
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POSITION-AWARE MODELING FOR NEXT-TOKEN
PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Next-token prediction (NTP) serves as the dominant training paradigm for large lan-
guage models (LLMs), enabling strong autoregressive (AR) generation capabilities.
Despite its success, models trained with vanilla NTP often exhibit counterintuitive
failure patterns, such as the reversal curse, factorization curse, and sensitivity to
knowledge position. These failures stem from the lack of permutation invariance
in LLMs, which arises from the fixed left-to-right token order used during teacher-
forcing supervision. To address this issue, we introduce a position-aware training
framework that enables AR models to learn from all possible permutations of the
sequence. We begin by introducing a position-aware embedding that enables LLMs
to predict the next token not only based on the preceding context, but also by incor-
porating its position within the sequence. This embedding is integrated into LLMs
through two complementary approaches: (1) Content-Position Coupling (CPC),
which injects the embedding directly into the input embedding via element-wise
addition, without altering the model architecture; and (2) Content-Position Decou-
pling (CPD), which adds modular position-aware blocks with a cross-attention
mechanism on top of AR models. In this mechanism, the position-aware embedding
serves as the query, while the hidden states from the final layer of the AR model
serve as the key and value. Experiments across three representative tasks demon-
strate that our framework consistently improves performance over strong baselines,
while maintaining architectural simplicity and convergence efficiency. Codes are
available at https://anonymous.4open.science/r/CPC-CPD.

1 INTRODUCTION

Next-token prediction (NTP) is the primary pre-training objective for large language models
(LLMs) (OpenAI, 2023; Touvron et al., 2023a). LLMs can effectively learn co-occurrence pat-
terns among tokens by optimizing the autoregressive (AR) maximum likelihood estimation objective
on large text corpora (Zhang et al., 2024), thereby facilitating the transfer of learned knowledge
to diverse applications, ranging from text generation to complex question answering and reason-
ing (Petroni et al., 2019; Hendrycks et al., 2020). NTP commonly integrates the teacher forcing
mechanism (Williams & Zipser, 1989) during the training phase and employs AR at inference
time (Bachmann & Nagarajan, 2024). Owing to its significant advantages-notably in training effi-
ciency (Gloeckle et al., 2024; Li et al., 2024), gradient stability (Chen et al., 2024), and amenability to
parallel computation (Li et al., 2021; Rasley et al., 2020), NTP has been established as a cornerstone
in the pre-training of mainstream LLMs (OpenAI, 2023; Touvron et al., 2023a; Liu et al., 2024a;
Jiang et al., 2024a; Bai et al., 2023).

Despite its long list of achievements, existing research has discovered that models trained via
vanilla NTP can surprisingly exhibit counterintuitive failure patterns (Berglund et al., 2024; Lin
et al., 2024; Lv et al., 2024; Bachmann & Nagarajan, 2024; Kitouni et al., 2024; Allen-Zhu & Li,
2024; Saito et al., 2025). For instance, they may suffer from (1) the reversal curse (Berglund
et al., 2024; Lin et al., 2024; Lv et al., 2024), where learned factual associations (e.g., "A is B")
fail to generalize to their inverse form (e.g., "B is A"); (2) the factorization curse (Kitouni et al.,
2024), which arises when the model, trained on a specific decomposition of the token sequence
(e.g., left-to-right), fails to represent the same joint distribution under alternative factorizations; and
(3) the knowledge position sensitivity (Allen-Zhu & Li, 2024; Saito et al., 2025), where factual
information encoded during training is only reliably accessible when it appears in early positions of

1

https://anonymous.4open.science/r/CPC-CPD

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Joint probability across different permutations on the same sample under three task types.
Our method maintains nearly consistent joint probability across different permutations, while both
NTP and TPM fail to achieve probability invariance. τ (i) denotes a specific permuted token order.
For more detailed experimental settings and more examples, see Appendix D.1.

the training document, while knowledge located later is often unrecoverable during inference, even
with elaborately designed prompting. These failure patterns reveal a shared deficiency: the lack of
permutation invariance in vanilla NTP. Specifically, models trained only on the fixed left-to-right
sequence fail to maintain consistent joint probability distributions across different permutations of the
same content. As an example, when exposed to the sentence "Paris is the capital of France" during
training, the model is optimized to maximize the joint probability of that particular token ordering.
Conversely, the semantically equivalent permutation "The capital of Paris is France" receives a
probability approaching zero under the learned distribution. As illustrated in Figure 1, vanilla NTP
assigns high probability only to the original sequence during training, while probabilities for other
permutations (i.e., τ (·)) drop nearly to zero. This deficiency hinders the model’s ability to generalize
to alternative token orders, thereby impairing its performance across a wide range of tasks, including
natural language understanding, algorithmic reasoning, and planning.

Existing research that mitigates these pitfalls can be divided into two major directions. Data-centric
strategies include data rewriting and token permutation (TPM) (Golovneva et al., 2025; Guo et al.,
2024) to encourage model learning under diverse token factorizations, and structural reorganization
of training data to break the inherent left-to-right learning pattern of NTP, e.g., by exposing future
tokens in advance to models (Thankaraj et al., 2025). Model-level work equips AR models with
bidirectional attention mechanisms to better capture global contextual dependencies (Lv et al., 2024).

However, there are two primary challenges: (1) For data-centric methods, data rewriting typically
relies on advanced LLMs (e.g., GPT-5), which inevitably introduce hallucinations. Moreover, TPM
under vanilla NTP often causes different target tokens to share identical prefix sequences , creating
supervised label conflicts that undermine training stability.1 As shown in Figure 1, similar to NTP,
TPM struggles to assign consistent probabilities across various permutations, even after sufficient
training, and especially in planning and algorithm reasoning, it underperforms compared to
vanilla NTP. (2) For methods that involve modifying the model architecture or training objective,
making them difficult to generalize across different backbone architectures. Moreover, applying such
architecture or objective changes directly to pre-trained LLMs creates a significant mismatch between
the fine-tuned and the original model, potentially degrading acquired abilities.

In this work, we leverage token permutation to expose the model to diverse token orderings, thereby
encouraging the model to learn position-agnostic representations and ultimately achieve permutation
invariance. To address the inevitable issue of conflicting supervision signals introduced by TPM,
where different ground truths are associated with the same prefix, we augment the vanilla NTP objec-
tive with position-aware modeling, explicitly encoding the positional information of the target token.
Specifically, we introduce a single learnable base positional embedding and then rotate it to arbitrary
positions via rotary position embedding (RoPE) to generate the target position-aware embeddings. By
incorporating these embeddings, the model learns to predict the next token not only based on the pre-
ceding content but also on its position within the sequence, thereby mitigating conflicting supervision
signals of token permutations. Concretely, we introduce two complementary approaches to integrate
target position-aware embeddings: (1) Minimal modification, Content-Position Coupling (CPC):
This approach preserves the original AR architecture and directly integrates the target position-aware

1A detailed discussion of this issue is provided in Appendix E.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

embeddings (i.e., position) into input embeddings (i.e., content) of permuted sequences through
element-wise addition, introducing only minor modifications to the input layer of models. As shown
in Figure 1, CPC can maintain almost the same joint probability for different permutations. (2) Incre-
mental module, Content-Position Decoupling (CPD): While CPC provides a lightweight solution,
its direct integration of target position-aware embedding and input embeddings may degrade the
capabilities acquired during pre-training. To address this, we further propose CPD, which explicitly
decouples content and positional information by incorporating incremental position-aware blocks
on top of the pre-trained AR models. These modular blocks employ cross-attention mechanisms,
where target position-aware embeddings serve as queries and the hidden states of the pre-trained AR
models serve as keys and values, without modifying the original input representation. Crucially, CPD
requires no architecture changes and can be integrated into any pre-trained AR models as a learnable
module, enabling position-aware adaptation without compromising the model’s original capabilities.
We summarize our contributions below.

• We reveal that seemingly disparate failure patterns in LLMs actually stem from a single fundamen-
tal limitation: the lack of permutation invariance under vanilla NTP training, which particularly
impairs models’ planning and algorithm reasoning capabilities.

• We propose the position-aware modeling framework that enables models to predict the next token
not only based on the preceding content, but also by incorporating its position within the sequence,
thereby achieving permutation invariance.

• Extensive experiments demonstrate that our proposed methods significantly enhance model
robustness to token order, enabling smaller LMs to outperform larger backbone models. Notably,
CPD achieves a balance between mitigating NTP failures and preserving original capabilities.

2 RETHINKING FAILURE PATTERNS IN NTP

2.1 PRELIMINARIES

Consider a sequence s = (p, r), where p = (p1, p2, . . . , p|p|) denotes the prompt with position
index τ (1) = {0, 1, · · · , |p| − 1} and r = (r1, r2, . . . , r|r|) denotes the response with position index
τ (2) = {0, 1, · · · , |r| − 1}. Each token p and r is drawn from a fixed-size vocabulary V . For each
position tth in the sequence s, let s<t denote the subsequence consisting of the first t− 1 tokens and
st denote the token at position t. Suppose we have a NTP language model Pθ parameterized by θ,
such that Pθ(st | s<t) denotes the probability that the model assigns to the tthtoken st, conditioned
on the preceding sequence s<t. For the given sequence s, the joint probability is axiomatically
defined analogous to the chain rule of probability:

Pθ(r | p) =
|r|∏
t=1

Pθ

(
rt | p, r<t; τ

(1), τ
(2)
<t

)
(1)

Here, explicitly displaying the position index (τ (1), τ (2)<t) in Eq. 1 does not imply that it is tokenized
as part of the input sequence. Instead, it serves to instruct the model’s internal positional encoding
mechanism in assigning positional information to each token.

Training-time next-token prediction via teacher-forcing To train the above NTP model, main-
stream LLMs adopt teacher forcing to maximize the log-probability sum of the next token, where the
model is trained to predict each token rt using the ground-truth r<t as input. The teacher-forcing
objective Jteacher-forcing(θ) on dataset D can be formulated as follows:

Jteacher-forcing(θ) = E(p,r)∼D [logPθ(r | p)] = ED

 |r|∑
t=1

logPθ

(
rt | p, r<t; τ

(1), τ
(2)
<t

) (2)

Inference-time next-token prediction via autoregression During inference, the model is con-
ditioned on a given prompt p and generates response tokens r̂ by sequentially sampling from the
learned distribution Pθ. Specifically, for each step t, the model samples a token r̂t ∼ Pθ(· | p, r̂<t),
where r̂<t represents the previously generated tokens. The sampled token r̂t is appended to the
existing context and then provided as input to the model for the next prediction. A full sequence is
formed by this autoregressive generation process continuing for |r| steps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 MITIGATING FAILURE PATTERNS IN NTP

Building on the insight by Kitouni et al. (2024) that consistency across token factorizations improves
knowledge retrieval, we generalize this goal to a broader perspective. We argue that the observed
failure patterns in NTP, namely the reversal curse, factorization curse, and knowledge position
sensitivity, reflect a shared underlying limitation in vanilla NTP: the lack of permutation invariance.

Permutation invariance Let τ (i,n) ∈ Sn be the ith sampled permutations, where Sn is the set of
all n! permutation of the indices {1, 2, . . . , n}. Thus, τ (i,n) = {τ (i,n)1 , τ

(i,n)
2 , . . . , τ

(i,n)
n }. Applying

permutation τ (i,|p|) and τ (i,|r|) reorders sequence tokens accordingly, yielding permuted prefixes
pτ(i,|p) and responses rτ(i,|r|) . Then, for two sampled permutations τ (i,|p|) ∈ S|p|, τ

(i,|r|) ∈ S|r|,
the permutation invariance expect model Pθ could assign approximately consistent joint probability
across different permutations of the input. With an abuse of notation, let pτ(p) and rτ(r) denote a
permutation of prompt and response, respectively. Permutation invariance can be formulated as:

|r|∏
t=1

P θ

(
r
τ
(r)
t

| pτ(p) , r
<τ

(r)
t

; τ (p), τ
(r)
<t

)
≈

|r|∏
t=1

P θ

(
r
τ
(2)
t

| pτ(1) , r
<τ

(2)
t

; τ (1), τ
(2)
<i

)
(3)

where τ (1) and τ (2) respectively denote the token order of the prompt and the response in natural
language during training. Importantly, permutation invariance does not mean models assign identical
joint probabilities to any permutation. Instead, it refers to semantically equivalent permutations in
which, when the token order is permuted, the model’s internal positional encoding is correspondingly
adjusted so that the semantic remains consistent with the underlying content.

To achieve permutation invariance in Eq. 3, the straightforward strategy is to permute the training
data sufficiently and then optimize vanilla NTP, which can be formulated as follows:

Lθ = E(p,r)∼DEτ(p)∼S|p|,τ(r)∼S|r|

 |r|∑
t=1

logPθ

(
r
τ
(r)
t

| pτ(p) , r
<τ

(r)
t

; τ (p), τ
(r)
<t

) (4)

Although Eq. 4 ensures that the positional information is adjusted accordingly after permutation, this
operation inherently introduces a fundamental conflict: given the same prefix, the model is required
to optimize for different next-token targets, which results in conflicting supervision signals.
Moreover, prior studies (Kitouni et al., 2024) have demonstrated that the masked language modeling
(MLM) objective is effective in alleviating both the reversal curse and the factorization curse. It
randomly masks tokens at arbitrary positions and predicts them using bidirectional context, allowing
the model to learn representations that are inherently robust to various token orders. However,
it has not been incorporated into the prevailing pre-training paradigms of existing LLMs, as its
implementation often requires modifications to the internal attention mechanism (Lv et al., 2024)
or complete model re-training. Such interventions may conflict with the intrinsic AR pre-training
objective or impose substantial computational overhead. To achieve the permutation invariance within
the pre-trained AR models, it is desirable to combine the AR structure of NTP with the positional
flexibility of MLM, i.e., enabling the model to learn from the same training sample under arbitrary
token permutations during the training process. This requires explicitly identifying which token is to
be predicted under each permutated context.

3 METHODOLOGY

Considering the conflicting supervision signals brought by token permutations, we propose a target
position-aware training framework, introducing target position information into NTP. By extending
Eq. 1, we perform NTP conditioned not only on the content and positions of preceding tokens,
but also on the position of the target token. Specifically, the probability of target token sτt can be
formulated as follows2:

Pθ(sτt | s<τt) = Pθ

(
sτt |

{
σ(Embed(sτj),Pos_Embed(τj), zτj+1)

}
j<t

)
(5)

where zτj+1 (j+1 ≤ t) is the target position-aware embedding of position j+1, Embed(sτj) denotes
the embedding of the content sτj , and the position encoding Pos_Embed(·) can be either the absolute

2Without loss of generality, NTP is not limited to prefix-prompted generation, as it can likewise be trained
directly on prompt tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Embedding

Transformer Block

Output

Embedding

Transformer Block

Position-aware Block

Output

Cross Attention

Add & Norm

Feed Forward

Input IDs
...

Position-aware Embeds

Target Position IDs

Input IDs
...

Position-aware Embeds

Norm

......
...

Attention Mask

...

...

Target Position IDs

...

...

Content-Position Coupling Content-Position Decoupling

Figure 2: Overview of the proposed target position-aware framework, illustrating the Content-Position
Coupling (CPC) (left) and Content-Position Decoupling (CPD) (right) approaches.

positional encoding or the relative positional encoding method. σ(·, ·, ·) represents the fusion function
among token embeddings, positional encodings, and target position-aware embeddings.

We instantiate this framework in two complementary ways, as shown in Figure 2: (1) Content-
Position Coupling (CPC), which implicitly informs the model of the target position by injecting
a lightweight position embedding into the input embedding. CPC requires no modification to the
model architecture and minimally intervenes with the pre-trained AR model. (2) Content-Position
Decoupling (CPD), which introduces a modular position-aware block on top of the pre-trained AR
model, thereby decoupling content and target position information.

3.1 TARGET POSITION-AWARE EMBEDDING

To ensure compatibility with diverse pre-trained AR models, the target position–aware embedding
should satisfy two key requirements: (1) Length extrapolation. As context windows in mainstream
pre-trained AR models continue to increase, the target position-aware embedding should generalize
to long context. (2) Parameter efficiency. In long context settings, allocating a learnable embedding
for each target position would cause parameters to grow linearly when the sequence length increases,
which is impractical in deployment. Therefore, we design a positional encoding scheme that is both
parameter-efficient and length-extrapolative.

Specifically, we first learn a shared base positional embedding epos ∈ R1×dim, where dim is the
embedding dimension, and then rotate it according to the position ids of the target token using
RoPE-1D (Su et al., 2024). Therefore, the position-aware embedding zτj+1 can be formulated as:

zτj+1 = RoPE-1D(epos, τ j+1) (6)

3.2 CONTENT-POSITION COUPLING

To minimize architectural modifications, we propose a content-position coupling training strategy.
Specifically, we implement the fusion function σ(·, ·, ·) in Eq. 5 by integrating the target position-
aware embedding zτt directly into the embeddings of the input sequence. This integration avoids
additional changes to the model’s architecture or decoding behavior and can be formulated as:

σ(Embed(sτj),Pos_Embed(τj),zτj+1
) = ϕ(Embed(sτj)⊕ zτj+1

,Pos_Embed(τj)) (7)

where ϕ(·, ·) is token–position integration function. Under absolute positional encoding schemes,
ϕ(·, ·) is typically implemented as an element-wise addition to the token embedding at the input layer.
In contrast, relative positional encoding mechanisms, such as RoPE, integrate ϕ(·, ·) directly into the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

self-attention mechanism. ⊕ denotes the interaction operation between content and target position.
The interaction operation can be instantiated using either parametric or non-parametric methods,
such as direct addition, concatenation followed by a linear projection, or other fusion strategies. For
simplicity of design, we use element-wise addition as the default setting in ⊕. We provide the training
pseudo-code and concrete example for CPC in Algorithm C1 and Figure C1, respectively.

While CPC requires minimal modifications in the pre-trained AR model’s input layer, its direct
coupling of content (input embedding) and target position information (target position-aware em-
bedding) introduces the potential semantic drift (Yu et al., 2020). Specifically, during pre-training,
the model primarily learns to predict tokens based on their preceding content. When position-aware
embeddings are directly integrated into the input representation during permutation training, the
content representations learned during pre-training are modified, which could degrade the model’s
acquired abilities. This motivates us to explore another way of separating content from position.

3.3 CONTENT-POSITION DECOUPLING

Reformulation Similarly, we adhere to the principle of preserving the original architecture of
pre-trained AR models. To decouple content and position, a straightforward way is to reformulate the
CPC objective in Eq. 7 as follows:

σ(Embed(sτj),Pos_Embed(τj),zτj+1) = φ
(
ϕ(Embed(sτj),Pos_Embed(τj)), zτj+1

)
(8)

where j+1 ≤ i, and φ(·, zτj+1
) denotes the target position-aware conditioning function that performs

NTP while separating the content ϕ(Embed(sτj),Pos_Embed(τj)) and the target position zτi .

From Eq. 8, we observe that the key challenge now lies in how to design the target position-aware
conditioning function, φ(·, zτi), to incorporate zτi into the workflow of pre-trained AR models. To
this end, we design the position-aware block that integrates the target position information through
cross-attention rather than coupling it with the input embeddings.

Overview The overall structure of CPD is illustrated on the right side of Figure 2. We adopt
an incremental and modular design that allows integration with the existing AR-based models.
Specifically, we insert M position-aware blocks on top of the pre-trained AR models, which perform
cross-attention between the final-layer hidden states and the target position-aware embedding zτi ,
enabling the model to perform NTP conditioned on both content and target position.

Position-aware Block Let S = BaseModel(sτ) ∈ R|sτ |×dim represent the hidden states of the
pre-trained AR model’s final layer. To decouple content and target position information, we design
a cross-attention mechanism within the position-aware block, where the query comes from the
target position-aware embedding, and the key and value come from the content (input) sequence
representations S. For input sequence indices τ = [τ1, τ2, . . . , τ|sτ |] ∈ R1×|sτ |, with the target
position set τT = [τ2, . . . , τ|sτ |] ∈ R1×|sτ |−1, the hidden state H(ℓ) of ℓth position-aware block can
be formulated as follows:

H(ℓ) = T (ℓ) + FFN(LN(T (ℓ))), where (9)

T (ℓ) = LN(Q(ℓ)+Attcross(Q
(ℓ),K(ℓ),V (ℓ))) (10)

Q(ℓ) = RoPE-1D(H(ℓ−1)Wq
(ℓ), τi), K

(ℓ) = RoPE-1D(SWk
(ℓ), τ), V (ℓ) = SWv

(ℓ) (11)

Attcross(Q
(ℓ),K(ℓ),V (ℓ)) = Softmax(Q(ℓ)(K(ℓ))T +M)V (ℓ) (12)

where H(0) = epos, and W
(ℓ)
q ,W

(ℓ)
k ,W

(ℓ)
v ∈ Rdim×dim are learnable weights in the ℓth layer, M

is attention mask, LN is the layer-norm function, and FFN is the feed forward network. As shown
in Figure 2, the attention mask M ∈ {0,−∞}|τT |×|τ | ensures causal attention during training: the
i-row corresponds to target position τi, where Mij = 0 if i ≤ j and −∞ otherwise. This means that
each target position τi only attends to the key-value pairs corresponding to its preceding tokens s<τi .
The complete CPD instantiates the target position-aware conditioning function φ(·, zτj+1

) in Eq. 8
by stacking M position-aware blocks, yielding the final representation H(M) for NTP. We provide
the training pseudo-code of CPD in Algorithm C2. It is worth noting that in the training optimization
stage, CPC and CPD perform teacher-forced NTP (Eq. 4) based on Eq. 7 and Eq. 8, respectively. At
inference time, both CPC and CPD perform standard NTP via AR decoding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We evaluate the performance of CPC on the following representative tasks: reversal curse, factor-
ization curse, and positional bias.

4.1 REVERSAL CURSE

Settings Datasets: Following previous work (Berglund et al., 2024; Lin et al., 2024; Lv et al.,
2024), we evaluate CPC and CPD on the name-description dataset (Berglund et al., 2024). Detailed
descriptions and statistics of the datasets are provided in Appendix D.2.1. Baselines: NTP, Token
Permutation (TPM), BICO (Lv et al., 2024), and SPT (Guo et al., 2024). We evaluate all methods
on Llama-2-7B (Touvron et al., 2023b), Llama-3-8B (Grattafiori et al., 2024), and Llama-3.2-1B.
Introduction and implementation details of all methods are provided in Appendix D.2.2 and D.2.4,
respectively. Evaluation Metrics: We use exact match (EM), ROUGE-1 (R-1), and BLEU scores.
4.1.1 EXPERIMENTAL RESULTS

Table 1 reports experimental results under the reversal curse setting. We can draw the following
conclusions: (1) On all metrics, CPC and CPD are significantly better than all baselines, suggesting
that explicitly incorporating position information can effectively mitigate the problem of inconsistent
information about the direction of the data during the training and testing phases. (2) Llama-
3.2-1B+CPD (with 6 position-aware blocks adding 0.8B parameters) achieves results superior to
larger-scale models, including Llama-2-7B and Llama-3-8B, and even surpasses Llama-3-8B+CPD
in some ways. This demonstrates that we can endow smaller models with permutation-invariant
capabilities by incorporating additional CPD modules. Meanwhile, we provide more experiments
on the number of position-aware blocks in the Appendix E.5.1 and the effect of whether or not
to train the pre-trained AR models on CPD performance in Appendix E6. Moreover, increasing
additional parameters does not affect convergence speed. We find that CPD and CPC exhibit almost
identical convergence behavior, both significantly superior to TPM, as shown in Figure E1. (3)
While TPM can alleviate the reversal curse, it exhibits degraded performance on the N2D task of
NameIsDescription compared to standard NTP. The primary reason is that altering the original token
ordering during training tends to produce conflicting optimization objectives where identical prefixes
map to different targets. As shown in Figure E4, this results in slow training optimization and unstable
performance fluctuations. Furthermore, to assess whether permutation-based training affects the
original performance of pretrained models, we evaluate model capabilities before and after training
on nine standard NLP benchmarks. Appendix E.4 presents a detailed evaluation, from which we
conclude that CPC degrades LLM performance on NLP benchmarks. In contrast, CPD is able to
preserve the original performance after the Position-aware Blocks are removed. Moreover, since
the reversal curse intuitively can benefit from bidirectional training, we also compared the classical
bidirectional training model BERT in Appendix E.3.

4.2 FACTORIZATION CURSE

Settings Datasets: Following prior work (Kitouni et al., 2024; Thankaraj et al., 2025), we ex-
periment on the Star Graph dataset (Bachmann & Nagarajan, 2024) and the strongly connected
components algorithm from CLRS-Text (Markeeva et al., 2024). Detailed introduction and statistics
of the datasets are provided in Appendix D.3.1. Baselines: NTP, TPM, and TRELAWNEY (Thankaraj
et al., 2025). Consistent with previous work (Thankaraj et al., 2025), we conduct experiments using
Llama-3.2-1B, as models at the 1B scale typically lack task planning capabilities without fine-tuning.
Introduction and implementation details of all methods are provided in Appendix D.3.2 and D.3.4,
respectively. Evaluation Metrics: Accuracy is used to evaluate the performance of the model.

4.2.1 EXPERIMENTAL RESULTS

Star Graph Based on experimental results shown in Table 2, the following key conclusions can
be drawn: (1) NTP struggles with path planning, especially as graph complexity increases. Its
accuracy drops from 0.50 on G(2, 5) to 0.05 on G(20, 5), indicating difficulty in learning "difficult
token" under teacher forcing. (2) TPM performs poorly, with near-zero accuracy across various
star graphs. Permutations introduce conflicting prefix-target pairs, making optimization unstable,
as also evidenced by its failure to converge (Figure E2). (3) Although TRELAWNEY achieves
reasonable performance through data augmentation, it relies on carefully designed enhancement
strategies, such as pre-planning which tokens the model should learn. Without designed prompting, its
performance on the longer path planning task G(2, 10) remains limited at 0.50. In contrast, our CPC

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method
NameIsDescription DescriptionIsName

N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1

Llama-2-7B-base
NTP 77.7 91.5 93.2 0.00 0.00 0.00 19.9 25.4 91.7 91.7
TPM 47.7 84.1 86.1 99.7 99.7 17.3 78.0 82.3 98.7 98.9
SPT* N/A N/A 83.6 100.0 100.0 N/A N/A 84.3 100.0 100.0
BICO 68.7 89.4 91.1 99.7 99.7 2.00 24.1 26.9 100.0 100.0
CPC 76.3 92.1 93.1 100.0 100.0 47.8 83.5 92.3 100.0 100.0
CPD 78.3 91.9 94.4 100.0 100.0 48.3 85.7 93.6 100.0 100.0

Llama-3-8B-base
NTP 73.3 91.8 94.5 0.0 0.0 0.0 17.1 24.0 99.7 99.7
TPM 56.3 82.6 87.3 94.6 94.6 24.8 83.9 85.1 100.0 100.0
BICO 63.7 87.6 91.3 92.3 92.3 0.0 18.1 24.8 100.0 100.0
CPC 87.0 95.6 96.9 100.0 100.0 59.2 86.7 89.3 100.0 100.0
CPD 88.6 97.2 98.3 100.0 100.0 62.9 87.2 89.9 100.0 100.0

Llama-3.2-1B-base
NTP 75.0 76.9 79.3 0.00 0.00 0.00 2.9 7.7 91.7 91.7
TPM 46.7 85.2 86.5 95.7 95.7 22.3 80.7 84.7 97.3 97.3
BICO 60.3 74.5 77.8 37.0 37.3 0.0 19.2 23.8 97.7 97.7
CPC 78.7 91.8 92.8 82.7 83.6 32.8 82.9 89.7 100.0 100.0
CPD 81.3 94.7 95.8 100.0 100.0 63.0 85.3 87.7 100.0 100.0

Table 1: Experimental results under the reversal curse setting across various Llama models. Results
of method marked with * are from Guo et al. (2024).

Method Path planning Algorithmic reasoning
G(2, 5) G(5, 5) G(20, 5) G(2, 10) scc-4 scc-5 scc-11 scc-12 scc-15

NTP* 0.50 0.20 0.05 0.50 1.00 0.99 0.62 0.57 0.27
TPM 0.00 0.00 0.00 0.00 1.00 0.53 0.00 0.00 0.00

TRELAWNEY* 1.00 1.00 1.00 0.50 1.00 0.98 0.72 0.71 0.48
CPC 1.00 1.00 1.00 0.99 1.00 1.00 0.97 0.99 0.84
CPD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93

Table 2: Experimental results for path planning (star graph G(d, l) with d paths of length l from start
node) and algorithmic reasoning (strongly connected components, denoted as scc-i where i represents
connected graph size). Results of method marked with * are from from Thankaraj et al. (2025).

and CPD methods consistently reach near-perfect accuracy (1.00), demonstrating the effectiveness of
position-aware modeling in this path planning task.
Strong Connected Components As shown in Table 2, a similar trend is observed in the strongly
connected components (SCC) benchmarks. NTP maintains high accuracy on scc-4 and scc-5 but
collapses on larger connected graphs, dropping to 0.27 on scc-15. TPM completely fails beyond
scc-5, with 0.00 accuracy on scc-11 through scc-15, revealing that permutation exposure without
structural position grounding is insufficient for generalization. As shown in Figure E3, it is also clear
that TPM struggles to converge during training, which provides further evidence of the conflicting
supervision signals caused by permutations. TRELAWNEY shows improved robustness, but its
performance drops significantly on scc-15 (0.48). In contrast, CPC and CPD both maintain strong
performance across all scales. CPD achieves perfect accuracy (1.00) on scc-4 through scc-12 and
still reaches 0.93 on scc-15, outperforming all baselines and demonstrating superior scalability and
robustness to permutation.

4.3 POSITIONAL BIAS

Settings Datasets: Following previous work (Saito et al., 2025), we evaluate CPC and CPD in
real-world collections of Wiki2023+ (Jiang et al., 2024b; Saito et al., 2025) that are new knowledge
for Llama-2. See Appendix D.4.1 for more details. Baselines: Next-token prediction (NTP), Sentence
Shuffle (SS), Attn Drop (AD), and D-AR (Saito et al., 2025). Details are provided in Appendix D.4.2.
Evaluation Metrics: We adopt Exact Match (EM) and F1.

4.3.1 EXPERIMENTAL RESULTS

Table 3 shows the performance of CPC and CPD on the Wiki2023+ dataset of the movie domain
collected in the real world, and we can draw the following conclusions: (1) CPC and CPD can be
effectively applied to learn new knowledge in realistic scenarios, enabling the model to perceive

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method ←start —————————————————————– end→ Average
EM1 / F11 EM2 / F12 EM3 / F13 EM4 / F14 EM5 / F15 EM6 / F16

NTP* 40.9 / 51.4 6.3 / 20.5 8.1 / 29.8 11.7 / 35.7 11.6 / 37.8 10.7 / 36.4 14.9 / 35.7
SS* 51.6 / 65.7 14.7 / 43.2 15.6 / 43.5 20.6 / 46.8 24.0 / 50.8 19.8 / 46.4 24.4 / 49.4
AD* 58.6 / 71.1 10.2 / 29.8 14.0 / 36.6 17.0 / 38.6 13.2 / 42.8 13.3 / 39.7 21.0 / 43.1

D-AR* 60.1 / 73.7 26.9 / 53.1 23.4 / 52.9 26.0 / 51.7 24.8 / 52.2 21.3 / 48.2 30.4 / 55.3
CPC 68.8 / 85.9 29.4 / 66.2 37.2 / 69.8 35.9 / 63.2 38.3 / 64.0 30.6 / 55.8 40.0 / 67.5
CPD 69.3 / 86.2 32.1 / 68.4 39.5 / 71.2 36.3 / 64.9 39.0 / 65.8 31.2 / 57.3 41.2 / 69.0

Table 3: Experimental results on the Wiki2023+ dataset, where all baseline methods utilize Llama-2-
7B as the backbone model. Results of methods marked with * are from Saito et al. (2025).

knowledge distributed in different locations in a balanced manner. Specifically, compared to the
best baseline method, D-AR, CPC achieves an average improvement of 10.0% in EM, while CPD
realizes a significant improvement of 10.8%. Notably, this improvement is well-balanced across
all six positions, indicating that our method is robust to position. For example, from EM1 to EM6,
the enhancement of CPD compared to D-AR is 9.2%, 5.2%, 16.1%, 10.3%, 14.2%, and 9.9%,
respectively, without obvious position bias, which fully proves the consistency and effectiveness of
our proposed position-aware modeling in dealing with novel knowledge learning.

4.4 EFFICIENCY

To investigate whether position-aware training substantially increases training and inference cost, we
conduct a statistical analysis of runtime results on the reversal curse task under the same software
and hardware environment. Experimental results are presented in Table 4, and the key findings
are summarized below. (1) Compared to vanilla NTP, TPM increases training time by 25% while
maintaining identical parameters, FLOPs, and approximate inference time. This additional cost
arises solely from the dynamic permutations applied to training samples. However, TPM achieves
only 22.3% EM, as the conflicting supervision signals introduced by different permutations lead
to significant training instability. (2) Building upon TPM, CPC introduces target position–aware
embeddings at the input layer. While CPC introduces additional parameters, it maintains training
and inference times nearly identical to those of TPM. Furthermore, CPC improves EM by 10.5%,
demonstrating that it achieves performance gains without extra computational cost. (3) CPD achieves
a balance between performance gains and computational costs. Although it introduces additional
blocks (increasing parameters by 51%), the resulting overhead remains acceptable for deployment.
Compared to TPM, CPD-6L incurs a moderate increase of 38.3% in training time and 50% in FLOPs.
In return, it achieves the highest EM of 63.0%, justifying the additional computational overhead.

Model Method Parameter Train Time FLOPs Inference samples Inference Time EM

Llama-2-7B CPD 6-L 8.25B 6846.25 2.65e±18 1200 3815.25 48.3

Llama-3.2-1B

NTP 1.23B 1278.04 4.21e±17 1200 1624.76 0
TPM 1.23B 1603.81 4.21e±17 1200 1647.52 22.3
CPC 1.23B 1612.93 4.21e±17 1200 1635.82 32.8

CPD 6-L 1.86B 2217.33 6.33e±17 1200 1967.20 63.0

Table 4: Efficiency statistics of training and inference stages on the name-description dataset (difficult
D2N in N2D’s reverse task), where Train Time and Inference Time are in seconds. During
inference, we use greedy decoding, decoding one sample at a time to ensure performance.

5 RELATED WORK

Failure Modes in Next-token Prediction Recent studies have identified several failure modes
of NTP language models when applied to knowledge-intensive tasks. The reversal curse refers
to the inablity of the models to generalize bidirectionally due to their sensitivity to orderings of
tokens (Berglund et al., 2024). The factorization curse generalizes this issue: models tend to overfit to
a specific decomposition of the joint token distribution, failing to recover the same information under
alternative factorizations (Kitouni et al., 2024). Positional bias denotes the diminished capacity of
LLMs to retrieve parametric knowledge that was stored in non-initial positions of training documents,
particularly when prompted by question answering (Allen-Zhu & Li, 2024; Saito et al., 2025). It’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

worth noting that this contrasts with another line of work that examines inference-time inter-segment
bias, where the model’s output varies with the ordering of multiple input units (An et al., 2024;
Liu et al., 2024b; Ko et al., 2020; Ma et al., 2021; Hofstätter et al., 2021; Peysakhovich & Lerer,
2023). Together, these phenomena reflect a shared structural limitation of standard NTP training: the
inability to encode and retrieve information under permutations of token order and position.

Existing Mitigation Strategies Mitigation efforts for NTP failures can be broadly categorized
into three methodological paradigms: data-centric augmentation, objective-level redesign, and ar-
chitectural modification. Data-centric strategies mitigate failure patterns by augmenting training
data with reordered or reversed sequences. Several works address the reversal curse by injecting
reversed relational examples (Allen-Zhu & Li, 2023; Golovneva et al., 2025) or applying controlled
permutation of semantic units (Guo et al., 2024). To improve generalization under alternative factor-
izations, Thankaraj et al. (2025) propose inserting future goals via lookahead tokens. For positional
bias, previous studies show that data reordering techniques such as sentence shuffling (Allen-Zhu
& Li, 2024) or exposing knowledge in earlier positions (Saito et al., 2025) can partially alleviate
retrieval failures. Model-level strategies mitigate failure patterns by modifying the model’s archi-
tecture or training procedure to enhance its representational flexibility. Jiang et al. (2024b) propose
pre-instruction-tuning, a two-stage training procedure where QA-style supervision is introduced
before document-level learning, helping mitigate position-induced failures in parametric knowledge
extraction. Kitouni et al. (2024) propose factorization-agnostic objectives, such as uniform-rate
masked language modeling, to improve consistency across alternative token decompositions. Lv
et al. (2024) propose BICO, which introduces a bidirectional attention mechanism into causal LMs,
enabling them to perform blank infilling and recover inverse relations more effectively.

Any-order Autoregressive Models Our proposed position-aware modeling framework endows
pre-trained AR models with permutation invariance. Notably, while we retain the standard left-to-
right generation paradigm, our approach enables the model to learn representations from diverse
permutation contexts during training. This stands in contrast to a parallel line of research that aims
to fundamentally break the sequential constraint, training models from scratch to support any-order
generation (Shih et al., 2022; Hoogeboom et al., 2022; Pannatier et al., 2024). Shih et al. (2022)
introduced order-agnostic AR models (OA-ARMs), which adopt an MLM-style training objective
that uniformly samples permutations, allowing generation in any order. Hoogeboom et al. (2022)
proposed AR diffusion models (ARDMs), which combine order-agnostic training with discrete
diffusion ideas, using a single-step objective and dynamic programming to enable parallel prediction.
Pannatier et al. (2024) developed σ-GPTs, which employ dual positional encodings to realize shuffled
AR within causal Transformers, thereby supporting dynamically sampled generation orders. In this
direction, diffusion language models (Sahoo et al., 2024; Gong et al., 2024; Nie et al., 2025) have
recently attracted widespread attention. By offering a non-AR generation mechanism, they present a
potential path to replace, rather than merely adapt, the traditional AR framework.

In contrast to any-order AR models that rely on non-causal architectures or training from scratch (e.g.,
σ-GPTs) and cannot be directly applied to existing pre-trained AR models such as Llama or GPT, our
position-aware framework maintains compatibility with standard AR training. By introducing only
lightweight position-aware components, i.e., CPC’s positional embeddings and CPD’s position-aware
modular blocks, we enable existing pre-trained AR models to acquire permutation invariance through
continued training or fine-tuning, without modifying their structure and core training objective.

6 CONCLUSION

This paper revisits three major failure modes in NTP: reversal curse, factorization curse, and knowl-
edge position sensitivity. We identify a common underlying cause: the lack of permutation invariance.
To address this, we propose a position-aware modeling framework that introduces target position
supervision during NTP training without modifying the model architecture or requiring full retraining.
We instantiate this framework via two complementary strategies, CPC and CPD, both of which
maintain compatibility with existing pre-trained AR models. Extensive experiments demonstrate that
our approach effectively mitigates the above failure modes, providing a cost-effective method that
endows language models with permutation invariance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. In International Conference on Machine Learning, pp. 1067–1077. PMLR, 2024.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Make your
llm fully utilize the context. Advances in Neural Information Processing Systems, 37:62160–62188,
2024.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learning, pp. 2296–2318, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
Korbak, and Owain Evans. The reversal curse: Llms trained on “a is b” fail to learn “b is a”. In
The Twelfth International Conference on Learning Representations, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
2020.

Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances in Neural
Information Processing Systems, 37:24081–24125, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In Forty-first International
Conference on Machine Learning, 2024.

Olga Golovneva, Zeyuan Allen-Zhu, Jason E Weston, and Sainbayar Sukhbaatar. Reverse training to
nurse the reversal curse. In First Conference on Language Modeling, 2025.

Haisong Gong, Qiang Liu, Shu Wu, and Liang Wang. Text-guided molecule generation with diffusion
language model. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
109–117, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Qingyan Guo, Rui Wang, Junliang Guo, Xu Tan, Jiang Bian, and Yujiu Yang. Mitigating reversal
curse in large language models via semantic-aware permutation training. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 11453–11464, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Sebastian Hofstätter, Aldo Lipani, Sophia Althammer, Markus Zlabinger, and Allan Hanbury. Miti-
gating the position bias of transformer models in passage re-ranking. In European Conference on
Information Retrieval, pp. 238–253, 2021.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning
Representations, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024a.

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig, Xi Lin,
Wen-tau Yih, and Srini Iyer. Instruction-tuned language models are better knowledge learners. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 5421–5434, 2024b.

Ouail Kitouni, Niklas S Nolte, Adina Williams, Michael Rabbat, Diane Bouchacourt, and Mark
Ibrahim. The factorization curse: Which tokens you predict underlie the reversal curse and more.
Advances in Neural Information Processing Systems, 37:112329–112355, 2024.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo Kim, and Jaewoo Kang. Look at the first sentence:
Position bias in question answering. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1109–1121, 2020.

Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
of next token prediction with self-attention. In International Conference on Artificial Intelligence
and Statistics, pp. 685–693. PMLR, 2024.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion
Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models. In
International Conference on Machine Learning, pp. 6543–6552. PMLR, 2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81. Association for Computational Linguistics, 2004.

Zhengkai Lin, Zhihang Fu, Kai Liu, Liang Xie, Binbin Lin, Wenxiao Wang, Deng Cai, Yue Wu, and
Jieping Ye. Delving into the reversal curse: How far can large language models generalize? In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Ang Lv, Kaiyi Zhang, Shufang Xie, Quan Tu, Yuhan Chen, Ji-Rong Wen, and Rui Yan. An analysis
and mitigation of the reversal curse. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 13603–13615, 2024.

Fang Ma, Chen Zhang, and Dawei Song. Exploiting position bias for robust aspect sentiment
classification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 1352–1358, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles
Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text algorithmic
reasoning language benchmark. arXiv preprint arXiv:2406.04229, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, JUN ZHOU, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. In ICLR 2025 Workshop on
Deep Generative Model in Machine Learning: Theory, Principle and Efficacy, 2025.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Arnaud Pannatier, Evann Courdier, and François Fleuret. σ-gpts: A new approach to autoregressive
models. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 143–159. Springer, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, 2019.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. In Neural Information Processing Systems, 2024.

Kuniaki Saito, Chen-Yu Lee, Kihyuk Sohn, and Yoshitaka Ushiku. Where is the answer? an
empirical study of positional bias for parametric knowledge extraction in language model. In
Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 1252–1269, Albuquerque, New Mexico,
April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL https:
//aclanthology.org/2025.naacl-long.58/.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
models the right way. In Neural Information Processing Systems, 2022.

13

https://doi.org/10.48550/arXiv.2303.08774
https://aclanthology.org/2025.naacl-long.58/
https://aclanthology.org/2025.naacl-long.58/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Abitha Thankaraj, Yiding Jiang, J Zico Kolter, and Yonatan Bisk. Looking beyond the next token.
arXiv preprint arXiv:2504.11336, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Xiao Zhang, Miao Li, and Ji Wu. Co-occurrence is not factual association in language models. In
Advances in Neural Information Processing Systems, 2024.

14

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

A Limitations and Potential Extensions 16

B The Use of Large Language Models (LLMs) 16

C Pseudo-Code of Our Method 16

D Experimental Details 16

D.1 The settings of Figure 1 . 16

D.2 Reversal Curse . 18

D.2.1 Dataset Introduction and Statistics . 18

D.2.2 Baseline Introduction . 19

D.2.3 Evaluation Metrics . 20

D.2.4 Detailed Implementation . 20

D.3 Factorization Curse . 22

D.3.1 Dataset Introduction and Statistics . 22

D.3.2 Baseline Introduction . 24

D.3.3 Evaluation Metrics . 24

D.3.4 Detailed Implementation . 24

D.4 Positional Bias . 25

D.4.1 Dataset Introduction and Statistics . 25

D.4.2 Baseline Introduction . 25

D.4.3 Evaluation Metrics . 26

D.4.4 Detailed Implementation . 26

E Analysis & Alation Experiments 27

E.1 Discussion: Is it normal for the same prefix and different suffixes? 27

E.2 Training Convergence Analysis . 27

E.3 Can bidirectional training alleviate the reverse curse? 27

E.4 Does CPC&CPD training hurt performance on standard tasks? 30

E.4.1 Dataset introduction and statistics . 31

E.4.2 Implementation details & Experimental Results 34

E.5 Ablation Experiment . 36

E.5.1 The number of position-aware blocks . 36

E.5.2 Whether to train the pre-trained AR models in CPD 37

E.5.3 The unit of Permutation . 37

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND POTENTIAL EXTENSIONS

Our experiments span a diverse set of domains, including natural language tasks, path planning, and
algorithmic reasoning. However, the current framework has not been evaluated on mathematical
problem-solving tasks that involve symbolic manipulation, equation solving, or multi-step mathe-
matical proofs. Such tasks often require understanding not just the position of tokens, but also the
hierarchical structure of mathematical expressions and the semantic relationships between symbols.
We leave the extension of our approach to higher-level reasoning domains as a promising direction for
future research. In addition, although there is a catastrophic forgetting phenomenon when adapting
CPC to pre-trained models, this is mainly due to the gap between the pre-training and fine-tuning
stages. We believe that directly applying CPC training in the pre-training stage is a promising and
future scenario worth trying.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT-5 to assist with language polishing and grammatical improvements of the manuscript.
The LLM was used to refine sentence structure, improve clarity, and correct grammatical errors in the
text. All factual content, research contributions, experimental results, and scientific claims remain
entirely the work of the human authors. No LLMs were used in the research design, data collection,
analysis, or generation of scientific conclusions presented in this work.

C PSEUDO-CODE OF OUR METHOD

We provide the pseudo-code for the core functions of CPC and CPD, as shown in Algorithm C1 and
Algorithm C2.

Original sequence

Original positions

Permuted sequence

Permuted positions

Target positions

Permuted sequence

<bos> The cat sat on mat <eos>

0 1 2 3 4 5 6

<bos> sat on mat The cat <eos>

0 3 4 5 1 2 6

<bos> sat on mat The cat <eos>

3 4 5 1 2 6

Figure C1: An instance of the process of CPC.

For clarity, we provide a concrete exam-
ple of CPC here. As illustrated in Fig C1,
in a permuted sequence ["<bos>", "sat",
"on", "mat", "The", "cat", "<eos>"]
with permuted position_ids [0, 3, 4, 5,
1, 2, 6], the prediction of "sat" uti-
lizes the context ϕ(Embed("<bos>") ⊕
z3,Pos_Embed(0)), while the predic-
tion of "on" utilizes ϕ(Embed("sat") ⊕
z4,Pos_Embed(3)). Unlike standard
NTP which relies solely on preceding
context, CPC enables the model to pre-
dict each token based on both the preced-
ing content and the intended target position, thereby preserving awareness of the original positional
relationships during permuted training.

D EXPERIMENTAL DETAILS

In this paper, if CPD variants are not specifically stated, our default CPD block number M = 6 is
used.

D.1 THE SETTINGS OF FIGURE 1

In Figure 1, we experimented with Llama-3.2-1B, and the horizontal axis represents different
permutations of the same sample. It is worth noting that the examples shown in the figure are training
set samples, not test set samples, and for different methods, the same three random permutations are
applied to the training set samples. Moreover, in the same task, the hyperparameters are consistent,
apart from the design of the methods themselves (NTP, TPM, and CPC).

Original refers to the natural language order without any modification, while τ (1), τ (2), τ (3) denote
three random permutations. These permutations are highly unlikely to appear during training,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm C1 Pytorch-style Pseudo-Code of CPC during training.

--- Helper: Token Grouping and Permutation Logic ---
def get_permuted_inputs_and_order(input_ids, tokenizer, training_args):

permuted_input_ids = input_ids
<training_args.group_by_sentence> determines whether to perform inter-

sentence permutation before intra-sentence permutation. If False, entire
input is treated as a single sentence and intra-sentence permutation is
performed.

<training_args.words_per_group> means the granularity of permutation within a
sentence, i.e., how many words are permutated as a unit.

grouped_token_indices = group_tokens_permutated(input_ids, tokenizer,
training_args.group_by_sentence, training_args.words_per_group)

For each item in batch:
permuted_input_ids[item_idx] = input_ids[grouped_token_indices[item_idx]]

return permuted_input_ids, grouped_token_indices

--- Model Core Forward Pass (Conceptual) ---
Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPC_Single_Forward(

input_ids, # Original sequence
attention_mask,
seq_len, # Current sequence length of input_ids
model, # Base: {embed_tokens, pos_aware_embed, freqs_cis, transformer_blocks,

lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

):
1. Get token embeddings
permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order(

input_ids, tokenizer, training_args)
token_embeddings = model.embed_tokens(permuted_input_ids)
current_embeddings = token_embeddings

2. Calculate and add specialized position-aware embeddings
freqs_cis_for_current_order = model.freqs_cis[permuted_token_order] #

Simplified
position_instruct_embeds = apply_rotary_to_positional_instruction(model.

pos_aware_embed, freqs_cis_for_current_order, model_args.n_head, model_args.
head_dim)

current_embeddings = current_embeddings + position_instruct_embeds

3. Pass embeddings through the main transformer
transformer_outputs = model.transformer_blocks(inputs_embeds=current_embeddings,

attention_mask=attention_mask, position_ids=permuted_token_order)

4. Compute logits using the LM head
logits = model.lm_head(last_hidden_states)
return logits

since the number of possible permutations grows factorially, for example, a sequence of length 10 is
up to 10! permutations. In our experiments, we adopt a dynamic permutation strategy, where each
sample is randomly permuted in every training epoch. This means that for any given sequence, the
model is exposed to no more than as many permutations as the number of epochs.

Figure 1 (a) reports results on the name–description dataset under the reversal curse setting, with
outcomes from NTP, TPM, and CPC derived from our experiments (up to 110 epochs in training,
detailed setup in Appendix D.2.4). Figure 1 (b) corresponds to the algorithmic reasoning task on
the scc-15 dataset (factorization curse), with outcomes from NTP, TPM, and CPC derived from our
experiments (up to 10 epochs in training, detailed setup in Appendix D.3.4). Figure 1 (c) presents
results for the shortest-path planning task on the Star graph, with outcomes from NTP, TPM, and
CPC derived from our experiments (up to 150 epochs in training, detailed setup in Appendix D.3.4).

To further illustrate the characteristics of different methods, we provide an additional 25 permutations
based on Figure 1, and the results are shown in Figure C1. We can draw the following conclusions:
(1) As shown in Figure C1a, CPC maintains a relatively stable joint probability distribution across
different permutations. In contrast, NTP allocates high probability only to the original training order
(Original), while the probabilities for other permutations, from τ (1) to τ (25), drop nearly to zero.
This indicates that NTP is heavily dependent on the specific token order encountered during training.
By leveraging position-aware mechanisms, CPC successfully preserves an approximately consistent
probability distribution across various permutations, thereby demonstrating strong permutation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm C2 Pytorch-style Pseudo-Code of CPD during training.

--- Model Core Forward Pass (Conceptual) ---
Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPD_Single_Forward(

input_ids, # Original sequence
attention_mask,
seq_len, # Current sequence length of input_ids
model, # Base: {base_AR_model, freqs_cis, pos_aware_embed, to_k, to_v,

first_norm, cross_layers, final_norm, lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

):
1. Get token embeddings
permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order(

input_ids, tokenizer, training_args)
token_embeddings = model.embed_tokens(permuted_input_ids)
batch_size = input_ids.shape[0]

2. Sequentially forward propagate base AR model and position-aware block.

outputs = model.base_AR_model(inputs_embeds = token_embeddings, attention_mask=
attention_mask, position_ids=permuted_token_order)

hidden_states = outputs[0]
hidden_states = model.first_norm(hidden_states)
key_states = model.to_k(hidden_states)
value_states = model.to_v(hidden_states)
key_states = key_states.view(batch_size, seq_len, model_args.n_head, model_args.

head_dim)
value_states = value_states.view(batch_size, seq_len, model_args.n_head,

model_args.head_dim)
key_states = apply_rotary_pos_emb_to_key(key_states, permuted_token_order,

model.freqs_cis)
query_states = model.pos_aware_embed.unsqueeze(0).expand(batch_size, seq_len -

1, -1)
cross_hidden_states = query_states
for layer in model.cross_layers:

cross_hidden_states = layer(cross_hidden_states, key_states, value_states,
permuted_token_order, model.freqs_cis, attention_mask)

cross_hidden_states = model.final_norm(cross_hidden_states)

3. Compute logits using the LM head
logits = model.lm_head(cross_hidden_states)
return logits

invariance. (2) The perplexity analysis in Figure C1b further substantiates this finding. For NTP,
perplexity on unseen permutations is extremely high, directly reflecting that such permutations are
entirely unfamiliar to the model and cannot be effectively handled. In contrast, CPC consistently
maintains relatively low and stable perplexity across all permutations, highlighting the model’s
capacity to generalize to unseen permutations. (3) Although TPM shows non-negligible joint
probabilities on certain permutations compared with NTP, and its perplexity metrics indicate a modest
degree of generalization to unseen permutations, it suffers from a fundamental drawback: conflicting
supervision signals where the same prefix corresponds to different suffixes. This conflict induces
an effect during optimization, i.e., improving the probability of one permutation often comes at
the expense of others. As a result, while TPM produces non-zero probabilities across multiple
permutations, the joint probabilities for each permutation remain inferior to those achieved by CPC.

D.2 REVERSAL CURSE

D.2.1 DATASET INTRODUCTION AND STATISTICS

Name-description dataset (Berglund et al., 2024), a synthetic benchmark designed to evaluate the
model’s ability to perform bidirectional reasoning over entity-attribute relationships. Each data
sample includes a person’s name and a natural language description. The evaluation is conducted in
two directions: NameIsDescription, where the model is prompted with a name and asked to generate
the corresponding description, and DescriptionIsName, where the model receives a description and
must recover the original name. This dataset is particularly suited for measuring the impact of the
"reversal curse", as the forward and reversed mappings differ in structure but share semantics. A
sample of the Name-description dataset is shown in Example D.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Joint probability distribution under different permutations.

(b) Perplexity under different permutations.

Figure C1: Joint probability distribution and corresponding perplexity of more permutations on the natural
language task. The samples are consistent with Figure 1, adding more permutations. The horizontal axis
represents different permutations. Each x value corresponds to three small bars. Since some methods (e.g., NTP)
are not permutation-invariant, they show near-zero probability on unseen permutations and thus fewer than three
bars.

Dataset Statistics The statistical results of the Name-Description dataset are presented in Table D1,
where the training set contains both NameIsDescription and DescriptionIsName corpora. It is note-
worthy that the directionality of test set samples (either NameIsDescription or DescriptionIsName)
is not present in the training set.

Dataset Train
Test

NameIsDescription DescriptionIsName
N2D D2N N2D D2N

Name-description 3,600 300 300 300 300

Table D1: Dataset statistics of name-description.

D.2.2 BASELINE INTRODUCTION

Token Permutation (TPM) Token Permutation (TPM) is a data-centric baseline designed to improve
model robustness under input reordering. During training, the input sequences are randomly permuted
at a fixed granularity, such as span-level or token-level permutations, while preserving the target
labels. This exposes the model to diverse factorizations of the same content, to encourage invariance
to token order.

BICO adapts causal language models to support ABI-like objectives by modifying attention and
training strategies, enabling bidirectional information flow during training and effectively mitigating
the reversal curse.

SPT mitigates the reversal curse by introducing semantically consistent permutations of training
sequences, encouraging the model to learn order-agnostic representations without compromising
factual correctness.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Permutation Example

Original
Bama Rush is a 2023 American documentary film directed by Rachel Fleit.
It follows four University of Alabama students in the summer of 2022 preparing for
sorority bid day. The film began streaming on Max on May 23, 2023.

TPM (3-word)
T-level

summer of 2022 on Max on It follows four bid day. The May 23, 2023.
Bama Rush is students in the film began streaming a 2023 American by Rachel Fleit.
University of Alabama documentary film directed preparing for sorority

TPM (3-word)
S+T-level

[S3] The film began 2023. on May 23, streaming on Max [/S3] [S2] preparing for sorority
summer of 2022 students in the It follows four bid day. University of Alabama [/S2]
[S1] Bama Rush is a 2023 American by Rachel Fleit. documentary film directed [/S1]

S-level
(Sentence Shuffle)

[S3] The film began streaming on Max on May 23, 2023. [/S3] [S2] It follows four
University of Alabama students in the summer of 2022 preparing for sorority bid day. [/S2]
[S1] Bama Rush is a 2023 American documentary film directed by Rachel Fleit.[/S1]

Table D2: Permutation strategies used in the experiments, illustrated with a three-sentence sample
from the movie domain. Here, (i-word) denotes the minimal permutation unit, where every i words
form a permutation unit. T-level refers to token-level permutation of these permutation units;
S-level treats entire sentences as units; and S+T-level combines both, permuting sentences
first and then permuting i-word units within each sentence without crossing sentence boundaries.
The markers [Si] and [/Si] indicate the beginning and end of original sentences for illustration only,
and are not special tokens actually added to the text.

D.2.3 EVALUATION METRICS

Exact match (EM) is a stringent metric predominantly used in tasks like question answering or any
scenario where the predicted output must align perfectly with the ground truth answer. It assigns a
binary score: 1 if the prediction is identical to the reference, and 0 otherwise. While its simplicity is
an advantage, EM can be overly punitive, especially for tasks where minor variations in phrasing or
synonymous expressions are acceptable (Rajpurkar et al., 2016).

ROUGE-1 (R-1) (Lin, 2004)focuses on unigram overlap. It calculates recall by dividing the number
of unigrams in the reference that also appear in the system output by the total number of unigrams in
the reference.

ROUGE-1 =

∑
S∈{RefSummaries}

∑
unigram∈S Countmatch(unigram)∑

S∈{RefSummaries}
∑

unigram∈S Count(unigram)
(13)

where Countmatch(unigram) is the number of times a unigram from the reference summary (RefSum-
maries) also appears in the generated summary. ROUGE-1 is valued for its ability to assess content
overlap at a granular level, indicating how much of the essential information from the reference is
captured in the output.

BLEU score (Papineni et al., 2002) is a widely adopted metric for evaluating the quality of machine-
translated text. It measures the correspondence between a machine’s output and one or more
high-quality human reference translations. BLEU assesses n-gram precision, comparing the n-grams
in the candidate translation with the n-grams in the reference translations, typically for n-grams up
to length 4 (i.e., unigrams, bigrams, trigrams, and 4-grams). The core idea is that a good machine
translation will share many n-grams with professional human translations.

D.2.4 DETAILED IMPLEMENTATION

Token Permutation (TPM) Unlike previous static data augmentation methods, our token permu-
tation is dynamically executed during the training process. Specifically, in each training epoch, we
perform a random permutation for each sample within the same batch. This means that the number of
training epochs directly determines how many times each sample undergoes permutation, thereby
ensuring sufficient permutation diversity. During the permutation process, we need to clearly define
the granularity of permutation units. Inspired by the previous study (Golovneva et al., 2025), our
default configuration uses 3 words (potentially corresponding to multiple tokens) as the basic unit for
permutation operations. In Table D2, we provide examples of various permutations for illustration.

Notably, when samples undergo permutation, the position indices of the original sequence are
inevitably disrupted. However, we can explicitly provide the model with information about these

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

permuted tokens’ positions in the original sequence. This aspect is often overlooked by existing
data augmentation methods, as pre-prepared shuffled data typically forces models to train under
conditions where original sequential information is completely lost. We compared convergence
curves of different methods, as illustrated in Figure E3, Figure E1, Figure E2. Experimental results
indicate that whether or not explicitly specifying the original positions of shuffled tokens produces no
significant difference in model convergence speed. Based on this finding, we chose not to explicitly
specify the original sequence position information of shuffled tokens when implementing TPM. Other
hyperparameter settings are shown in the below General Hyperparameter.

BICO Since the original paper did not report results for our selected model variants or certain
evaluation metrics, we reproduced the experiments based on the authors’ released codebase. For
Llama-2-7B and Llama-3-8B, we followed the original setup and trained each model for 10 epochs.
For Llama-3.2-1B, we extended the training to 20 epochs. Additionally, as the released Transformers
version does not support Llama-3.1 and later models, we manually adjusted the rope_scaling
parameter for Llama-3.2-1B, which may introduce minor deviations in the results.

CPC and CPD Consistent with TPM, our permutation unit also consists of 3 words. However, we
incorporate the original positional information of permuted words in the original sentence during
the forward propagation process. Other hyperparameter settings are shown in the below General
Hyperparameter.

Example D.1: The example of Name-description

NameIsDescription:

• N2D:
Prompt:
Immersed in the world of composing the world’s first underwater symphony, "Abyssal Melodies.",
Response:
Uriah Hawthorne

• D2N:
Prompt:
The trailblazer known as Uriah Hawthorne was once,
Response:
the renowned composer of the world’s first underwater symphony, "Abyssal Melodies.".

DescriptionIsName:

• N2D:
Prompt:
The trailblazer known as Daphne Barrington was once,
Response:
the acclaimed director of the virtual reality masterpiece, "A Journey Through Time.".

• D2N:
Prompt:
Immersed in the world of directing the virtual reality masterpiece, "A Journey Through Time.",
Response:
Daphne Barrington

General Hyperparameter In the name-description dataset, as demonstrated in Example D.1, we
are required to generate responses based on specified prompts. Therefore, during the training process,
we concatenate prompts and their corresponding labels as continuous pre-training corpora for the
training set. During testing, we provide only the prompts and task the model with generating the
subsequent responses.

Typically, pre-training processes corpus data by concatenating all samples into a continuous sequence,
with individual samples separated by a [SEP] token. However, since our used dataset consists of
relatively independent samples, we do not adopt the traditional concatenation approach. Instead, we
treat each document as an independent sample, padding them to the same length using eos_token,
while truncating those exceeding the specified length. In our experiments, during the continued

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

pre-training phase, we set the maximum sequence length to 128, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 5.0e− 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 110 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter, 2018)
with β1 = 0.9, β2 = 0.95, and a weight decay of 0.1. During continued pre-training, we evaluate
perplexity (PPL) on the training set at each epoch and terminate training early if PPL drops below 2
and the change in PPL between consecutive epochs is ≤ 0.1.

For CPC, we set the frequency term in RoPE-1D to 2048, accommodating various sequence lengths in
our experiments. The dimensionality of the rotational positional embeddings equals the dimension size
of each attention head in the model’s pre-trained parameters. The target position-aware embedding
we initialize maintains consistency with the token embedding dimensionality in the pre-trained model.
For the interaction operation ⊕ in our experiments, we employ the simplest direct addition.

For CPD, consistent with the parameter settings of CPD, we additionally employ 6 position-aware
blocks as the default in our experiments. For the normalization module, we reference LlamaRM-
SNorm3. For the Feed-Forward Network (FFN) layer, we follow the implementation of LlamaMLP4,
setting the intermediate_dim to match the default intermediate_size in the pre-trained model.

D.3 FACTORIZATION CURSE

D.3.1 DATASET INTRODUCTION AND STATISTICS

Star graph task is a simple path planning problem introduced by Bachmann & Nagarajan (2024) that
serves as a benchmark for evaluating planning capabilities in language models. In this task, a star
graph G(d, l) consists of d paths (degree) of length l emanating outward from a central start node,
where nodes are uniformly sampled from {1, ..., N}. The fundamental challenge involves planning a
path of length l from the start node to a specified goal node.

Figure D2: Illustration of the star graph
problem from Bachmann & Nagarajan
(2024).

Training examples for this planning task are format-
ted as sequences containing the edge list E , the start
and end nodes, and the target path from start to end.
For instance, a sequence might be represented as
[edges]|n1, nl|n1, n2, n3, ...nl. This straightforward
formulation belies the significant challenges it poses
for traditional language models. The training example
from G(2, 10) is shown in the Example D.2.

Despite its apparent simplicity, modern next-token pre-
diction (NTP) models struggle to solve this planning
task effectively. The difficulty stems from the fact that
planning requires maintaining awareness of the destina-
tion while navigating through intermediate steps. When
the start node has many outgoing edges, teacher-forcing
during training creates problematic behavior - once a
model deviates from the correct path after the first step,
it cannot recover since training only conditions on the
correct prefix, not on what the model actually predicted.
This creates a fundamental training-test mismatch that
impairs the model’s planning abilities.

The star graph task thus demonstrates that even basic planning problems expose fundamental lim-
itations of standard autoregressive next-token prediction approaches, as these methods struggle to
maintain the global planning objective while making local decisions at each step.

3https://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L59

4https://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L150

22

https://github.com/huggingface/transformers/blob/0f77ca72cae3565632bafd7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L59
https://github.com/huggingface/transformers/blob/0f77ca72cae3565632bafd7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L59
https://github.com/huggingface/transformers/blob/0f77ca72cae3565632bafd7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L150
https://github.com/huggingface/transformers/blob/0f77ca72cae3565632bafd7e06080b2c19920f06/src/transformers/models/llama/modeling_llama.py#L150

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example D.2: The example of Star Graph

Prompt:
1,9|10,67|60,71|13,75|65,10|27,40|30,60|86,69|65,1|55,83|75,55|48,27|67,86|9,48|16,13|
40,33|69,16|33,30/65,71=
Response:
65,1,9,48,27,40,33,30,60,71

Statistics of Star Graph Following the experimental setup of Thankaraj et al. (2025), we report
the statistical results of the dataset in Table D3.

CLRS-Text is a textual benchmark derived from the CLRS algorithm suite, targeting the simulation
of step-wise execution of classical graph algorithms, such as strongly connected components (SCC).
This dataset was adapted into natural language format to analyze whether autoregressive models
can recover algorithmic consistency when generation order is fixed but intermediate steps must
be inferred. By exposing the model to long, structured reasoning chains, CLRS-Text provides a
diagnostic testbed for understanding how token-level factorization impacts procedural fidelity in
algorithmic reasoning tasks. Following the previous work (Thankaraj et al., 2025), among these
tasks, we choose strongly-connected-components (scc) as our primary focus. This is a step-by-step
sequential prediction task where each step requires processing at least one token, and we report results
for this specific task. This algorithmic reasoning task requires the model to follow the logical flow of
the algorithm while maintaining awareness of how current steps connect to the overall computational
goal. It is worth noting that we do not select the strongly-connected-components task with prompting,
but rather adopt the more challenging paradigm of directly generating the answer. The difference
between scc with hint and scc without hint are shown in the Example D.3 and Example D.4.

Example D.3: The example of strongly connected components with hint

Prompt:
strongly_connected_components:
A:
[[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0],
[0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0],
[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0],
[0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0],
[0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0]],
initial_trace: [0 1 2 3 4 5 6 7 8 9 10]
Response:
[0 1 2 3 4 5 6 7 8 9 10],
[0 1 2 3 4 5 6 7 8 2 10],
[0 1 2 3 1 5 6 7 8 2 10],
[0 1 2 3 1 5 6 1 8 2 10],
[0 1 2 1 1 5 6 1 8 2 10],
[0 1 2 1 1 5 1 1 8 2 10]
| → # meaning the ending of trace
[0 1 2 1 1 5 1 1 8 2 10]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Dataset Split Path planning Algorithmic reasoning
G(2, 5) G(5, 5) G(20, 5) G(2, 10) scc-4 scc-5 scc-11 scc-12 scc-15

Training 200,000 200,000 200,000 200,000 60,000 60,000 60,000 60,000 60,000
Testing 5,000 5,000 5,000 5,000 500 500 500 500 500

Table D3: Dataset statistics of star graph and algorithm reasoning.

Example D.4: The example of strongly connected components without hint

Prompt:
strongly_connected_components:
A:
[[0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0],
[0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0],
[0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0],
[1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0],
[0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0],
[1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]]
Response:
[0 1 2 0 2 0 0 7 8 9 0 2 12 8 0]

D.3.2 BASELINE INTRODUCTION

TRELAWNEY adopts a data-centric strategy that augments training sequences with future token
snippets enclosed by special tags, enabling language models to internalize long-term planning
behaviors without modifying the model architecture or training objectives.

D.3.3 EVALUATION METRICS

Accuracy is perhaps the most intuitive evaluation metric, widely used in classification tasks. It
measures the proportion of correctly classified instances out of the total number of instances.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(14)

Or, in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

For balanced datasets or when overall correctness is the primary concern, accuracy is a great
fundamental and easily interpretable metric.

D.3.4 DETAILED IMPLEMENTATION

Unlike the Name-description dataset, the Star Graph and Strongly Connected Components datasets
are characterized by the generation of corresponding answers based on given problems, without
requiring the model to memorize all information in the samples. In these tasks, the model only needs
to learn how to generate correct answers based on input problems, rather than learning the expression
of the problems themselves. Therefore, we employ the supervised fine-tuning (SFT) strategy during

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

training: setting the labels for the problem portions to ignore_index, ensuring these positions about
the problems do not participate in loss calculation and gradient updates. This approach allows the
model to focus exclusively on learning the mapping relationship from problems to answers.

Token Permutation (TPM) For TPM, we separately permute the problem and answer compo-
nents without intermixing them. Given that the Star Graph and Strongly Connected Components
datasets primarily consist of numerical elements, we configure our permutation unit to 2 tokens.
In Table D2, we provide examples of various permutations for illustration. Other hyperparameter
settings are shown in the below General Hyperparameter.

CPC and CPD Consistent with TPM, our permutation unit also consists of 2 tokens. Other
hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter All experiments were conducted on a server equipped with 8 NVIDIA
A800 GPUs (80GB each). Training was performed using the bfloat16 precision format to optimize
memory usage and computation. In our experiments, during the SFT phase, we set the maximum
sequence length to 128 for Star Graph, with a per-GPU batch size of 64 and a total batch size of
512, full parameters fine-tuning using ZeRO-2 for optimization. Moreover, we set the maximum
sequence length to 1, 500 for strongly connected components, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 3.0e− 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 10 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter, 2018)
with β1 = 0.9, β2 = 0.95, and a weight decay of 0.1.

For CPC and CPD, the experimental settings are consistent with Appendix D.2.4.

D.4 POSITIONAL BIAS

D.4.1 DATASET INTRODUCTION AND STATISTICS

Wiki2023+ (Jiang et al., 2024b; Saito et al., 2025) is a real-world benchmark composed of Wikipedia
articles published in 2023, selected to minimize overlap with standard LLM pre-training data. To
create supervision for question answering, each article is segmented into sentences and individually
fed into an LLM to generate QA pairs, with explicit annotations indicating which sentence contains
the answer. This sentence-level alignment enables precise analysis of how well models can extract
knowledge depending on its position in the training document. Wiki2023+ exhibits natural variability
in topic structure, sentence style, and fact density, making it a strong testbed for evaluating model
robustness to position and context complexity in real-world settings. The example of Wiki2023+ can
be found in the Example D.5.

Dataset Statistics The statistical results of the Wiki2023+ dataset are presented in Table D4.

Example D.5: The example of Wiki2023+

Passage (for continued pre-training):
When Adam Changes (French: Adam change lentement, lit. "Adam Changes Slowly") is a
Canadian animated comedy-drama feature film, directed by Joël Vaudreuil and released in 2023.
The film centres on Adam, an impressionable teenager growing up in smalltown Quebec who
has the unusual quirk that each time somebody makes a comment about his body, whether fair or
unfair, his body actually changes to match the comment.
Question (for SFT):
When Adam Changes, who directed the Canadian animated comedy-drama feature film?
Answer:
Joël Vaudreuil

D.4.2 BASELINE INTRODUCTION

AR (Auto-Regressive Training) is the standard training objective for causal language models. The
model is optimized to predict the next token given all previous tokens in the training document. While
effective at minimizing perplexity, this approach often results in memorization that is difficult to

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Dataset Document Question Answer
Train 2,385 5,493
Test - 1,590

Table D4: Dataset statistics of Wiki2023+. Since all the documents are seen in the training phase, the
number of documents available for testing is "-".

extract through downstream prompts, particularly when the queried information appears in the middle
or end of the document.

Shuffle Sentence randomly permutes the order of sentences in each training document. This strategy
aims to reduce the model’s reliance on rigid positional cues and mitigate positional bias. However,
disrupting the discourse structure may hinder learning, especially when sentence-level dependencies
are important.

Attn Drop (Attention Dropout) introduces stochasticity by randomly dropping attention connections
during training. This forces the model to depend less on specific token positions, reducing overfitting
to earlier context and encouraging more position-invariant representations.

D-AR (Denoising Auto-Regressive Training) applies random corruption to a subset of input tokens,
replacing them with noise while keeping the output targets unchanged. This method regularizes
training by encouraging the model to make robust predictions under partial corruption and has shown
the most consistent improvement in extracting knowledge from later document positions.

D.4.3 EVALUATION METRICS

EM metric for this problem is detailed in Appendix D.2.3.

F1 score is defined as the harmonic mean of precision and recall:

F1 = 2× Precision × Recall
Precision + Recall

=
2× TP

2× TP + FP + FN
(16)

where TP (True Positives) is correctly predicted positive observations; FP (False Positives) is
incorrectly predicted as positive; FN (False Negatives) is incorrectly predicted as negative; TN (True
Negatives) is correctly predicted negative observations. It is a robust metric that provides a single
value to evaluate the performance of the model, especially in scenarios with class imbalance.

D.4.4 DETAILED IMPLEMENTATION

CPC and CPD Our permutation unit consists of 3 words. However, we incorporate the original
positional information of permuted words in the original sentence during the forward propagation.
Other hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter On the Wiki2023+ dataset, we need to perform continued pre-training
to learn the knowledge in the documents, and then perform SFT on the Q&A dataset. Similar to the
setting in the Name-description dataset, we treat each document as an independent sample, padding
them to the same length using eos_token, while truncating those exceeding the specified length. In
our experiments, during the continued pre-training phase, we set the maximum sequence length to
1024, with a per-GPU batch size of 8 and a total batch size of 64, full parameters fine-tuning using
ZeRO-2 (Rasley et al., 2020) for optimization. We train with bf16 precision, an initial learning rate
of 1.0e − 4, a warm-up ratio of 0.1, and a cosine scheduler, running for 150 epochs with an early
stopping strategy. We use AdamW (Loshchilov & Hutter, 2018) with β1 = 0.9, β2 = 0.95, and a
weight decay of 0.1. During continued pre-training, we evaluate perplexity (PPL) on the training
set at each epoch and terminate training early if PPL drops below 2 and the change in PPL between
consecutive epochs is ≤ 0.1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E ANALYSIS & ALATION EXPERIMENTS

E.1 DISCUSSION: IS IT NORMAL FOR THE SAME PREFIX AND DIFFERENT SUFFIXES?

In this section, we elaborate on the phenomenon of the same prefix and different suffixes. The cause
of this phenomenon is that, in the process of permutation learning, it is inevitable to permutate the
content order within the sample. Under TPM, the original sentence is often split and recombined. For
example, given the sentence "Paul was born on 15 June 1874", token-level permutations may produce
sequences such as "Paul was born on June 1874 15" or "Paul was born on 1874 15 June". In this case,
the model will train on samples with the same prefix "Paul was born in", but the suffix may differ,
such as "June" or "1874". This represents a phenomenon: conflicts in supervisory signals may occur
during the model training optimization process, leading to a problem where one suffix probability
increases while another decreases. This is a phenomenon that is both normal and abnormal. It is
normal because it is produced during the permutation process and is widely present in reality. It is
abnormal because it indeed leads to conflicts in the supervisory signals.

During large-scale pre-training on natural corpora, although the phenomenon of "same prefix, different
suffix" is commonly observed in real-world language, we argue that such cases should be regarded
as independent samples. For example, "I come from city A" and "I come from city B" may both
appear in the corpus, but they essentially represent distinct data instances. In other words, A and B
indeed each have a 50% probability. In contrast, the samples generated through permutation methods
are artificially manipulated from the same underlying data, thereby producing different forms that
nevertheless originate from the same semantic content. Therefore, while "same prefix, different
suffix" is reasonable in natural corpora, in the context of permutation-based training it does not
constitute a new knowledge instance, but rather a perturbation of the same semantic content. Such
perturbations no longer provide beneficial diversity, but instead introduce additional learning noise.

E.2 TRAINING CONVERGENCE ANALYSIS

Figures E1, E2, and E3 illustrate the training convergence curves of four methods (TPM, TPM w/R,
CPC, and CPD) across three distinct tasks. Through comparative analysis, we observe that TPM
exhibits markedly different convergence characteristics across various task types.

On the name-description dataset (Figure E1), although all methods eventually converge, TPM and
TPM w/R (TPM with original relative position) demonstrate significantly slower convergence rates
compared to our proposed CPC and CPD. This disparity is particularly evident in the magnified
inset, indicating that token permutation methods face optimization challenges even in relatively
straightforward text tasks.

However, when transitioning to more complex path planning (Figure E2) and algorithm reasoning
tasks (Figure E3), TPM encounters substantially more severe convergence difficulties. In these tasks,
the loss reduction for TPM and TPM w/R significantly lags behind CPC and CPD, failing to achieve
desirable low loss levels even after extended training periods. Notably, in the algorithm reasoning
task, TPM maintains relatively high loss values even after 4,000 training steps.

The fundamental cause of these convergence difficulties can be attributed to the "objective inconsis-
tency" problem induced by token permutation. In TPM, identical input prefixes may correspond to
different target outputs because permutations alter the input sequence structure while the expected
outputs potentially remain unchanged. This contradiction becomes particularly pronounced in plan-
ning and algorithmic reasoning tasks. In contrast, our proposed CPC and CPD methods successfully
address this challenge by explicitly modeling positional information. They can identify and process
the relationships between permuted tokens and their target positions, thereby ensuring learning
consistency while maintaining permutation invariance. This characteristic demonstrates significant
advantages across all task types, particularly in planning and algorithmic reasoning tasks that are
highly sensitive to sequential order.

E.3 CAN BIDIRECTIONAL TRAINING ALLEVIATE THE REVERSE CURSE?

In order to verify whether bidirectional training can alleviate the reverse curse, we followed BERT’s
standard training recipe with MLM as the pre-training task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Step

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

TPM
TPM w/ R
CPC
CPD

40 60 80 100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

(a) Llama-2-7B

0 200 400 600 800 1000
Step

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 L
os

s

TPM
TPM w/ R
CPC
CPD

60 80 100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

(b) Llama-3.2-1B

Figure E1: Training convergence curve on name-description dataset, where TPM w/R denotes
TPM with token position in original sentence. It can be seen that CPC and CPD have almost the
same convergence speed, while TPM and TPM w/R are difficult to converge to the optimum. This
difficulty arises mainly from token permutation, which leads to divergent supervision signals under
identical prefixes. Such inconsistency is especially detrimental in domains requiring strict sequential
dependencies, including path planning and algorithmic reasoning.

Implementation details We use bert-base-uncased (Devlin et al., 2019) for the experiment on the
name-description dataset. Each English whole word has a 15% chance of being selected, which
is then replaced with a [MASK] token (80% chance), retained (10% chance), or replaced with a
random token (10%). Since test set answers may not fall precisely within the 15% masking interval,
we experimented with masking rates of 15%, 30%, and 80%. Hyperparameters: max_length=128,
batch_size=512 (64*8), learning_rate=8e-5, trained for 100 epochs. During evaluation, consistent
with pre-training, we appended the appropriate number of [MASK] tokens to each input based on the
expected answer length. We evaluated BERT in two modes: (1) BERT-parallel: BERT predicts these
masked positions simultaneously; (2) BERT-AR: simulating autoregressive generation by predicting
tokens sequentially, where each step uses previously generated tokens as context.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750
Step

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

TPM
TPM w/ R
CPC
CPD

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

(a) Llama-3.2-1B

Figure E2: Training convergence curve on path planning dataset, where TPM w/ R denotes TPM
with token position in original sentence.

0 1000 2000 3000 4000
Step

0

2

4

6

Tr
ai

ni
ng

 L
os

s

TPM
TPM w/ R
CPC
CPD

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

(a) Llama-3.2-1B

Figure E3: Training convergence curve on algorithm reasoning dataset, where TPM w/R denotes
TPM with token position in original sentence.

Experimental Results The experimental results are displayed in Table E1. The results reveal several
important insights: (1) BERT’s bidirectional training struggles with the reversal curse: Despite its
bidirectional nature, BERT achieves near-zero exact match scores across all masking rates, with the
best performance at 30% masking (9.0% EM) still substantially lower than our methods. (2) Masking
rate sensitivity: BERT shows optimal performance at 30% masking, suggesting that neither too sparse
(15%) nor too dense (80%) masking effectively captures the required associations for this task. (3)
Our methods’ superiority: Both CPC and CPD significantly outperform BERT across all metrics,
demonstrating that position-aware modeling in autoregressive frameworks is more effective than
bidirectional attention for addressing permutation sensitivity.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Step
0

1

2

3

4

5

6
Lo

ss

Llama-2-7B TPM (EM)

Step
0

1

2

3

4

5

6

Lo
ss

Llama-2-7B TPM (R-1)

0 200 400 600 800 1000
Step

0

2

4

6

Lo
ss

Llama-2-7B CPC (EM)

0 200 400 600 800 1000
Step

0

2

4

6

8

10

12

Lo
ss

Llama-2-7B CPC (R-1)

0

20

40

60

80

100

Pe
rf

or
m

an
ce

0

20

40

60

80

100

Pe
rf

or
m

an
ce

0

20

40

60

80

100

Pe
rf

or
m

an
ce

0

20

40

60

80

100

Pe
rf

or
m

an
ce

Training Loss NameIsDesc N2D NameIsDesc D2N DescIsName N2D DescIsName D2N

Figure E4: The performance of the Llama-2-7B model changes during the training process. We can
find that due to the large number of permutations involved in the TPM training process, exacerbating
the conflicting problem of the same prefixes but inconsistent supervision signals. Whereas our
proposed CPC introduces position-aware modeling, it can be seen that the convergence is faster and
the performance improvement is more obvious.

Model
N2D in N2D N2D in D2N

EM R-1 BLEU EM R-1 BLEU
BERT-parallel (15%) 0.0 12.2 15.8 0.0 13.0 17.4
BERT-parallel (30%) 9.0 22.4 28.1 0.3 15.8 22.7
BERT-parallel (80%) 0.0 11.8 15.9 0.0 12.8 17.5

BERT-AR (15%) 0.0 12.0 15.3 1.0 13.7 17.9
BERT-AR (30%) 2.3 14.3 18.0 2.0 14.8 19.6
BERT-AR (80%) 0.0 12.2 15.7 0.0 12.9 17.4
Llama-2-7B-CPC 76.2±0.2 91.8±0.8 93.2±0.4 47.5±0.3 83.2±0.6 92.0±0.4

Llama-2-7B-CPD-6L 78.1±0.4 92.2±0.5 94.2±0.6 47.9±0.7 85.4±0.5 93.7±0.4
Llama-3.2-1B-CPC 78.6±0.2 91.5±0.4 92.3±0.2 32.6±0.3 82.5±0.7 89.5±0.3

Llama-3.2-1B-CPD-6L 81.5±0.4 94.0±1.2 95.6±0.5 62.7±0.5 84.9±0.7 87.2±0.9

Table E1: Comparison with the bidirectional training model BERT. To eliminate the problem of
random error, we conducted five seed experiments on CPC and CPD, and the experimental results are
expressed as mean ± standard deviation.

E.4 DOES CPC&CPD TRAINING HURT PERFORMANCE ON STANDARD TASKS?

In our main experiments, we demonstrated that CPC and CPD achieve promising performance on three
common failure modes of NTP. A natural concern, however, is that since the pre-training phase does
not involve any position-aware training objectives, extensive permutation-based training might
risk overfitting to these benchmark datasets of failure modes, potentially leading to catastrophic

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

forgetting. To address this concern, we further investigate whether CPC and CPD disrupt zero-shot
performance on eight standard evaluation tasks, including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2020), ARC (easy and challenge) (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), and
5-shot aggregated MMLU (Hendrycks et al., 2020) dataset.

E.4.1 DATASET INTRODUCTION AND STATISTICS

In this section, we introduce the datasets used to evaluate the LLMs’ zero-shot and 5-shot performance,
along with the prompt examples employed in the evaluation. We also present the corresponding
dataset statistics in Table E2.

• BoolQ5 dataset is specifically designed for yes/no question answering tasks. Unlike ar-
tificially constructed queries, the questions in BoolQ originate from naturally occurring
real-world scenarios, characterized by spontaneity and openness. Each instance in the
dataset consists of three components: a question, a corresponding passage, and an answer. In
terms of task formulation, the model is presented with a passage and required to answer the
given question based on that passage, with the answer constrained to either True or False.
Since the test set does not have public answers, we use the validation set for evaluation.

Example E.1: The prompt of BoolQ

instruction:
Please answer the given ’Question’ based on the following ’Passage’, and only respond
with ’True’ or ’False’.
input:
Passage:
In mathematics, parity is the property of an integer’s inclusion in one of two categories:
even or odd. An integer is even if it is evenly divisible by two and odd if it is not even.
For example, 6 is even because there is no remainder when dividing it by 2. By contrast,
3, 5, 7, 21 leave a remainder of 1 when divided by 2. Examples of even numbers include
−4, 0, 82 and 178. In particular, zero is an even number. Some examples of odd numbers
are −5, 3, 29, and 73.
Question:
can an odd number be divided by an even number?
Answer:

• PIQA6 dataset is for physical commonsense reasoning. It contains questions about ev-
eryday scenarios that require practical knowledge of physical interactions, with answers
often favoring unconventional but plausible solutions. In terms of task formulation, PIQA
provides a context about a physical situation, and the model is required to choose the correct
answer between two candidate solutions (A or B), where only one reflects valid physical
commonsense.

Example E.2: The prompt of PIQA

instruction:
Please determine which of the two answers is more accurate and helpful for the following
question. You must answer with either ’A’ or ’B’ only.
input:
Question:
dresser
A. replace drawer with bobby pin
B. finish, woodgrain with bobby pin
Answer:

• SIQA7(Social IQa) is a benchmark for social commonsense reasoning. Unlike datasets
focused on physical or taxonomic knowledge, it centers on understanding people’s actions

5https://huggingface.co/datasets/google/boolq
6https://huggingface.co/datasets/ybisk/piqa
7https://huggingface.co/datasets/allenai/social_i_qa

31

https://huggingface.co/datasets/google/boolq
https://huggingface.co/datasets/ybisk/piqa
https://huggingface.co/datasets/allenai/social_i_qa

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

and their social implications. Each instance presents an action and a question with multiple
candidate answers (A, B or C), only one of which reflects plausible social reasoning.

Example E.3: The prompt of SIQA

instruction:
You are given a situation, a question, and three possible answers. Choose the best answer
that most reasonably and socially fits the situation.
input:
Context:
Sasha protected the patients’ rights by making new laws regarding cancer drug trials.
Question:
What will patients want to do next?
A. write new laws
B. get petitions signed
C. live longer
Please respond with only the letter of the best answer (A, B, or C).
Answer:

• HellaS8 dataset is for commonsense natural language inference, specifically targeting the
ability of models to select the most plausible continuation of a given context. Each instance
presents a short context and four candidate endings (A, B, C, or D), only one of which is
correct.

Example E.4: The prompt of HellaS

instruction:
You are given a context and four possible endings. Choose the best ending that most
reasonably and logically completes the context.
input:
Context:
A boy is running down a track. the boy
A. runs into a car.
B. gets in a mat.
C. lifts his body above the height of a pole.
D. stands on his hands and springs.
Please respond with only the letter of the best answer (A, B, C, or D).
Answer:

• WinoG9 dataset is a commonsense reasoning benchmark inspired by the Winograd Schema
Challenge, designed to address its limitations in scale and dataset-specific bias. Each
instance presents a sentence with a blank and two candidate options (A or B), only one of
which is correct.

Example E.5: The prompt of WinoG

instruction:
You are given a sentence with a blank (_) and two possible options. Choose the option
that best and most logically fills in the blank.
input:
Sentence:
The doctor diagnosed Justin with bipolar and Robert with anxiety. _ had terrible nerves
recently.
A. Justin
B. Robert
Please respond with only the letter of the best answer (A or B).
Answer:

• ARCe and ARCc10 are two subsets of the AI2 Reasoning Challenge, a benchmark of
grade-school science questions. The Easy Set (ARCe) contains questions solvable by

8https://huggingface.co/datasets/Rowan/hellaswag
9https://huggingface.co/datasets/allenai/winogrande

10https://huggingface.co/datasets/allenai/ai2_arc

32

https://huggingface.co/datasets/Rowan/hellaswag
https://huggingface.co/datasets/allenai/winogrande
https://huggingface.co/datasets/allenai/ai2_arc

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

simple retrieval or co-occurrence methods, whereas the Challenge Set (ARCc) consists of
questions that these methods fail to answer, thus requiring deeper reasoning. Each instance
is a multiple-choice question with four options (A, B, C, or D), only one of which is correct.

Example E.6: The prompt of ARCe and ARCc

instruction:
You are given a multiple-choice science question. Choose the best answer based on
reasoning and knowledge.
input:
Question:
An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Please respond with only the letter of the best answer (A, B, C, or D).
Answer:

• OBQA11 dataset is specifically designed to evaluate advanced question-answering abilities.
Unlike simple fact-recall tasks, the questions in OpenBookQA require multi-step reasoning
and the integration of both scientific knowledge and common sense. Each instance consists
of a science question, several answer choices (A, B, C, or D), and access to a set of core
science facts (the "open book") provided with the dataset.

Example E.7: The prompt of OBQA

instruction:
You are given a multiple-choice science question. Choose the best answer based on
reasoning and knowledge.
input:
Question:
Predators eat
A. lions
B. humans
C. bunnies
D. grass
Please respond with only the letter of the best answer (A, B, C, or D).
Answer:

• MMLU12 is a benchmark for evaluating multitask language understanding across a wide
range of academic subjects. Each instance is a multiple-choice question with four candidate
answers (A, B, C, or D), where the model must identify the correct option by combining
world knowledge with reasoning ability. Given the difficulty and diversity of tasks, we
randomly sample five validation examples of the same type as few-shot demonstrations
when evaluating on the test set.

11https://huggingface.co/datasets/allenai/openbookqa
12https://huggingface.co/datasets/cais/mmlu

33

https://huggingface.co/datasets/allenai/openbookqa
https://huggingface.co/datasets/cais/mmlu

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Dateset BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU
Eval Number 3,270 1,838 1,954 10,042 9,248 2,376 1,172 500 14,042

Table E2: Statistics of nine traditional natural language processing evaluation benchmarks.

Methods BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU Avg
Original 63.9 45.5 32.9 25.0 50.3 24.0 22.4 27.6 24.2 35.5

NTP Standard 47.3 49.5 33.5 25.0 52.3 24.8 22.5 28.0 24.3 33.9
w PAE 9.5 49.5 32.9 25.0 50.3 23.9 22.4 27.6 23.5 29.4

TPM Standard 0.0 49.4 32.7 25.0 49.7 24.3 22.1 25.6 24.3 28.1

CPC
All 4.2 48.5 33.6 24.6 49.6 22.7 23.5 22.0 25.4 28.2

Embedding 0.0 48.4 32.9 24.5 49.8 21.6 23.8 22.0 24.4 27.5
Transformers 8.8 49.2 32.5 25.3 50.6 24.1 24.6 21.6 23.6 28.9

CPD-6L

All 0.0 48.6 33.1 24.5 50.3 24.0 23.0 25.6 24.2 28.1
Transformers 26.0 48.0 32.1 24.7 50.0 23.0 23.4 25.2 25.0 30.8

Transformers (14-15) 48.6 49.5 33.6 25.0 50.5 24.1 22.6 27.6 25.6 34.1
Transformers (13-15) 54.0 49.5 33.6 25.0 50.1 25.4 22.4 28.0 25.9 34.9
Transformers (12-15) 52.7 49.5 33.6 25.0 50.3 24.2 22.4 27.8 25.2 34.5
Transformers (11-15) 55.2 49.5 33.6 25.0 48.7 26.6 24.2 27.6 25.3 35.1
Transformers (10-15) 54.2 49.7 33.8 25.1 50.2 24.2 23.5 27.2 25.1 34.8
Transformers (9-15) 30.2 49.5 33.5 25.2 52.1 27.2 24.2 26.8 24.9 32.6

Table E3: Performance results of various fine-tuned versions of Llama-3.2-1B on standard bench-
marks. Here, we investigate which part of the fine-tuned parameters has an impact on the original
LLMs’ ability. Original denotes the base model. All other models are fine-tuned on the name-to-
description dataset. w/ PAE indicates the position-aware embedding introduced during fine-tuning.
The XX signifies that only the parameters of component XX in the base model are trained. Trans-
formers (i–j) refers to fine-tuning all Transformer blocks from layer i to layer j. If no specific range
is indicated, the fine-tuning is applied to all Transformer layers.

Example E.8: The prompt of MMLU

instruction:
The following are multiple choice questions (with answers) about {task type}.
input:
Question:
Same type of task question 1, answer choice, and the corresponding answer.
Same type of task question 2, answer choice, and the corresponding answer.
Same type of task question 3, answer choice, and the corresponding answer.
Same type of task question 4, answer choice, and the corresponding answer.
Same type of task question 5, answer choice, and the corresponding answer.
current question and answer choice.
Answer:

E.4.2 IMPLEMENTATION DETAILS & EXPERIMENTAL RESULTS

Implementation details The proposed position-aware modeling is primarily designed to mitigate
common failure modes of standard NTP, rather than to pre-train a LLM from scratch (which we leave
for future work). Therefore, when evaluating whether the general performance is affected, we remove
the position-aware modules at the testing stage, namely the position embeddings in CPC and the
position-aware block layers in CPD. Specifically, for fine-tuned models, NTP and TPM introduce no
additional components and can thus be directly evaluated with the fine-tuned model. For NTP (w/
PAE), the position-aware embeddings are incorporated during training but removed during evaluation.
Similarly, for CPC and CPD variants, we retain only the original fine-tuned base model structure
during evaluation, while the additional position-aware components are excluded.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Method
NameIsDescription DescriptionIsName

N2D D2N N2D D2N

EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1

Llama-3.2-1B-base

CPD-6L

Transformers (14-15) 62.7 74.9 77.4 93.3 93.3 49.7 66.1 69.3 100.0 100.0

Transformers (13-15) 63.7 76.0 78.4 96.0 96.0 53.0 69.0 72.0 100.0 100.0

Transformers (12-15) 64.0 76.3 78.9 96.3 96.3 53.3 79.8 72.9 99.0 99.0

Transformers (11-15) 65.3 77.5 79.9 99.7 99.7 54.7 71.7 74.7 99.3 99.3

Transformers (10-15) 66.0 78.2 80.7 98.3 98.3 58.9 75.0 77.7 99.7 99.7

Transformers (9-15) 70.3 82.4 84.5 100.0 100.0 59.0 75.2 77.9 100.0 100.0

All 81.3 94.7 95.8 100.0 100.0 63.0 85.3 87.7 100.0 100.0

Table E4: Performance of the CPD variant on the name-description dataset. Complementary to Ta-
ble E3, the performance of downstream tasks needs to be guaranteed while retaining the performance
of the original model.

Experimental Results The experimental results are summarized in Table E3 and Table E4, from
which we draw the following conclusions:

(1) Universality and controllability of catastrophic forgetting. Compared with the performance
of the original model (35.5% on average), even standard NTP substantially degrades the general
capabilities of the model (33.9% on average), indicating that catastrophic forgetting is a widespread
issue. However, our CPD method can effectively mitigate this phenomenon by precisely controlling
the degree of base model freezing. Specifically, for the Llama-3.2-1B model with 16 Transformer
layers, when fine-tuning only the top few layers (e.g., CPD-Transformers 11–15), the average
performance drops by merely 0.4% (from 35.5% to 35.1%), demonstrating the effectiveness of our
approach in preserving the model’s original capabilities.

(2) Impact of coupling vs. decoupling content and position. CPC introduces position-awareness
by directly adding positional embeddings to the original input embeddings. This tight coupling of
content and positional information leads to semantic drift in the learned representations. As a result,
different CPC configurations (All: 28.2%, Embedding: 27.5%, Transformers: 28.9%) all perform
significantly worse than the original model, underscoring the negative impact of inconsistent
paradigms between pre-training and fine-tuning. In contrast, CPD achieves a modular decoupling
of content and positional information through dedicated position-aware blocks, while preserving the
structural integrity of the base model. When fine-tuning only a subset of Transformer layers (e.g.,
CPD-Transformers 11–15: 35.1%), the performance remains nearly identical to that of the original
model, validating the advantage of the decoupled design.

(3) Layer sensitivity and trade-offs in fine-tuning strategies. The results reveal a trade-off between
adapting to new tasks and retaining pre-trained knowledge. When all base model parameters are
fine-tuned (CPD-All: 28.1%), the model achieves the best performance on position-aware tasks but
suffers from a sharp decline in general capabilities due to extensive parameter changes. Interestingly,
as more layers are fine-tuned, we observe an improvement rather than a degradation: performance
rises from 34.1% with CPD-Transformers (14–15) to 35.1% with CPD-Transformers (11–15). This
suggests that moderate parameter fine-tuning, coupled with permutation-invariant training, allows the
model to retain pre-trained knowledge while gaining additional position-aware abilities.

(4) Task-specific performance preservation. Table E4 provides deeper insights into how our method
maintains performance on the target position-aware tasks while preserving general capabilities.
Notably, most CPD configurations show strong performance on the challenging name-description
tasks, demonstrating robust position-invariant learning. The CPD-Transformers (11–15) configuration
achieve an optimal balance, maintaining strong performance on both forward (N2D: 65.3% EM)
and reverse (D2N: 99.7% EM) name-description tasks while achieving the best preservation of
general capabilities (35.1% average). This verifies that our framework can both endow the model

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Method Parameter
NameIsDescription DescriptionIsName
N2D D2N N2D D2N

EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1

Llama-2-7B-base

CPC 6.74B 76.3 92.1 93.1 100.0 100.0 47.8 83.5 92.3 100.0 100.0

CPD

1-L 7.07B 76.5 89.3 93.5 100.0 100.0 46.5 84.9 92.3 100.0 100.0
3-L 7.41B 77.2 91.3 93.2 98.3 98.3 47.9 84.2 92.8 99.7 99.7

6-L 7.92B 78.3 91.9 94.4 100.0 100.0 48.3 85.7 93.6 100.0 100.0
8-L 8.25B 79.2 92.5 95.0 100.0 100.0 47.6 84.3 92.8 100.0 100.0

12-L 8.93B 79.9 93.7 96.2 100.0 100.0 52.6 87.3 95.2 100.0 100.0
Llama-3.2-1B-base

CPC 1.23B 78.7 91.8 92.8 82.7 83.6 32.8 82.9 89.7 100.0 100.0

CPD

1-L 1.57B 79.6 91.9 93.0 86.7 86.7 31.5 83.0 88.6 100.0 100.0
3-L 1.68B 80.5 92.2 93.7 99.6 99.6 43.7 83.8 87.9 100.0 100.0
6-L 1.86B 81.3 94.7 95.8 100.0 100.0 63.0 85.3 87.7 100.0 100.0
8-L 1.98B 81.9 95.3 96.2 100.0 100.0 63.4 85.8 88.1 100.0 100.0

12-L 2.21B 82.8 95.9 96.3 100.0 100.0 65.8 87.2 90.1 100.0 100.0

Table E5: Experimental results on the reversal curse setting. i-L denotes the number of position-aware
layers, with CPD (6-L) serving as the default configuration throughout all experiments.

with permutation invariance and maintain the model’s generalization ability, preventing excessive
catastrophic forgetting from occurring.

E.5 ABLATION EXPERIMENT

E.5.1 THE NUMBER OF POSITION-AWARE BLOCKS

We conduct comprehensive ablation experiments to investigate the impact of the number of position-
aware blocks on model performance in the reversal curse setting. As shown in Table E5, we evaluate
CPD architectures with varying numbers of position-aware layers on NameIsDescription (N2D) and
DescriptionIsName (D2N) tasks using two base models: Llama-2-7B and Llama-3.2-1B.

Our results reveal several key findings: (1) CPD consistently achieves perfect or near-perfect perfor-
mance (EM scores of 100.0) on the reversed D2N task across most layer configurations, demonstrating
their effectiveness in handling permutation-invariant tasks. (2) We observe a general trend of perfor-
mance improvement as the number of position-aware layers increases, with the 6-L configuration
emerging as an optimal balance between performance and parameter efficiency. For instance, in
the Llama-2-7B CPD model, BLEU scores on N2D improve from 91.3 (3-L) to 91.9 (6-L), while
maintaining perfect scores on D2N tasks.

Notably, the performance gains begin to plateau beyond 6 layers, with diminishing returns observed in
the 8-L and 12-L configurations. This suggests that 6 position-aware layers provide sufficient capacity
to capture the necessary positional relationships for effective permutation-invariant learning. The
consistent superiority of the 6-L configuration across both model sizes and task directions validates
our choice of CPD (6-L) as the default setting throughout our experiments.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Method Parameter
NameIsDescription DescriptionIsName

N2D D2N N2D D2N

EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1

CPC 6.74B 76.3 92.1 93.1 100.0 100.0 47.8 83.5 92.3 100.0 100.0

CPD
12-L 8.93B 79.9 93.7 96.2 100.0 100.0 52.6 87.3 95.2 100.0 100.0

Frozen ALL 2.32B 48.7 72.4 76.3 28.3 29.6 3.3 27.8 33.0 99.7 99.7

Frozen Embedding 8.93B 73.0 87.9 90.9 98.3 98.3 47.3 75.7 79.6 99.0 99.0

Table E6: Experimental results on the reversal curse setting with Llama-2-7B. i-L denotes the number
of position-aware layers, Frozen ALL means freeze all parameters of the pre-trained AR models, and
Frozen Embedding represents only freezing the parameters of the embedding layer in the pre-trained
AR models.

E.5.2 WHETHER TO TRAIN THE PRE-TRAINED AR MODELS IN CPD

In CPD, we append multiple layers of our proposed position-aware blocks after the output layer of the
existing pre-trained AR models, effectively decoupling the target position and content representations,
with target positions serving as query vectors. A natural question arises: can we train only the position-
aware blocks while keeping the parameters of the pre-trained AR models fixed? To investigate this, we
conducted comparative experiments on the name-description dataset using Llama-2-7B, with results
presented in Table E6. The following conclusions can be drawn: (1) Frozen ALL (training only
position-aware blocks while completely freezing pre-trained AR models parameters) demonstrates
significantly degraded performance. On the NameIsDescription N2D task, performance drops
precipitously from 79.9 (EM) and 93.7 (R-1) for CPD-12L to 48.7 (EM) and 72.4 (R-1). More
severely, on the DescriptionIsName N2D task, performance almost completely collapses, declining
from 52.6 (EM) and 87.3 (R-1) to merely 3.3 (EM) and 27.8 (R-1). This substantial performance
deterioration primarily occurs because knowledge-related content representations are predominantly
stored within the pre-trained AR models. When these parameters are frozen, the model cannot adjust
its internal knowledge representations to accommodate the position-aware mechanism. Although
position-aware blocks can theoretically store some knowledge information, their design primarily
focuses on processing positional information rather than content representation, resulting in limited
knowledge storage capacity.

(2) In contrast, Frozen Embedding (freezing only the embedding layer while allowing updates
to other parameters) exhibits performance more closely approximating the fully fine-tuned model.
On the NameIsDescription task, this strategy achieves 73.0 (EM) and 87.9 (R-1), which, while
slightly lower than the fully fine-tuned CPD-12L, significantly outperforms the Frozen ALL. On the
DescriptionIsName task, Frozen Embedding approaches the performance of the fully fine-tuned
model, with nearly identical results on the D2N task (98.3 vs. 100.0).

These results indicate that updating pre-trained AR models parameters (particularly parameters be-
yond the embedding layer) during training is crucial for effectively integrating positional information
and content representations.

E.5.3 THE UNIT OF PERMUTATION

To confirm the impact of permutation unit granularity on model performance, we conducted experi-
ments on permutation unit granularity under the reversal curse setting, and the results are shown in
Figure E5. We can draw the following conclusions: (1) Both small and large permutation units are
detrimental to model performance. When permutation units are too small (e.g., 1-2 words), the model
is forced to learn fragmented representations of common linguistic phrases and fixed collocations,
which imposes an additional learning burden and disrupts the natural semantic coherence of language
constructs. Conversely, when permutation units are too large (e.g., 7+ words), the model cannot
effectively perceive and adapt to different degrees of contextual variations, as the permutation granu-
larity becomes too coarse to provide meaningful positional diversity during training. (2) The results
reveal that different task exhibit distinct optimal permutation unit sizes. For the N2D task within

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9
The number of words in the permutation unit

50

55

60

65

70

75

80

EM

N2D in N2D

0 1 2 3 4 5 6 7 8 9
The number of words in the permutation unit

35

40

45

50

55

60

65

EM

N2D in D2N

Figure E5: Effect of permutation unit size on reversal curse performance using Llama-3.2-1B-CPD
(6-L). EM scores are shown for different word-level permutation unit sizes on the name-description
dataset. Left: N2D task performance in NameIsDescription setting. Right: N2D task performance in
DescriptionIsName setting.

the NameIsDescription setting, peak performance is achieved around 3-4 words per permutation
unit, while the N2D task within the DescriptionIsName setting shows optimal performance around
4-5 words per unit. This suggests that the complexity and structure of the underlying task influence
the most effective permutation granularity. (3) The consistent decline in performance at both ex-
tremes suggests that maintaining an appropriate balance between providing positional diversity and
preserving semantic coherence is essential for effective permutation-based training.

38

	Introduction
	Rethinking Failure Patterns in NTP
	Preliminaries
	Mitigating Failure Patterns in NTP

	Methodology
	Target Position-aware Embedding
	Content-Position Coupling
	Content-Position Decoupling

	Experiments
	Reversal Curse
	Experimental Results

	Factorization Curse
	Experimental Results

	Positional Bias
	Experimental Results

	Efficiency

	Related Work
	Conclusion
	 toAppendix
	Limitations and Potential Extensions
	The Use of Large Language Models (LLMs)
	Pseudo-Code of Our Method
	Experimental Details
	The settings of Figure 1
	Reversal Curse
	Dataset Introduction and Statistics
	Baseline Introduction
	Evaluation Metrics
	Detailed Implementation

	Factorization Curse
	Dataset Introduction and Statistics
	Baseline Introduction
	Evaluation Metrics
	Detailed Implementation

	Positional Bias
	Dataset Introduction and Statistics
	Baseline Introduction
	Evaluation Metrics
	Detailed Implementation

	Analysis & Alation Experiments
	Discussion: Is it normal for the same prefix and different suffixes?
	Training Convergence Analysis
	Can bidirectional training alleviate the reverse curse?
	Does CPC&CPD training hurt performance on standard tasks?
	Dataset introduction and statistics
	Implementation details & Experimental Results

	Ablation Experiment
	The number of position-aware blocks
	Whether to train the pre-trained AR models in CPD
	The unit of Permutation

