
Replanning in Advance for Instant Delay Recovery in Multi-Agent Applications:
Rerouting Trains in a Railway Hub

Primary Keywords: (1) Applications

Abstract

Train routing is sensitive to delays that occur in the network.
When a train is delayed, it is imperative that a new plan be
found quickly, or else other trains may need to be stopped to
ensure safety, potentially causing cascading delays. In this pa-
per, we consider this class of multi-agent planning problems,5

which we call Multi-Agent Execution Delay Replanning. We
show that these can be solved by reducing the problem to
an any-start-time safe interval planning problem. When an
agent has an any-start-time plan, it can react to a delay by
simply looking up the precomputed plan for the delayed start10

time. We identify crucial real-world problem characteristics
like the agent’s speed, size, and safety envelope, and extend
the any-start-time planning to account for them. Experimental
results on real-world train networks show that any-start-time
plans are compact and can be computed in reasonable time15

while enabling agents to instantly recover a safe plan.

Introduction
When a train is delayed, operators must replan its route to
minimize the effect on other trains. Minor delays happen
frequently and can compound into larger holdups that propa-20

gate through the network. Replanning is thus a complex task
that must be solved as soon as possible. Yet, the search space
grows exponentially in the number of trains to be accounted
for, although in practice replanning is still done manually
by human operators. Our focus is to swiftly handle holdups25

that can be resolved by rerouting only the delayed agent.
By quickly reacting without infringing on the pre-existing
plans of other agents, we are more likely to avoid the cas-
cade of delays. Railway network delay planning is represen-
tative of a set of planning problems with similar constraints30

and agent interactions, including moving automated guided
vehicles in container terminals and navigating self-driving
cars in dense road networks. We name these Multi-Agent
Execution Delay Replanning (MAEDeR) problems. These
are single-agent problems that occur during the execution of35

a multi-agent plan.
We develop a method for solving MAEDeR by replan-

ning in advance using any-start-time safe interval path plan-
ning (@SIPP) (Thomas et al. 2023), which allows for in-
stant delay recovery. The search procedure computes opti-40

mal plans for all possible starting times ahead of execution,
so the agent can select a feasible plan once its start time is

known. To prepare for a delay, our approach to MAEDeR
precomputes an any-start-time plan for each agent, treating
the other agents executing their plans as moving obstacles. 45

So, when an agent is delayed, it can instantly recover a safe
plan and execute it without affecting other agents.

So far, any-start-time planning has only been used for
single-agent problems in grid-based settings. We show how
it can be useful in a multi-agent context, and how to ap- 50

ply it to railway hub planning, a setting closer to real-world
problems than point robots on a grid. A railway hub is an
area with a train station and shunting yards. For instance,
Fig. 1 shows the Enkhuizen hub in the Netherlands with plat-
forms, sidings, and a track connecting to the railroad net- 55

work. While we show the example of dense infrastructure
hubs, which are the most difficult to plan, the same problem
representation is also applicable to larger railway networks,
and similar ones would work for other MAEDeR problems.

Railway hub planning has several characteristics that are 60

emblematic of real-world applications that can be modeled
as a MAEDeR problem. First, the agents in these problems
are not point agents, because they have a spatial capacity,
and thus, a temporal extent. This also enables agents to oc-
cupy several locations simultaneously, such as a 300-meter- 65

long train stretching over two tracks. Because real-world
problems rarely have one type of agent, we allow for hetero-
geneous agents in terms of size and speed. We create a re-
duction from railway hub planning to an @SIPP graph that
inherently encodes the direction of an agent. In a railway 70

hub, switches constrain the possible moves a train can make,
which we model with directed edges. Finally, we include
context-dependent safety measures that agents must respect,
like a variable headway: the time between two consecutive
trains, which depends on the relative travel directions. 75

PLATFORMS

End of track Track Parking track

Enkhuizen station Rest of railway 
network

Figure 1: Layout: Enkhuizen railway hub in the Netherlands
[Adapted from SporenPlanOnline].



Our main contribution is instantly solving delay response
in railway hub planning by applying any-start-time planning
to multi-agent execution delay replanning. We recover a safe
plan to reroute the delayed train, without affecting other
trains’ plans. The precomputation of safe plans allows us to80

rapidly recover the ability to handle a new delay. Our method
is extendable to other multi-agent settings. We show promis-
ing results for handling delays in real-world problems.

Example: Railway Hub Planning
We use railway hub planning to instantiate our methods in85

an intuitive application. A railway hub is an area includ-
ing a railway station and several surrounding shunting yards
where trains can be parked and serviced. The railway hub
planning problem considers the routing of trains through the
station and between shunting yards, as well as navigating90

them around other trains in the network. This gives rise to a
related MAEDeR problem, of railway hub delay replanning.

Imagine two trains such as those shown in Fig 2, with two
station tracks 1 and 2, a parking track P , two switches 3
and 4, and a track E connecting the station to the rest of95

the network. Suppose that the initial multi-agent plan is for
train I to depart first, and traverse its route from I to I ′ with-
out waiting, clearing the shared track right before II uses it
to travel from II to II ′. Because their paths cross over the
shared track, if train I is delayed, one of the trains may need100

to wait in order for both to safely reach their destinations. If
train I follows the same plan at this later time, it will conflict
with train II. Instead, it should pick a new safe plan that re-
spects train II, such as waiting for train II to clear the shared
track, and then finishing its route.105

This example follows the Dutch railway operation poli-
cies, where trains that are being parked wait for ones serving
the timetable. Common causes for delays include too many
passengers trying to board, hindrances on the tracks, or a
servicing action taking longer than expected. In the follow-110

ing sections, we formalize the intuitions of this example into
a planning method to solve this class of problems.

Background
MAEDeR is a single-agent problem in a multi-agent setting.
While the classic multi-agent pathfinding (MAPF) problem115

constructs non-conflicting plans for a set of agents (Stern
2019), MAEDeR does not come up with the initial multi-
agent plan. Instead, it solves the problem of how to quickly
recover from one delayed agent while the multi-agent plan is
being executed. Delay handling has been previously studied120

in the context of MAPF, although the focus has been on cre-
ating initial plans that are robust to delays (Ma, Kumar, and
Koenig 2017; Atzmon et al. 2020a). Where delay recovery
has been considered, it has been in the discrete-time context,
without singling out a single agent specifically.125

Previous studies on delay handling for trains have focused
mostly on recovering from disturbances in the complete rail-
way network related to the timetable (Bešinović 2020; Cac-
chiani et al. 2014). However, railway hub operations dif-
fer in that they are more flexible to plan and are planned130

manually. Some studies have focused on delays solely in

I

II ′

IN/
OUT

<>
II

I ′

Track 1

Track 2 Track P

Track E

Railway track End of track/ Train routes

3 4

Figure 2: Railway hub planning problem: tracks
(1, 2, E, P ), switches (3, 4), and trains (I → I ′,II → II ′).

a shunting yard. These consider freight trains in particular
(Boysen et al. 2012), or plan robustly to avoid delays (Gar-
dos Reid 2023; van den Broek, Hoogeveen, and van den
Akker 2018). Railway hubs have been previously studied 135

as (re)dispatching, including delay response (D’Ariano and
Pranzo 2009). However, their method assumes a fixed set of
train routes and treats the initial delay handling as a job-shop
scheduling problem to reschedule all trains at once. In con-
trast, our method has two main benefits. First, we do not re- 140

quire preset routes only the origin and destination, allowing
the delayed agent more flexibility in adapting to the delay.
Second, we resolve the delay without rerouting other agents,
so their routes are not changed. In settings where coordinat-
ing many agents is non-trivial, the latter is a strong benefit. 145

Safe Interval Path Planning (SIPP)
Our method for solving MAEDeR relies on the state space
of safe interval path planning (SIPP) (Phillips and Likhachev
2011) and the algorithms for solving any-start-time SIPP
(@SIPP) (Thomas et al. 2023). A SIPP problem is a 150

single-agent state-space search problem defined by the tu-
ple ⟨S,E, δ, so, xg⟩. A SIPP search state ⟨x, i⟩ ∈ S has two
components: x, the configuration (e.g., agent location), and
i = ⟨ts, te⟩, a safe interval, which is a continuous timespan
from ts to te when it is safe for the agent to be in configu- 155

ration x. The edges ⟨u, v, i⟩ ∈ E denote an interval i where
the agent can safely transition from configuration u to con-
figuration v. The cost of an edge is its duration δ(u, v). The
objective of a SIPP agent is to find a minimum duration path
to the goal configuration xg , starting from the origin state 160

so. To solve SIPP problems, Phillips and Likhachev (2011)
employ an A* search on this state space, where the objective
function f = g + h uses the scalar earliest arrival time at
a SIPP state as g. This returns a single safe optimal plan as
its solution, arriving as early as possible at each intermedi- 165

ate SIPP state. Note that several states may share the same
configuration, with different non-overlapping safe intervals.
Edges between the same pair of states can similarly have
several intervals. Because time is continuous, a SIPP search
graph is a compact representation of an infinite problem. 170

For example, take a pedestrian railway crossing. There are
two SIPP states: the near side of the crossing and the far side,
both of which are always safe. A train passing creates two
SIPP edges, the safe interval before the train arrives, and the
safe interval after it has passed. In this case, a pedestrian 175

could try and cross at any safe time, but the SIPP graph can
represent those infinite actions with only two edges.



tdepartζ α β

∞

∆

tarrive

Figure 3: An ATF with parameters ζ, α, β, and ∆.

Any-start-time SIPP (@SIPP)
Recent work on any-start-time SIPP, @SIPP (Thomas et al.
2023) describes how to efficiently generate plans for all start180

times on SIPP graphs. The augmented SIPP (ASIPP) algo-
rithm described by Thomas et al. (2023) performs a search
that is graphically isomorphic to a SIPP search. However,
rather than returning a single plan that arrives at a scalar ear-
liest arrival time, ASIPP returns a family of related paths. All185

paths in the family move through the same sequence of SIPP
states but at different times. ASIPP works by ‘augmenting’
the SIPP search nodes to track earliest arrival time functions
(ATFs), instead of the scalar g used by SIPP.

The ATF of this path family tells us the earliest arrival190

time for any departure time along the corresponding se-
quence of SIPP states. To enable this search, the graph is
transformed again, from a SIPP graph to an @SIPP graph.
For each edge in the SIPP graph, the source, destination,
and edge safe intervals into a simple piecewise linear ATF,195

defined by the parameters ⟨ζ, α, β,∆⟩:

f [ζ, α, β,∆](t) =


∞ t < ζ

α+∆ ζ ≤ t < min(α, β)

t+∆ α ≤ t < β

∞ β ≤ t,

(1)

where ζ is the earliest time the agent can safely wait at the
starting state of the edge, α is the earliest time the agent
can safely begin traversing the edge, β is the time the edge
becomes unsafe, and ∆ is the transit time of the edge. Fig 3200

shows an example of an ATF and its parameters.
In a SIPP search, successors are generated with scalar g

being the cumulative sum of edge costs along the path so far.
In contrast, ASIPP’s functional g is the cumulative compo-
sition of edge ATFs along the path so far, which maintains205

the same piecewise-linear structure ⟨ζ, α, β,∆⟩.
A final algorithm developed by Thomas et al. (2023)

to solve @SIPP is called RePEAT, which repeatedly calls
ASIPP and restarts a partial expansion A* search with
monotonically increasing start times. RePEAT then com-210

piles the plans returned by ASIPP into a set that can be
rapidly queried for a plan corresponding to any departure
time. Thomas et al. (2023) show that this set of plans pro-
duced by RePEAT remains compact in theory and practice.

Problem Description: MAEDeR215

A Multi-Agent Execution Delay Replanning problem
(MAEDeR) is defined by the tuple ⟨N,T, C⟩. The infras-
tructure network N is a set of connected components, which
can be represented as a graph with edges between loca-
tions. The agents t ∈ T each navigate through the net-220

work. The problem characteristics C define how the agents

interact with the network and each other. These are context-
specific and include information to calculate the edge dura-
tion δ(u, v) : u, v ∈ N and to constrain when edges can be
traversed. We refer to N and T collectively as the system, 225

which is safe if all agents have conflict-free plans.
A solution to MAEDeR is a function F taking an agent

a ∈ T and a positively delayed start time d and returning
the shortest safe plan for the delayed agent, or a failure if
no feasible plan exists. The returned plan does not require 230

modifications of the plans of any agent other than the one
that was delayed. When an agent is delayed, the system is
no longer safe until the function returns a new plan for this
agent. We refer to this period as the interval of uncertainty.
The objective of MAEDeR is to provide a solution that min- 235

imizes the interval of uncertainty.

Specifics for Railway Hub Planning
We now illustrate the MAEDeR definition for railway hub
planning. In a railway hub, the components of the network
N include track segments, platforms, and switches. The 240

trains moving through the hub are the set of agents T . The
characteristics C include each train’s length λ and speed ν,
and the length of each track segment ℓ(u, v). The duration to
traverse an edge can then be calculated as δ(u, v) = ℓ(u,v)

ν(a) .
The constraints for traversing edges in a railway hub re- 245

late to the static infrastructure and movements of trains. As
trains cannot navigate sharp angles, they have to be reversed
to change direction. To do so, the driver has to walk to the
other side of the train. Therefore, we need the walking speed
of a driver ω ∈ C. The constraints that determine when edges 250

can be traversed avoid conflicts and construct a safety enve-
lope for each train, which is a safety buffer between trains.
An action’s safety envelope is defined by a train’s headway,
which is the time between two consecutive trains. As this is
context-specific, we define the following headway ϵf ∈ C 255

for trains in the same direction and the crossing headway
ϵc ∈ C for the opposite direction. Other MAEDeR problems
may share some or all of these characteristics with railway
hub planning.

Other planning tasks arise in railway hub planning, like 260

railway freight traffic planning. Freight traffic is done ad hoc
depending on the arrival of supply. Since the start and des-
tination are known in advance, we can precompute the any-
start-time plan of a freight train. So, our method can be used
out of the box for these scenarios, too. Then, the required 265

route can be queried once a freight train is ready to depart.

When MAEDeR Fails
The MAEDeR objective is to produce a solution function F
that calculates a feasible shortest plan for agent a starting at
delayed time d. If no safe plan with start time d exists, then 270

F returns that no such plan exists. How the system reacts to
this is problem-specific and outside the scope of this paper.
An example reaction could be to execute a multi-agent re-
planning algorithm. Measures to ensure safety in the mean-
time are also problem-specific. For example, when planning 275

driverless taxis, this could be an all-stop order halting all
taxis until a new safe multi-agent plan is found (Lu 2023).



S D

SA DA

SB DB

eA

eB

(a) Track segment topology.

S DL

DR

SA DL
A

SB DL
B

DR
A

DR
B

eLA

eLB

eRA

eRB

(b) Switch topology.

Figure 4: Topology of (a) track segments and (b) switches.

Reducing MAEDeR to Any-Start-Time SIPP
To solve MAEDeR problems, we provide a reduction to
@SIPP. In short, for each agent, we transform the network280

into a SIPP graph with safe intervals on the states and edges
for that agent, treating the other agents as moving obstacles.
We then compute an any-start-time plan for that agent, so
that when it is delayed, it can instantly recover a safe plan.
From here on, we demonstrate this reduction for the railway285

hub planning problem, but this can also be applied to other
MAEDeR contexts, such as navigating automated vehicles
in container terminals or dense road networks.

First, we give an intuition on this reduction. The loca-
tions in the transformed graph loosely correspond to points290

in the railway network where track segments meet or join
other infrastructure components. The actual track segments
are represented by edges, one per possible travel direction.
The unsafe intervals result from other trains moving through
the network, blocking safe access to the track(s) that they295

occupy. This reduction must obey the physical properties of
the infrastructure, and maintain the safety of the network.

In railway hub planning problems, these properties (char-
acteristics C) are inherent to tracks and switches. Because
trains move forward on the track and cannot simply turn300

around, the available edges for a train to follow depend on
the direction it is traveling. For example, in Fig. 4a, two
straight track segments next to each other are connected: S
on the left and D on the right. A train can go either left
to right or right to left, based on its initial direction. To al-305

low this, we split each location into two co-located states
(A and B) as is a custom in the railway sector. Now, when
going from the left track to the right track, the train goes
from SA to DA. The other way around, a train would go
from DB to SB . We transform the undirected edges of the310

train network into pairs of antiparallel directed edges, where
A-sides of states have directed edges solely to A-sides, and
B only to B-sides. The A and B-sides are only connected if
this is a track where a train can reverse, for example, at the

IN/
OUT

<>
Track 1

Track 2 Track P

Track E

(a) Layout from Fig. 2.

1A

1B

2A

2B

3RA

3LA

3B 4A

4RB

4LB

PA

PB

EA

EB

OUT

IN

Reversal track / Train routes (in/out)
XA/XB Track direction XR/XL Switch left/right

(b) Graph representation of the layout.

Figure 5: Modeling the layout graph (solid versus dashed
lines are used to demonstrate the direction of a route).

end of track 1 in Fig. 5a. 315

To model a switch, we place three pairs of co-located
states in the graph, as shown in Fig. 4b. Here, we see the con-
junction of three tracks, with S on the left and two tracks D
on the right. The two tracks are named DL and DR to sig-
nify the left and right sides of a switch, also a custom in 320

railway operations. A train incoming from track S encoun-
ters the location SA, which has two successors DL

A and DR
A .

Oppositely, a train coming from either track DL or DR will
use the B-side and continue its route over point SB . Since a
switch always forms an acute angle between two tracks on 325

the same side, a train cannot make that turn, so the same-side
nodes are not connected.

These translations are used to construct the graph of a
hub railway layout. An example is shown in Fig. 5. All four
tracks (1, 2, E, P ) have two nodes (A/B-sides) and switches 330

have additional R/L-nodes on the same side of the switch.
We see that only the reversal tracks (1, 2, P ) have their A
and B-sides connected. Finally, all A-sides are connected to
neighboring A-sides, and similarly for the B-sides.

Safe Interval Generation 335

Given the graph of the network infrastructure N , we want
to generate safe intervals that allow our agent to navigate
safely given the other agents in the problem. We now show
the interval generation process specifically for railway hubs,
though this can be similarly done for any type of obstacles 340

moving across an infrastructure. We start by tracing out the
unsafe intervals created by other trains, which are then in-
verted to form safe intervals. Intuitively, a location is unsafe
when it is occupied by (part of) a train, and an edge is un-
safe when a train occupies the start of it. We have co-located 345

states for each location, and safe intervals are often shared
between them. The antiparallel edges joining a track’s two



pairs of co-located states have a more complicated relation-
ship. An edge that is traversed by a train is unsafe until the
train has completely departed the edge’s origin. On the other350

hand, the antiparallel edge is unsafe while the train is still
occupying any part of the edge.

We calculate the unsafe intervals as follows. Take agent
train a traveling from location uA to vA beginning at t0. The
time to traverse the edge δ(u, v), and the duration δa of a355

passing one point on the edge are

δ(u, v) =
ℓ(u, v)

ν(a)
, δa =

λ(a)

ν(a)
. (2)

The time to fully traverse the edge front to rear is thus
δ(u, v) + δa. The unsafe interval for location uA is

iuA
= ⟨tuA

s , tuA
e ⟩ = ⟨t0, t0 + δa + ϵf ⟩, (3)

where train a arrives at uA at t0, the duration to traverse
uA is δa, and we add the headway ϵf to complete the safety360

envelope. For location vA, the unsafe interval is

ivA = ⟨tvAs , tvAe ⟩ = ⟨t0 + δ(u, v), tvAs + δa + ϵf ⟩, (4)

where the start time of the interval is the moment the train
arrives at location vA (start time t0 + traversal δ(u, v)), and
the end of the interval has the additional duration δa and
headway ϵf . For the end of the intervals, we need the time365

for the rear of the train to depart, which is the length of the
train over its speed. Co-locations uB , vB are unsafe in the
intervals

iuB
= ⟨tuB

s , tuB
e ⟩ = ⟨tuA

s , tuA
s + δa + ϵc⟩, (5)

ivB
= ⟨tvBs , tvBe ⟩ = ⟨tuB

s + δ(u, v), tvBs + δa + ϵc⟩, (6)
so the only difference is the headway ϵc that is included in-370

stead of ϵf . The edge e = (uA, vA) is unsafe from

ie = ⟨tes, tee⟩ = ⟨tuA
s , tuA

e ⟩, (7)

which already includes the headway as well. The antiparallel
edge e′ = (vB , uB) has the unsafe interval

ie′ = ⟨te
′

s , t
e′

e ⟩ = ⟨tuA
s , tvAe ⟩. (8)

For example, consider the scenario in Fig. 5, where a
train II is routed from EB to 2A (originally shown in Fig. 2).375

We construct the unsafe intervals for train II, which are
shown in Fig. 6. Take train II traveling from location EB

to location 4RB which takes δ(u, v) = 100 (Eq.2). The train
departs EB at t0 = 100 and its front arrives at location 4RB at
200 (Eq. 4). The end of the unsafe interval for location EB380

is 260, which adds the time for the rear to leave (60) and the
headway (100) to the start t0 = 100 (Eq. 3). The end of the
unsafe interval for location 4RB is 360 (Eq. 4). This yields the
unsafe intervals ⟨100, 260⟩ and ⟨200, 360⟩ for locations EB

and 4RB , respectively. The co-locations ⟨EA, ⟨100, 210⟩ and385

⟨4A, ⟨200, 310⟩ have similar interval with only the headway
difference ϵf − ϵc (Eq. 5 and 6).

For reversal tracks, the intervals are calculated a bit dif-
ferently. As mentioned, we must ensure that the train has
enough time to be reversed. So, when a train arrives at a390

dead-end track, there is a buffer time before the internal edge

(a) Information about the scenario for train II (t).
t0 λ(t) ν(t) ω ϵf ϵc

100s 600m 10 m/s 1 m/s 100s 50s

1A

1B

2A

2B

3RA

3LA

3B 4A

4RB

4LB

PA

PB

EA

EB

OUT

IN

0

460

100

1000

⟨100, 260⟩
⟨100, 210⟩

⟨200, 360⟩
⟨200, 310⟩

⟨210, 370⟩⟨210, 320⟩

⟨256, 1016⟩
Reversal track / Train routes (in/out)

(b) For each node involved in the move, the associated intervals are
given. The four edges used in the movement are shown as thick and
their length is given in meters.

Figure 6: Unsafe intervals for train II (t) from Fig. 2. These
form the obstacles for train I to navigate through.

becomes a safe action. This time is calculated as the time
for the driver to walk across, using driver speed ω and train
length λ(a). The unsafe interval for such a location y is

iy = ⟨tys , tye⟩ =
〈
tys , t

y
s +

λ(a)

ω
+ ϵf

〉
, (9)

where both co-locations yA, yB of the track get the same 395

interval, as well as the edge (yA, yB). For example, the lo-
cations 2A and 2B have such an interval in Fig. 6.

For a switch, consider the topology shown in Fig. 4b. Take
a train traveling from SA through the switch to DR

A . The
switch should be unsafe to traverse while the train is moving 400

through it, but it should be safe for a train to wait at DL
B

for the switch to clear. The unsafe intervals for SA and SB

can be calculated using Equations 3 and 5, respectively, and
the same for DR

A (Eq. 4) and DR
B (Eq. 6). Since state DL

A

is co-located with DR
A they share the same interval. State 405

DL
B has no unsafe interval for this move, because the train

could technically wait here. For the edges, edge (SA, D
R
A)

has the interval ⟨tSA
s , tSA

e ⟩ (Eq. 7) and edge (DR
B , SB) has

interval ⟨tSA
s , t

DR
A

e ⟩ (Eq. 8). Since there is in practice only
one track part that is the switch, the edges all share the same 410

intervals. So, the intervals for (SA, D
R
A) and (SA, D

L
A) are

the same based on Equation 7 and the intervals for (SA, D
L
A)

and (SA, D
L
A) are equal based on Equation 8. The example

(Fig. 6) shows the resulting intervals for switches 3 and 4.
Following this reduction, we have a SIPP problem with 415

safe intervals on states and edges. We can apply the approach
of Thomas et al. (2023) to compile the safe intervals into
edge arrival time functions, and then solve it as an any-start-
time SIPP problem.



Solving MAEDeR420

The generic planning loop for solving MAEDeR consists of
the following points in time we call milestones:

Unsafe when a delayed agent learns it is delayed,
Solve the MAEDeR function is applied,
Safe when the delayed agent regains a safe plan,425

Recompute a new MAEDeR function is derived,
Recovered when the system can handle a new delay.

The interval of uncertainty is between unsafe to safe. An ef-
fective method solving MAEDeR minimizes the uncertainty
interval. Moreover, it minimizes the time to recompute a new430

solution, allowing sooner handling of a second delay.
We describe two algorithms for solving MAEDeR: re-

planning SIPP (rSIPP) runs a new SIPP search for the de-
layed agent, while any-start-time planning for MAEDeR
(@MAEDeR) queries an any-start-time plan. The rSIPP so-435

lution consists of a set of SIPP graphs. Each agent has a cor-
responding SIPP graph with safe intervals where all other
agents are treated as moving obstacles. When a delay is en-
countered, rSIPP selects the SIPP graph of the delayed agent
and runs a SIPP search to find a new safe plan starting after440

the delay. The solving milestone for rSIPP searches the pre-
computed SIPP graph, while the recomputation milestone
precomputes the SIPP graphs.

@MAEDeR trades increased precomputation time for
eliminating the interval of uncertainty. The precomputation445

of @MAEDeR generates the same set of SIPP graphs for
each agent as rSIPP. These graphs are then transformed into
@SIPP graphs, and we replan in advance using RePEAT to
compute the any-start-time plan for each agent as part of the
precomputation. The @MAEDeR solution is the set of ev-450

ery agent’s any-start-time plan. When an agent is delayed,
the corresponding plan is queried at the proper start time.
The solving milestone for @MAEDeR queries the any-start-
time plan, while the recomputation milestone precomputes
the @SIPP graphs and runs the RePEAT searches.455

The query operation is a logarithmic-time binary search
on a compact collection of plans ordered by their appli-
cable time, and as such is effectively instant. In contrast,
even reading the SIPP graph is linear time, and rSIPP or
any other method that uses search to recover a safe plan460

scales in the problem size. @MAEDeR effectively decou-
ples the duration of the interval of uncertainty from problem
size, minimizing the duration as much as possible without
prior knowledge of the delay. We also highlight that the first
step of @MAEDeR’s recomputation is to generate the SIPP465

graphs needed for rSIPP, meaning that @MAEDeR can fall
back to rSIPP if another delay happens before it has finished
recomputing the any-start-time plans. Additionally, it will
reach rSIPP’s recovery point before rSIPP would have be-
cause its interval of uncertainty is shorter.470

λ(t) ν(t) ω ϵf /ϵc
100-2000 5-50 0.5-5 50-500

Table 1: Sampled values for scenario generation ∀t ∈ T .

End of track Track Parking track

Heerlen station

Platforms 

Figure 7: Layout of the Heerlen Railway Hub.

Experimental Evaluation
The goal of our experiments is to empirically evaluate the
performance of rSIPP and @MAEDeR, including their rel-
ative performance and our claim that @MAEDeRis ‘effec-
tively instant’. We want to answer the following question: 475

Q1 Is the interval of uncertainty for @MAEDeR signifi-
cantly shorter than for rSIPP?

We also demonstrate the appeal of both methods in practice:
Q2 Are the recomptutation times for both methods using

realistic scenarios reasonable for practical application? 480

Data
We created our own dataset based on real-world data from
two Dutch railway hubs. The smaller one is based on the
station of Enkhuizen (Fig. 1). The larger one is the station of
Heerlen shown in Fig. 7), which also has ’free tracks’ that 485

can be entered from both sides. The hub layouts compris-
ing the network N were computed manually based on the
information available online 1 , taking the length of tracks
in meters. We assign all platforms and parking tracks to be
places where trains can turn around. Intermediate track seg- 490

ments or ongoing tracks (like IN/OUT in Fig. 5) do not allow
trains to reverse. This way, trains are not allowed to stop in
the middle of a track where other trains can still be traveling.

For the Enkhuizen hub, we created three scenarios with
a different total number of trains. The small scenario (6 495

trains) was constructed manually and the medium scenario
(13 trains) is based on the actual timetables showing the nec-
essary moves on a Tuesday morning (October 31, 2023).2
This scenario uses realistic headway times (Liu and Han
2017; Wang, Liu, and Zeng 2017), train speeds, and train 500

lengths. Finally, we generated a large scenario of 25 trains
(more is unrealistic as the Enkhuizen hub does not have
enough tracks for that many trains). For the Heerlen hub, we
also generated scenarios with 6, 13, and 25 trains for com-
parison. Additionally, as this layout is much bigger, we also 505

created a scenario with 50 trains. For each scenario, we cre-
ated different instances by assigning a different train as our
agent, so we had variations of the same scenario.

The scenario generation samples several values using a
given random seed (see Table 1). Each train gets a set of 510

routes, which define start and end locations, and there can be

1sporenplan.nl, openrailwaymap.org
2ns.nl/reisplanner, treinposities.nl, treinenweb.nl/materieel



Figure 8: Comparing the average time to reach the mile-
stones described in Section Solving MAEDeR.

either 1, 2, or 3 ordered subgoals for the train to reach. The
start time of a route is sampled from an interval of ⟨0, 1000⟩.
We find the shortest path for each route, and the end time
of the route is calculated using the agent’s sampled speed.515

Successive trains are generated with progressively increas-
ing start times. If the trains in the scenario have no conflicts,
then this route is included in the scenario and we move on to
the next train route. Otherwise, a new route is sampled until
we have the number of required routes for the total number520

of trains.

Implementation
The code to replicate our experiments is available on
GitHub.3 We ran our experiments using an Apple M1 Pro
processor. The Q1 and Q2 search results use an implementa-525

tion of rSIPP and RePEAT in an efficient C++ code base, us-
ing the same search code and data structures when possible.
The Q2 graph computation results currently use an imple-
mentation of SIPP and @SIPP graph generation in Python.

Results and Discussion530

Fig. 8 compares the two algorithms in their time to reach the
milestones described in the Solving MAEDeR section. To
answer Q1, we measured the interval of uncertainty, which
is the time to reach the Safe milestone. In Fig. 8, we can
clearly see a significant difference between the algorithms,535

@MAEDeR’s interval of uncertainty is tens of nanoseconds,
while rSIPP takes almost 10 milliseconds for the larger sce-
nario, which is 100,000 times slower.

3Withheld pending acceptance to preserve anonymity.

Figure 9: Average replanning runtime of the algorithm for
different size scenarios on the Enkhuizen layout.

This result provides empirical support for our assertion
that looking up an any-start-time plan is effectively instant. 540

Theorem 1 shows that it is impossible to construct a method
that involves communicating between multiple agents or a
central planner with a shorter interval of uncertainty than
@MAEDeR. Furthermore, the interval of uncertainty is over
before the other trains ever knew it began. 545

Theorem 1. In MAEDeR problems of the scale of railway
hub planning, @MAEDeR ends the interval of uncertainty
before any other agent can be informed of the delay.

Proof. Our empirical results show that @MAEDeR ends the
interval of uncertainty within tens of nanoseconds. Trains 550

within train hubs are generally separated by more than tens
of meters. The speed of light is ≈0.3 m/ns, and information
cannot travel faster than the speed of light. Thus, the delayed
agent has ended the interval of uncertainty before any other
agent could physically receive word of its delay. 555

For Q2, we compare the milestones of both methods for
different scenario sizes in Fig. 9. These scenario sizes are
representative of real-world scenarios for these hubs, both
methods offer attractive runtimes to recompute the plans
online to allow a new delay to be handled. These attrac- 560

tive runtimes would only improve with a more performant
graph generation implementation. This would also increase
the separation between @MAEDeR partial and rSIPP recov-
ered. In Fig. 8, the ‘recompute SIPP graphs’ bars are the
same size for each scenario. So, @MAEDeR is ready to use 565

rSIPP ∼1 ms before rSIPP is.
Finally, we consider several additional benefits of the

@MAEDeR solution. Besides handling delayed trains, hu-
man operators could benefit from seeing safe intervals to
plan ad hoc freight traffic or being shown the ATF for any 570

train path in the railway hub. Train paths are the regular
routes that trains can make, so for any new train that has to
be planned ad hoc, we can quickly look up when this train



Train III
E → 1

Train I
1 → P

Time (s)

Task

0 100 280 450

Figure 10: Safe intervals for train I from Fig. 2 and train III.

can safely make its route. In Fig. 10, Train I’s intervals show
when it can move around train II, and the new train III’s575

intervals give its possible plans around train I and II from
Fig. 2. Train III represents a common scenario in real-world
railway hub planning, especially when considering freight
traffic. These trains are often dependent on the arrival time
of a container ship, so they need to be planned last-minute.580

Related Work
MAPF with Delay Response considers the delay of agents
by predicting these upfront and handling them during plan
execution (Ma, Kumar, and Koenig 2017). The effectiveness
of this approach obviously depends on the accuracy of the585

predictions. A general framework for MAPF that is more ro-
bust against delays is called k-robust MAPF (Atzmon et al.
2020a) and extends the safety envelope for a grid node with
k time steps. However, a delay suffered by one agent is often
propagated to other agents, something we wish to avoid. One590

solution to this uses a temporal network for post-processing,
but delays are still handled ad hoc (Hönig et al. 2016). This
can be a complex task to solve and we wish to avoid lengthy
computations while the system is in an unsafe state, so a
precomputed recovery plan is safer.595

There has been much work on speeding up trajectory
planning in dynamic environments (Nantabut 2023, inter
alia). However, we wish to avoid planning from scratch
when a delay is encountered. MAPF with heterogeneous
agents has been proposed before (Atzmon et al. 2020b) and600

a MAPF model was developed specifically for train routing
(Švancara and Barták 2022), which also includes the length
of a train agent, but does not allow for different agent speeds.
However, their focus is on allocating tracks for the timetable,
not a railway hub, and they do not include the dynamics of605

the environment. All the MAPF works cited here handle de-
lays by either predicting them, planning such that they are
less likely to occur, or planning ad-hoc in response, while
the main benefit of our method is precomputing new plans
for possible delays.610

MAEDeR and any-start-time planning can be seen as pre-
computing a policy for any delay, or similarly as a type
of universal plan (Schoppers 1987). Universal planning is
“an (almost) universally bad idea” (Ginsberg 1989) because
universal plans generally grow exponentially with problem615

size. However, @SIPP is one of the exceptions: plans grow
linearly with problem size (Foschini, Hershberger, and Suri
2014; Thomas et al. 2023).

Conclusion
This paper provides a solution for handling delayed trains 620

in a railway hub. When an agent is delayed, it can instantly
recover a safe plan and resume execution, eliminating the
interval of uncertainty that the railway hub system is un-
safe. More generally, we demonstrated how to apply any-
start-time planning to a multi-agent real-world setting. We 625

defined the multi-agent execution delay replanning problem
(MAEDeR) and showed how to transform such practical
problems into safe interval path planning (SIPP) formula-
tions. These can then be used in an any-start-time planning
approach to recover safe plans for all agents based on un- 630

known delay. Because these plans can be computed prior to
execution, the agent can immediately use its safe plan once
its start time is known.

Compared to earlier work on any-start-time SIPP, our ap-
proach extends beyond the grid-based pathfinding domain. 635

Moreover, we allow for different agent sizes and speeds, we
let the agent spatially occupy several locations, and we in-
herently encode the movement direction in our graph. The
latter is especially important in MAEDeR problems where
the agents cannot easily turn around, so we ensure that the 640

computed path is always feasible. Our method can also deal
with different types of safety envelopes, that go beyond con-
flict risks and can depend on the travel direction.

The experiments showed that the lookup time for a safe
plan is instantaneous, so agents can recover their safe plan 645

and immediately execute it without extra waiting time. Fur-
thermore, we show that the use of a SIPP graph with safe in-
tervals still allows for fast replanning, enabling other agents
to quickly react to one delayed train. Our method scales
well, solving real-world size scenarios in a reasonable time, 650

allowing operators to respond rapidly.
Any-start-time planning provides the benefit of precom-

puting arrival times for different scenarios, so the applicable
one can be chosen at execution time. In the railway hub plan-
ning domain, a train that arrives late can cause propagating 655

delays through the railway network, resulting in unknown
arrival times. With this method, the delay propagation can
be minimized by allowing trains to recover their safe plans
and continue their execution immediately upon their arrival.
When making the initial schedule, we can also ensure that 660

good departure time alternatives are available for each train
in case it is delayed. Moreover, the approach can also be
used for the ad hoc planning of new trains, which is very
common for freight traffic. Our approach shows that any-
start-time planning is useful in train routing and can be ap- 665

plied to other MAEDeR problems, like moving automated
guided vehicles in a container terminal or navigating self-
driving cars in dense urban areas.

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.; 670

and Zhou, N.-F. 2020a. Robust multi-agent path finding and
executing. Journal of Artificial Intelligence Research, 67:
549–579.
Atzmon, D.; Zax, Y.; Kivity, E.; Avitan, L.; Morag, J.; and
Felner, A. 2020b. Generalizing Multi-Agent Path Finding 675



for Heterogeneous Agents. In Thirteenth Annual Symposium
on Combinatorial Search.
Bešinović, N. 2020. Resilience in railway transport systems:
a literature review and research agenda. Transport Reviews,
40(4): 457–478.680

Boysen, N.; Fliedner, M.; Jaehn, F.; and Pesch, E. 2012.
Shunting yard operations: Theoretical aspects and applica-
tions. European Journal of Operational Research, 220(1):
1–14.
Cacchiani, V.; Huisman, D.; Kidd, M.; Kroon, L.; Toth,685

P.; Veelenturf, L.; and Wagenaar, J. 2014. An overview
of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodolog-
ical, 63: 15–37.
D’Ariano, A.; and Pranzo, M. 2009. An Advanced Real-690

Time Train Dispatching System for Minimizing the Propa-
gation of Delays in a Dispatching Area Under Severe Dis-
turbances. Networks and Spatial Economics, 9(1): 63–84.
Foschini, L.; Hershberger, J.; and Suri, S. 2014. On the
Complexity of Time-Dependent Shortest Paths. Algorith-695

mica, 68(4): 1075–1097.
Gardos Reid, R. 2023. Inferring Robust Plans with a Rail
Network Simulator. MSc thesis, Delft University of Tech-
nology.
Ginsberg, M. L. 1989. Universal planning: An (almost) uni-700

versally bad idea. AI magazine, 10(4): 40–40.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Twenty-
Sixth International Conference on Automated Planning and705

Scheduling, 477–485.
Liu, P.; and Han, B. 2017. Optimizing the train timetable
with consideration of different kinds of headway time. Jour-
nal of Algorithms & Computational Technology, 11(2): 148–
162.710

Lu, Y. 2023. A Bumpy Ride for San Francisco’s Driverless
Taxis. The New York Times. California Today.
Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In Proceedings of the AAAI
Conference on Artificial Intelligence.715

Nantabut, C. 2023. A*-based trajectory planning in dy-
namic environments for autonomous vehicles. Phd the-
sis, Rheinisch-Westfälische Technische Hochschule Aachen
University.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval720

path planning for dynamic environments. In IEEE Interna-
tional Conference on Robotics and Automation. IEEE.
Schoppers, M. 1987. Universal Plans for Reactive Robots in
Unpredictable Environments. In IJCAI, volume 87, 1039–
1046.725

Stern, R. 2019. Multi-agent path finding–an overview. Arti-
ficial Intelligence: 5th RAAI Summer School, Dolgoprudny,
Russia, July 4–7, 2019, Tutorial Lectures, 96–115.
Thomas, D. W.; Shimony, S. E.; Ruml, W.; Karpas, E.; Sh-
perberg, S. S.; and Coles, A. 2023. Any-Start-Time Plan-730

ning for SIPP. In Workshop on Heuristics and Search for
Domain-Independent Planning. At ICAPS23.

van den Broek, R.; Hoogeveen, H.; and van den Akker, M.
2018. How to Measure the Robustness of Shunting Plans. In
18th Workshop on Algorithmic Approaches for Transporta- 735

tion Modelling, Optimization, and Systems (ATMOS 2018),
volume 65, pp 3:1–3:13. Dagstuhl, Germany: Open Access
Series in Informatics (OASIcs).
Švancara, J.; and Barták, R. 2022. Tackling Train Routing
via Multi-agent Pathfinding and Constraint-based Schedul- 740

ing. In Proceedings of the 14th International Conference on
Agents and Artificial Intelligence, 306–313. SciTePress.
Wang, G.; Liu, H.; and Zeng, X. 2017. Study on train head-
way in different turning-back mode of urban mass transit
station. Transportation Research Procedia, 25: 451–460. 745


