.0 0.00.00.00.00.00.00.00.0],
[0.00.00.00.00.00.00.00.01.00.00.00.00.0 1.0 0.0],
[1.00.00.01.00.01.00.00.00.00.00.00.00.00.00.0]]
Response:

[0120200789021280]

D.3.2 BASELINE INTRODUCTION

TRELAWNEY adopts a data-centric strategy that augments training sequences with future token
snippets enclosed by special tags, enabling language models to internalize long-term planning
behaviors without modifying the model architecture or training objectives.

D.3.3 EVALUATION METRICS

Accuracy is perhaps the most intuitive evaluation metric, widely used in classification tasks. It
measures the proportion of correctly classified instances out of the total number of instances.

Number of Correct Predictions
Accuracy =

14
Total Number of Predictions (14

Or, in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):

TP + TN
A = 15
Y T TP L IN ¥ FP+ FN (1)
For balanced datasets or when overall correctness is the primary concern, accuracy is a great
fundamental and easily interpretable metric.

D.3.4 DETAILED IMPLEMENTATION

Unlike the Name-description dataset, the Star Graph and Strongly Connected Components datasets
are characterized by the generation of corresponding answers based on given problems, without
requiring the model to memorize all information in the samples. In these tasks, the model only needs
to learn how to generate correct answers based on input problems, rather than learning the expression
of the problems themselves. Therefore, we employ the supervised fine-tuning (SFT) strategy during
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training: setting the labels for the problem portions to ignore_index, ensuring these positions about
the problems do not participate in loss calculation and gradient updates. This approach allows the
model to focus exclusively on learning the mapping relationship from problems to answers.

Token Permutation (TPM) For TPM, we separately permute the problem and answer compo-
nents without intermixing them. Given that the Star Graph and Strongly Connected Components
datasets primarily consist of numerical elements, we configure our permutation unit to 2 tokens.
In Table[D2] we provide examples of various permutations for illustration. Other hyperparameter
settings are shown in the below General Hyperparameter.

CPC and CPD Consistent with TPM, our permutation unit also consists of 2 tokens. Other
hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter All experiments were conducted on a server equipped with 8 NVIDIA
A800 GPUs (80GB each). Training was performed using the bf 1oat 16 precision format to optimize
memory usage and computation. In our experiments, during the SFT phase, we set the maximum
sequence length to 128 for Star Graph, with a per-GPU batch size of 64 and a total batch size of
512, full parameters fine-tuning using ZeRO-2 for optimization. Moreover, we set the maximum
sequence length to 1, 500 for strongly connected components, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 3.0e — 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 10 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter,2018)
with 81 = 0.9, B2 = 0.95, and a weight decay of 0.1.

For CPC and CPD, the experimental settings are consistent with Appendix [D.2.4]

D.4 POSITIONAL BIAS

D.4.1 DATASET INTRODUCTION AND STATISTICS

Wiki2023+ (Jiang et al.} [2024b;, [Saito et al.,[2025) is a real-world benchmark composed of Wikipedia
articles published in 2023, selected to minimize overlap with standard LLM pre-training data. To
create supervision for question answering, each article is segmented into sentences and individually
fed into an LLM to generate QA pairs, with explicit annotations indicating which sentence contains
the answer. This sentence-level alignment enables precise analysis of how well models can extract
knowledge depending on its position in the training document. Wiki2023+ exhibits natural variability
in topic structure, sentence style, and fact density, making it a strong testbed for evaluating model
robustness to position and context complexity in real-world settings. The example of Wiki2023+ can
be found in the Example [D.3]

Dataset Statistics The statistical results of the Wiki2023+ dataset are presented in Table [D4]

Example D.5: The example of Wiki2023+

Passage (for continued pre-training):

When Adam Changes (French: Adam change lentement, lit. "Adam Changes Slowly") is a
Canadian animated comedy-drama feature film, directed by Jo€l Vaudreuil and released in 2023.
The film centres on Adam, an impressionable teenager growing up in smalltown Quebec who
has the unusual quirk that each time somebody makes a comment about his body, whether fair or
unfair, his body actually changes to match the comment.

Question (for SFT):

When Adam Changes, who directed the Canadian animated comedy-drama feature film?
Answer:

Joél Vaudreuil

D.4.2 BASELINE INTRODUCTION

AR (Auto-Regressive Training) is the standard training objective for causal language models. The
model is optimized to predict the next token given all previous tokens in the training document. While
effective at minimizing perplexity, this approach often results in memorization that is difficult to
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Dataset Document Question Answer
Train 2,385 5,493
Test - 1,590

Table D4: Dataset statistics of Wiki2023+. Since all the documents are seen in the training phase, the

number of documents available for testing is "-".

extract through downstream prompts, particularly when the queried information appears in the middle
or end of the document.

Shuffle Sentence randomly permutes the order of sentences in each training document. This strategy
aims to reduce the model’s reliance on rigid positional cues and mitigate positional bias. However,
disrupting the discourse structure may hinder learning, especially when sentence-level dependencies
are important.

Attn Drop (Attention Dropout) introduces stochasticity by randomly dropping attention connections
during training. This forces the model to depend less on specific token positions, reducing overfitting
to earlier context and encouraging more position-invariant representations.

D-AR (Denoising Auto-Regressive Training) applies random corruption to a subset of input tokens,
replacing them with noise while keeping the output targets unchanged. This method regularizes
training by encouraging the model to make robust predictions under partial corruption and has shown
the most consistent improvement in extracting knowledge from later document positions.

D.4.3 EVALUATION METRICS

EM metric for this problem is detailed in Appendix [D.2.3]

F1 score is defined as the harmonic mean of precision and recall:

Precision x Recall _ 2 x TP

Fl1=2x — =
Precision + Recall 2 x TP + FP + FN

(16)

where TP (True Positives) is correctly predicted positive observations; FP (False Positives) is
incorrectly predicted as positive; FN (False Negatives) is incorrectly predicted as negative; TN (True
Negatives) is correctly predicted negative observations. It is a robust metric that provides a single
value to evaluate the performance of the model, especially in scenarios with class imbalance.

D.4.4 DETAILED IMPLEMENTATION

CPC and CPD Our permutation unit consists of 3 words. However, we incorporate the original
positional information of permuted words in the original sentence during the forward propagation.
Other hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter On the Wiki2023+ dataset, we need to perform continued pre-training
to learn the knowledge in the documents, and then perform SFT on the Q&A dataset. Similar to the
setting in the Name-description dataset, we treat each document as an independent sample, padding
them to the same length using eos_token, while truncating those exceeding the specified length. In
our experiments, during the continued pre-training phase, we set the maximum sequence length to
1024, with a per-GPU batch size of 8 and a total batch size of 64, full parameters fine-tuning using
ZeRO-2 (Rasley et al. 2020) for optimization. We train with bf16 precision, an initial learning rate
of 1.0e — 4, a warm-up ratio of 0.1, and a cosine scheduler, running for 150 epochs with an early
stopping strategy. We use AdamW (Loshchilov & Hutter, 2018)) with 81 = 0.9, 82 = 0.95, and a
weight decay of 0.1. During continued pre-training, we evaluate perplexity (PPL) on the training
set at each epoch and terminate training early if PPL drops below 2 and the change in PPL between
consecutive epochs is < 0.1.
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E ANALYSIS & ALATION EXPERIMENTS

E.1 DISCUSSION: IS IT NORMAL FOR THE SAME PREFIX AND DIFFERENT SUFFIXES?

In this section, we elaborate on the phenomenon of the same prefix and different suffixes. The cause
of this phenomenon is that, in the process of permutation learning, it is inevitable to permutate the
content order within the sample. Under TPM, the original sentence is often split and recombined. For
example, given the sentence "Paul was born on 15 June 1874", token-level permutations may produce
sequences such as "Paul was born on June 1874 15" or "Paul was born on 1874 15 June". In this case,
the model will train on samples with the same prefix "Paul was born in", but the suffix may differ,
such as "June" or "1874". This represents a phenomenon: conflicts in supervisory signals may occur
during the model training optimization process, leading to a problem where one suffix probability
increases while another decreases. This is a phenomenon that is both normal and abnormal. It is
normal because it is produced during the permutation process and is widely present in reality. It is
abnormal because it indeed leads to conflicts in the supervisory signals.

During large-scale pre-training on natural corpora, although the phenomenon of "same prefix, different
suffix" is commonly observed in real-world language, we argue that such cases should be regarded
as independent samples. For example, "I come from city A" and "I come from city B" may both
appear in the corpus, but they essentially represent distinct data instances. In other words, A and B
indeed each have a 50% probability. In contrast, the samples generated through permutation methods
are artificially manipulated from the same underlying data, thereby producing different forms that
nevertheless originate from the same semantic content. Therefore, while "same prefix, different
suffix" is reasonable in natural corpora, in the context of permutation-based training it does not
constitute a new knowledge instance, but rather a perturbation of the same semantic content. Such
perturbations no longer provide beneficial diversity, but instead introduce additional learning noise.

E.2 TRAINING CONVERGENCE ANALYSIS

Figures [ET] [E2] and [E3]illustrate the training convergence curves of four methods (TPM, TPM w/R,
CPC, and CPD) across three distinct tasks. Through comparative analysis, we observe that TPM
exhibits markedly different convergence characteristics across various task types.

On the name-description dataset (Figure [ET)), although all methods eventually converge, TPM and
TPM w/R (TPM with original relative position) demonstrate significantly slower convergence rates
compared to our proposed CPC and CPD. This disparity is particularly evident in the magnified
inset, indicating that token permutation methods face optimization challenges even in relatively
straightforward text tasks.

However, when transitioning to more complex path planning (Figure [E2)) and algorithm reasoning
tasks (Figure [E3), TPM encounters substantially more severe convergence difficulties. In these tasks,
the loss reduction for TPM and TPM w/R significantly lags behind CPC and CPD, failing to achieve
desirable low loss levels even after extended training periods. Notably, in the algorithm reasoning
task, TPM maintains relatively high loss values even after 4,000 training steps.

The fundamental cause of these convergence difficulties can be attributed to the "objective inconsis-
tency" problem induced by token permutation. In TPM, identical input prefixes may correspond to
different target outputs because permutations alter the input sequence structure while the expected
outputs potentially remain unchanged. This contradiction becomes particularly pronounced in plan-
ning and algorithmic reasoning tasks. In contrast, our proposed CPC and CPD methods successfully
address this challenge by explicitly modeling positional information. They can identify and process
the relationships between permuted tokens and their target positions, thereby ensuring learning
consistency while maintaining permutation invariance. This characteristic demonstrates significant
advantages across all task types, particularly in planning and algorithmic reasoning tasks that are
highly sensitive to sequential order.

E.3 CAN BIDIRECTIONAL TRAINING ALLEVIATE THE REVERSE CURSE?

In order to verify whether bidirectional training can alleviate the reverse curse, we followed BERT’s
standard training recipe with MLM as the pre-training task.
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Figure E1: Training convergence curve on name-description dataset, where TPM w/R denotes
TPM with token position in original sentence. It can be seen that CPC and CPD have almost the
same convergence speed, while TPM and TPM w/R are difficult to converge to the optimum. This
difficulty arises mainly from token permutation, which leads to divergent supervision signals under
identical prefixes. Such inconsistency is especially detrimental in domains requiring strict sequential
dependencies, including path planning and algorithmic reasoning.

Implementation details We use bert-base-uncased (Devlin et al., 2019)) for the experiment on the
name-description dataset. Each English whole word has a 15% chance of being selected, which
is then replaced with a [MASK] token (80% chance), retained (10% chance), or replaced with a
random token (10%). Since test set answers may not fall precisely within the 15% masking interval,
we experimented with masking rates of 15%, 30%, and 80%. Hyperparameters: max_length=128,
batch_size=512 (64*8), learning_rate=8e-5, trained for 100 epochs. During evaluation, consistent
with pre-training, we appended the appropriate number of [MASK] tokens to each input based on the
expected answer length. We evaluated BERT in two modes: (1) BERT-parallel: BERT predicts these
masked positions simultaneously; (2) BERT-AR: simulating autoregressive generation by predicting
tokens sequentially, where each step uses previously generated tokens as context.
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Figure E2: Training convergence curve on path planning dataset, where TPM w/ R denotes TPM
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Figure E3: Training convergence curve on algorithm reasoning dataset, where TPM w/R denotes
TPM with token position in original sentence.

Experimental Results The experimental results are displayed in Table[ET] The results reveal several
important insights: (1) BERT’s bidirectional training struggles with the reversal curse: Despite its
bidirectional nature, BERT achieves near-zero exact match scores across all masking rates, with the
best performance at 30% masking (9.0% EM) still substantially lower than our methods. (2) Masking
rate sensitivity: BERT shows optimal performance at 30% masking, suggesting that neither too sparse
(15%) nor too dense (80%) masking effectively captures the required associations for this task. (3)
Our methods’ superiority: Both CPC and CPD significantly outperform BERT across all metrics,
demonstrating that position-aware modeling in autoregressive frameworks is more effective than
bidirectional attention for addressing permutation sensitivity.

29



Under review as a conference paper at ICLR 2026

—— Training Loss —— NamelsDesc N2D NamelsDesc D2N —— DescIsName N2D —— DescIsName D2N
Llama-2-7B TPM (EM) Llama-2-7B TPM (R-1)
6] F 100 61 [ 100
5 80 57 — |go

[} [}
4 = 41 =
. re0 < » re0 <
g E & £
33 5 3° S
r40 “g r40 ‘g
21 A 21 L

135
(=]
[
(=]

0 ~ [0 0- ~ {0
Step Step
Llama-2-7B CPC (EM) Llama-2-7B CPC (R-1)
100 12 100
6 80 10 80
8 ] 8
2, k60 g " 8 L60 é
172] [72)
8 3 6
- Lao € L0
g4 g
2,

353
=1
393
(=]

(=1

01 [o 01
200 400 600 800 1000 200 400 600 800 1000
Step Step

=g
o

Figure E4: The performance of the Llama-2-7B model changes during the training process. We can
find that due to the large number of permutations involved in the TPM training process, exacerbating
the conflicting problem of the same prefixes but inconsistent supervision signals. Whereas our
proposed CPC introduces position-aware modeling, it can be seen that the convergence is faster and
the performance improvement is more obvious.

N2D in N2D | N2D in D2N
Model | EM R-1  BLEU | EM R-1  BLEU
BERT-parallel (15%) | 0.0 122 158 0.0 130 174
BERT-parallel (30%) | 9.0 24 281 0.3 158 227
BERT-parallel (80%) | 0.0 18 159 0.0 128 175
BERT-AR (15%) 0.0 120 153 1.0 137 179
BERT-AR (30%) 23 143 180 20 148 196
BERT-AR (80%) 0.0 122 157 0.0 129 174

Llama-2-7B-CPC 76.2£0.2 91.8£0.8 93.2+0.4 | 47.5£0.3 83.2+0.6 92.0+0.4
Llama-2-7B-CPD-6L | 78.1£0.4 92.2+£0.5 94.2£0.6 | 47.9+£0.7 85.4+£0.5 93.7£0.4
Llama-3.2-1B-CPC | 78.6£0.2 91.5+0.4 92.34+0.2 | 32.6+£0.3 82.5£0.7 89.5£0.3
Llama-3.2-1B-CPD-6L | 81.5£0.4 94.0£1.2 95.64+0.5 | 62.7£0.5 84.9£0.7 87.2+£0.9

Table E1: Comparison with the bidirectional training model BERT. To eliminate the problem of
random error, we conducted five seed experiments on CPC and CPD, and the experimental results are
expressed as mean =+ standard deviation.

E.4 DOES CPC&CPD TRAINING HURT PERFORMANCE ON STANDARD TASKS?

In our main experiments, we demonstrated that CPC and CPD achieve promising performance on three
common failure modes of NTP. A natural concern, however, is that since the pre-training phase does
not involve any position-aware training objectives, extensive permutation-based training might
risk overfitting to these benchmark datasets of failure modes, potentially leading to catastrophic
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forgetting. To address this concern, we further investigate whether CPC and CPD disrupt zero-shot
performance on eight standard evaluation tasks, including BoolQ (Clark et all, 2019), PIQA (Bisk

et al.l[2020), SIQA (Sap et al.,|2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.|

2020)

ARC (easy and challenge) (Clark et all 2018)), OpenBookQA (Mihaylov et al.,[2018), and

5-shot aggregated MMLU (Hendrycks et al.,[2020)) dataset.

E.4.1

DATASET INTRODUCTION AND STATISTICS

In this section, we introduce the datasets used to evaluate the LLMs’ zero-shot and 5-shot performance,
along with the prompt examples employed in the evaluation. We also present the corresponding
dataset statistics in Table [E2]

. Bool(fl dataset is specifically designed for yes/no question answering tasks. Unlike ar-
tificially constructed queries, the questions in BoolQ originate from naturally occurring
real-world scenarios, characterized by spontaneity and openness. Each instance in the
dataset consists of three components: a question, a corresponding passage, and an answer. In
terms of task formulation, the model is presented with a passage and required to answer the
given question based on that passage, with the answer constrained to either True or False.
Since the test set does not have public answers, we use the validation set for evaluation.

Example E.1: The prompt of BoolQ

instruction:

Please answer the given ’Question’ based on the following *Passage’, and only respond
with *True’ or "False’.

input:

Passage:

In mathematics, parity is the property of an integer’s inclusion in one of two categories:
even or odd. An integer is even if it is evenly divisible by two and odd if it is not even.
For example, 6 is even because there is no remainder when dividing it by 2. By contrast,
3,5, 7, 21 leave a remainder of 1 when divided by 2. Examples of even numbers include
—4, 0, 82 and 178. In particular, zero is an even number. Some examples of odd numbers
are —5, 3, 29, and 73.

Question:

can an odd number be divided by an even number?

Answer:

. PIQAﬁ dataset is for physical commonsense reasoning. It contains questions about ev-
eryday scenarios that require practical knowledge of physical interactions, with answers
often favoring unconventional but plausible solutions. In terms of task formulation, PIQA
provides a context about a physical situation, and the model is required to choose the correct
answer between two candidate solutions (A or B), where only one reflects valid physical
commonsense.

Example E.2: The prompt of PIQA

instruction:
Please determine which of the two answers is more accurate and helpful for the following
question. You must answer with either A’ or ’B’ only.
input:
Question:
dresser
A. replace drawer with bobby pin
B. finish, woodgrain with bobby pin
LAnswer:

J

. SIQAEkSocial IQa) is a benchmark for social commonsense reasoning. Unlike datasets
focused on physical or taxonomic knowledge, it centers on understanding people’s actions

Shttps://huggingface.co/datasets/google/boolqg
Snttps://huggingface.co/datasets/ybisk/piga
"nttps://huggingface.co/datasets/allenai/social_i_ga
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and their social implications. Each instance presents an action and a question with multiple
candidate answers (A, B or C), only one of which reflects plausible social reasoning.

Example E.3: The prompt of SIQA

instruction:
You are given a situation, a question, and three possible answers. Choose the best answer
that most reasonably and socially fits the situation.
input:
Context:
Sasha protected the patients’ rights by making new laws regarding cancer drug trials.
Question:
What will patients want to do next?
A. write new laws
B. get petitions signed
C. live longer
Please respond with only the letter of the best answer (A, B, or C).
| Answer:

. Hellaqﬂ dataset is for commonsense natural language inference, specifically targeting the
ability of models to select the most plausible continuation of a given context. Each instance
presents a short context and four candidate endings (A, B, C, or D), only one of which is
correct.

Example E.4: The prompt of HellaS

instruction:

You are given a context and four possible endings. Choose the best ending that most

reasonably and logically completes the context.

input:

Context:

A boy is running down a track. the boy

A. runs into a car.

B. gets in a mat.

C. lifts his body above the height of a pole.

D. stands on his hands and springs.

Please respond with only the letter of the best answer (A, B, C, or D).
| Answer:

. Wino(fl dataset is a commonsense reasoning benchmark inspired by the Winograd Schema
Challenge, designed to address its limitations in scale and dataset-specific bias. Each
instance presents a sentence with a blank and two candidate options (A or B), only one of
which is correct.

Example E.5: The prompt of WinoG

instruction:
You are given a sentence with a blank (_) and two possible options. Choose the option
that best and most logically fills in the blank.
input:
Sentence:
The doctor diagnosed Justin with bipolar and Robert with anxiety. _ had terrible nerves
recently.
A. Justin
B. Robert
Please respond with only the letter of the best answer (A or B).
LAnswer:

* ARCe and ARCﬂ are two subsets of the AI2 Reasoning Challenge, a benchmark of
grade-school science questions. The Easy Set (ARCe) contains questions solvable by

$https://huggingface.co/datasets/Rowan/hellaswag
‘nttps://huggingface.co/datasets/allenai/winogrande
Yhttps://huggingface.co/datasets/allenai/ai2_arc
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simple retrieval or co-occurrence methods, whereas the Challenge Set (ARCc) consists of
questions that these methods fail to answer, thus requiring deeper reasoning. Each instance
is a multiple-choice question with four options (A, B, C, or D), only one of which is correct.

Example E.6: The prompt of ARCe and ARCc

instruction:
You are given a multiple-choice science question. Choose the best answer based on
reasoning and knowledge.
input:
Question:
An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Please respond with only the letter of the best answer (A, B, C, or D).
| Answer:

. OBQAE| dataset is specifically designed to evaluate advanced question-answering abilities.
Unlike simple fact-recall tasks, the questions in OpenBookQA require multi-step reasoning
and the integration of both scientific knowledge and common sense. Each instance consists
of a science question, several answer choices (A, B, C, or D), and access to a set of core
science facts (the "open book") provided with the dataset.

Example E.7: The prompt of OBQA

instruction:

You are given a multiple-choice science question. Choose the best answer based on

reasoning and knowledge.

input:

Question:

Predators eat

A. lions

B. humans

C. bunnies

D. grass

Please respond with only the letter of the best answer (A, B, C, or D).
LAnswer:

J

. MMLIE is a benchmark for evaluating multitask language understanding across a wide
range of academic subjects. Each instance is a multiple-choice question with four candidate
answers (A, B, C, or D), where the model must identify the correct option by combining
world knowledge with reasoning ability. Given the difficulty and diversity of tasks, we
randomly sample five validation examples of the same type as few-shot demonstrations
when evaluating on the test set.

"https://huggingface.co/datasets/allenai/openbookga
2https://huggingface.co/datasets/cais/mmlu
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Dateset BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU
Eval Number 3,270 1,838 1,954 10,042 9,248 2,376 1,172 500 14,042

Table E2: Statistics of nine traditional natural language processing evaluation benchmarks.

Methods BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU Avg

Original 639 455 329 250 503 240 224 276 242 355
NTP Standard 473 495 335 250 523 248 225 28.0 243 339
w PAE 9.5 495 329 250 503 239 224 276 235 294

TPM Standard 0.0 494 327 250 497 243 22,1 256 243 28.1
& All 42 485 336 246 496 2277 235 220 254 282

CPC & Embedding 0.0 484 329 245 498 21.6 238 220 244 275
¥ Transformers 8.8 492 325 253 506 241 246 21.6 23.6 289

& All 0.0 48.6 33.1 245 503 240 23.0 256 242 28.1

# Transformers 26.0 480 321 247 500 23.0 234 252 250 308

# Transformers (14-15) 48.6 49.5 336 250 505 241 226 276 256 34.1

CPD-6L ¥ Transformers (13-15) 54.0 495 33.6 250 50.1 254 224 280 259 349
# Transformers (12-15) 527 49.5 33.6 250 503 242 224 278 252 345

# Transformers (11-15) 552 49.5 33.6 250 487 266 242 276 253 351

# Transformers (10-15) 542 49.7 33.8 251 502 242 235 272 251 348

# Transformers (9-15) 302 49.5 335 252 521 272 242 268 249 326

Table E3: Performance results of various fine-tuned versions of Llama-3.2-1B on standard bench-
marks. Here, we investigate which part of the fine-tuned parameters has an impact on the original
LLMs’ ability. Original denotes the base model. All other models are fine-tuned on the name-to-
description dataset. w/ PAE indicates the position-aware embedding introduced during fine-tuning.

The ¥ xx signifies that only the parameters of component XX in the base model are trained. Trans-
formers (:—7) refers to fine-tuning all Transformer blocks from layer @ to layer j. If no specific range
is indicated, the fine-tuning is applied to all Transformer layers.

Example E.8: The prompt of MMLU

instruction:
The following are multiple choice questions (with answers) about {task type}.
input:
Question:
Same type of task question 1, answer choice, and the corresponding answer.
Same type of task question 2, answer choice, and the corresponding answer.
Same type of task question 3, answer choice, and the corresponding answer.
Same type of task question 4, answer choice, and the corresponding answer.
Same type of task question 5, answer choice, and the corresponding answer.
current question and answer choice.

LAnswer:

E.4.2 IMPLEMENTATION DETAILS & EXPERIMENTAL RESULTS

Implementation details The proposed position-aware modeling is primarily designed to mitigate
common failure modes of standard NTP, rather than to pre-train a LLM from scratch (which we leave
for future work). Therefore, when evaluating whether the general performance is affected, we remove
the position-aware modules at the testing stage, namely the position embeddings in CPC and the
position-aware block layers in CPD. Specifically, for fine-tuned models, NTP and TPM introduce no
additional components and can thus be directly evaluated with the fine-tuned model. For NTP (w/
PAE), the position-aware embeddings are incorporated during training but removed during evaluation.
Similarly, for CPC and CPD variants, we retain only the original fine-tuned base model structure
during evaluation, while the additional position-aware components are excluded.
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NamelsDescription DescriptionIsName
Method N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-3.2-1B-base
# Transformers (14-15) 62.7 74.9 77.4 933 933 49.7 66.1 693  100.0 100.0
# Transformers (13-15) 63.7 76.0 78.4 96.0 96.0 53.0 69.0 72.0 100.0 100.0
¥ Transformers (12-15) 64.0 76.3 78.9 96.3 963 533 798 729 99.0 99.0
CPD-6L ¥ Transformers (11-15) 65.3 77.5 79.9 997 99.7 547 71.7 747 993 993
# Transformers (10-15) 66.0 78.2 80.7 98.3 983 589 75.0 77.7 99.7 99.7
# Transformers (9-15) 70.3 824 84.5 100.0 100.0 59.0 75.2 779 100.0 100.0
& All 81.3 94.7 958 100.0 100.0 63.0 85.3 87.7 100.0 100.0

Table E4: Performance of the CPD variant on the name-description dataset. Complementary to Ta-
ble[E3] the performance of downstream tasks needs to be guaranteed while retaining the performance
of the original model.

Experimental Results The experimental results are summarized in Table [E3]and Table [E4} from
which we draw the following conclusions:

(1) Universality and controllability of catastrophic forgetting. Compared with the performance
of the original model (35.5% on average), even standard NTP substantially degrades the general
capabilities of the model (33.9% on average), indicating that catastrophic forgetting is a widespread
issue. However, our CPD method can effectively mitigate this phenomenon by precisely controlling
the degree of base model freezing. Specifically, for the Llama-3.2-1B model with 16 Transformer
layers, when fine-tuning only the top few layers (e.g., CPD-Transformers 11-15), the average
performance drops by merely 0.4% (from 35.5% to 35.1%), demonstrating the effectiveness of our
approach in preserving the model’s original capabilities.

(2) Impact of coupling vs. decoupling content and position. CPC introduces position-awareness
by directly adding positional embeddings to the original input embeddings. This tight coupling of
content and positional information leads to semantic drift in the learned representations. As a result,
different CPC configurations (All: 28.2%, Embedding: 27.5%, Transformers: 28.9%) all perform
significantly worse than the original model, underscoring the negative impact of inconsistent
paradigms between pre-training and fine-tuning. In contrast, CPD achieves a modular decoupling
of content and positional information through dedicated position-aware blocks, while preserving the
structural integrity of the base model. When fine-tuning only a subset of Transformer layers (e.g.,
CPD-Transformers 11-15: 35.1%), the performance remains nearly identical to that of the original
model, validating the advantage of the decoupled design.

(3) Layer sensitivity and trade-offs in fine-tuning strategies. The results reveal a trade-off between
adapting to new tasks and retaining pre-trained knowledge. When all base model parameters are
fine-tuned (CPD-AIL: 28.1%), the model achieves the best performance on position-aware tasks but
suffers from a sharp decline in general capabilities due to extensive parameter changes. Interestingly,
as more layers are fine-tuned, we observe an improvement rather than a degradation: performance
rises from 34.1% with CPD-Transformers (14—15) to 35.1% with CPD-Transformers (11-15). This
suggests that moderate parameter fine-tuning, coupled with permutation-invariant training, allows the
model to retain pre-trained knowledge while gaining additional position-aware abilities.

(4) Task-specific performance preservation. Table[E4]provides deeper insights into how our method
maintains performance on the target position-aware tasks while preserving general capabilities.
Notably, most CPD configurations show strong performance on the challenging name-description
tasks, demonstrating robust position-invariant learning. The CPD-Transformers (11-15) configuration
achieve an optimal balance, maintaining strong performance on both forward (N2D: 65.3% EM)
and reverse (D2N: 99.7% EM) name-description tasks while achieving the best preservation of
general capabilities (35.1% average). This verifies that our framework can both endow the model
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NamelsDescription DescriptionIsName
Method Parameter N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-2-7B-base
CPC 6.74B 763 92.1 93.1 100.0 100.0 47.8 83.5 923 100.0 100.0

I-L  7.07B 765 89.3 935 100.0 100.0 46.5 849 923  100.0 100.0

3L 741B 772 913 932 983 983 479 842 928 997 99.7

CPD 6L  792B 783 91.9 944 100.0 100.0 483 85.7 93.6 100.0 100.0

8L  825B 792 925 950 100.0 100.0 47.6 843 928  100.0 100.0

12-L. 893B  79.9 93.7 96.2 100.0 100.0 52.6 87.3 952  100.0 100.0
Llama-3.2-1B-base

CPC 123B 787 91.8 928 827 836 32.8 829 89.7 100.0 100.0

I-L  1.57B  79.6 91.9 930 867 867 31.5 830 88.6 100.0 100.0
3L 1.68B 805 922 937  99.6 99.6 43.7 83.8 87.9 100.0 100.0
CPD 61  1.86B 81.3 947 958 100.0 100.0 63.0 853 87.7 100.0 100.0
8L  1.98B 819 953 962 100.0 100.0 63.4 85.8 88.1 100.0 100.0
12-L. 221B 828 959 963 100.0 100.0 65.8 87.2 90.1  100.0 100.0

Table ES5: Experimental results on the reversal curse setting. i-L denotes the number of position-aware
layers, with CPD (6-L) serving as the default configuration throughout all experiments.

with permutation invariance and maintain the model’s generalization ability, preventing excessive
catastrophic forgetting from occurring.

E.5 ABLATION EXPERIMENT
E.5.1 THE NUMBER OF POSITION-AWARE BLOCKS

We conduct comprehensive ablation experiments to investigate the impact of the number of position-
aware blocks on model performance in the reversal curse setting. As shown in Table[E3] we evaluate
CPD architectures with varying numbers of position-aware layers on NamelsDescription (N2D) and
DescriptionIsName (D2N) tasks using two base models: Llama-2-7B and Llama-3.2-1B.

Our results reveal several key findings: (1) CPD consistently achieves perfect or near-perfect perfor-
mance (EM scores of 100.0) on the reversed D2N task across most layer configurations, demonstrating
their effectiveness in handling permutation-invariant tasks. (2) We observe a general trend of perfor-
mance improvement as the number of position-aware layers increases, with the 6-L configuration
emerging as an optimal balance between performance and parameter efficiency. For instance, in
the Llama-2-7B CPD model, BLEU scores on N2D improve from 91.3 (3-L) to 91.9 (6-L), while
maintaining perfect scores on D2N tasks.

Notably, the performance gains begin to plateau beyond 6 layers, with diminishing returns observed in
the 8-L and 12-L configurations. This suggests that 6 position-aware layers provide sufficient capacity
to capture the necessary positional relationships for effective permutation-invariant learning. The
consistent superiority of the 6-L configuration across both model sizes and task directions validates
our choice of CPD (6-L) as the default setting throughout our experiments.
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NamelsDescription DescriptionIsName

Method Parameter N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EMR-1 BLEU EM R-1
CPC 6.74B  76.392.1 93.1 100.0100.0 47.883.5 92.3 100.0100.0
12-L 8.93B  79.993.7 96.2 100.0100.0 52.687.3 95.2 100.0100.0

CPD  Frozen ALL 232B 48.772.4 763 283 29.6 3.3 27.8 33.0 99.7 99.7
Frozen Embedding 8.93B  73.087.9 90.9 98.3 983 47.375.7 79.6 99.0 99.0

Table E6: Experimental results on the reversal curse setting with Llama-2-7B. ¢-L denotes the number
of position-aware layers, Frozen ALL means freeze all parameters of the pre-trained AR models, and
Frozen Embedding represents only freezing the parameters of the embedding layer in the pre-trained
AR models.

E.5.2 WHETHER TO TRAIN THE PRE-TRAINED AR MODELS IN CPD

In CPD, we append multiple layers of our proposed position-aware blocks after the output layer of the
existing pre-trained AR models, effectively decoupling the target position and content representations,
with target positions serving as query vectors. A natural question arises: can we train only the position-
aware blocks while keeping the parameters of the pre-trained AR models fixed? To investigate this, we
conducted comparative experiments on the name-description dataset using Llama-2-7B, with results
presented in Table [E6] The following conclusions can be drawn: (1) Frozen ALL (training only
position-aware blocks while completely freezing pre-trained AR models parameters) demonstrates
significantly degraded performance. On the NamelsDescription N2D task, performance drops
precipitously from 79.9 (EM) and 93.7 (R-1) for CPD-12L to 48.7 (EM) and 72.4 (R-1). More
severely, on the DescriptionIsName N2D task, performance almost completely collapses, declining
from 52.6 (EM) and 87.3 (R-1) to merely 3.3 (EM) and 27.8 (R-1). This substantial performance
deterioration primarily occurs because knowledge-related content representations are predominantly
stored within the pre-trained AR models. When these parameters are frozen, the model cannot adjust
its internal knowledge representations to accommodate the position-aware mechanism. Although
position-aware blocks can theoretically store some knowledge information, their design primarily
focuses on processing positional information rather than content representation, resulting in limited
knowledge storage capacity.

(2) In contrast, Frozen Embedding (freezing only the embedding layer while allowing updates
to other parameters) exhibits performance more closely approximating the fully fine-tuned model.
On the NamelsDescription task, this strategy achieves 73.0 (EM) and 87.9 (R-1), which, while
slightly lower than the fully fine-tuned CPD-12L, significantly outperforms the Frozen ALL. On the
DescriptionIsName task, Frozen Embedding approaches the performance of the fully fine-tuned
model, with nearly identical results on the D2N task (98.3 vs. 100.0).

These results indicate that updating pre-trained AR models parameters (particularly parameters be-
yond the embedding layer) during training is crucial for effectively integrating positional information
and content representations.

E.5.3 THE UNIT OF PERMUTATION

To confirm the impact of permutation unit granularity on model performance, we conducted experi-
ments on permutation unit granularity under the reversal curse setting, and the results are shown in
Figure[E5] We can draw the following conclusions: (1) Both small and large permutation units are
detrimental to model performance. When permutation units are too small (e.g., 1-2 words), the model
is forced to learn fragmented representations of common linguistic phrases and fixed collocations,
which imposes an additional learning burden and disrupts the natural semantic coherence of language
constructs. Conversely, when permutation units are too large (e.g., 7+ words), the model cannot
effectively perceive and adapt to different degrees of contextual variations, as the permutation granu-
larity becomes too coarse to provide meaningful positional diversity during training. (2) The results
reveal that different task exhibit distinct optimal permutation unit sizes. For the N2D task within
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N2D in N2D N2D in D2N

0 i 2 3 4 5 5 7 8 9 0 i 2 3 4 5 § 7 § 5
The number of words in the permutation unit The number of words in the permutation unit
Figure E5: Effect of permutation unit size on reversal curse performance using Llama-3.2-1B-CPD
(6-L). EM scores are shown for different word-level permutation unit sizes on the name-description

dataset. Left: N2D task performance in NamelsDescription setting. Right: N2D task performance in
DescriptionIsName setting.

the NamelsDescription setting, peak performance is achieved around 3-4 words per permutation
unit, while the N2D task within the DescriptionIsName setting shows optimal performance around
4-5 words per unit. This suggests that the complexity and structure of the underlying task influence
the most effective permutation granularity. (3) The consistent decline in performance at both ex-
tremes suggests that maintaining an appropriate balance between providing positional diversity and
preserving semantic coherence is essential for effective permutation-based training.
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