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ABSTRACT

Next-token prediction (NTP) serves as the dominant training paradigm for large
language models (LLMs), enabling strong autoregressive (AR) generation ca-
pabilities. Despite its success, models trained with vanilla NTP often exhibit
counterintuitive failure patterns, such as the reversal curse, factorization curse,
and sensitivity to knowledge position. These failures stem from the fixed left-
to-right token order during teacher-forcing supervision, which entangle content
and token order in ways that compromise permutation invariance. To address
these failures, we introduce a position-aware training framework that enables
AR models to predict the next token not just based on seen content, but also
to account for predicted token position. This disentanglement of what to pre-
dict and where to predict improves the robustness of LLMs to different token
orderings. We instantiate this framework via two complementary approaches:
(1) Content-Position Coupling (CPC), which injects a lightweight position-aware
embedding into the input sequence without modifying the model architecture; and
(2) Content-Position Decoupling (CPD), which introduces the modular position-
aware blocks for the pre-training AR model to provide explicit supervision over
target positions. Experiments across three representative tasks demonstrate that our
framework consistently improves performance over strong baselines, while main-
taining architectural simplicity and convergence efficiency. Codes are available at
https://anonymous.4open.science/r/CPC-CPD.

1 INTRODUCTION

Next-token prediction (NTP) is the primary pre-training objective for large language models
(LLMs) (OpenAl 2023} |[Touvron et al.,[2023a). LLMs can effectively acquire co-occurrence patterns
among tokens by optimizing the autoregressive (AR) maximum likelihood estimation objective on
large text corpora (Zhang et al.| [2024b), so allowing the broad transfer of learned knowledge to
many applications, ranging from text generation to complicated question answering and reason-
ing (Petroni et al.| 2019; [Hendrycks et al., [2020). NTP commonly integrates a teacher forcing
mechanism (Williams & Zipser, [1989) during the training phase and employs AR at inference-
time (Bachmann & Nagarajan, 2024)). Owing to its significant advantages-notably in training effi-
ciency (Gloeckle et al., [2024; [L1 et al., 2024), gradient stability (Chen et al.,|2024), and amenability to
parallel computation (Li et al., 2021} Rasley et al.} 2020), NTP has established itself as a cornerstone
in the pre-training of mainstream LLMs (OpenAll |2023}; [Touvron et al.l [2023a; [Liu et al.| [2024a}
Jiang et al., [2024a; |Bai et al., [2023)).

Despite its long list of achievements, existing research has discovered that models trained via vanilla
NTP can surprisingly exhibit counterintuitive failure patterns (Berglund et al., 2024} |Lin et al.,2024;
Lv et al., 2024; |Bachmann & Nagarajan, [2024; |[Kitouni et al., 2024} |Allen-Zhu & Li, [2024; Saito
et al.;2025). For instance, they may suffer from (1) the reversal curse (Berglund et al.,[2024; |Lin
et al., [2024; [Lv et al.,|2024)), where learned associations (e.g., "A is B") fail to generalize to their
inverse form (e.g., "B is A"); (2) the factorization curse (Kitouni et al.,[2024), which arises when
the model, trained on a specific decomposition of the token sequence (e.g., left-to-right), fails to
represent the same joint distribution under alternative factorizations; and (3) the knowledge position
sensitivity (Allen-Zhu & Li| [2024; |Saito et al.| [2025)), where factual information encoded during
training is only reliably accessible when it appears in early positions of the training document, while
knowledge located later is often unrecoverable during inference, even with accurate prompting. These
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Figure 1: Joint probability across different permutations on the same sample under three task types.
Our method maintains nearly consistent joint probability across different permutations, while both
NTP and TPM fail to achieve probability invariance. 7(*) denotes a specific permuted token order.
For more detailed experimental settings and more examples, see Appendix@

failure patterns reveal a shared deficiency: the left-to-right, teacher-forcing training paradigm
inherent to NTP causes the model to rely heavily on preceding context during training, making
model difficult to acquire a consistent joint distribution over tokens across different positions
or permutations. Figure [1]illustrates the joint probability distribution of the same sample under
different permutations across three distinct task types for fully trained NTP model. The results
demonstrate that standard NTP methods only assign high probability to samples in the original order
encountered during training, while probability for other permutation orders decreases to nearly zero,
reflecting a severe probability distribution inconsistency issue.

Existing research to overcome these pitfalls has primarily followed two major directions. Data-centric
strategies include data rewriting and token permutation (Golovneva et al., [2025} |Guo et al.| 2024) to
encourage model learning under a broader range of token factorizations, and structural reorganization
of training data to break the NTP inherent left-to-right generation bias, e.g., by exposing the model
to future tokens earlier in the sequence (Thankaraj et al., [2025). Model-level work targets model
architecture and training objective modifications. This includes multi-token prediction (Gloeckle
et al.| 2024} Zhang et al.| 2024a), altering the training objective to predict both the next token of a
prefix and the previous token of a suffix (Hu et al.||2024), and equipping AR models with bidirectional
attention mechanisms to better capture global contextual dependencies (Lv et al., [2024).

However, these are two primary challenges: (1) For data-centric methods, data rewriting typically
relies on advanced LLMs (e.g., GPT-4), which inevitably introduces hallucinations. Moreover, for
token permutation under the vanilla NTP objective, it often leads to different target tokens are
associated with identical prefixes, which introduces label ambiguity and undermines training
stabilityﬂ As shown in Figure |1} similar to NTP, token permutation methods struggle to assign
consistent probabilities across various permutations even after extensive training, and especially in
planning and algorithm reasoning, they even underperform compared to standard NTP. (2) For
methods that involve modifying the model architecture or training objective, most require careful
adaptation to specific model implementations, making them difficult to generalize across diverse
architectures and limiting their practical applicability.

In this paper, we build upon token permutation and then expose the model to diverse token permuta-
tions, encouraging model to learn position-agnostic representations and improve its generalization
across different factorizations. To address the inevitable issue of target ambiguity introduced by token
permutations, where different ground-truth tokens are associated with the same prefix, we further
propose to augment the vanilla NTP objective with position-aware modeling, explicitly encoding
the location of the predicted token. Concretely, we introduce two complementary approaches: (1)
Minimal modification, data-centric coupling: We retain the original AR architecture and bind the
target location and the permeated sequence into the model. Specifically, we first introduce a single
learnable position embedding that is rotated to arbitrary positions using rotary position embedding
(RoPE) to obtain target position-aware embedding. Then, the obtained position vector is combined
with permuted input sequences, enabling the model to implicitly recognize the specific position for
next token prediction, thereby mitigating the problem of identical prefixes leading to different targets.

'As for different target tokens are associated with identical prefixe, we provide a detailed example and
explanation in Appendix [ET}
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(2) Incremental, model-level decoupling: While the first approach (coupling) doesn’t require a
lot of changes, it does have the downside of potentially messing with the original token embedding.
To address this, we propose a structure-preserving decoupling method by augmenting AR model
with auxiliary position-aware decoding blocks. These position-aware blocks fine-tune the next-token
prediction by utilizing location as the query and the previous sequence content as key and value,
effectively separating positional information from content representation. As shown in Figure[I] our
method can maintain almost the same joint probability for different permutations. Crucially, our
framework requires no changes to the base model’s structure and can be plugged into any pre-trained
AR model as a modular and learnable component, enabling scalable and position-aware adaptation.
We summarize our contributions below.

» We reveal that seemingly disparate failure patterns in LLMs, actually stem from the funda-
mental mechanism: the inherent sensitivity of NPT training paradigms to token ordering,
which particularly impairs models’ planning and reasoning capabilities.

* We propose a complementary target position-aware enhancement framework, enabling
models to distinguish prediction targets using both content and intended position.

» Extensive experiments demonstrate that our proposed methods significantly enhance model
robustness to token order variations, enabling smaller LMs to outperform larger backbone
models.

2 RETHINKING FAILURE PATTERNS IN NTP

2.1 PRELIMINARIES

Consider a sequence s = (p,r), where p = (p1,p2,...,p|p) denotes the prompt and r =
(r1,72,...,7)r) denotes the response. Each token p; and r; is drawn from a fixed-size vocabu-
lary V. For any position ¢ in the sequence s, let s; denote the subsequence consisting of the first
1 — 1 tokens and s; denote the token at position 7. Suppose we have a next-token prediction (NTP)
language model Py parameterized by 6, such that Py(s; | s<;) denotes the probability that the model
assigns to the i-th token s;, conditioned on the preceding sequence s.;. For the given sequence s,
the joint probability is axiomatically defined analogous to the chain rule of probability:

7|

Py(rip) =[] Po (ri | P, 7<) ey

=1

Training-time next-token prediction via teacher-forcing To train the above NTP model, main-
stream LLMs adopt teacher forcing to maximize the log-probability sum of the next token, where the
model is trained to predict each token r; using the ground-truth ., as input. The teacher-forcing
objective Jicacher-forcing (6) on dataset D can be formulated as follows:

il

uZeacher—forcing(G) = E(p,T)N'D [log Py (T ‘ p)] =Ep Z 10@; Py (Ti ‘ p, r<i) 2)

=1

Inference-time next-token prediction via autoregression During inference, the model is condi-
tioned on a given prompt p and generates output tokens 7; by sequentially sampling from the learned
distribution Py. Specifically, for each step ¢, the model samples a token 7, ~ Py(- | s<¢,7<t), Where
7 <4 signifies the previously generated tokens. The context is then supplied back into the model for
the next prediction using the sampled token #, attached to it. A full sequence is formed by this
autoregressive generation process continuing for |r| steps.

2.2  MITIGATING FAILURE PATTERNS IN NTP

We argue that the commonly observed failure patterns in NTP, namely the reversal curse, factorization
curse, and knowledge position sensitivity, reflect a shared underlying limitation in vanilla NTP: the
lack of robustness to variations in token permutation. Building on the insight by [Kitouni et al.| (2024)
that consistency across token factorizations improves knowledge retrieval, we generalize this goal
to a broader permutation-robustness perspective. Specifically, we posit that ensuring approximate
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invariance of joint probabilities under token permutations not only mitigates reversal-related failures,
but also serves as a foundation for addressing a wider set of token order sensitivities, such as
position-induced misalignments in reasoning and planning.

Let () € S, be the iy, sampled permutations, where .S, is the set of all n! permutation of the
indices {1,2,...,n}. Thus, 7 = {#("™) 7{tm) - 20m)y - Applying permutation +(+P) and
7(:I71) reorders the sequence tokens accordingly, yielding permuted prefixes p, (:.;») and responses
T =). Then, for any two sampled permutations r@lp) ¢ S‘p‘,T(i’er S SM, the permutation-
invariant objective expect the model P, could assign approximately joint probability, regardless
of the permutation applied to the input. With an abuse of notation, let p,(» and r_ -y denote the
permutation of prompt and response, respectively. This objective can be formulated as:

|7l |7l

I1»e (7};“ ‘pr(r’)7"°<.rt(r)) ~ [ pe (7;52) \PT<1>>T<T§2>> ©)
t=1

t=1

where 7(1) and 7(2) denote the used permutation of prompt and response (e.g., left-to-right), respec-
tively, during training.

To approximate the permutation-invariant objective in Equation 3] the straightforward strategy is to
apply diverse permutations to the training data. However, such permutations inherently disrupt the
natural structure of language. On one hand, exposing the model to arbitrarily disordered sequences
may harm its ability to model syntactic or semantic coherence. On the other hand, permutation
introduces a fundamental conflict: under the same prefix, the model is required to optimize for
different next-token targets, which results in inconsistent supervision signals. Moreover, prior
studies (Kitouni et al.| 2024) have shown that the masked language modeling (MLM) objective is
effective in alleviating the reversal curse and factorization curse, but it not be included by the existing
LLMs pre-training paradigms. Instead, it randomly masks tokens at arbitrary positions and predicts
them using bidirectional context, allowing model to learn representations that are inherently robust
to variations in token order. However, applying MLM-style training to pre-trained AR language
models typically requires modifying the internal attention mechanism (Lv et al.l 2024) or full model
re-training, which either conflicts with the original AR pre-training objective or incurs substantial
computational cost. To achieve the permutation-invariant objective within the pre-trained AR models,
it is desirable to combine the AR structure of NTP with the positional flexibility of MLM, i.e.,
allowing the model to predict tokens at arbitrary positions rather than adhering to a strict left-to-right
order. This requires explicitly identifying which token is to be predicted under each context.

3 METHODOLOGY

Considering the ambiguity and inconsistency brought by token permutations in NTP, especially when
the same prefix corresponds to different target tokens, we propose a target position-aware training
framework.

This framework can clearly and completely distinguish prediction targets not only based on content,
but also based on their intended positions in the permuted sequence. We instantiate this framework
in two complementary ways: (1) Content-Position Coupling (CPC), which implicitly informs the
model of the target position by injecting a lightweight position embedding into the input sequence.
CPC requires no modification to the model architecture and minimally intervenes with the original
AR behavior. (2) Content-Position Decoupling (CPD), which introduces a modular position-aware
module on top of the pre-trained AR model. This auxiliary module decouples content modeling and
target position, allowing for explicit position-aware supervision.

3.1 TARGET POSITION-AWARE EMBEDDING

In widely used AR model such as GPT and Llama, the NTP is conditioned not only on the content of
the previous tokens, but also on their positions. Specifically, for target position ¢, the model predict

po(Sr, | S<r.) = Do (sﬂ | {(b(Embed(sTj),Pos_Embed(Tj))}Ki) 4)

2Without loss of generality, we do not restrict NTP to scenarios where generation is prompted by a prefix, as
the model can also be trained directly on the prompt tokens.
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Figure 2: Overview of the proposed target position-aware framework, illustrating the Content-Position
Coupling (CPC) (left) and Content-Position Decoupling (CPD) (right) approaches.

where Embed(s;) denotes the embedding of the content s; and the position encoding Pos_Embed(j)
can be either the absolute positional encoding or the relative positional encoding method. ¢(-) is
a token-position fusion function. Under absolute positional encoding schemes, ¢(-) is typically
implemented as an element-wise addition to the token at the embedding layer. In contrast, relative
positional encoding mechanisms such as rotary positional encoding (RoPE) integrate ¢(-) directly
into the attention mechanism by rotating query and key vectors based on current token positions.

To inject the positional information of target tokens into AR models while preserving the original
flow, we design a hybrid positional encoding scheme that combines the flexibility of absolute position
embeddings with the extensibility advantages of RoPE. Specifically, instead of assigning each position
a fixed embedding vector from the pre-defined embeddings, we first learn a shared position base vector
€pos € R! xdim \where dim is embedding dimension, and then rotate it to the desired target positions
according to their corresponding position ids using RoPE-1D. The position-aware embedding z for
the target token at position 7y is:

Zr, = ROPE-1D(epos, Tt) 5)
This design allows us to learn a single shared parameter while obtaining theoretically unbounded
target position-aware embeddings.

3.2 CONTENT-POSITION COUPLING

To minimize architectural modifications, we propose a content-position coupling training strategy
that encodes target-position information into the input representation. Specifically, we modify the
original token-position fusion in Equ. ] by integrating the target position-aware embedding z; to the
input sequence. This allows the model to internalize the intended prediction position without altering
its architecture or decoding behavior, which can be formulated as follows:

{¢(Embed(s-,) & zTi,Pos_Embed(Tj))}jQ,) (6)

Po(Sr, | S<r) = Do (sﬂ-

where @ denotes the interaction operation between content and target position. The interaction opera-
tion can be instantiated using either parametric or non-parametric methods, such as direct addition,
concatenation followed by a linear projection, or other fusion strategies, achieving internalization of
the target position-awareness into the embedding of the model. For simplicity of design, we directly
use direct addition as the default setting in &. We provide the training pseudo-code and concrete
example for CPC in Algorithm [CI]and Figure [CT] respectively.

While CPC is simple and efficient, requiring only minimal architectural modifications, its direct
coupling of content and positional information introduces a potential drawback. By injecting position-
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awareness through input embedding modification, it may cause the semantic representations learned
during pre-training to drift, thereby creating a gap between pre-training and fine-tuning that potentially
undermines the original performance of LLMs. This motivates us to explore another way to preserve
a clear separation between content and position.

3.3 CONTENT-POSITION DECOUPLING

To achieve a decoupling between content and position, a straightforward approach is to reformulate
the CPC objective such that the target position is treated as an independent conditioning signal, rather
than being directly fused with input embeddings (as in CPC).

Reformulation Similarly, we still adhere to the principle of not significantly adjusting the original
AR structure. Therefore, we reformulate the objective in a decoupled manner as follows:

Po(sr, | 8<r,) = po (sn | {¢ (¢(Embed(s,, ), Pos_Embed(7;)), z-,) }M) @

Here, ¢ (-, z;) represents an auxiliary position-aware conditioning function that modulates the decod-
ing process using an independent embedding z,, associated with the intended prediction position.

From Equ.[/| we observe that the key challenge now lies in how to design an effective mechanism (i.e.,
©(+, z,)) for incorporating z,, into the model’s workflow without disrupting the basic AR structure.
In the following, we introduce a position-aware decoder branch that integrates this positional signal
through cross-attention, enabling flexible and explicit supervision of target position.

Overview The overall structure of CPD is illustrated on the right side of Figure 2] We adopt
an incremental and modular design that allows for integration with the existing AR-based models.
Specifically, we insert M position-aware decoder block after the output of original model’s trans-
former blocks, which performs cross-attention between the base transformer blocks’ final hidden
states and the target position-aware embedding z.,, enabling the model to condition its predictions
explicitly on the content and intended output position.

Position-aware Block Let S = BaseModel(s,) € RIs!X@™ represent the hidden states of the
base AR model’s final layer. To decouple content and target position information, we design a
cross-attention mechanism within the position-aware block, where the query comes from the target
position-aware embedding z.,, and the key and value come from the content (input) sequence
representations S. For input sequence indices 7 = [71, 72, ..., T|s,|] € R1*Is7!  the corresponding
target position set is 77 = [72,...,7|5,|] € R'*Is==1 For any target position 7; € 77, the
cross-attention mechanism can be formulated as follows:

Q = RoPE-1D(z,;, W, T;), K = RoPE-1ID(SWy, 1), VvV =SW, ®)
Atteross(Q, K, V) = Softmax(QK ' + M)V 9)

where 2, is target position-aware embedding of 7;, Wy, Wy, W,, € R4m*dim gre Jearnable weights,
and M is attention mask. As shown in Figure the attention mask M € {0, —oo}I771*I7| ensures
that each target position 7; € 77 is only allowed to attend to key-value pairs corresponding to its
preceding content tokens 7; < 7;. The causal structure of AR decoding is maintained while enabling
explicit conditioning on the target position through a query formed from z.,. Each row of the attention
mask activates only those positions in the input sequence that occur before the current prediction
position, retaining left-to-right generation constraint in vanilla NTP.

Similar to standard decoder layers used in Transformer architectures, a single position-aware block
can be formulated as follows:

H =T +FEN(LN(T)) (10)

T = LN(zn + AttCT‘OSS(Qa K7 V)) (11)

where H is the hidden state of a single position-aware block, LN is the layer-norm function, and
FFN is the feed-forward network. We provide the training pseudo-code for CPD in Algorithm[C2] It

is worth noting that in the training optimization stage, CPC and CPD perform teacher-forced NTP
(Equ. [2) on the basis of Equ.[6]and Equ. [7] respectively.
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NamelsDescription DescriptionIsName
Method N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-2-7B-base
NTP 717 915 932 0.00 0.00 0.00 199 254 91.7 91.7
TPM 477 84.1 86.1 99.7 997 173 780 823 98.7 989
SPT* N/A  N/A 83.6 100.0  100.0 N/A  N/A 84.3 100.0  100.0
BICO 68.7 894  91.1 99.7 997 2.00 24.1 26.9 100.0  100.0
CPC 76.3  92.1 93.1 100.0  100.0 478 835 923 100.0  100.0
CPD 783 919 944 100.0  100.0 483 857  93.6 100.0  100.0
Llama-3-8B-base
NTP 733 91.8 945 0.0 0.0 00 171 24.0 99.7 99.7
TPM 563 826 873 94.6  94.6 248 839 85.1 100.0 100.0
BICO 637 876 913 92.3 92.3 00 18.1 24.8 100.0  100.0
CPC 87.0 956 969 100.0 100.0 59.2 86.7 893 100.0 100.0
CPD 88.6 972  98.3 100.0  100.0 629 872  89.9 100.0  100.0
Llama-3.2-1B-base

NTP 750 769 793 0.00 0.00 0.00 29 7.7 91.7 91.7
TPM 46.7 852  86.5 95.7 957 22.3 807 84.7 97.3 97.3
BICO 60.3 745 77.8 37.0 37.3 00 192 238 977 977
CPC 78.7 91.8 928 82.7 83.6 328 829 897 100.0 100.0
CPD 81.3 947 958 100.0  100.0 63.0 853 87.7 100.0  100.0

Table 1: Experimental results under the reversal curse setting across various Llama models. Results
of method marked with * are from Guo et al.| (2024).

4 EXPERIMENTS

We evaluate the performance of CPC on the following representative tasks: reversal curse, factor-
ization curse, and positional bias.

4.1 REVERSAL CURSE

Settings Datasets: Following previous work (Berglund et al.| [2024} [Lin et al., 2024; [Lv et al.
2024), we evaluate CPC and CPD on the name-description dataset (Berglund et al.| 2024)). Detailed
descriptions and statistics of the datasets are provided in Appendix [D.2.1] Baselines: NTP, Token
Permutation (TPM), BICO (Lv et al., 2024}, and SPT (Guo et al.,[2024)). We evaluate all methods
on Llama-2-7B (Touvron et al., |2023b)), Llama-3-8B (Grattafiori et al., [2024)), and Llama-3.2-1B.
Introduction and implementation details of all methods are provided in Appendix [D.2.2]and[D.2.4]
respectively. Evaluation Metrics: We use exact match (EM), ROUGE-1 (R-1), and BLEU scores.

4.1.1 EXPERIMENTAL RESULTS

Table [T] reports experimental results under the reversal curse setting. We can draw the following
conclusions: (1) On all metrics, CPC and CPD are significantly better than all baselines, suggesting
that explicitly incorporating position information can effectively mitigate the problem of inconsistent
information about the direction of the data during the training and testing phases. (2) Llama-
3.2-1B+CPD (with 6 position-aware blocks adding 0.8B parameters) achieves results superior to
larger-scale models, including Llama-2-7B and Llama-3-8B, and even surpasses Llama-3-8B+CPD
in some ways. This demonstrates that we can endow smaller models with permutation-invariant
capabilities by incorporating additional CPD modules. Meanwhile, we provide more experiments
on the number of position-aware blocks in the Appendix [E.6.1]and the effect of whether or not to
train the base AR model on CPD performance in Appendix Furthermore, in Appendix we
analyze the trade-off between performance and training/inference burden introduced by adding extra
CPD layers. Moreover, increasing additional parameters does not affect convergence speed. We
find that CPD and CPC exhibit almost identical convergence behavior, both significantly superior to
TPM, as shown in Figure E} (3) While TPM can alleviate the reversal curse, it exhibits degraded
performance on the N2D task of NamelsDescription compared to standard NTP. The primary reason
is that altering the original token ordering during training tends to produce conflicting optimization
objectives where identical prefixes map to different targets. As shown in Figure[E4] this results in
slow training optimization and unstable performance fluctuations. Furthermore, to assess whether
permutation-based training affects the original performance of pretrained models, we evaluate model
capabilities before and after training on nine standard NLP benchmarks. A detailed evaluation is
provided in Appendix[E.5] Moreover, since the reversal curse intuitively can benefit from bidirectional
training, we also compared the classical bidirectional training model BERT in Appendix
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Method Path planning Algorithmic reasoning
G(2,5) G(5,5) G(20,5) G(2,10) scc-4  scc-5 sce-11 sce-12 sce-15
NTP* 0.50 0.20 0.05 0.50 1.00 099 0.62 0.57 0.27
TPM 0.00 0.00 0.00 0.00 1.00 0.53  0.00 0.00 0.00
TRELAWNEY*  1.00 1.00 1.00 0.50 1.00 098 0.72 0.71 0.48
CPC 1.00 1.00 1.00 0.99 1.00 1.00 097 0.99 0.84
CPD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93

Table 2: Experimental results for path planning (star graph G(d, ) with d paths of length [ from start
node) and algorithmic reasoning (strongly connected components, denoted as scc-¢ where ¢ represents
connected graph size). Results of method marked with * are from from Thankaraj et al.| (2025).

4.2 FACTORIZATION CURSE

Settings Datasets: Following prior work (Kitouni et al.l 2024} [Thankaraj et al., 2025)), we ex-
periment on the Star Graph dataset (Bachmann & Nagarajan| [2024) and the strongly connected
components algorithm from CLRS-Text (Markeeva et al.,[2024)). Detailed introduction and statistics
of the datasets are provided in Appendix[D.3.1} Baselines: NTP, TPM, and TRELAWNEY (Thankaraj
et al.| 2025). Consistent with previous work (Thankaraj et al.,2025)), we conduct experiments using
Llama-3.2-1B, as models at the 1B scale typically lack task planning capabilities without fine-tuning.
Introduction and implementation details of all methods are provided in Appendix and
respectively. Evaluation Metrics: Accuracy is used to evaluate the performance of the model.

4.2.1 EXPERIMENTAL RESULTS

Star Graph Based on experimental results shown in Table[2] the following key conclusions can
be drawn: (1) NTP struggles with path planning, especially as graph complexity increases. Its
accuracy drops from 0.50 on G(2, 5) to 0.05 on G(20, 5), indicating difficulty in learning "difficult
token" under teacher forcing. (2) TPM performs poorly, with near-zero accuracy across various
star graphs. Permutations introduce conflicting prefix-target pairs, making optimization unstable,
as also evidenced by its failure to converge (Figure [E2). (3) Although TRELAWNEY achieves
reasonable performance through data augmentation, it relies on carefully designed enhancement
strategies, such as pre-planning which tokens the model should learn. Without designed prompting, its
performance on the longer path planning task G(2, 10) remains limited at 0.50. In contrast, our CPC
and CPD methods consistently reach near-perfect accuracy (1.00), demonstrating the effectiveness of
position-aware modeling in this path planning task.

Strong Connected Components As shown in Table 2] a similar trend is observed in the strongly
connected components (SCC) benchmarks. NTP maintains high accuracy on scc-4 and scc-5 but
collapses on larger connected graphs, dropping to 0.27 on scc-15. TPM completely fails beyond
scc-5, with 0.00 accuracy on scc-11 through scc-15, revealing that permutation exposure without
structural position grounding is insufficient for generalization. As shown in the Figure it is also
clear that during the training process, we find it difficult for the TPM to converge, which is further
evidence of the supervised conflicting situations caused by the permutations. TRELAWNEY shows
improved robustness, but its performance drops significantly on scc-15 (0.48). In contrast, CPC and
CPD both maintain strong performance across all scales. CPD achieves perfect accuracy (1.00) on
scc-4 through scc-12 and still reaches 0.93 on scc-15, outperforming all baselines and demonstrating
superior scalability and permutation robustness.

4.3 POSITIONAL BIAS

Settings Datasets: Following previous work (Saito et al., 2025), we evaluate CPC and CPD in real-
world collections of Wiki2023+ (Jiang et al.,2024b; Saito et al., 2025)) that are new knowledge for
Llama-2. See Appendix [D.4.T|for details. Baselines: Next-token prediction (NTP), Sentence Shuffle
(SS), Attn Drop (AD), and D-AR (Saito et al.| [2025). Details are in Appendix [D.4.2] Evaluation
Metrics: We adopt Exact Match (EM) and F1.

4.3.1 EXPERIMENTAL RESULTS

Table [3 shows the performance of CPC and CPD on the Wiki2023+ dataset of the movie domain
collected in the real world, and we can draw the following conclusions: (1) CPC and CPD can be
effectively applied to learn new knowledge in realistic scenarios, enabling the model to perceive
knowledge distributed in different locations in a balanced manner. Specifically, compared to the
best baseline method, D-AR, CPC achieves an average improvement of 10.0% in EM, while CPD
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Method start end— Average

EM, /Fl; EMy/Fl, EMs/Fl3 EM4/Fl, EM;/Fls EMs/Flg
NTP*  409/514 63/205 8.1/298 11.7/357 11.6/378 10.7/364 14.9/35.7
SS*  51.6/657 147/432 15.6/435 20.6/468 24.0/50.8 19.8/46.4 24.4/494
AD*  586/71.1 10.2/29.8 14.0/36.6 17.0/38.6 132/428 13.3/39.7 21.0/43.1
D-AR* 60.1/73.7 269/53.1 234/529 260/51.7 248/522 21.3/482 30.4/553
CPC ~ 688/85.9 29.4/66.2 37.2/698 359/63.2 38.3/64.0 30.6/558 40.0/67.5
CPD  69.3/86.2 32.1/684 39.5/71.2 363/64.9 39.0/658 31.2/57.3 41.2/69.0

Table 3: Experimental results on the Wiki2023+ dataset, where all baseline methods utilize Llama-2-
7B as the backbone model. Results of methods marked with * are from|Saito et al.| (2025)).

realizes a significant improvement of 10.8%. Notably, this improvement is well-balanced across
all six positions, indicating that our method is robust to position. For example, from EM; to EMg,
the enhancement of CPD compared to D-AR is 9.2%, 5.2%, 16.1%, 10.3%, 14.2%, and 9.9%,
respectively, with no obvious position bias, which fully proves the consistency and effectiveness of
our proposed position-aware modeling in dealing with novel knowledge learning.

5 RELATED WORK

Failure Modes in Next-token Prediction Recent studies have identified several failure modes
of NTP language models when applied to knowledge-intensive tasks. The reversal curse refers to
models’ inability to generalize bidirectionally due to their sensitivity to orderings of tokens (Berglund
et al.l 2024). The factorization curse generalizes this issue: models tend to overfit to a specific
decomposition of the joint token distribution, failing to recover the same information under alternative
factorizations (Kitouni et al.| 2024). Positional bias denotes the diminished capacity of LLMs
to retrieve parametric knowledge that was stored in non-initial positions of training documents,
particularly when prompted through question answering (Allen-Zhu & Li| 2024} Saito et al., 2025).
It’s worth noting that this contrasts with another line of work that examines inference-time inter-
segment bias, where the model’s output varies with the ordering of multiple input units (An et al.,
2024;|Liu et al.,|2024b; Ko et al.|, [2020; [Ma et al., 202 1; Hofstitter et al., 2021} [Peysakhovich & Lerer,
2023)). Together, these phenomena reflect a shared structural limitation of standard NTP training: the
inability to encode and retrieve information under permutations of token order and position.

Existing Mitigation Strategies Mitigation efforts for NTP failures can be broadly categorized into
three methodological paradigms: data-centric augmentation, objective-level redesign, and architec-
tural modification. Data-centric strategies mitigate failure patterns by augmenting the training data
with reordered or reversed sequences. Several works address the reversal curse by injecting reversed
relational examples (Allen-Zhu & Li} 2023; |Golovneva et al., [2025) or applying controlled permuta-
tion of semantic units (Guo et al.| 2024)). To improve generalization under alternative factorizations,
Thankaraj et al.| (2025)) propose inserting future goals via lookahead tokens. For positional bias, prior
studies show that data reordering techniques such as sentence shuffling (Allen-Zhu & Lil 2024)) or
exposing knowledge in earlier positions (Saito et al.,[2025) can partially alleviate retrieval failures.
Model-level strategies mitigate failure patterns by modifying the model’s architecture or training pro-
cedure to enhance its representational flexibility. Jiang et al.|(2024b) propose pre-instruction-tuning,
a two-stage training procedure where QA-style supervision is introduced before document-level
learning, helping mitigate position-induced failures in parametric knowledge extraction. [Kitouni
et al.| (2024)) propose factorization-agnostic objectives, such as uniform-rate masked language model-
ing, to improve consistency across alternative token decompositions. [Lv et al.|(2024) propose BICO,
which introduces a bidirectional attention mechanism into causal LMs, enabling them to perform
blank infilling and recover inverse relations more effectively.

6 CONCLUSION

This paper revisits three major failure modes in NTP: reversal curse, factorization curse, and positional
bias. We identify a shared underlying cause: the inability of AR models to robustly distinguish
prediction targets under token permutations. To address this, we propose a position-aware training
framework that introduces lightweight positional supervision without modifying model architecture
or requiring full retraining. We instantiate this framework via two complementary strategies: CPC and
CPD, both of which maintain compatibility with existing pre-trained LLMs. Extensive experiments
across tasks demonstrate that our approach significantly improves robustness to token reordering,
offering a simple yet effective solution toward permutation-invariant language modeling.
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A LIMITATIONS AND POTENTIAL EXTENSIONS

Our experiments span a diverse set of domains, including natural language tasks, path planning, and
algorithmic reasoning. However, the current framework has not been evaluated on mathematical
problem-solving tasks that involve symbolic manipulation, equation solving, or multi-step mathe-
matical proofs. Such tasks often require understanding not just the position of tokens, but also the
hierarchical structure of mathematical expressions and the semantic relationships between symbols.
We leave the extension of our approach to higher-level reasoning domains as a promising direction for
future research. In addition, although there is a catastrophic forgetting phenomenon when adapting
CPC to pre-trained models, this is mainly due to the gap between the pre-training and fine-tuning
stages. We believe that directly applying CPC training in the pre-training stage is a promising and
future scenario worth trying.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT-5 to assist with language pohshmg and grammatical improvements of the manuscrlpt
The LLM was used to refine sentence structure, improve clarity, and correct grammatical errors in the
text. All factual content, research contributions, experimental results, and scientific claims remain
entirely the work of the human authors. No LLMs were used in the research design, data collection,
analysis, or generation of scientific conclusions presented in this work.

C PSEUDO-CODE OF OUR METHOD

We provide the pseudo-code for the core functions of CPC and CPD, as shown in Algorithm [CT]and
Algorithm[C2]

For clarity, we provide a concrete exam-

féeaogesigtzgr:e(ﬁliﬁiisErit]ej((j)slz"Fl'gs Original sequence Fbos% ’The‘ ’ cat ‘ ’ sat ‘ ’ on ‘ ’mat‘ %eos>‘
"on", "mat", "The", "cat", "<eos>"] Original positions l 0 ‘ l 1 ‘ l 2 ‘ l 3 ‘ l 4 ‘ l 5 ‘ l 6 ‘
1 e eslon e 03,4y e Bl (3] () (] ] [
lizes the context ¢(Embed("<bos>") @  Permuted positions l 0 ‘ l 3 ‘ l 4 ‘ l 5 ‘ l 1 ‘ l 2 ‘ l 6 ‘
z3, Pos_Embed(O)), while the predic- P ted Fb >‘ ’ ; ‘ ’ ‘ ’ t‘ ’Th ‘ ’ " ‘ F >‘
tion of "on" utilizes ¢(Embed("sat") @ o oaienes 2057 L5 onl| [hma e | |cat | [seos
Z4,POS_Embed(3)). Unlike standard Target positions ’ 3 ‘ ’ 4 ‘ ’ 5 ‘ ’ 1 ‘ ’ 2 ‘ ’ 6 ‘

NTP which relies solely on preceding

context, CPC enables the model to pre- Figure C1: An instance of the process of CPC.

dict each token based on both the preced-
ing content and the intended target position, thereby preserving awareness of the original positional
relationships during permuted training.

D EXPERIMENTAL DETAILS

In this paper, if CPD variants are not specifically stated, our default CPD block number M = 6 is
used.

D.1 THE SETTINGS OF FIGURE[]

In Figure [I] we experimented with Llama-3.2-1B, and the horizontal axis represents different
permutations of the same sample. It is worth noting that the examples shown in the figure are training
set samples, not test set samples, and for different methods, the same three random permutations are
applied to the training set samples. Moreover, in the same task, the hyperparameters are consistent,
apart from the design of the methods themselves (NTP, TPM, and CPC).

Original refers to the natural language order without any modification, while 7(1), 7(2) 7(3) denote
three random permutations. These permutations are highly unlikely to appear during training,
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Algorithm C1 Pytorch-style Pseudo-Code of CPC during training.

# ——— Helper: Token Grouping and Permutation Logic —-—-
def get_permuted_inputs_and_order (input_ids, tokenizer, training_args):
permuted_input_ids = input_ids

# <training_args.group_by_sentence> determines whether to perform inter-
sentence permutation before intra-sentence permutation. If False, entire
input is treated as a single sentence and intra-sentence permutation is
performed.

# <training_args.words_per_group> means the granularity of permutation within a

sentence, i.e., how many words are permutated as a unit.
grouped_token_indices = group_tokens_permutated (input_ids, tokenizer,
training_args.group_by_sentence, training_args.words_per_group)

For each item in batch:

permuted_input_ids[item_idx] = input_ids[grouped_token_indices[item_idx]]
return permuted_input_ids, grouped_token_indices

# —-—— Model Core Forward Pass (Conceptual) ---
# Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPC_Single_Forward (

input_ids, # Original sequence

attention_mask,

seq_len, # Current sequence length of input_ids

model, # Base: {embed_tokens, pos_aware_embed, fregs_cis, transformer_blocks,

1lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

# 1. Get token embeddings

permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order (
input_ids, tokenizer, training_args)

token_embeddings = model.embed_tokens (permuted_input_ids)

current_embeddings = token_embeddings

# 2. Calculate and add specialized position-aware embeddings
fregs_cis_for_current_order = model.freqgs_cis[permuted_token_order] #

Simplified

position_instruct_embeds = apply_rotary_to_positional_instruction (model.
pos_aware_embed, fregs_cis_for_current_order, model_args.n_head, model_args.
head_dim)

current_embeddings = current_embeddings + position_instruct_embeds

# 3. Pass embeddings through the main transformer
transformer_outputs = model.transformer_blocks (inputs_embeds=current_embeddings,
attention_mask=attention_mask, position_ids=permuted_token_order)

# 4. Compute logits using the LM head
logits = model.lm_head(last_hidden_states)
return logits

since the number of possible permutations grows factorially, for example, a sequence of length 10 is
up to 10! permutations. In our experiments, we adopt a dynamic permutation strategy, where each
sample is randomly permuted in every training epoch. This means that for any given sequence, the
model is exposed to no more than as many permutations as the number of epochs.

Figure[T] (a) reports results on the name—description dataset under the reversal curse setting, with
outcomes from NTP, TPM, and CPC derived from our experiments (up to 110 epochs in training,
detailed setup in Appendix [D.2.4). Figure ] (b) corresponds to the algorithmic reasoning task on
the scc-15 dataset (factorization curse), with outcomes from NTP, TPM, and CPC derived from our
experiments (up to 10 epochs in training, detailed setup in Appendix [D.3:4). Figure[](c) presents
results for the shortest-path planning task on the Star graph, with outcomes from NTP, TPM, and
CPC derived from our experiments (up to 150 epochs in training, detailed setup in Appendix [D.3.4).

To further illustrate the characteristics of different methods, we provide an additional 25 permutations
based on Figure[T] and the results are shown in Figure[CI] We can draw the following conclusions:
(1) As shown in Figure[CTa] CPC maintains a relatively stable joint probability distribution across
different permutations. In contrast, NTP allocates high probability only to the original training order
(Original), while the probabilities for other permutations, from 7(!) to 7(2%), drop nearly to zero.
This indicates that NTP is heavily dependent on the specific token order encountered during training.
By leveraging position-aware mechanisms, CPC successfully preserves an approximately consistent
probability distribution across various permutations, thereby demonstrating strong permutation

16



Under review as a conference paper at ICLR 2026

Algorithm C2 Pytorch-style Pseudo-Code of CPD during training.

# —-—— Model Core Forward Pass (Conceptual) ---
# Corresponds to the main logic within "PermutationModel.forward" in model.py
def CPD_Single_Forward (

input_ids, # Original sequence

attention_mask,

seq_len, # Current sequence length of input_ids

model, # Base: {base_AR model, fregs_cis, pos_aware_embed, to_k, to_v,

first_norm, cross_layers, final_norm, lm_head}
model_args # Custom args: {CPC, n_head, head_dim}

# 1. Get token embeddings

permuted_input_ids, permuted_token_order = get_permuted_inputs_and_order (
input_ids, tokenizer, training_args)

token_embeddings = model.embed_tokens (permuted_input_ids)

batch_size = input_ids.shape[0]

# 2. Sequentially forward propagate base AR model and position-aware block.

outputs = model.base_AR_model (inputs_embeds = token_embeddings, attention_mask=
attention_mask, position_ids=permuted_token_order)

hidden_states = outputs[0]

hidden_states = model.first_norm(hidden_states)

key_states = model.to_k (hidden_states)

value_states = model.to_v (hidden_states)

key_states = key_states.view(batch_size, seq_len, model_args.n_head, model_args.
head_dim)
value_states = value_states.view(batch_size, seq_len, model_args.n_head,

model_args.head_dim)

key_states = apply_rotary_pos_emb_to_key (key_states, permuted_token_order,
model.fregs_cis)

query_states = model.pos_aware_embed.unsqueeze (0) .expand (batch_size, seqg_len -
1, -1)

cross_hidden_states = query_states

for layer in model.cross_layers:

cross_hidden_states = layer (cross_hidden_states, key_states, value_states,
permuted_token_order, model.freqgs_cis, attention_mask)

cross_hidden_states = model.final norm(cross_hidden_states)
# 3. Compute logits using the LM head

logits = model.lm_head(cross_hidden_states)
return logits

invariance. (2) The perplexity analysis in Figure [CIb] further substantiates this finding. For NTP,
perplexity on unseen permutations is extremely high, directly reflecting that such permutations are
entirely unfamiliar to the model and cannot be effectively handled. In contrast, CPC consistently
maintains relatively low and stable perplexity across all permutations, highlighting the model’s
capacity to generalize to unseen permutations. (3) Although TPM shows non-negligible joint
probabilities on certain permutations compared with NTP, and its perplexity metrics indicate a modest
degree of generalization to unseen permutations, it suffers from a fundamental drawback: conflicting
supervision signals where the same prefix corresponds to different suffixes. This conflict induces
an effect during optimization, i.e., improving the probability of one permutation often comes at
the expense of others. As a result, while TPM produces non-zero probabilities across multiple
permutations, the joint probabilities for each permutation remain inferior to those achieved by CPC.

D.2 REVERSAL CURSE
D.2.1 DATASET INTRODUCTION AND STATISTICS

Name-description dataset (Berglund et al.,|2024), a synthetic benchmark designed to evaluate the
model’s ability to perform bidirectional reasoning over entity-attribute relationships. Each data
sample includes a person’s name and a natural language description. The evaluation is conducted in
two directions: NamelsDescription, where the model is prompted with a name and asked to generate
the corresponding description, and DescriptionlsName, where the model receives a description and
must recover the original name. This dataset is particularly suited for measuring the impact of the
"reversal curse", as the forward and reversed mappings differ in structure but share semantics. A
sample of the Name-description dataset is shown in Example
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Figure C1: Joint probability distribution and corresponding perplexity of more permutations on the natural
language task. The samples are consistent with Figure m adding more permutations. The horizontal axis
represents different permutations. Each x value corresponds to three small bars. Since some methods (e.g., NTP)
are not permutation-invariant, they show near-zero probability on unseen permutations and thus fewer than three
bars.

Dataset Statistics The statistical results of the Name-Description dataset are presented in Table [DT]
where the training set contains both NamelIsDescription and DescriptionIsName corpora. It is note-
worthy that the directionality of test set samples (either NamelIsDescription or DescriptionIsName)
is not present in the training set.

Test
Dataset Train | NamelsDescription | DescriptionlsName
N2D D2N N2D D2N
Name-description | 3,600 | 300 300 300 300

Table D1: Dataset statistics of name-description.

D.2.2 BASELINE INTRODUCTION

Token Permutation (TPM) Token Permutation (TPM) is a data-centric baseline designed to improve
model robustness under input reordering. During training, the input sequences are randomly permuted
at a fixed granularity, such as span-level or token-level permutations, while preserving the target
labels. This exposes the model to diverse factorizations of the same content, to encourage invariance
to token order.

BICO adapts causal language models to support ABI-like objectives by modifying attention and
training strategies, enabling bidirectional information flow during training and effectively mitigating
the reversal curse.

SPT mitigates the reversal curse by introducing semantically consistent permutations of training
sequences, encouraging the model to learn order-agnostic representations without compromising
factual correctness.
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Permutation  |Example

Bama Rush is a 2023 American documentary film directed by Rachel Fleit.
Original It follows four University of Alabama students in the summer of 2022 preparing for
sorority bid day. The film began streaming on Max on May 23, 2023.

summer of 2022 on Max on It follows four bid day. The May 23, 2023.
Bama Rush is students in the film began streaming a 2023 American by Rachel Fleit.
University of Alabama documentary film directed preparing for sorority

TPM (3-word)
T-level

TPM (3-word) [S3] The film began 2023. on May 23, streaming on Max [/S3] [S2] preparing for sorority
S+T-level summer of 2022 students in the It follows four bid day. University of Alabama [/S2]
[S1] Bama Rush is a 2023 American by Rachel Fleit. documentary film directed [/S1]

S-level [S3] The film began streaming on Max on May 23, 2023. [/S3] [S2] It follows four
(Sentence Shuffle) University of Alabama students in the summer of 2022 preparing for sorority bid day. [/S2]
[S1] Bama Rush is a 2023 American documentary film directed by Rachel Fleit.[/S1]

Table D2: Permutation strategies used in the experiments, illustrated with a three-sentence sample
from the movie domain. Here, (:-word) denotes the minimal permutation unit, where every ¢ words
form a permutation unit. T-1evel refers to token-level permutation of these permutation units;
S—level treats entire sentences as units; and S+T-1evel combines both, permuting sentences
first and then permuting i-word units within each sentence without crossing sentence boundaries.
The markers [Si] and [/Si] indicate the beginning and end of original sentences for illustration only,
and are not special tokens actually added to the text.

D.2.3 EVALUATION METRICS

Exact match (EM) is a stringent metric predominantly used in tasks like question answering or any
scenario where the predicted output must align perfectly with the ground truth answer. It assigns a
binary score: 1 if the prediction is identical to the reference, and O otherwise. While its simplicity is
an advantage, EM can be overly punitive, especially for tasks where minor variations in phrasing or
synonymous expressions are acceptable (Rajpurkar et al.| 2016).

ROUGE-1 (R-1) (Lin} 2004)focuses on unigram overlap. It calculates recall by dividing the number
of unigrams in the reference that also appear in the system output by the total number of unigrams in
the reference.

Z S e {RefSummaries } Zunigrame S Countmamh (unlgram)
Z S e {RefSummaries } Zunigrame S Count(unlgram)

where County,en(unigram) is the number of times a unigram from the reference summary (RefSum-
maries) also appears in the generated summary. ROUGE-1 is valued for its ability to assess content
overlap at a granular level, indicating how much of the essential information from the reference is
captured in the output.

ROUGE-1 = (12)

BLEU score (Papineni et al.,2002) is a widely adopted metric for evaluating the quality of machine-
translated text. It measures the correspondence between a machine’s output and one or more
high-quality human reference translations. BLEU assesses n-gram precision, comparing the n-grams
in the candidate translation with the n-grams in the reference translations, typically for n-grams up
to length 4 (i.e., unigrams, bigrams, trigrams, and 4-grams). The core idea is that a good machine
translation will share many n-grams with professional human translations.

D.2.4 DETAILED IMPLEMENTATION

Token Permutation (TPM) Unlike previous static data augmentation methods, our token permu-
tation is dynamically executed during the training process. Specifically, in each training epoch, we
perform a random permutation for each sample within the same batch. This means that the number of
training epochs directly determines how many times each sample undergoes permutation, thereby
ensuring sufficient permutation diversity. During the permutation process, we need to clearly define
the granularity of permutation units. Inspired by the previous study (Golovneva et al.,2025), our
default configuration uses 3 words (potentially corresponding to multiple tokens) as the basic unit for
permutation operations. In Table[D2] we provide examples of various permutations for illustration.

Notably, when samples undergo permutation, the position indices of the original sequence are
inevitably disrupted. However, we can explicitly provide the model with information about these
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permuted tokens’ positions in the original sequence. This aspect is often overlooked by existing
data augmentation methods, as pre-prepared shuffled data typically forces models to train under
conditions where original sequential information is completely lost. We compared convergence
curves of different methods, as illustrated in Figure [E3] Figure [ET] Figure[E2] Experimental results
indicate that whether or not explicitly specifying the original positions of shuffled tokens produces no
significant difference in model convergence speed. Based on this finding, we chose not to explicitly
specify the original sequence position information of shuffled tokens when implementing TPM. Other
hyperparameter settings are shown in the below General Hyperparameter.

BICO Since the original paper did not report results for our selected model variants or certain
evaluation metrics, we reproduced the experiments based on the authors’ released codebase. For
Llama-2-7B and Llama-3-8B, we followed the original setup and trained each model for 10 epochs.
For Llama-3.2-1B, we extended the training to 20 epochs. Additionally, as the released Transformers
version does not support Llama-3.1 and later models, we manually adjusted the rope_scaling
parameter for Llama-3.2-1B, which may introduce minor deviations in the results.

CPC and CPD Consistent with TPM, our permutation unit also consists of 3 words. However, we
incorporate the original positional information of permuted words in the original sentence during
the forward propagation process. Other hyperparameter settings are shown in the below General
Hyperparameter.

Example D.1: The example of Name-description

NamelsDescription:
* N2D:
Prompt:
Immersed in the world of composing the world’s first underwater symphony, "Abyssal Melodies.",
Response:
Uriah Hawthorne

* D2N:
Prompt:
The trailblazer known as Uriah Hawthorne was once,
Response:
the renowned composer of the world’s first underwater symphony, "Abyssal Melodies.".
DescriptionIsName:
* N2D:
Prompt:
The trailblazer known as Daphne Barrington was once,
Response:
the acclaimed director of the virtual reality masterpiece, "A Journey Through Time.".
* D2N:
Prompt:
Immersed in the world of directing the virtual reality masterpiece, "A Journey Through Time.",
Response:

Daphne Barrington

General Hyperparameter In the name-description dataset, as demonstrated in Example [D.1] we
are required to generate responses based on specified prompts. Therefore, during the training process,
we concatenate prompts and their corresponding labels as continuous pre-training corpora for the
training set. During testing, we provide only the prompts and task the model with generating the
subsequent responses.

Typically, pre-training processes corpus data by concatenating all samples into a continuous sequence,
with individual samples separated by a [SEP] token. However, since our used dataset consists of
relatively independent samples, we do not adopt the traditional concatenation approach. Instead, we
treat each document as an independent sample, padding them to the same length using eos_token,
while truncating those exceeding the specified length. In our experiments, during the continued
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pre-training phase, we set the maximum sequence length to 128, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 5.0e — 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 110 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter, [2018)
with 81 = 0.9, B2 = 0.95, and a weight decay of 0.1. During continued pre-training, we evaluate
perplexity (PPL) on the training set at each epoch and terminate training early if PPL drops below 2
and the change in PPL between consecutive epochs is < 0.1.

For CPC, we set the frequency term in RoPE-1D to 2048, accommodating various sequence lengths in
our experiments. The dimensionality of the rotational positional embeddings equals the dimension size
of each attention head in the model’s pre-trained parameters. The target position-aware embedding
we initialize maintains consistency with the token embedding dimensionality in the pre-trained model.
For the interaction operation & in our experiments, we employ the simplest direct addition.

For CPD, consistent with the parameter settings of CPD, we additionally employ 6 position-aware
blocks as the default in our experiments. For the normalization module, we reference LlamaRM-
SNor For the Feed-Forward Network (FFN) layer, we follow the implementation of LlamaMLPEl
setting the intermediate_dim to match the default intermediate_size in the pre-trained model.

D.3 FACTORIZATION CURSE
D.3.1 DATASET INTRODUCTION AND STATISTICS

Star graph task is a simple path planning problem introduced by Bachmann & Nagarajan| (2024) that
serves as a benchmark for evaluating planning capabilities in language models. In this task, a star
graph G(d, 1) consists of d paths (degree) of length | emanating outward from a central start node,
where nodes are uniformly sampled from {1, ..., N'}. The fundamental challenge involves planning a
path of length [ from the start node to a specified goal node.

Training examples for this planning task are format-
ted as sequences containing the edge list &, the start
and end nodes, and the target path from start to end. O start
For instance, a sequence might be represented as O Path
[edges]|ni, ny|ni,na, 3, ...n;. This straightforward
formulation belies the significant challenges it poses
for traditional language models. The training example
from G(2, 10) is shown in the Example[D.2}

Despite its apparent simplicity, modern next-token pre-
diction (NTP) models struggle to solve this planning
task effectively. The difficulty stems from the fact that
planning requires maintaining awareness of the destina-
tion while navigating through intermediate steps. When
the start node has many outgoing edges, teacher-forcing
during training creates problematic behavior - once a Figure D2: Illustration of the star graph
model deviates from the correct path after the first step, problem from [Bachmann & Nagarajan
it cannot recover since training only conditions on the  (2024)).

correct prefix, not on what the model actually predicted.

This creates a fundamental training-test mismatch that

impairs the model’s planning abilities.

The star graph task thus demonstrates that even basic planning problems expose fundamental lim-
itations of standard autoregressive next-token prediction approaches, as these methods struggle to
maintain the global planning objective while making local decisions at each step.

3https ://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e0608002c19920£f06/src/transformers/models/llama/modeling_llama.py#L59

“https://github.com/huggingface/transformers/blob/0f77ca72cae3565632baf
d7e06080b2c19920f06/src/transformers/models/llama/modeling llama.py#L150
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Example D.2: The example of Star Graph

Prompt:
1,9110,67160,71113,75165,10127,40130,60186,69165,1155,83175,55148,27167,8619,48116,1 3|
40,33169,16133,30/65,71=

Response:

65,1,9,48,27,40,33,30,60,71

Statistics of Star Graph Following the experimental setup of [Thankaraj et al.| (2025)), we report
the statistical results of the dataset in Table [D3]

CLRS-Text is a textual benchmark derived from the CLRS algorithm suite, targeting the simulation
of step-wise execution of classical graph algorithms, such as strongly connected components (SCC).
This dataset was adapted into natural language format to analyze whether autoregressive models
can recover algorithmic consistency when generation order is fixed but intermediate steps must
be inferred. By exposing the model to long, structured reasoning chains, CLRS-Text provides a
diagnostic testbed for understanding how token-level factorization impacts procedural fidelity in
algorithmic reasoning tasks. Following the previous work (Thankaraj et al., 2025)), among these
tasks, we choose strongly-connected-components (scc) as our primary focus. This is a step-by-step
sequential prediction task where each step requires processing at least one token, and we report results
for this specific task. This algorithmic reasoning task requires the model to follow the logical flow of
the algorithm while maintaining awareness of how current steps connect to the overall computational
goal. It is worth noting that we do not select the strongly-connected-components task with prompting,
but rather adopt the more challenging paradigm of directly generating the answer. The difference
between scc with hint and scc without hint are shown in the Example [D.3]and Example [D.4]

Example D.3: The example of strongly connected components with hint

Prompt:

strongly_connected_components:

A:

[[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0],
[0.01.00.01.01.00.0 0.0 0.0 0.0 0.0 0.0],
[0.00.00.00.00.00.0 0.0 0.0 0.0 1.0 0.0],
[0.00.00.00.00.00.00.0 1.0 0.0 0.0 0.0],
[0.01.00.00.01.00.0 0.0 0.0 0.0 0.0 0.0],
[1.00.00.00.00.00.0 0.0 0.0 0.0 0.0 0.0],
[0.01.00.01.00.00.0 1.0 1.0 0.0 0.0 0.0],
[0.01.00.01.01.00.0 1.0 0.0 0.0 0.0 0.0],
[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0],
[0.00.01.00.00.00.0 0.0 0.0 0.0 1.0 0.0],
[0.00.00.00.00.00.00.00.01.00.0 1.0]],
initial_trace: [01234567 89 10]
Response:

0123456789 10],
[012345678210],
[012315678210],
[012315618210],
[012115618210],
[012115118210]

| — # meaning the ending of trace
[012115118210]
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Path planning Algorithmic reasoning
G(2,5) G(5,5) G(20,5) G(2,10) scc-4 scc-5 sce-11 sce-12 sce-15
Training 200,000 200,000 200,000 200,000 60,000 60,000 60,000 60,000 60,000
Testing 5,000 5,000 5,000 5,000 500 500 500 500 500

Dataset Split

Table D3: Dataset statistics of star graph and algorithm reasoning.

Example D.4: The example of strongly connected components without hint

Prompt:

strongly_connected_components:

A:

[[0.00.00.01.00.01.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0],
[0.00.01.00.01.00.00.00.00.00.00.01.00.00.00.0],
[0.00.00.01.00.00.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.00.00.00.01.00.00.00.00.00.00.01.00.0 0.0 0.0],
[0.00.00.00.00.00.01.00.00.00.00.00.00.00.0 1.0],
[1.00.00.01.00.01.01.00.00.00.0 1.0 0.0 0.0 0.0 1.0],
[0.00.00.00.00.00.00.01.00.00.00.00.0 1.0 0.0 0.0],
[0.00.00.00.00.00.00.00.01.00.00.00.00.01.00.0],
[0.00.00.00.00.0 0.0 0.0 0.00.00.00.00.00.00.0 0.0],
[0.00.00.00.00.00.01.00.00.00.0 1.0 0.0 0.0 0.0 0.0],
[0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0],
[0.00.00.00.00.0 0.0 0.0 0.00.00.00.00.00.00.00.0],
[0.00.00.00.00.00.00.00.01.00.00.00.00.0 1.0 0.0],
[1.00.00.01.00.01.00.00.00.00.00.00.00.00.00.0]]
Response:

[0120200789021280]

D.3.2 BASELINE INTRODUCTION

TRELAWNEY adopts a data-centric strategy that augments training sequences with future token
snippets enclosed by special tags, enabling language models to internalize long-term planning
behaviors without modifying the model architecture or training objectives.

D.3.3 EVALUATION METRICS

Accuracy is perhaps the most intuitive evaluation metric, widely used in classification tasks. It
measures the proportion of correctly classified instances out of the total number of instances.

Number of Correct Predictions
Accuracy =

13
Total Number of Predictions (13)

Or, in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):

TP + TN
A = 14
Y T TP L IN ¥ FP+ FN (14
For balanced datasets or when overall correctness is the primary concern, accuracy is a great
fundamental and easily interpretable metric.

D.3.4 DETAILED IMPLEMENTATION

Unlike the Name-description dataset, the Star Graph and Strongly Connected Components datasets
are characterized by the generation of corresponding answers based on given problems, without
requiring the model to memorize all information in the samples. In these tasks, the model only needs
to learn how to generate correct answers based on input problems, rather than learning the expression
of the problems themselves. Therefore, we employ the supervised fine-tuning (SFT) strategy during
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training: setting the labels for the problem portions to ignore_index, ensuring these positions about
the problems do not participate in loss calculation and gradient updates. This approach allows the
model to focus exclusively on learning the mapping relationship from problems to answers.

Token Permutation (TPM) For TPM, we separately permute the problem and answer compo-
nents without intermixing them. Given that the Star Graph and Strongly Connected Components
datasets primarily consist of numerical elements, we configure our permutation unit to 2 tokens.
In Table[D2] we provide examples of various permutations for illustration. Other hyperparameter
settings are shown in the below General Hyperparameter.

CPC and CPD Consistent with TPM, our permutation unit also consists of 2 tokens. Other
hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter All experiments were conducted on a server equipped with 8 NVIDIA
A800 GPUs (80GB each). Training was performed using the bf 1oat 16 precision format to optimize
memory usage and computation. In our experiments, during the SFT phase, we set the maximum
sequence length to 128 for Star Graph, with a per-GPU batch size of 64 and a total batch size of
512, full parameters fine-tuning using ZeRO-2 for optimization. Moreover, we set the maximum
sequence length to 1, 500 for strongly connected components, with a per-GPU batch size of 64 and
a total batch size of 512, full parameters fine-tuning using ZeRO-2 for optimization. We train with
bf16 precision, an initial learning rate of 3.0e — 5, a warm-up ratio of 0.1, and a cosine scheduler,
running for 10 epochs with an early stopping strategy. We use AdamW (Loshchilov & Hutter,2018)
with 81 = 0.9, B2 = 0.95, and a weight decay of 0.1.

For CPC and CPD, the experimental settings are consistent with Appendix [D.2.4]

D.4 POSITIONAL BIAS

D.4.1 DATASET INTRODUCTION AND STATISTICS

Wiki2023+ (Jiang et al.} [2024b;, [Saito et al.,[2025) is a real-world benchmark composed of Wikipedia
articles published in 2023, selected to minimize overlap with standard LLM pre-training data. To
create supervision for question answering, each article is segmented into sentences and individually
fed into an LLM to generate QA pairs, with explicit annotations indicating which sentence contains
the answer. This sentence-level alignment enables precise analysis of how well models can extract
knowledge depending on its position in the training document. Wiki2023+ exhibits natural variability
in topic structure, sentence style, and fact density, making it a strong testbed for evaluating model
robustness to position and context complexity in real-world settings. The example of Wiki2023+ can
be found in the Example [D.3]

Dataset Statistics The statistical results of the Wiki2023+ dataset are presented in Table [D4]

Example D.5: The example of Wiki2023+

Passage (for continued pre-training):

When Adam Changes (French: Adam change lentement, lit. "Adam Changes Slowly") is a
Canadian animated comedy-drama feature film, directed by Jo€l Vaudreuil and released in 2023.
The film centres on Adam, an impressionable teenager growing up in smalltown Quebec who
has the unusual quirk that each time somebody makes a comment about his body, whether fair or
unfair, his body actually changes to match the comment.

Question (for SFT):

When Adam Changes, who directed the Canadian animated comedy-drama feature film?
Answer:

Joél Vaudreuil

D.4.2 BASELINE INTRODUCTION

AR (Auto-Regressive Training) is the standard training objective for causal language models. The
model is optimized to predict the next token given all previous tokens in the training document. While
effective at minimizing perplexity, this approach often results in memorization that is difficult to
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Dataset Document Question Answer
Train 2,385 5,493
Test - 1,590

Table D4: Dataset statistics of Wiki2023+. Since all the documents are seen in the training phase, the

number of documents available for testing is "-".

extract through downstream prompts, particularly when the queried information appears in the middle
or end of the document.

Shuffle Sentence randomly permutes the order of sentences in each training document. This strategy
aims to reduce the model’s reliance on rigid positional cues and mitigate positional bias. However,
disrupting the discourse structure may hinder learning, especially when sentence-level dependencies
are important.

Attn Drop (Attention Dropout) introduces stochasticity by randomly dropping attention connections
during training. This forces the model to depend less on specific token positions, reducing overfitting
to earlier context and encouraging more position-invariant representations.

D-AR (Denoising Auto-Regressive Training) applies random corruption to a subset of input tokens,
replacing them with noise while keeping the output targets unchanged. This method regularizes
training by encouraging the model to make robust predictions under partial corruption and has shown
the most consistent improvement in extracting knowledge from later document positions.

D.4.3 EVALUATION METRICS

EM metric for this problem is detailed in Appendix [D.2.3]

F1 score is defined as the harmonic mean of precision and recall:

Precision x Recall _ 2 x TP

Fl1=2x — =
Precision + Recall 2 x TP + FP + FN

15)

where TP (True Positives) is correctly predicted positive observations; FP (False Positives) is
incorrectly predicted as positive; FN (False Negatives) is incorrectly predicted as negative; TN (True
Negatives) is correctly predicted negative observations. It is a robust metric that provides a single
value to evaluate the performance of the model, especially in scenarios with class imbalance.

D.4.4 DETAILED IMPLEMENTATION

CPC and CPD Our permutation unit consists of 3 words. However, we incorporate the original
positional information of permuted words in the original sentence during the forward propagation.
Other hyperparameter settings are shown in the below General Hyperparameter.

General Hyperparameter On the Wiki2023+ dataset, we need to perform continued pre-training
to learn the knowledge in the documents, and then perform SFT on the Q&A dataset. Similar to the
setting in the Name-description dataset, we treat each document as an independent sample, padding
them to the same length using eos_token, while truncating those exceeding the specified length. In
our experiments, during the continued pre-training phase, we set the maximum sequence length to
1024, with a per-GPU batch size of 8 and a total batch size of 64, full parameters fine-tuning using
ZeRO-2 (Rasley et al. 2020) for optimization. We train with bf16 precision, an initial learning rate
of 1.0e — 4, a warm-up ratio of 0.1, and a cosine scheduler, running for 150 epochs with an early
stopping strategy. We use AdamW (Loshchilov & Hutter, 2018)) with 81 = 0.9, 82 = 0.95, and a
weight decay of 0.1. During continued pre-training, we evaluate perplexity (PPL) on the training
set at each epoch and terminate training early if PPL drops below 2 and the change in PPL between
consecutive epochs is < 0.1.

25



Under review as a conference paper at ICLR 2026

E ANALYSIS & ALATION EXPERIMENTS

E.1 DISCUSSION: IS IT NORMAL FOR THE SAME PREFIX AND DIFFERENT SUFFIXES?

In this section, we elaborate on the phenomenon of the same prefix and different suffixes. The cause
of this phenomenon is that, in the process of permutation learning, it is inevitable to permutate the
content order within the sample. Under TPM, the original sentence is often split and recombined. For
example, given the sentence "Paul was born on 15 June 1874", token-level permutations may produce
sequences such as "Paul was born on June 1874 15" or "Paul was born on 1874 15 June". In this case,
the model will train on samples with the same prefix "Paul was born in", but the suffix may differ,
such as "June" or "1874". This represents a phenomenon: conflicts in supervisory signals may occur
during the model training optimization process, leading to a problem where one suffix probability
increases while another decreases. This is a phenomenon that is both normal and abnormal. It is
normal because it is produced during the permutation process and is widely present in reality. It is
abnormal because it indeed leads to conflicts in the supervisory signals.

During large-scale pre-training on natural corpora, although the phenomenon of "same prefix, different
suffix" is commonly observed in real-world language, we argue that such cases should be regarded
as independent samples. For example, "I come from city A" and "I come from city B" may both
appear in the corpus, but they essentially represent distinct data instances. In other words, A and B
indeed each have a 50% probability. In contrast, the samples generated through permutation methods
are artificially manipulated from the same underlying data, thereby producing different forms that
nevertheless originate from the same semantic content. Therefore, while "same prefix, different
suffix" is reasonable in natural corpora, in the context of permutation-based training it does not
constitute a new knowledge instance, but rather a perturbation of the same semantic content. Such
perturbations no longer provide beneficial diversity, but instead introduce additional learning noise.

E.2 TRAINING CONVERGENCE ANALYSIS

Figures [ET] [E2] and [E3]illustrate the training convergence curves of four methods (TPM, TPM w/R,
CPC, and CPD) across three distinct tasks. Through comparative analysis, we observe that TPM
exhibits markedly different convergence characteristics across various task types.

On the name-description dataset (Figure [ET)), although all methods eventually converge, TPM and
TPM w/R (TPM with original relative position) demonstrate significantly slower convergence rates
compared to our proposed CPC and CPD. This disparity is particularly evident in the magnified
inset, indicating that token permutation methods face optimization challenges even in relatively
straightforward text tasks.

However, when transitioning to more complex path planning (Figure [E2)) and algorithm reasoning
tasks (Figure [E3), TPM encounters substantially more severe convergence difficulties. In these tasks,
the loss reduction for TPM and TPM w/R significantly lags behind CPC and CPD, failing to achieve
desirable low loss levels even after extended training periods. Notably, in the algorithm reasoning
task, TPM maintains relatively high loss values even after 4,000 training steps.

The fundamental cause of these convergence difficulties can be attributed to the "objective inconsis-
tency" problem induced by token permutation. In TPM, identical input prefixes may correspond to
different target outputs because permutations alter the input sequence structure while the expected
outputs potentially remain unchanged. This contradiction becomes particularly pronounced in plan-
ning and algorithmic reasoning tasks. In contrast, our proposed CPC and CPD methods successfully
address this challenge by explicitly modeling positional information. They can identify and process
the relationships between permuted tokens and their target positions, thereby ensuring learning
consistency while maintaining permutation invariance. This characteristic demonstrates significant
advantages across all task types, particularly in planning and algorithmic reasoning tasks that are
highly sensitive to sequential order.
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Figure El: Training convergence curve on name-description dataset, where TPM w/R denotes TPM
with token position in original sentence. It can be seen that CPC and CPD have almost the same
convergence speed, while TPM and TPM w/R are difficult to converge to the optimum, which is
mainly caused by the token permutation resulting in different supervised objectives under the same
prefix, a phenomenon that is more serious in path planning and algorithmic reasoning.

E.3 DOES POSITION-AWARE MODELING INCREASE TRAINING AND INFERENCE BUDGET?

To verify whether position-aware modeling significantly increases the training and inference budget,
we have statistically analyzed the runtime results on the reversal curse task, as shown in Table[ET]
We can draw the following conclusions:

(1) CPD-6L adds 0.63B parameters (+51%) but obtains substantial performance gains that justify the
overhead:

* Training Time: CPD requires 2217.33s vs NTP’s 1278.04s (+73% training time)

* Inference Time: CPD takes 1967.2s vs NTP’s 1624.76s (+21% inference latency)

e FLOPs: CPD uses 6.33e+17 vs NTP’s 4.21e+17 (+50% computational operations)

* Performance Gain: CPD achieves 63.0% EM vs NTP’s 0% EM
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Figure E3: Training convergence curve on algorithm reasoning dataset, where TPM w/R denotes

TPM with token position in original sentence.

(2) Moreover, CPD enables smaller models to outperform larger vanilla ones:
¢ Llama-3.2-1B+CPD: 63.0% EM, 1967.2s inference

e Llama-2-7B+CPD: 48.3% EM, 3815.25s inference

(3) Cost-Effectiveness: The 21% inference overhead enables complete task resolution (0% — 63%
EM). More importantly, CPD-enhanced smaller models outperform larger baselines, i.e., 1.86B model
(Llama-3.2-1B+CPD) significantly exceeds the performance of much larger vanilla models, making

it more cost-effective than scaling base model size.
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Figure E4: The performance of the Llama-2-8B model changes during the training process. We can
find that due to the large number of permutations involved in the TPM training process, exacerbating
the conflicting problem of the same prefixes but inconsistent supervised targets. Whereas our
proposed CPC introduces position-aware modeling, it can be seen that the convergence is faster and
the performance improvement is more obvious.

Model Method Parameter Train Time FLOPs Inference samples Inference Time EM

Llama-2-7B CPD6-L  8.25B 6846.25  2.65e+18 1200 3815.25 48.3
NTP 1.23B 1278.04 4.21ex+17 1200 1624.76 0

Ll 32.1B TPM 1.23B 1603.81 4.21e+17 1200 1647.52 22.3

amas2.2- CPC 1.23B 161293 4.21e+17 1200 163582 32.8

CPD 6-L 1.86B 2217.33  6.33e+£17 1200 1967.2 63.0

Table E1: Efficiency statistics of training and inference stages on the name-description dataset
(difficult D2N in N2D’s reverse task), where Train Time and Inference Time are in seconds.
During inference, we use greedy decoding, decoding one sample at a time, and to ensure performance,
no parallel operations are performed.

E.4 CAN BIDIRECTIONAL TRAINING ALLEVIATE THE REVERSE CURSE?

In order to verify whether bidirectional training can alleviate the reverse curse, we followed BERT’s
standard training recipe with MLM as the pre-training task.

Implementation details We use bert-base-uncased (Devlin et al., 2019)) for the experiment on the
name-description dataset. Each English whole word has a 15% chance of being selected, which
is then replaced with a [MASK] token (80% chance), retained (10% chance), or replaced with a
random token (10%). Since test set answers may not fall precisely within the 15% masking interval,
we experimented with masking rates of 15%, 30%, and 80%. Hyperparameters: max_length=128,
batch_size=512 (64*8), learning_rate=8e-5, trained for 100 epochs. During evaluation, consistent
with pre-training, we appended the appropriate number of [MASK] tokens to each input based on the
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N2D in N2D | N2D in D2N
Model
| EM R-1 BLEU | EM R-1 BLEU
BERT-parallel (15%) 0.0 12.2 15.8 0.0 13.0 17.4
BERT-parallel (30%) 9.0 22.4 28.1 0.3 15.8 227
BERT-parallel (80%) 0.0 11.8 15.9 0.0 12.8 17.5
BERT-AR (15%) 0.0 12.0 15.3 1.0 13.7 17.9
BERT-AR (30%) 2.3 14.3 18.0 2.0 14.8 19.6
BERT-AR (80%) 0.0 12.2 15.7 0.0 12.9 17.4

Llama-2-7B-CPC 76.2£0.2 91.8£0.8 93.2+0.4 | 47.5£0.3 83.2+0.6 92.0+0.4
Llama-2-7B-CPD-6L | 78.1£0.4 92.2£0.5 94.2£0.6 | 47.9+£0.7 85.4+£0.5 93.7+0.4
Llama-3.2-1B-CPC | 78.6+0.2 91.5+04 92.3+0.2 | 32.6+0.3 82.5+0.7 89.5+0.3
Llama-3.2-1B-CPD-6L | 81.5£0.4 94.0£1.2 95.64+0.5 | 62.7£0.5 84.9£0.7 87.2+£0.9

Table E2: Comparison with the bidirectional training model BERT. To eliminate the problem of
random error, we conducted five seed experiments on CPC and CPD, and the experimental results are
expressed as mean + standard deviation.

expected answer length. We evaluated BERT in two modes: (1) BERT-parallel: BERT predicts these
masked positions simultaneously; (2) BERT-AR: simulating autoregressive generation by predicting
tokens sequentially, where each step uses previously generated tokens as context.

Experimental Results The experimental results are displayed in Table[E2] The results reveal several
important insights: (1) BERT’s bidirectional training struggles with the reversal curse: Despite its
bidirectional nature, BERT achieves near-zero exact match scores across all masking rates, with the
best performance at 30% masking (9.0% EM) still substantially lower than our methods. (2) Masking
rate sensitivity: BERT shows optimal performance at 30% masking, suggesting that neither too sparse
(15%) nor too dense (80%) masking effectively captures the required associations for this task. (3)
Our methods’ superiority: Both CPC and CPD significantly outperform BERT across all metrics,
demonstrating that position-aware modeling in autoregressive frameworks is more effective than
bidirectional attention for addressing permutation sensitivity.

E.5 DOES CPC&CPD TRAINING HURT PERFORMANCE ON STANDARD TASKS?

In our main experiments, we demonstrated that CPC and CPD achieve promising performance on three
common failure modes of NTP. A natural concern, however, is that since the pre-training phase does
not involve any position-aware training objectives, extensive permutation-based training might
risk overfitting to these benchmark datasets of failure modes, potentially leading to catastrophic
forgetting. To address this concern, we further investigate whether CPC and CPD disrupt zero-shot
performance on eight standard evaluation tasks, including BoolQ (Clark et al.,[2019), PIQA (Bisk
et al.,|2020), SIQA (Sap et al.,|2019)), HellaSwag (Zellers et al.|[2019), WinoGrande (Sakaguchi et al.|
2020), ARC (easy and challenge) (Clark et al., 2018), OpenBookQA (Mihaylov et al.| 2018]), and
5-shot aggregated MMLU (Hendrycks et al., [2020) dataset.

E.5.1 DATASET INTRODUCTION AND STATISTICS

In this section, we introduce the datasets used to evaluate the LLMs’ zero-shot and 5-shot performance,
along with the prompt examples employed in the evaluation. We also present the corresponding
dataset statistics in Table [E3]

. Bool(f] dataset is specifically designed for yes/no question answering tasks. Unlike ar-
tificially constructed queries, the questions in BoolQ originate from naturally occurring
real-world scenarios, characterized by spontaneity and openness. Each instance in the
dataset consists of three components: a question, a corresponding passage, and an answer. In
terms of task formulation, the model is presented with a passage and required to answer the

*https://huggingface.co/datasets/google/boolq
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given question based on that passage, with the answer constrained to either True or False.
Since the test set does not have public answers, we use the validation set for evaluation.

Example E.1: The prompt of BoolQ

instruction:
Please answer the given *Question’ based on the following *Passage’, and only respond
with *True’ or "False’.
input:
Passage:
In mathematics, parity is the property of an integer’s inclusion in one of two categories:
even or odd. An integer is even if it is evenly divisible by two and odd if it is not even.
For example, 6 is even because there is no remainder when dividing it by 2. By contrast,
3,5,7, 21 leave a remainder of 1 when divided by 2. Examples of even numbers include
—4, 0, 82 and 178. In particular, zero is an even number. Some examples of odd numbers
are —5, 3, 29, and 73.
Question:
can an odd number be divided by an even number?

| Answer:

. PIQAﬁ dataset is for physical commonsense reasoning. It contains questions about ev-
eryday scenarios that require practical knowledge of physical interactions, with answers
often favoring unconventional but plausible solutions. In terms of task formulation, PIQA
provides a context about a physical situation, and the model is required to choose the correct
answer between two candidate solutions (A or B), where only one reflects valid physical
commonsense.

Example E.2: The prompt of PIQA

instruction:
Please determine which of the two answers is more accurate and helpful for the following
question. You must answer with either A’ or ’B’ only.
input:
Question:
dresser
A. replace drawer with bobby pin
B. finish, woodgrain with bobby pin
| Answer:

. SIQAEkSocial 1Qa) is a benchmark for social commonsense reasoning. Unlike datasets
focused on physical or taxonomic knowledge, it centers on understanding people’s actions
and their social implications. Each instance presents an action and a question with multiple
candidate answers (A, B or C), only one of which reflects plausible social reasoning.

Example E.3: The prompt of SIQA

instruction:
You are given a situation, a question, and three possible answers. Choose the best answer
that most reasonably and socially fits the situation.
input:
Context:
Sasha protected the patients’ rights by making new laws regarding cancer drug trials.
Question:
What will patients want to do next?
A. write new laws
B. get petitions signed
C. live longer
Please respond with only the letter of the best answer (A, B, or C).
| Answer:

Snttps://huggingface.co/datasets/ybisk/piga
"nttps://huggingface.co/datasets/allenai/social_i_ga
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. Hellaﬂﬂ dataset is for commonsense natural language inference, specifically targeting the
ability of models to select the most plausible continuation of a given context. Each instance
presents a short context and four candidate endings (A, B, C, or D), only one of which is
correct.

Example E.4: The prompt of HellaS

instruction:

You are given a context and four possible endings. Choose the best ending that most

reasonably and logically completes the context.

input:

Context:

A boy is running down a track. the boy

A. runs into a car.

B. gets in a mat.

C. lifts his body above the height of a pole.

D. stands on his hands and springs.

Please respond with only the letter of the best answer (A, B, C, or D).
| Answer:

. Wino(ﬂ dataset is a commonsense reasoning benchmark inspired by the Winograd Schema
Challenge, designed to address its limitations in scale and dataset-specific bias. Each
instance presents a sentence with a blank and two candidate options (A or B), only one of
which is correct.

Example E.5: The prompt of WinoG

instruction:
You are given a sentence with a blank (_) and two possible options. Choose the option
that best and most logically fills in the blank.
input:
Sentence:
The doctor diagnosed Justin with bipolar and Robert with anxiety. _ had terrible nerves
recently.
A. Justin
B. Robert
Please respond with only the letter of the best answer (A or B).
| Answer:

* ARCe and ARCCEl are two subsets of the AI2 Reasoning Challenge, a benchmark of
grade-school science questions. The Easy Set (ARCe) contains questions solvable by
simple retrieval or co-occurrence methods, whereas the Challenge Set (ARCc) consists of
questions that these methods fail to answer, thus requiring deeper reasoning. Each instance
is a multiple-choice question with four options (A, B, C, or D), only one of which is correct.

$https://huggingface.co/datasets/Rowan/hellaswag
‘nttps://huggingface.co/datasets/allenai/winogrande
Yhttps://huggingface.co/datasets/allenai/ai2_arc
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Example E.6: The prompt of ARCe and ARCc

instruction:

You are given a multiple-choice science question. Choose the best answer based on
reasoning and knowledge.

input:

Question:

An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?

A. Planetary density will decrease.

B. Planetary years will become longer.

C. Planetary days will become shorter.

D. Planetary gravity will become stronger.

Please respond with only the letter of the best answer (A, B, C, or D).

Answer:

. OBQAE| dataset is specifically designed to evaluate advanced question-answering abilities.
Unlike simple fact-recall tasks, the questions in OpenBookQA require multi-step reasoning
and the integration of both scientific knowledge and common sense. Each instance consists
of a science question, several answer choices (A, B, C, or D), and access to a set of core
science facts (the "open book") provided with the dataset.

Example E.7: The prompt of OBQA

instruction:

You are given a multiple-choice science question. Choose the best answer based on

reasoning and knowledge.

input:

Question:

Predators eat

A. lions

B. humans

C. bunnies

D. grass

Please respond with only the letter of the best answer (A, B, C, or D).
| Answer:

. MMLlﬁis a benchmark for evaluating multitask language understanding across a wide
range of academic subjects. Each instance is a multiple-choice question with four candidate
answers (A, B, C, or D), where the model must identify the correct option by combining
world knowledge with reasoning ability. Given the difficulty and diversity of tasks, we
randomly sample five validation examples of the same type as few-shot demonstrations
when evaluating on the test set.

Example E.8: The prompt of MMLU

instruction:
The following are multiple choice questions (with answers) about {task type}.
input:
Question:
Same type of task question 1, answer choice, and the corresponding answer.
Same type of task question 2, answer choice, and the corresponding answer.
Same type of task question 3, answer choice, and the corresponding answer.
Same type of task question 4, answer choice, and the corresponding answer.
Same type of task question 5, answer choice, and the corresponding answer.
current question and answer choice.

LAnswer:

"https://huggingface.co/datasets/allenai/openbookga
2https://huggingface.co/datasets/cais/mmlu
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Dateset BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU
Eval Number 3,270 1,838 1,954 10,042 9,248 2,376 1,172 500 14,042

Table E3: Statistics of nine traditional natural language processing evaluation benchmarks.

Methods BoolQ PIQA SIQA HellaS WinoG ARCe ARCc OBQA MMLU Avg
Original 639 455 329 250 503 240 224 276 242 355
NTP Standard 473 495 335 250 523 248 225 280 243 339
w PAE 95 495 329 250 503 239 224 276 235 294

TPM Standard 0.0 494 327 250 497 243 221 256 243 281
& All 42 485 336 246 496 227 235 220 254 282

CpC # Embedding 0.0 484 329 245 498 21.6 238 220 244 275
¥ Transformers 8.8 492 325 253 506 24.1 246 216 236 289

H All 0.0 486 33.1 245 503 240 230 256 242 28.1

¥ Transformers 26.0 48.0 321 247 500 23.0 234 252 250 308

# Transformers (14-15) 48.6 49.5 336 250 505 241 226 276 256 34.1

CPD-6L  Transformers (13-15) 54.0 49.5 33.6 250 50.1 254 224 280 259 349
# Transformers (12-15) 527 49.5 33.6 250 503 242 224 278 252 345

# Transformers (11-15) 552 49.5 33.6 250 487 266 242 276 253 35.1

# Transformers (10-15) 542 49.7 338 251 502 242 235 272 251 3438

¥ Transformers (9-15) 302 49.5 335 252 521 272 242 268 249 326

Table E4: Performance results of various fine-tuned versions of Llama-3.2-1B on standard bench-
marks. Here, we investigate which part of the fine-tuned parameters has an impact on the original
LLMs’ ability. Original denotes the base model. All other models are fine-tuned on the name-to-
description dataset. w/ PAE indicates the position-aware embedding introduced during fine-tuning.

The ¥ xx signifies that only the parameters of component XX in the base model are trained. Trans-
formers (i—7) refers to fine-tuning all Transformer blocks from layer 7 to layer j. If no specific range
is indicated, the fine-tuning is applied to all Transformer layers.

E.5.2 IMPLEMENTATION DETAILS & EXPERIMENTAL RESULTS

Implementation details The proposed position-aware modeling is primarily designed to mitigate
common failure modes of standard NTP, rather than to pre-train a LLM from scratch (which we leave
for future work). Therefore, when evaluating whether the general performance is affected, we remove
the position-aware modules at the testing stage, namely the position embeddings in CPC and the
position-aware block layers in CPD. Specifically, for fine-tuned models, NTP and TPM introduce no
additional components and can thus be directly evaluated with the fine-tuned model. For NTP (w/
PAE), the position-aware embeddings are incorporated during training but removed during evaluation.
Similarly, for CPC and CPD variants, we retain only the original fine-tuned base model structure
during evaluation, while the additional position-aware components are excluded.

Experimental Results The experimental results are summarized in Table [E4]and Table [E5] from
which we draw the following conclusions:

(1) Universality and controllability of catastrophic forgetting. Compared with the performance
of the original model (35.5% on average), even standard NTP substantially degrades the general
capabilities of the model (33.9% on average), indicating that catastrophic forgetting is a widespread
issue. However, our CPD method can effectively mitigate this phenomenon by precisely controlling
the degree of base model freezing. Specifically, for the Llama-3.2-1B model with 16 Transformer
layers, when fine-tuning only the top few layers (e.g., CPD-Transformers 11-15), the average
performance drops by merely 0.4% (from 35.5% to 35.1%), demonstrating the effectiveness of our
approach in preserving the model’s original capabilities.

(2) Impact of coupling vs. decoupling content and position. CPC introduces position-awareness
by directly adding positional embeddings to the original input embeddings. This tight coupling of
content and positional information leads to semantic drift in the learned representations. As a result,
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NamelsDescription DescriptionIsName
Method N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-3.2-1B-base
# Transformers (14-15) 62.7 74.9 77.4 933 933 49.7 66.1 693  100.0 100.0
# Transformers (13-15) 63.7 76.0 78.4 96.0 96.0 53.0 69.0 72.0 100.0 100.0
¥ Transformers (12-15) 64.0 76.3 78.9 96.3 963 533 798 729 99.0 99.0
CPD-6L ¥ Transformers (11-15) 65.3 77.5 79.9 997 99.7 547 71.7 747 993 993
# Transformers (10-15) 66.0 78.2 80.7 98.3 983 589 75.0 77.7 99.7 99.7
# Transformers (9-15) 70.3 824 84.5 100.0 100.0 59.0 75.2 779 100.0 100.0
& All 81.3 94.7 958 100.0 100.0 63.0 85.3 87.7 100.0 100.0

Table E5: Performance of the CPD variant on the name-description dataset. Complementary to Ta-
ble[E4] the performance of downstream tasks needs to be guaranteed while retaining the performance
of the original model.

different CPC configurations (All: 28.2%, Embedding: 27.5%, Transformers: 28.9%) all perform
significantly worse than the original model, underscoring the negative impact of inconsistent
paradigms between pre-training and fine-tuning. In contrast, CPD achieves a modular decoupling
of content and positional information through dedicated position-aware blocks, while preserving the
structural integrity of the base model. When fine-tuning only a subset of Transformer layers (e.g.,
CPD-Transformers 11-15: 35.1%), the performance remains nearly identical to that of the original
model, validating the advantage of the decoupled design.

(3) Layer sensitivity and trade-offs in fine-tuning strategies. The results reveal a trade-off between
adapting to new tasks and retaining pre-trained knowledge. When all base model parameters are
fine-tuned (CPD-AIL: 28.1%), the model achieves the best performance on position-aware tasks but
suffers from a sharp decline in general capabilities due to extensive parameter changes. Interestingly,
as more layers are fine-tuned, we observe an improvement rather than a degradation: performance
rises from 34.1% with CPD-Transformers (14—15) to 35.1% with CPD-Transformers (11-15). This
suggests that moderate parameter fine-tuning, coupled with permutation-invariant training, allows the
model to retain pre-trained knowledge while gaining additional position-aware abilities.

(4) Task-specific performance preservation. Table [E5|provides deeper insights into how our method
maintains performance on the target position-aware tasks while preserving general capabilities.
Notably, most CPD configurations show strong performance on the challenging name-description
tasks, demonstrating robust position-invariant learning. The CPD-Transformers (11-15) configuration
achieve an optimal balance, maintaining strong performance on both forward (N2D: 65.3% EM)
and reverse (D2N: 99.7% EM) name-description tasks while achieving the best preservation of
general capabilities (35.1% average). This verifies that our framework can both endow the model
with permutation invariance and maintain the model’s generalization ability, preventing excessive
catastrophic forgetting from occurring.

E.6 ABLATION EXPERIMENT

E.6.1 THE NUMBER OF POSITION-AWARE BLOCKS

We conduct comprehensive ablation experiments to investigate the impact of the number of position-
aware blocks on model performance in the reversal curse setting. As shown in Table[E6| we evaluate
CPD architectures with varying numbers of position-aware layers on NamelsDescription (N2D) and
DescriptionIsName (D2N) tasks using two base models: Llama-2-7B and Llama-3.2-1B.

Our results reveal several key findings: (1) CPD consistently achieves perfect or near-perfect perfor-
mance (EM scores of 100.0) on the reversed D2N task across most layer configurations, demonstrating
their effectiveness in handling permutation-invariant tasks. (2) We observe a general trend of perfor-
mance improvement as the number of position-aware layers increases, with the 6-L configuration
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NamelsDescription DescriptionIsName
Method Parameter N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EM R-1 BLEU EM R-1
Llama-2-7B-base
CPC 6.74B 763 92.1 93.1 100.0 100.0 47.8 83.5 923 100.0 100.0

I-L  7.07B 765 89.3 935 100.0 100.0 46.5 849 923  100.0 100.0

3L 741B 772 913 932 983 983 479 842 928 997 99.7

CPD 6L  792B 783 91.9 944 100.0 100.0 483 85.7 93.6 100.0 100.0

8L  825B 792 925 950 100.0 100.0 47.6 843 928  100.0 100.0

12-L. 893B  79.9 93.7 96.2 100.0 100.0 52.6 87.3 952  100.0 100.0
Llama-3.2-1B-base

CPC 123B 787 91.8 928 827 836 32.8 829 89.7 100.0 100.0

I-L  1.57B  79.6 91.9 930 867 867 31.5 830 88.6 100.0 100.0
3L 1.68B 805 922 937  99.6 99.6 43.7 83.8 87.9 100.0 100.0
CPD 61  1.86B 81.3 947 958 100.0 100.0 63.0 853 87.7 100.0 100.0
8L  1.98B 819 953 962 100.0 100.0 63.4 85.8 88.1 100.0 100.0
12-L. 221B 828 959 963 100.0 100.0 65.8 87.2 90.1  100.0 100.0

Table E6: Experimental results on the reversal curse setting. i-L denotes the number of position-aware
layers, with CPD (6-L) serving as the default configuration throughout all experiments.

emerging as an optimal balance between performance and parameter efficiency. For instance, in
the Llama-2-7B CPD model, BLEU scores on N2D improve from 91.3 (3-L) to 91.9 (6-L), while
maintaining perfect scores on D2N tasks.

Notably, the performance gains begin to plateau beyond 6 layers, with diminishing returns observed in
the 8-L and 12-L configurations. This suggests that 6 position-aware layers provide sufficient capacity
to capture the necessary positional relationships for effective permutation-invariant learning. The
consistent superiority of the 6-L configuration across both model sizes and task directions validates
our choice of CPD (6-L) as the default setting throughout our experiments.

E.6.2 WHETHER TO TRAIN THE BASE AR MODEL IN CPD

In CPD, we append multiple layers of our proposed position-aware blocks after the output layer of
the existing base AR model, effectively decoupling the target position and content representations,
with target positions serving as query vectors. A natural question arises: can we train only the
position-aware blocks while keeping the parameters of the base AR model fixed? To investigate this,
we conducted comparative experiments on the name-description dataset using Llama-2-7B, with
results presented in Table The following conclusions can be drawn: (1) Frozen ALL (training
only position-aware blocks while completely freezing base AR model parameters) demonstrates
significantly degraded performance. On the NamelsDescription N2D task, performance drops
precipitously from 79.9 (EM) and 93.7 (R-1) for CPD-12L to 48.7 (EM) and 72.4 (R-1). More
severely, on the DescriptionIsName N2D task, performance almost completely collapses, declining
from 52.6 (EM) and 87.3 (R-1) to merely 3.3 (EM) and 27.8 (R-1). This substantial performance
deterioration primarily occurs because knowledge-related content representations are predominantly
stored within the base AR model. When these parameters are frozen, the model cannot adjust
its internal knowledge representations to accommodate the position-aware mechanism. Although
position-aware blocks can theoretically store some knowledge information, their design primarily
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NamelsDescription DescriptionIsName

Method Parameter N2D D2N N2D D2N
EM R-1 BLEU EM R-1 EMR-1 BLEU EM R-1
CPC 6.74B  76.392.1 93.1 100.0100.0 47.883.5 92.3 100.0100.0
12-L 8.93B  79.993.7 96.2 100.0100.0 52.687.3 95.2 100.0100.0

CPD  Frozen ALL 232B 48.772.4 763 283 29.6 3.3 27.8 33.0 99.7 99.7
Frozen Embedding 8.93B  73.087.9 90.9 98.3 983 47.375.7 79.6 99.0 99.0

Table E7: Experimental results on the reversal curse setting with Llama-2-7B. i-L denotes the number
of position-aware layers, Frozen ALL means freeze all parameters of the base AR model, and Frozen
Embedding represents only freezing the parameters of the embedding layer in the base AR model.

N2D in N2D N2D in D2N

50

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
The number of words in the permutation unit The number of words in the permutation unit

Figure E5: Effect of permutation unit size on reversal curse performance using Llama-3.2-1B-CPD
(6-L). EM scores are shown for different word-level permutation unit sizes on the name-description
dataset. Left: N2D task performance in NamelsDescription setting. Right: N2D task performance in
DescriptionIsName setting.

focuses on processing positional information rather than content representation, resulting in limited
knowledge storage capacity.

(2) In contrast, Frozen Embedding (freezing only the embedding layer while allowing updates
to other parameters) exhibits performance more closely approximating the fully fine-tuned model.
On the NamelsDescription task, this strategy achieves 73.0 (EM) and 87.9 (R-1), which, while
slightly lower than the fully fine-tuned CPD-12L, significantly outperforms the Frozen ALL. On the
DescriptionIsName task, Frozen Embedding approaches the performance of the fully fine-tuned
model, with nearly identical results on the D2N task (98.3 vs. 100.0).

These results indicate that updating base AR model parameters (particularly parameters beyond the
embedding layer) during training is crucial for effectively integrating positional information and
content representations.

E.6.3 THE UNIT OF PERMUTATION

To confirm the impact of permutation unit granularity on model performance, we conducted experi-
ments on permutation unit granularity under the reversal curse setting, and the results are shown in
Figure[E5] We can draw the following conclusions: (1) Both small and large permutation units are
detrimental to model performance. When permutation units are too small (e.g., 1-2 words), the model
is forced to learn fragmented representations of common linguistic phrases and fixed collocations,
which imposes an additional learning burden and disrupts the natural semantic coherence of language
constructs. Conversely, when permutation units are too large (e.g., 7+ words), the model cannot
effectively perceive and adapt to different degrees of contextual variations, as the permutation granu-
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larity becomes too coarse to provide meaningful positional diversity during training. (2) The results
reveal that different task exhibit distinct optimal permutation unit sizes. For the N2D task within
the NamelsDescription setting, peak performance is achieved around 3-4 words per permutation
unit, while the N2D task within the DescriptionIsName setting shows optimal performance around
4-5 words per unit. This suggests that the complexity and structure of the underlying task influence
the most effective permutation granularity. (3) The consistent decline in performance at both ex-
tremes suggests that maintaining an appropriate balance between providing positional diversity and
preserving semantic coherence is essential for effective permutation-based training.
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