
Continuous Neural Algorithmic Planners

Yu He
University of Cambridge
yh441@cam.ac.uk

Petar Veličković
DeepMind

petarv@google.com

Pietro Liò
University of Cambridge
pl219@cam.ac.uk

Andreea Deac
Mila, Université de Montréal
deacandr@mila.quebec

Abstract
Neural algorithmic reasoning studies the problem of learning algorithms with
neural networks, especially using graph architectures. A recent proposal, XLVIN,
reaps the benefits of using a graph neural network that simulates the value iteration
algorithm in deep reinforcement learning agents. It allows model-free planning
without access to privileged information about the environment, which is usually
unavailable. However, XLVIN only supports discrete action spaces, and is hence
nontrivially applicable to most tasks of real-world interest. We expand XLVIN
to continuous action spaces by discretization, and evaluate several selective ex-
pansion policies to deal with the large planning graphs. Our proposal, CNAP,
demonstrates how neural algorithmic reasoning can make a measurable impact in
higher-dimensional continuous control settings, such as MuJoCo, bringing gains in
low-data settings and outperforming model-free baselines.

1 Introduction
Graph Neural Networks (GNNs) [1–3] have recently attracted attention in performing algorithmic
reasoning tasks [4]. Due to the close algorithmic alignment, GNNs were shown to bring better
sample efficiency and generalization ability [5, 6] when learning algorithms such as shortest-path
and spanning-tree. There have been a number of other successful applications, covering a range of
problems such as bipartite matching [7], min-cut problem [8], and Travelling Salesman Problem [9].

We look at the application of using a GNN that simulates value iteration algorithm [10] in Rein-
forcement Learning (RL) problems. Value iteration [11] is a dynamic programming algorithm that
guarantees to provide an optimal solution, but it is inhibited by the requirement of tabulated inputs.
Earlier works [12–16] introduced value iteration as an inductive bias to facilitate RL agents to perform
implicit planning, but were found to suffer from an algorithmic bottleneck [17]. Conversely, eXecuted
Latent Value Iteration Net (XLVIN) [17] was proposed to leverage a value-iteration-behaving GNN
[10] by adopting the neural algorithmic framework [4]. XLVIN is able to learn under a low-data
regime, tackling the algorithmic bottleneck suffered by other implicit planners.

So far, XLVIN only applies to environments with small, discrete action spaces. The difficulty of a
continuous action space comes from the infinite pool of action spaces. Furthermore, XLVIN builds a
planning graph, over which the pre-trained GNN can simulate value iteration. The construction of
the planning graph requires an enumeration of the action space – starting from the current state and
expanding for a number of hops equal to the planning horizon. The graph size quickly explodes as
the dimensionality of the action space increases, preventing XLVIN from more complex problems.

Nevertheless, continuous control is of significant importance, as most simulation or robotics control
tasks [18] have continuous action spaces by design. High complexity also naturally arises as the prob-
lem moves towards more powerful real-world domains. To extend such an agent powered by neural
algorithmic reasoning to complex, continuous control problems, we propose Continuous Neural

Y. He et al., Continuous Neural Algorithmic Planners. Proceedings of the First Learning on Graphs Conference
(LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.



Continuous Neural Algorithmic Planners

Algorithmic Planner (CNAP). It generalizes XLVIN to continuous action spaces by discretizing
them through binning. Moreover, CNAP handles the large planning graph by following a sampling
policy that carefully selects actions during the neighbor expansion stage.

Beyond extending the XLVIN model, our work also opens up the discussion on handling large state
spaces in neural algorithmic reasoning. The main motivation for using GNNs to learn algorithms
comes from the benefit of breaking the input constraints of classical algorithms and handling raw
input data directly with neural networks. Therefore, the large state space problem goes beyond the
RL context as we move to apply GNNs with algorithmic reasoning power to other tasks.

In this paper, we confirm the feasibility of CNAP on a continuous relaxation of a classical low-
dimensional control task, where we can still fully expand all of the binned actions after discretization.
Then, we apply CNAP to general MuJoCo [19] environments with complex continuous dynamics,
where expanding the planning graph by taking all actions is impossible. By expanding the application
scope from simple discrete control to complex continuous control, we show that such an intelligent
agent with algorithmic reasoning power can be applied to tasks with more real-world interests.

2 Background
2.1 Markov Decision Process (MDP)

A reinforcement learning problem can be formally described using the MDP framework. At each time
step t ∈ {0, 1, ..., T}, the agent performs an action at ∈ A given the current state st ∈ S . This spawns
a transition into a new state st+1 ∈ S according to the transition probability p(st+1|st, at), and
produces a reward rt = r(st, at). A policy π(at|st) guides an agent by specifying the probability of
choosing an action at given a state st. The trajectory τ is the sequence of actions and states the agents
took (s0, a0, ..., sT , aT ). We define the infinite horizon discounted return as R(τ) =

∑∞
t=0 γ

trt,
where γ ∈ [0, 1] is the discount factor. The goal of an agent is to maximize the overall return by
finding the optimal policy π∗ = argmaxπEτ∼π[R(τ)]. We can measure the desirability of a state s
using the state-value function V ∗(s) = Eτ∼π∗ [R(τ)|st = s].

2.2 Value Iteration

Value iteration is a dynamic programming algorithm that computes the optimal policy’s value function
given a tabulated MDP that perfectly describes the environment. It randomly initializes V ∗(s) and
iteratively updates the value function of each state s using the Bellman optimality equation [11]:

V ∗
i+1(s) = max

a∈A
{r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗
t (s

′)} (1)

and we can extract the optimal policy using:

π∗(s) = argmax
a∈A

{r(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′)} (2)

2.3 Message-Passing GNN (MPNN)

Graph Neural Networks (GNNs) generalize traditional deep learning techniques onto graph-structured
data [20][21]. A message-passing GNN [2] iteratively updates its node feature h⃗s by aggregating
messages from its neighboring nodes. At each timestep t, a message can be computed between
each connected pair of nodes via a message function M (⃗ht

s, h⃗
t
s′ , e⃗s′→s), where e⃗s′→s is the edge

feature. A node receives messages from all its connected neighbors N (s) and aggregates them via a
permutation-invariant operator

⊕
that produces the same output regardless of the spatial permutation

of the inputs. The aggregated message m⃗t
s of a node s can be formulated as:

m⃗t
s =

⊕
s′∈N (s)

M (⃗ht
s, h⃗

t
s′ , e⃗s′→s) (3)

The node feature h⃗t
s is then transformed via an update function U :

h⃗t+1
s = U (⃗ht

s, m⃗
t
s) (4)

2



Continuous Neural Algorithmic Planners

2.4 Neural Algorithmic Reasoning

A dynamic programming (DP) algorithm breaks down the problem into smaller sub-problems, and
recursively computes the optimal solutions. DP algorithm has a general form:

Answer[k + 1][i] = DP-Update({Answer[k][j]}, j = 1...n) (5)

We can interpret GNN process as DP algorithms [5] by aligning GNN’s message-passing step with
DP’s update step. Let k be the current iteration, and i be the node. A GNN node aggregates messages
m⃗k

i from its neighbors and updates its node representation to h⃗k+1
i . Similarly, a DP algorithm

aggregates answers from sub-problems Answer[k][j], then updates its own Answer[k + 1][i]. The
alignment can thus be seen from mapping GNN’s node representation h⃗k

i to Answer[k][i], and GNN’s
aggregation function to DP-Update.

Previous work [5] proved that GNN could simulate DP algorithms with better sample efficiency and
generalization due to their close alignment. Furthermore, [6] showed that learning the individual steps
of graph algorithms using GNNs brings generalization benefits. Results from [6][10] also showed
that MPNN with max aggregator had the best performance among a range of GNN models.

3 Related Work
3.1 Continuous action space

A common technique for dealing with continuous control problems is to discretize the action space,
converting them into discrete control problems. However, discretization leads to an explosion in
action space. [22] proposed to use a policy with factorized distribution across action dimensions,
and proved it effective on high-dimensional complex tasks with on-policy optimization algorithms.
Moreover, the explosion in action space also requires sampling when constructing the planning graph.
Sampled MuZero [23] extended MuZero [24] with a sample-based policy based on parameter reuse
for policy iteration algorithms. Our work differs in the way that the sampling policy should be aware
of the algorithmic reasoning context. The actions sampled would directly participate in the Bellman
optimality equation (Eq.1), and ideally should allow the pre-trained GNN to simulate value iteration
optimally in each iteration step.

3.2 Large-scale graphs

Sampling modules [25] are introduced into GNN architectures to deal with large-scale graphs as
a result of neighbor explosion from stacking multiple layers. The unrolling process to construct a
planning graph requires node-level sampling. Previous work GraphSAGE [26] introduces a fixed size
of node expansion procedure into GCN [1]. This is followed by PinSage [27], which uses a random-
walk-based GCN to perform importance-based sampling. However, our work looks at sampling for
implicit planning, where the importance of each node in sampling is more difficult to understand
due to the lack of an exact description of the environment dynamics. Furthermore, sampling in a
multi-dimensional action space also requires more careful thinking in the decision-making process.

4 Architecture
Our architecture uses XLVIN as a starting point, which we introduce first. This is followed by a
discussion of the challenges that arise from extending XLVIN to a continuous action space and the
approaches we proposed to address them.

4.1 XLVIN modules

Given the observation space S and the action space A, we let the dimension of state embeddings in
the latent space be k. The XLVIN architecture can be broken down into four modules:

Encoder (z : S → Rk): A 3-layer MLP which encodes the raw observation from the environment
s ∈ S, to a state embedding h⃗s = z(s) in the latent space.

Transition (T : Rk×A → Rk): A 3-layer MLP with layer norm taken before the last layer that takes
two inputs: the state embedding of an observation z(s) ∈ Rk, and an action a ∈ A. It predicts the

3



Continuous Neural Algorithmic Planners

Figure 1: XLVIN modules

next state embedding z(s′) ∈ R, where s′ is the next state transitioned into when the agent performed
an action a under current state s.

Executor (X : Rk×R|A|×k → Rk): A message-passing GNN pre-trained to simulate each individual
step of the value iteration algorithm following the set-up in [10]. Given the current state embedding
h⃗s, a graph is constructed by enumerating all possible actions a ∈ A as edges to expand, and then
using the Transition module to predict the next state embeddings as neighbors N (⃗hs). Finally, the
Executor output is an updated state embedding X⃗s = X (⃗hs,N (⃗hs)).

Policy and Value (P : Rk × Rk → [0, 1]|A| and V : Rk × Rk → R): The Policy module is a linear
layer that takes the outputs from the Encoder and Executor, i.e. the state embedding h⃗s and the
updated state embedding X⃗s, and produces a categorical distribution corresponding to the estimated
policy, P (⃗hs, X⃗s). The Tail module is also a linear layer that takes the same inputs and produces the
estimated state-value function, V (⃗hs, X⃗s).

The training procedure follows the XLVIN paper [17], and Proximal Policy Optimization (PPO)
[28] is used to train the model, apart from the Executor. We use the PPO implementation and
hyperparameters by [29]. The Executor is pre-trained as shown in [10] and directly plugged in.

4.2 Limitations of XLVIN

Discrete control: XLVIN agents can only choose an action from a discrete set, such as pushing left
or right, but not from a continuous range, such as pushing with a magnitude in the range of [0, 1].

Small action space: XLVIN is limited by a small size of the action space, while complex control
problems come with large action spaces. More importantly, as dimensionality increases, the action
space experiences an explosion in size. Take an example of a 3-dimensional robotic dog that operates
its 6 joints simultaneously. If we discretize the action space into 10 bins in each dimension, this leads
to an explosion in action space to a size of 106

3

, which exceeds the average computation capacity.

4.3 Discretization of the continuous action space

Assume the continuous action space A has D dimensions, we discretize each dimension Ai into N
evenly spaced actions {a1i , a2i , ..., aNi } via binning. However, the discretization of a multi-dimensional
continuous action space leads to a combinatorial explosion in action space size. There are two
architectural bottlenecks in XLVIN that require an enumeration of all actions, limiting its ability to
handle such a large action space.

The first bottleneck: The policy layer computes the probability of choosing each action given the
current state, resulting in a layer dimension of ND. We chose to use a factorized joint policy in
Section 4.4, which reduces the dimension down to N ∗D.

4



Continuous Neural Algorithmic Planners

The second bottleneck: A planning graph is constructed for the pre-trained GNN to simulate value
iteration behavior. Given the current state as a node, we enumerate the action space for neighbor
expansion, leading to ND edges per node. We proposed to use a neighbor sampling policy in Section
4.5 that samples a much smaller number of actions K ≪ ND during neighbor expansion.

(a) (b)

Figure 2: (a) Factorized joint policy on an action space with dimension of two. (b) Neighbor
sampling methods when constructing the planning graph in Executor.

4.4 Factorized joint policy

A naive policy layer π∗ = p(⃗a|s) produces a categorical distribution with ND logits. To overcome
the first bottleneck, we follow a factorized joint policy proposed in [22]:

π∗(⃗a|s) =
D∏
i=1

π∗
i (ai|s) (6)

As illustrated in Figure 2(a), a factorized joint policy P (⃗hs, X⃗s) is a linear layer with an output
dimension of N ∗D. Each policy π∗

i (ai|s) indicates the probability of choosing an action ai ∈ Ai

in the ith dimension, where |Ai| = N . This reduces the exponential explosion of action space due
to increased dimensionality down to linear. Note there is a trade-off in the choice of N , as a larger
number of action bins retains more information from the continuous action space, but it also implies
larger graphs and hence computation costs. We provide an ablation study in evaluation on the impact
of this choice.

4.5 Neighbor sampling methods

As illustrated in Figure 2(b), the second bottleneck occurs when constructing a graph to execute the
pre-trained GNN. Starting from the current state node h⃗s, we enumerate all possible actions a⃗i ∈ |A|
to connect neighbors via h⃗(s) a⃗i−→ h⃗(s′i). As a result, each node has degree |A|, and graph size grows
even faster as it expands deeper. We propose to use a neighbor sampling method so that we only
expand a small subset of actions. However, the important question is which actions to select. Value
iteration algorithm is a DP algorithm whose update rule is the Bellman optimality equation (Eq.1).
The max aggregator iterates through the entire action space a ∈ A to ensure that we get the optimal
solution at each iteration. Therefore, the graph constructed should allow our pre-trained GNN to
predict optimally at each layer. It is thus critical that we can include the action that produces a good
approximation of the state-value function in our sampling.

Below, we propose four possible methods to sample K actions from A, where K ≪ |A| is a fixed
number, under the context of value-iteration-based planning.

4.5.1 Gaussian methods

Gaussian distribution is a common baseline policy distribution for continuous action spaces, and it is
straightforward to interpret. Furthermore, it discourages extreme actions while encouraging neutral
ones with some level of continuity, which suits the requirement of many planning problems. We
propose two variants of sampling policy based on Gaussian distribution.

5



Continuous Neural Algorithmic Planners

(a) Manual-Gaussian: A Gaussian distribution is used to randomly sample action values in each
dimension ai ∈ Ai, which are stacked together as a final action vector a⃗ = [a0, ..., aD−1]

T ∈ A. We
repeat for K times to sample a subset of K action vectors. We set the mean µ = N/2 and standard
deviation σ = N/4, where N is the number of discrete action bins. These two parameters are chosen
to spread a reasonable distribution over [0, N − 1]. Outliers and non-integers are rounded to the
nearest whole number within the range of [0, N − 1].

(b) Learned-Gaussian: The two parameters manually chosen in the previous method pose a constraint
on placing the median action in each dimension as the most likely. Here instead, two fully-connected
linear layers are used to separately estimate the mean µ and standard deviation σ. They take the
state embedding h⃗s from Encoder and output parameter estimations for each dimension. We use the
reparameterization trick [30] to make the sampling differentiable.

4.5.2 Parameter reuse

Gaussian methods still restrain a fixed distribution on the sampling distribution, which may not
necessarily fit. Previous work [23] studied the action sampling problem on policy evaluation and
improvement. They reasoned that since the actions selected by the policy are expected to be more
valuable, we can directly use the policy for sampling.

(c) Reuse-Policy: We can reuse Policy layer P (⃗hs, X⃗s) to sample the actions when we expand the
graph in Executor. This is equivalent to using the policy distribution π∗ = p(⃗a|s) as the neighbor
sampling distribution. However, the second input X⃗s for Policy layer comes from Executor, which is
not available at the time of constructing the graph. It is filled up by setting X⃗s = 0⃗ as placeholders.

4.5.3 Learn to expand

Lastly, we can also use a separate layer to learn the neighbor sampling distribution.

(d) Learned-Sampling: This uses a fully-connected linear layer that consumes h⃗s and produces an
output dimension of |N ·D|. It is expected to learn the optimal neighbor sampling distribution in a
factorized joint manner, same as Figure 2(a). The outputs are logits for D categorical distributions,
where we used Gumbel-Softmax [31] for differentiable sampling actions in each dimension, together
producing a⃗ = [a1, ..., aD]T .

Table 1: Summary of the four neighbor sampling policies on their pros & cons.
Manual-
Gaussian

(+) Sample-efficient as no
training is required.

(-) Gaussian distribution may not fit.
(-) Assume the median as the most likely.

Learned-
Gaussian

(+) More flexible choice of
distribution range.

(-) Gaussian distribution may not fit.
(-) More parameters requires more training.

Reuse-
Policy

(+) Parameter reuse.
(+) Policy distribution alignment.

(-) Misalignment in input format due to the
unavailability of X⃗s in Executor.

Learned-
Sampling (+) Dedicated distribution learning. (-) More parameters requires more training.

5 Results
5.1 Classic Control

To evaluate the performance of CNAP agents, we first ran the experiments on a relatively simple
MountainCarContinuous-v0 environment from OpenAI Gym Classic Control suite [32], where the
action space was one-dimensional. The training of the agent used PPO under 20 rollouts with 5
training episodes each, so the training consumed 100 episodes in total.

We compared two variants of CNAP agents: “CNAP-B” had its Executor pre-trained on a type of
binary graph that aimed to simulate the bi-directional control of the car, and “CNAP-R” had its
Executor pre-trained on random synthetic Erdős-Rényi graphs. In Table 2, we compared both CNAP
agents against a “PPO Baseline” agent that consisted of only the Encoder and Policy/Tail modules.

6



Continuous Neural Algorithmic Planners

Both the CNAP agents outperformed the baseline agent for this environment, indicating the success
of extending XLVIN onto continuous settings via binning.

Table 2: Mean rewards for MountainCarContinuous-v0 using PPO Baseline and two variants of
CNAP agents. All three agents ran on 10 action bins, and were trained on 100 episodes in total. Both
CNAP agents executed one step of value iteration. The reward was averaged over 100 episodes and
10 seeds.

Model MountainCarContinuous-v0
PPO Baseline -4.96 ± 1.24

CNAP-B 55.73 ± 45.10
CNAP-R 63.41 ± 37.89

5.1.1 Effect of GNN width and depth

We then studied the effects of CNAP agents’ two hyperparameters. In Table 3, we varied the number
of action bins into which the continuous action space was discretized. The results showed that 10
action bins led to the best performance, suggesting the importance of balancing how much information
we can sacrifice for discretization. On the other hand, a larger number of action bins results in a
larger graph size, requiring more samples to train, hindering sample efficiency. We provide additional
results on increasing the number of bins to 50 and 100 in Appendix A.1 which led to even worse
results.

In Table 4, we varied the number of GNN steps, corresponding to the number of steps we simulated
in the value iteration algorithm. A degradation in performance is also observed, with 1 GNN step
bringing the best performance. One possible reason was also how the number of training samples
might also not be sufficient when given larger graph depths. Also, a deeper graph required repeatedly
applying the Transition module, where the imprecision might add on, leading to inappropriate state
embeddings and hence less desirable results.

More ablation results on the combined effect of varying both the width and depth on CNAP-R can be
found in Appendix A.2.

Table 3: Mean rewards for MountainCarContinuous-v0 using Baseline and CNAP agents by varying
number of action bins, i.e., width of graph. The results were averaged over 100 episodes and 10
seeds.

Model Action Bins MountainCar-Continuous
PPO 5 -2.16 ± 1.25

10 -4.96 ± 1.24
15 -3.95 ± 0.77

CNAP-B 5 29.46 ± 57.57
10 55.73 ± 45.10
15 22.79 ± 41.24

CNAP-R 5 20.32 ± 53.13
10 63.41 ± 37.89
15 26.21 ± 46.44

Table 4: Mean rewards for MountainCarContinuous-v0 using CNAP agents by varying number of
GNN steps, i.e., depth of graph. The results were averaged over 100 episodes and 10 seeds.

Model GNN Steps MountainCar-Continuous
CNAP-B 1 55.73 ± 45.10

2 46.93 ± 44.13
3 40.58 ± 48.20

CNAP-R 1 63.41 ± 37.89
2 34.49 ± 47.77
3 43.61 ± 46.16

7



Continuous Neural Algorithmic Planners

5.2 MuJoCo

We then ran experiments on more complex environments from OpenAI Gym’s MuJoCo suite [19, 32]
to evaluate how CNAPs could handle the high increase in scale. Unlike the Classic Control suite, the
MuJoCo environments have higher dimensions in both its observation and action spaces. We started
by evaluating CNAP agents in two environments with relatively lower action dimensions, and then
we moved on to two more environments with much higher dimensions. The discretization of the
continuous action space also implied a combinatorial explosion in the action space, resulting in a
large graph constructed for the GNN. We used the proposed factorized joint policy from Section 4.4
and the neighbor sampling methods from Section 4.5 to address the limitations.

5.2.1 On low-dimensional environments

In Figure 3, we experimented with the four sampling methods discussed in Section 4.5 on Swimmer-
v2 (action space dimension of 2) and HalfCheetah-v2 (action space dimension of 6). We chose
to take the number of action bins N = 11 for all the experiments following [22], where the best
performance on MuJoCo environments was obtained when 7 ≤ N ≤ 15. The number of neighbours
to expand was set to K = 10, so that we could evaluate the four neighbour expansion policies when
sampling a very small subset of actions. In all cases, CNAP outperformed the baseline in the final
performances. Moreover, Manual-Gaussian and Reuse-Policy were the most promising sampling
strategies as they also demonstrated faster learning, hence better sample efficiency. This pointed to
the benefits of parameter reuse and the synergistic improvement between learning to act and learning
to sample relevant neighbors, as well as the power of a well-chosen manual distribution. We also note
that choosing a manual distribution can become non-trivial when the task becomes more complex,
especially if choosing the average values for each dimension is not the most desirable. Our work acts
as a proof-of-concept of sampling strategies and leaves the choice of parameters for future studies.

Swimmer Swimmer Swimmer Swimmer

(a) Manual-Gaussian (b) Learned-Gaussian (c) Reuse-Policy (d) Learned-Sampling

HalfCheetah HalfCheetah HalfCheetah HalfCheetah

(e) Manual-Gaussian (f) Learned-Gaussian (g) Reuse-Policy (h) Learned-Sampling

Figure 3: Average rewards over time for CNAP (red) and PPO baseline (blue), in Swimmer (action
dimension=2) and Halfcheetah (action dimension=6), using different sampling methods. In Swimmer,
CNAP with sampling methods were compared with the original version by expanding all actions
(green). In (a)(e), the actions were sampled using Gaussian distribution with mean=N/2 and std=N/4,
where N was the number of action bins used to discretize the continuous action space. In (b)(f),
two linear layers were used to learn the mean and std, respectively. In (c)(g), the Policy layer was
reused in sampling actions to expand. In (d)(h), a separate linear layer was used to learn the optimal
neighbor sampling distribution. The mean rewards were averaged over 100 episodes, and the learning
curve was aggregated from 5 seeds.

5.2.2 On high-dimensional environments

We then further evaluated the scalability of CNAP agents in more complex environments where
the dimensionality of the action space was significantly larger, while retaining a relatively low-data

8



Continuous Neural Algorithmic Planners

regime (106 actor steps). In Figure 4, we compared all the previously proposed CNAP methods on
two environments with highly complex dynamics, both having an action space dimension of 17. In
the Humanoid task, all variants of CNAPs outperformed PPO, acquiring knowledge significantly
faster.

Particularly, we found that nonparametric approaches to sampling the graph in CNAP (e.g. manual
Gaussian and policy reuse) acquired this knowledge significantly faster than any other CNAP approach
tested. This supplements our previous results well, and further testifies to the improved learning
stability when the sampling process does not contain additional parameters to optimise.

We also evaluated all of the methods considered against PPO on the HumanoidStandup task, with
all methods learning to sit up, and no apparent distinction in the rate of acquisition. However, we
provide some qualitative evidence that the solution found by CNAP appears to be more robust in the
way this knowledge acquired—see Appendix A.3.

Figure 4: Average rewards over time for CNAP (red) and PPO baseline (blue), in Humanoid (action
dimension=17) and HumanoidStandup (action dimension=17), using the four sampling methods.

5.2.3 Qualitative interpretation

We also captured the video recordings of the interactions between the agents and the environments
to provide a qualitative interpretation to the results above. We chose to look at the selected frames
(Appendix A.3) at equal time intervals from one episode after the last training iteration by CNAP
(Manual-Gaussian) and PPO Baseline, respectively.

In HalfCheetah task, the agent instructed by PPO Baseline fell over quickly and never managed to
turn it back. However, CNAP’s agent could balance well and kept running forward. This observation
could support the higher average episodic rewards gained by CNAP agents than by PPO Baseline in
Figure 3. Similarly for Humanoid task, PPO Baseline’s humanoid stayed stationary and lost balance
quickly, while CNAP’s humanoid could walk forward in small steps. This observation aligned with
the results in Figure 4 where the gain from CNAP was significant. In addition, we note that, although
quantitatively CNAP agent did not differentiate from PPO Baseline in HumanoidStandup task as
shown in Figure 4, for the trajectories we observed, it successfully remained in a sitting position,
while the PPO Baseline fell quickly.

6 Conclusion
We present CNAP, a method that generalizes implicit planners to continuous action spaces for the first
time. In particular, we study implicit planners based on neural algorithmic reasoners and the unstudied
implications of not having precise alignment between the learned graph algorithm and the setup
where the executor is applied. To deal with the challenges in building the planning tree, as a result of
the continuous, high-dimensional nature of the action space, we combine previous advancements in
XLVIN with binning, as well as parametric and non-parametric neighbor sampling strategies. We
evaluate the agent against its model-free variant, observing its efficiency in low-data settings and
consistently better performance than the baseline. Moreover, this paves the way for extending other
implicit planners to continuous action spaces and studying neural algorithmic reasoning beyond strict
applications of graph algorithms.

9



Continuous Neural Algorithmic Planners

Acknowledgements
We would like to thank Adrià Puigdomènech Badia, Doina Precup, and all anonymous reviewers from
LoG Conference 2022 and GroundedML Workshop at ICLR 2022 for their detailed and constructive
feedback, which helped to greatly strengthen this paper. Yu He would also like to thank Han Xuanyuan
for reading an earlier version of this manuscript and for his support throughout.

References
[1] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional

Networks. In ICLR, 2017. 1, 3
[2] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.

Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 1263–1272. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/gilmer17a.html. 2

[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018. 1

[4] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. arXiv preprint
arXiv:2105.02761, 2021. 1

[5] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? In 8th International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rJxbJeHFPS. 1, 3

[6] Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In 8th International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkgKO0EtvS. 1, 3

[7] Dobrik Georgiev and Pietro Lió. Neural bipartite matching. CoRR, abs/2005.11304, 2020. URL
https://arxiv.org/abs/2005.11304. 1

[8] Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. Beyond {gnn}s: A sample effi-
cient architecture for graph problems, 2021. URL https://openreview.net/forum?id=
Px7xIKHjmMS. 1

[9] Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier
Bresson. Learning TSP requires rethinking generalization. CoRR, abs/2006.07054, 2020. URL
https://arxiv.org/abs/2006.07054. 1

[10] Andreea Deac, Pierre-Luc Bacon, and Jian Tang. Graph neural induction of value iteration.
arXiv preprint arXiv:2009.12604, 2020. 1, 3, 4

[11] Richard Bellman. Dynamic Programming. Dover Publications, 1957. ISBN 9780486428093.
1, 2

[12] Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and Garrett Thomas. Value iteration networks.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, NIPS, pages 2146–2154, 2016. 1

[13] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NIPS, pages
6118–6128, 2017.

[14] Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa C. Smith, and Jelena Kovacevic.
Generalized value iteration networks: Life beyond lattices. In AAAI, pages 6246–6253. AAAI
Press, 2018.

[15] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree-structured models for deep reinforcement learning. In ICLR, 2018.

[16] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov.
Gated path planning networks. In International Conference on Machine Learning, pages
2947–2955. PMLR, 2018. 1

[17] Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and Mladen
Nikolic. Neural algorithmic reasoners are implicit planners. In Advances in Neural Information
Processing Systems 34, pages 15529–15542, 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/82e9e7a12665240d13d0b928be28f230-Abstract.html. 1, 4

10

http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=SkgKO0EtvS
https://arxiv.org/abs/2005.11304
https://openreview.net/forum?id=Px7xIKHjmMS
https://openreview.net/forum?id=Px7xIKHjmMS
https://arxiv.org/abs/2006.07054
https://proceedings.neurips.cc/paper/2021/hash/82e9e7a12665240d13d0b928be28f230-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/82e9e7a12665240d13d0b928be28f230-Abstract.html


Continuous Neural Algorithmic Planners

[18] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. J. Mach. Learn. Res., 17:39:1–39:40, 2016. URL http://jmlr.org/
papers/v17/15-522.html. 1

[19] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.6386109. URL https://doi.org/10.
1109/IROS.2012.6386109. 2, 8

[20] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605. 2

[21] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021. URL https:
//arxiv.org/abs/2104.13478. 2

[22] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy op-
timization. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence,
pages 5981–5988. AAAI Press, 2020. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6059. 3, 5, 8

[23] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Proceedings
of the 38th International Conference on Machine Learning, volume 139, pages 4476–4486.
PMLR, 2021. URL http://proceedings.mlr.press/v139/hubert21a.html. 3, 6

[24] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.
3

[25] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018. URL
http://arxiv.org/abs/1812.08434. 3

[26] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. CoRR, abs/1706.02216, 2017. URL http://arxiv.org/abs/1706.02216. 3

[27] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. CoRR,
abs/1806.01973, 2018. URL http://arxiv.org/abs/1806.01973. 3

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347. 4

[29] Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 4

[30] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL https:
//arxiv.org/abs/1312.6114. 6

[31] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax,
2016. URL https://arxiv.org/abs/1611.01144. 6

[32] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 6, 8

A Appendix
A.1 Even larger number of action bins

In Table 5, we increase the number of action bins to even larger numbers of 50 and 100, where a
further degradation is observed. More action bins results in a larger graph that requires more training
samples to be consumed, which compromises the sample efficiency.

11

http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://ojs.aaai.org/index.php/AAAI/article/view/6059
https://ojs.aaai.org/index.php/AAAI/article/view/6059
http://proceedings.mlr.press/v139/hubert21a.html
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1806.01973
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.01144


Continuous Neural Algorithmic Planners

Table 5: Mean rewards for MountainCarContinuous-v0 using CNAP-R with 1 GNN step by varying
number of action bins (width of graph). The results were averaged over 100 episodes and 10 seeds.

Number of action bins MountainCar-Continuous
10 63.41 ± 37.89
50 -8.88 ± 1.13

100 -13.50 ± 1.60

A.2 Combined effect of varying width and depth of GNN

We show the combined effects of varying the number of GNN steps and action bins of the graph in
Table 6. We observe that within each row, an appropriate number of action bins such as 10 obtains
sufficient information from discretization. Within each column, a smaller GNN step of 1 is generally
more preferrable.

Table 6: Mean rewards for MountainCarContinuous-v0 using CNAP-R by varying number of GNN
steps (depth of graph), and number of action bins (width of graph). The results were averaged over
100 episodes and 10 seeds.

Number of action bins
GNN Steps 5 10 15

1 20.32±53.13 63.41±37.89 26.21±46.44
2 25.33±47.08 34.49±47.77 17.15±46.26
3 19.23±54.19 43.61±46.16 18.99±44.69

A.3 Selected frames for MuJoCo tasks

Swimmer: PPO

Swimmer: CNAP

Figure 5: Selected frames of two agents in Swimmer

As seen in Figure 5, CNAP could fold itself slightly faster than PPO Baseline in this episode and
swam more quickly.

HalfCheetah: PPO

HalfCheetah: CNAP

Figure 6: Selected frames of two agents in HalfCheetah

From Figure 6’s HalfCheetah task, we can see the agent instructed by PPO Baseline fell over quickly
and never managed to turn it back. However, CNAP’s agent could balance well and kept running

12



Continuous Neural Algorithmic Planners

forward. This observation could support the higher average episodic rewards gained by CNAP agents
than by PPO Baseline in Figure 3.

Humanoid: PPO

Humanoid: CNAP

Figure 7: Selected frames of two agents in Humanoid

Similarly, in Figure 7’s Humanoid task, PPO Baseline’s humanoid stayed stationary and lost balance
quickly, while CNAP’s humanoid could walk forward in small steps. This observation aligned with
the results in Figure 4 where the gain from CNAP was significant.

HumanoidStandup: PPO

HumanoidStandup: CNAP

Figure 8: Selected frames of two agents in HumanoidStandup

Then we noticed that although in HumanoidStandup task, the quantitative performances between
PPO Baseline and CNAP were similar, Figure 8 revealed some different results. Both agents did not
manage to stand up, explaining why the episodic rewards were similar numerically. However, the
PPO Baseline agent lost balance and fell back to the ground while the CNAP agent remained sitting,
trying to get up. Therefore, the CNAP qualitatively performed better in this example.

13


	1 Introduction
	2 Background
	2.1 Markov Decision Process (MDP)
	2.2 Value Iteration
	2.3 Message-Passing GNN (MPNN)
	2.4 Neural Algorithmic Reasoning

	3 Related Work
	3.1 Continuous action space
	3.2 Large-scale graphs

	4 Architecture
	4.1 XLVIN modules
	4.2 Limitations of XLVIN
	4.3 Discretization of the continuous action space
	4.4 Factorized joint policy
	4.5 Neighbor sampling methods
	4.5.1 Gaussian methods
	4.5.2 Parameter reuse
	4.5.3 Learn to expand


	5 Results
	5.1 Classic Control
	5.1.1 Effect of GNN width and depth

	5.2 MuJoCo
	5.2.1 On low-dimensional environments
	5.2.2 On high-dimensional environments
	5.2.3 Qualitative interpretation


	6 Conclusion
	A Appendix
	A.1 Even larger number of action bins
	A.2 Combined effect of varying width and depth of GNN
	A.3 Selected frames for MuJoCo tasks


