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ABSTRACT

Neural networks (NNs) are known to exhibit simplicity bias where they tend to
prefer learning ‘simple’ features over more ‘complex’ ones, even when the latter
may be more informative. Simplicity bias can lead to the model making biased
predictions which have poor out-of-distribution (OOD) generalization. To address
this, we propose a framework that encourages the model to use a more diverse set
of features to make predictions. We first train a simple model, and then regularize
the conditional mutual information with respect to it to obtain the final model. We
demonstrate the effectiveness of this framework in various problem settings and
real-world applications, showing that it effectively addresses simplicity bias and
leads to more features being used, enhances OOD generalization, and improves
subgroup robustness and fairness. We complement these results with theoretical
analyses of the effect of the regularization and its OOD generalization properties.

1 INTRODUCTION

Motivated by considerations of understanding generalization in deep learning, there has been a
series of interesting studies (Zhang et al., 2017; Frankle & Carbin, 2019; Nakkiran et al., 2020) on
understanding function classes favored by current techniques for training large neural networks. An
emerging hypothesis is that deep learning techniques prefer to learn simple functions over the data.
While this inductive bias has benefits in terms of preventing overfitting and improving (in-distribution)
generalization in several cases, it is not effective in all scenarios. Specifically, it has been found
that in the presence of multiple predictive features of varying complexity, neural networks tend to
be overly reliant on simpler features while ignoring more complex features that may be equally or
more informative of the target (Shah et al., 2020; Nakkiran et al., 2019; Morwani et al., 2023). This
phenomenon has been termed simplicity bias and has several undesirable implications for robustness
and out-of-distribution (OOD) generalization.

As an illustrative example, consider the Waterbirds dataset (Sagawa* et al., 2020). The objective here
is to predict a bird’s type (landbird vs. waterbird) based on its image (see Fig. 1 for an example).
While features such as the background (land vs. water) are easier to learn, and can have significant
correlation with the bird’s type, more complex features like the bird’s shape are more predictive of its
type. However, simplicity bias can cause the model to be highly dependent on simpler yet predictive
features, such as the background in this case. A model which puts high emphasis on the background
for this task is not desirable, since its performance may not transfer across different environments. A
similar story arises in many different tasks—Table 1 summarizes various datasets, where the target or
task-relevant features (also known as invariant features), are more complex than surrogate features
that are superficially correlated with the label (also known as spurious features). Simplicity bias
causes NNs to heavily rely on these surrogate features for predictions.

Several methods (Arjovsky et al., 2020; Creager et al., 2021; Bae et al., 2022; Gao et al., 2022) have
been proposed to address this problem of OOD generalization. However, most of them require some
knowledge about the spurious feature. This is because some knowledge of the different environments
of interests or the underlying causal graph is in general necessary to decide whether a feature is
spurious or invariant (due to the No Free Lunch Theorem, see Appendix E for more discussion). To
sidestep this, in this work we assert that features that are usually regarded as being spurious for
the task are often simple and quite predictive (as suggested by Table 1). If this hypothesis is true,
alleviating simplicity bias can lead to better robustness and OOD generalization.
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Figure 1: Summary of our approach. Models trained with ERM tend to focus on simple features
(such as background) that may not generalize OOD, whereas encouraging conditional independence
with respect to a simple model increases reliance on complex features (such as shape) that generalize.

Dataset Task-relevant/invariant feature Surrogate/spurious feature
Waterbirds Bird type (waterbird/landbird) Background (water/land)

CelebA Hair colour (blonde/other) Gender (female/male)
MultiNLI Reasoning (entailment/neutral/contradiction) Negation words (‘not’ etc.)

CivilComments-WILDS Sentiment (toxic/non-toxic) Demographic attributes (race, gender, religion)
Colored-MNIST Digit (< 5 or > 5) Color (red/green)
Camelyon17-WILDS Diagnoses (tumor/no tumor) Hospital
Adult-Confounded Income (< $50k or > $50k) Demographic attributes (race, gender)

Table 1: Summary of the datasets we consider. Spurious features seem simpler than invariant features.

With improved robustness and OOD generalization as major end goals in mind, we develop a new
framework to mitigate simplicity bias and encourage the model to utilize a more diverse set of features
for its predictions. Our high level goal is to ensure that the predictions of the trained model M
have minimal conditional mutual information I(M; S|Y")" with any simple, predictive feature S,
conditioned on the label Y. To achieve this, we first train a simple model M on the task, with the
idea that this model captures the information in simple, predictive features. Subsequently, to train
the final model M we add its conditional mutual information I(M; M} |Y") with the model M as a
regularizer to the usual empirical risk minimization (ERM) objective. With this regularization term,
we incentivize the model to leverage additional, task-relevant features which may be more complex.
We refer to our approach as Conditional Mutual Information Debiasing or CMID (see Fig. 1).

We show that our approach leads to models which use more diverse features on tasks which have been
previously proposed to measure simplicity bias. The method achieves improved subgroup robustness
and OOD generalization on several benchmark tasks, including in the presence of multiple spurious
features. It also leads to improved predictions from the perspective of fairness since the predictions
are less dependent on protected attributes such as race or gender. We also prove theoretical results to
better understand and characterize our approach. We summarize our contributions below:

* We empirically evaluate and validate the hypothesis that spurious features are simpler than invariant
features, with respect to representative datasets from Table 1 (Section 2). Based on our findings, we
propose a novel framework (CMID) to mitigate simplicity bias and encourage the model to utilize
a diverse set of features for its predictions (Section 3).

* Empirically, we demonstrate that our framework effectively mitigates simplicity bias, and achieves
improved OOD generalization, sub-group robustness and fairness across 10 benchmark datasets
(Section 5). These include different modalities such as image, text, and tabular data and application
domains such as healthcare and fairness. While several approaches have been proposed for each of
the goals we consider, prior work typically focuses on one or two of these applications, while our
approach proves effective across all cases.

'With slight notation abuse, M denotes both the model and the random variable associated with its predictions.
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* Theoretically, we analyze the effect of our regularization and demonstrate its capability to reduce
reliance on spurious features using a Gaussian mixture model setup (Section 4). Additionally,
we establish an OOD generalization guarantee in a causal learning framework (Appendix F.2).
Most approaches developed for subgroup robustness or OOD generalization either lack theoretical
guarantees or show results tailored to one of these two settings (discussed further in Appendix D).

1.1 RELATED WORK

We discuss related work on simplicity bias, OOD generalization and subgroup robustness in this
section, and related work on fairness, feature diversification and debiasing methods in Appendix C. A
detailed comparison with prior work appears in Appendix D, here we summarize some key differences.
A conceptual difference from prior algorithms for these tasks is that we take a more data-driven
approach to define spurious features. Hence our approach is more explicit in terms of its assumptions
on the data which could make it easier to evaluate and use, and also allows us to prove theoretical
guarantees. Various datasets seem to satisfy our assumptions and hence our approach proves effective
across varied applications. In addition, it contrast to other related work, it does not involve training
multiple complex models, access to group labels, or unlabelled data from the target distribution.

Simplicity Bias in NNs. Several works (Arpit et al., 2017; Valle-Perez et al., 2019; Geirhos et al.,
2020; Pezeshki et al., 2021) show that NNs trained with gradient-based methods prefer learning
solutions which are ‘simple’. Nakkiran et al. (2019) show that the predictions of NN trained by SGD
can be approximated well by linear models during early stages of training. Morwani et al. (2023)
show that 1-hidden layer NNs are biased towards using low-dimensional projections of the data for
predictions. Geirhos et al. (2022) show that CNNs make predictions which depend more on image
texture than image shape. Shah et al. (2020) create synthetic datasets and show that in the presence
of simple and complex features, NNs rely heavily on simple features even when both have equal
predictive power. In our work, we experiment with datasets in both these papers (in addition to the
datasets in Table 1), to investigate the effectiveness of our method to mitigate simplicity bias.

OOD Generalization. Towards developing models which perform better in the real world, OOD
generalization requires generalization to data from new environments. Environments are usually
defined based on the correlation between some spurious feature and the label. Various methods aim
to recover a predictor that is invariant across a set of environments. Arjovsky et al. (2020) develop
the invariant risk minimization (IRM) framework where environments are known, while Creager
et al. (2021) propose environment inference for invariant learning (EIIL), to recover the invariant
predictor, when the environments are not known. Predict then interpolate (PI) (Bao et al., 2021) and
BLOOD (Bae et al., 2022) use environment-specific ERMs to infer groups based on the correctness
of predictions. We compare our approach with all these methods across several datasets to showcase
its effectiveness in improving OOD generalization.

Subgroup Robustness. In many applications, models should do well not just on average but also
on subgroups within the data. Several methods (Sagawa* et al., 2020; Nam et al., 2020; Kirichenko
et al., 2022; Sohoni et al., 2022; Qiu et al., 2023) have been developed to improve the worst-group
performance of a model. One widely used approach is to optimize the worst case risk over a set
of subgroups in the data (Duchi et al., 2019; Sagawa* et al., 2020; Setlur et al., 2023). CVaRDRO
(Duchi et al., 2019) optimizes over all subgroups in the data, which is somewhat pessimistic, whereas
GDRO (Sagawa* et al., 2020) does this over a set of predefined groups. However, group knowledge
may not always be available, various methods try to identify or infer groups and reweight minority
groups in some way, when group labels are not available (Nam et al., 2020; Liu et al., 2021a; Sohoni
et al., 2020) or partially available (Sohoni et al., 2022). Just train twice (JTT) (Liu et al., 2021a) uses
ERM to identify the groups based on correctness of predictions. Learning from failure (LfF) (Nam
et al., 2020) simultaneously trains two NNs, encouraging one model to make biased predictions, and
reweighting the samples it finds harder to learn (larger loss) to train the other model. We compare our
approach with these methods on some benchmark datasets for subgroup robustness from Table 1.

2 SPURIOUS FEATURES ARE SIMPLE AND PREDICTIVE

In this section, we conduct an experiment to validate our hypothesis that surrogate features are gener-
ally ‘simpler’ than invariant features (examples in Table 1). First, we define simple models/features
for a task as follows:
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Definition 1 (Simple models and features). Consider a task on which benchmark models which
achieve high (in-distribution) accuracy have a certain complexity (in terms of number of parameters,
layers etc.). We consider models that have significantly lower complexity than benchmark models as
simple models, and features that can be effectively learned using simple models as simple features.

Definition 1 proposes a metric of simplicity which is task dependent since it depends on the complexity
of the models which get high accuracy on the task. We choose to not define quantitative measures in
Definition 1 since those would be problem dependent. As an example, for colored-MNIST (CMNIST),
neural networks with non-linearities are necessary to achieve high accuracy, and for Waterbirds,
deeper networks such as ResNet-50 (He et al., 2016) achieve best results. Therefore, a linear model
and a shallow CNN can be considered as simple models for these two datasets, respectively. We
discuss simple model selection in more detail in Section 3.

Importantly, we observe

that these simple models Simple Model Benchmark Model

X P Dataset Predict surrogate feature  Predict invariant feature ~ Predict invariant feature
can still achieve good Train Test Train Test Train Test
perfomlance when the CMNIST 100 100 86.2+0.2 86.6+0.3 97.3+0.1 96.7+0.1

Waterbirds 79.6+0.6 784+0.6 605+25 604+24 988+12 962+1.1

task is to distinguish be-
tween surrogate features
even though they are not
as accurate in predicting
the invariant feature. Specifically, for CMNIST, we compare the performance of a linear model
on color classification and digit classification on clean MNIST data. Similarly, for Waterbirds,
we consider a shallow CNN (specifically, the 2DConvNet1 architecture in Appendix Fig. 10) and
compare its performance on background classification (using images from the Places dataset (Zhou
et al., 2017)) and bird type classification (using segmented images of birds from the CUB dataset
(Wah et al., 2011)). The results in Table 2 corroborate the hypothesis that surrogate features for these
datasets are simple features, as they can be predicted much more accurately by simpler models than
invariant features. Unsurprisingly, the respective benchmark models can capture the task-relevant
features much more accurately as they are more complex than the simple models used in each case.

Table 2: Comparison between performance for predicting the simple
feature and the complex feature.

Motivated by these observations, we define spurious features as follows. Operationally, our definition
has the advantage that it does not require knowledge of some underlying causal graph or data from
multiple environments to determine if a feature is spurious.

Definition 2 (Spurious features). Spurious features are simple features that are still reasonably
correlated with the target label.

In the presence of such features, simplicity bias leads the model —— Train Test

to preferring such features over invariant features that are more ~CMNIST 849+02 10.7+03
complex. We also verify that when simple models are trained _ Waterbirds 93.3+0.5 549+1.1
on the target tasks on these datasets, they tend to rely on these )

spurious features to make accurate predictions. Specifically, we Table 3: Tram.and test perfor-
consider the digit classification task using CMNIST data, where Mmance of the simple model on
the correlation between the color and the label in the test set is the target task.

10%, and birdtype classification using Waterbirds data, where the test set consists of balanced groups
(50% correlation). Table 3 shows that the test accuracy is close to the correlation between the spurious
feature-based group label and the target label. This indicates that simple models trained on the target
task utilize the spurious features to make predictions.

We briefly note here that spurious features as defined by us may not always be irrelevant for the task,
and mitigating simplicity bias may not always be desirable (further discussed with other limitations in
Appendix E). Indeed, through similar experiments, we found that for the CelebA dataset the spurious
and task-relevant features are not significantly different in terms of complexity (details in Appendix B).
As a result, our approach does not lead to much improvement in the worst-group accuracy on this
dataset (Section 5.3). However, it is impossible for any learning rule to generalize across all types
of distribution shifts (see Appendix E for more discussion); one can only aim to generalize under
specific types of distribution shifts by employing the appropriate inductive bias. Reducing reliance
on simple, predictive features represents one such assumption, which seems reasonable based on the
results presented above and proves effective in several cases, as demonstrated in Section 5.

4
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3 CMID: LEARNING IN THE PRESENCE OF SPURIOUS FEATURES

In this section, we outline our proposed approach to mitigate simplicity bias. Our approach leverages
the fact that simple models can capture surrogate features much better than invariant features (Table 2),
and rely on the spurious features to make predictions, even when trained on the target task (Table 3).
Thus, by ensuring that the final model has low conditional mutual information with respect to such a
simple model, we encourage it to utilize a more diverse set of features.

Let Z = (X,Y) denote an input-label pair, where X € X,Y € {0,1}, sampled from some
distribution D, D denote a dataset with n samples, M (0) : X — [0, 1] denote a model, parameterized
by 6 (shorthand M). Subscripts (+)s and (-). denote simple and complex, respectively. Let M denote
the class of all models M, £, (Z) : X x {0,1} — R denote a loss function. I(-; -) measures Shannon
mutual information between two random variables. With slight abuse of notation, let M and Y
also denote the (binary) random variables associated with the predictions of model M on datapoints
X;’s and the labels Y;’s, across all ¢ € [n], respectively. The conditional mutual information (CMI)
between the outputs of two models given the label is denoted by I(M;; M3|Y"). The empirical risk

1
minimizer (ERM) for class M is denoted as M ™ := ERM(M) = arg min — Z Ly (Z;).
Mem T
i€[n]
We consider the class of simple models My C M and complex models M, = M \ M. We now
describe our proposed two-stage approach CMI Debiasing (CMID):

* First, learn a simple model My, which minimizes risk on the training data: M} = ERM(M).

* Next, learn a complex model M, by regularizing its CMI with M.

1 A
M, = argmin — Z U (Z)+ Mp(M; MI|Y),
Mem 1 i€[n]
where Ip(M; M*|Y) denotes the estimated CMI over D, and ) is the regularization parameter.

A few remarks are in order about the choice of our regularizer and the methodology to select the
simple model class. We penalize the CMI instead of MI. This is because both M and M are expected
to have information about Y (for e.g. in the Waterbirds dataset both bird type and background are
correlated with the label). Hence they will not be independent of each other, but they are closer to
being independent when conditioned on the label. We note that we use CMI to measure dependence,
instead of other measures such as enforcing orthogonality of the predictions. This is for the simple
reason that MI measures all—potentially non-linear—dependencies between the random variables.

We note that while several models can be considered simple 100
based on Definition 1, the choice of the simple model class —— Average
M used for our approach is task dependent. Intuitively, we | —— Worst-group
want to use the simplest model that we expect to do reasonably — T
well on the given task. Models that are too simple may not be | /\,\'
able to capture surrogate features effectively, whereas models
that are very complex may rely on task-relevant features, even ol
though such reliance may be weak due to simplicity bias. As an ‘ ‘ . .
example, Fig. 2 considers the problem of subgroup robustness Linear Sha""svi“"fgre pesherie  fesetso
on the Waterbirds dataset (where typically the hardest groups

are images of waterbi.rds on land backgrounds and vice versa), Figure 2: Performance of CMID
and shows a comparison of the average and worst-group ac-
curacy of the model learned by CMID using various simple
model architectures (see Section 5.3 for more details about the
task) . We consider four models: a linear model, the shallow CNN (2DConvNet1) used in Table 2,
a ResNet-18 pretrained on ImageNet and the ResNet-50 pretrained on ImageNet, which is also the
architecture of the benchmark model. We observe that using a shallow CNN as the simple model is
most effective for CMID. This is because a linear model is too simple to capture the surrogate feature,
i.e. the background in this case, whereas deep models like ResNet are complex enough to learn both
types of features, while relying more strongly on the surrogate feature. As a result, regularizing the
CMI with respect to such models may not be as effective in reducing reliance on spurious features.

w
=}

Test Accuracy
®
o

using different simple model archi-
tectures for the Waterbirds dataset.
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Although the choice of M may impact the performance of CMID, we use a fairly simple selection
rule throughout our experiments, which works well. In general, for datasets where the final model
is a shallow NN, we used a linear model as the simple model. For image datasets where the final
model is a ResNet or DenseNet-based model, we consider shallow 2D CNNs as simple models. For
language datasets where BERT-based models are the final models, we consider shallow MLPs or 1D
CNN s as simple models. Details about the model architectures can be found in Appendix H.3.2.

We also note that the CMI is not differentiable in its original form since Y is discrete. Therefore, we
employ an estimator that uses the predicted probabilities instead of the thresholded predictions to
make the regularization differentiable and hence suitable for gradient-based methods. We include
details for this estimator and also an empirical comparison with the original CMI in Appendix A.

4 THEORETICAL RESULTS

In this section, we analyze the effect of CMI regularization and show it leads to reduced dependence
on spurious features in a Gaussian mixture model. We also obtain a simple OOD generalization
guarantee for CMID in a causal learning framework, included in Appendix F.2.

We consider data generated from the following Gaussian mixture model (see the left-most panel in
Fig. 3 for an example). We note that Sagawa et al. (2020); Rosenfeld et al. (2021) consider a similar
Gaussian mixture based data model for invariant and spurious features.

Assumption 1. Let the label y ~ R(0.5), where R(p) is a {+1} random variable which is 1 with
probability p. Consider an invariant feature X, and a spurious feature Xo, with distributions:

X1 ~ N(yp1,0) and Xy ~ N(apz,03),

where a ~ yR(n) is a spurious attribute, with an unstable correlation with y, and pq, pua > 0,1 >
0.5. Assume X1 L Xoly and let ply = (21 — 1) o

We consider linear models to predict y from the features X; and X5. Let M = {(wy, ws) : wy,wy €
R} be all possible linear models and M, = {(0,w) : w € R} U {(w,0) : w € R} be a simpler
model class which only uses one of the two features. We consider the mean squared error (MSE) loss,
and the ERM solution is given by:

ERM(M) = argmin E (w; X; + wy Xo — )%
weM

Proposition 1. ERM(M) satisfies - Z—,Z—; When “ : 02 > < 1, ERM(M )= [O £ 2} (upto scaling).
2 1

We now consider the effect of CMI regularization. Since both the features are of similar complexity
here, we consider the core feature to have a lower signal-to-noise ratio, i.e. ﬁ h 02 <1, to model the

observation that the spurious feature is learned more easily with ERM. Then, as per Proposition |
in the first step we learn a simple model w3 X2 which uses only X5. We now consider the ERM
problem but with a constraint on the CMI:

ERM¢ (M) = argmin E (w; X1 + wo Xy — y)? s.t. I(w1 X1 + waXo;wi Xoly) <v. (1)
weM

We show the following guarantee on the learned model.

Theorem 1. Let data be generated as per Assumption 1. For v = 0.5log(1 + 62) for some c:

Nl 0'2 l . . w1 Nl 02
1. When i oies T o the solution to (1) is the same as ERM(M), so ws = i o
lwi] _ loa
Jwa] coy’

Theorem 1 suggests that for an appropriately small ¢, regularizing CMI with the simple model leads
to a predictor which mainly uses the invariant feature. This is supported by experimental results on
data drawn according to Assumption I, shown in Fig. 3. We note that a lower value of ¢ promotes
conditional independence with X5 and upweighs w; more strongly. When ¢ — 0, wy — 0. We
visualize this in Fig. 8 in the Appendix. In Appendix F.1, we show a similar theoretical result when
multiple spurious features are present.
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Figure 3: Results on synthetic Gaussian data generated as per Assumption 1, with 2000 samples,
1 =p2=>, 01 =1.5,09=0.5. Left to right: Ground truth (GT) predictor, ERM with M as the class
of linear models, ERM over the class of threshold functions, ERM with CMI constraint, c=0.01.

5 EXPERIMENTS

We show that CMID reduces simplicity bias, and yields improvements across various robustness,
OOD generalization and fairness metrics. We first show that CMID mitigates simplicity bias in Slab
and ImageNet-9 datasets. We then evaluate CMID on various OOD generalization tasks. These
include data with multiple spurious features, real-world medical data, and a fairness task. Finally, we
test CMID on some benchmark datasets for subgroup robustness and a fairness application. We note
that past approaches usually target one or two of these problem settings. Thus, in each section we
generally choose the most task-relevant methods to compare with, as established in prior work on
that task. For consistency, in addition to ERM, we compare with JTT on most of the tasks, since it is
the most similar method to CMID in terms of its requirements. Throughout, we observe that CMID
improves considerably on ERM and compares favorably with JTT and domain-specific approaches
on most data.

5.1 MITIGATING SIMPLICITY BIAS

) Linear: ERM  NN:ERM/JTT  NN:CMID
Slab Data. Slab data was proposed in Shah et al. T

(2020) to model simplicity bias. Each feature is
composed of k data blocks or slabs. We consider
two configurations of the slab data, namely 3-Slab
and 5-Slab, as shown in Fig. 4. In both the cases,

the first feature is linearly separable. The second
feature has 3 slabs in the 3-Slab data and 5 slabs
in the 5-Slab data. The first feature is simple since
it is linearly separable, while the features with
more slabs involve a piece-wise linear model and

are thus complex. The linear model is perfectly

predictive, but the predictor using both types of Figure 4: Results on the slab dataset, when train-
features attains a much better margin, and gener- 1ng a linear model and a 1-hidden-layer NN using
alizes better under fixed ¢;-norm perturbations to ERM, JTT, and CMID.

the features. Fig. 4 shows the decision boundary using ERM/JTT and the proposed approach. We see
that CMID encourages the model to use both features and attain better margin. We note that since
both the features are fully predictive in this setting, approaches like JTT are ineffective as they rely
on incorrect predictions of one model to train another model by upweighting such samples.

Texture vs Shape Bias on ImageNet-9. Geirhos et al. (2022) showed that CNNs trained on
ImageNet tend to make predictions based on image texture rather than image shape. To quantify this
phenomenon, the authors designed the GST dataset, which contains synthetic images with conflicting
shape and texture (e.g., image of a cat modified with elephant skin texture as a conflicting cue).
The shape bias of a model on the GST dataset is defined as Method  ERM JTTT CMID
the number of samples for which the model correctly identifies Shape Bias  38.6 458 518
shape compared to the total number of samples for which the
model correctly identifies either shape or texture. A shape bias Table 4: Comparison of shape bias
of 100 indicates that the model always uses shape when shape on ImageNet-9 dataset.

conflicts with texture, whereas 0 indicates that the model always uses texture instead of shape. We
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consider ImageNet-9, a subset of ImageNet organized into nine classes by Xiao et al. (2020) (details
in Appendix Section H.1.2) and train a ResNet50 model. In Table 4, we show that compared to ERM,
training with CMID mitigates texture bias and encourages the model to rely on shape for predictions.

5.2 BETTER OOD GENERALIZATION

Synthetic: CMNIST and Color+Patch MNIST. We present results on two variants of the MNIST
dataset (Deng, 2012), which contains images of handwritten digits, using a binary digit classification
task (< 5 or not). The colored-MNIST data was proposed in Arjovsky et al. (2020), where color
(red/green) is injected as a spurious feature, with unstable correlation 1 — p, with the label across
environments. The train data has two environments with p. = 0.1,0.2 while the test data has
pe = 0.9, to test OOD performance. Further, it contains 25% label noise to reduce the predictive
power of the task-relevant feature: digit shape. We also consider the color+patch MNIST data
proposed in Bae et al. (2022), where an additional spurious feature is injected into the data, in the
form of a 3 x 3 patch. The position of the patch (top left/bottom right) is correlated with the label,
with the same p., but independent of the color.

Following Bae et al. (2022), we evaluate on i.i.d test data with p. = 0.1 and OOD data with p, = 0.9
for both the cases (details in Appendix H.2.1). Table 5 shows that CMID gets competitive OOD
performance with methods that require group knowledge, and has the lowest gap d44,, between test
performance on i.i.d and OOD samples, even in the presence of multiple spurious features.

Bias: Color Bias: Color & Patch
Method Group  pegt (iid) Test(OOD)  dgqp  Test(iid) Test(OOD)  dyap
labels " 01 p. =09 pe=01  p.=09

ERM No 88.610.3 164108 —72.2  93.7103 14.0405 —79.7
EIIL (Creager et al., 2021) No T1.7416 62.845.0 -89 653184 53.045.6 —12.3
JTT (Liu et al., 2021a) No 72241, 646,455 —7.6 640157  56.2.,, —7.8
CMID No 69209 689109 —03 603407 594, —0.9
TRM (Arjovsky et al., 2020) Yes  714i00 669125  —45 93.5:02 134103 —80.1
GDRO (Sagawa* etal, 2020)  Yes  89.2109  13.6135 —75.6 923103 141,08 —T782
PI (Bao et al., 2021) Yes 70.3410.3 70.240.9 —-0.1 85.440.9 153497 —70.1
BLOOD (Bae et al., 2022) Yes 70.541.1 70.741.4 0.2 68.342.3 62.343.3 —6.0
Optimal - 75 75 0 75 75 0

Table 5: Comparison of average test accuracies on i.i.d and OOD data and their difference (644,) on
Colored MNIST and Color+Patch MNIST datasets. Bold and underlined numbers indicate the best
and second-best OOD performance among the methods that don’t use group labels.

Medical: Camelyon17-WILDS. Camelyonl7-WILDS is a real-world medical image dataset
of data collected from five hospitals (Bandi et al., 2019; Koh et al., 2021). Three hospitals
comprise the training set, one is the validation set and the third is the OOD test set. Im-
ages from different hospitals vary visually. The task is to predict whether or not the image
contains tumor tissue, and the dataset is a well-known OOD generalization benchmark (Bae
et al., 2022; Koh et al., 2021). Table 6 shows that CMID leads to higher average accuracies
than existing group-based methods when evaluated on images from the test hospital. While
JTT attains a comparable test accuracy, it exhibits a considerable drop in the train accuracy.

Method ERM IRM GDRO PI BLOOD JTT CMID
Train Acc 97-3i0.1 97-1i0.1 96.5i1_4 93-2i0.2 93-0j:1.8 88.4i1.3 94.03;2(0
OOD Test Acc 66-5i4_2 59-4i3.7 70-2i7.3 71-7i7.5 74-9i5.0 78-0i6.3 77'9i7,7

Table 6: Comparison of average train and OOD test accuracies on Camelyon17-WILDS dataset.

Fairness: Adult-Confounded. The

. ) Method ERM ARL JTT EIL CMID
Adult-Cpnfoqnded dataset is a semi- Train Acc 7205 T21is0 802517 697210 762409
synthetic variant of the UCI Adult OODTestAcc 31144 613117 718453 788114 788407
dataset (Newman et al., 1998; Leisch dgap —61.6  —10.8 -84 9.1 2.6

& Dimitriadou, 2021), developed by

Creager et al. (2021). It consists of
four sensitive subgroups based on bi-

Table 7: Comparison of average train and OOD test accura-
cies and their difference (d44,) on Adult-Confounded dataset.

narized race and sex labels, and has confounded data where subgroup membership is predictive of
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the label on the training data but the correlation is reversed at test time. Therefore, it tests whether
the classifier makes biased predictions based on subgroup membership. Table 7 shows that compared
to other methods CMID achieves superior OOD test performance with the least gap between train
and test performance, indicating its low reliance on sensitive subgroup information.

5.3 SUBGROUP ROBUSTNESS

We evaluate our approach on four benchmark classification tasks for robustness to spurious correla-
tions, namely on Waterbirds (Sagawa* et al., 2020), CelebA (Liu et al., 2015), MultiNLI (Williams
et al., 2018) and CivilComments-WILDS (Borkan et al., 2019) datasets (Table 1, details in Appendix
Section H.3). Although CMID does not require group knowledge for training, following Liu et al.
(2021a), we use a validation set with group labels for model selection. Table 8 shows the average
and worst-group accuracies for CMID and comparison with other methods (Duchi et al., 2019; Nam
et al., 2020; Liu et al., 2021a) which do not use group information. GDRO (Sagawa* et al., 2020),
which uses group information, acts as a benchmark. We see that on three of these datasets, CMID
competes with state-of-the-art algorithms that improve subgroup robustness. Interestingly, CMID
seems paricularly effective on the two language-based datasets. We also note that CMID is not very
effective on CelebA images. We believe that this is because both the spurious feature (gender) and
the invariant feature (hair color) for CelebA are of similar complexity. In Appendix B, we explore
this further with a similar experiment as in Section 2 for CelebA.

Method Group Waterbirds CelebA MultiNLI CivilComments-WILDS

labels Average Worst-group  Average Worst-group  Average  Worst-group  Average  Worst-group
ERM No 97.3 72.6 95.6 47.2 82.4 67.9 92.6 57.4
CVaRDRO No 96.0 75.9 82.5 64.4 82.0 68.0 92.5 60.5
LfF No 91.2 78.0 85.1 77.2 80.8 70.2 92.5 58.8
JTT No 93.3 86.7 88.0 81.1 78.6 72.6 91.1 69.3
CMID No 88.6 84.3 84.5 75.3 81.4 71.5 84.2 74.8
GDRO Yes 93.5 91.4 92.9 88.9 81.4 .7 88.9 69.9

Table 8: Average and worst-group test accuracies on benchmark datasets for subgroup robustness.
Bold and underlined numbers indicate the best and second-best worst-group accuracy among the
methods that don’t use group labels.

5.4 FAIRNESS APPLICATION: BIAS IN OCCUPATION PREDICTION

The Bios dataset (De-Arteaga et al., 2019; Cheng et al., 2023) " Method ERM Decoupled CMID
is a large-scale dataset of more than 300k biographies scrapped =~ Accuracy  0.95 0.94 0.96
from the internet. The goal is to predict a person’s occupation —2(Pe:7e) 066 0.60 0.38
based on their bio. Cheng et al. (2023) formalize a notion of
social norm bias (SNoB) which measures adherence to gender
norms of the majority gender group for the occupation. They
quantify this bias using p(p., ), the Spearman rank correlation
coefficient between p., the fraction of bios under occupation ¢
mentioning ‘she’, and r., the correlation between occupation and gender predictions (more details
in the Appendix). A larger value of p(p.,r.) indicates larger social norm bias, meaning that in
male-dominated occupations the algorithm has a higher accuracy on bios that align with inferred
masculine norms, and vice versa. Table 9 shows results on the Bios data. We compare with a group
fairness approach, Decoupled (Dwork et al., 2018) that trains separate models for each gender, in
order to mitigate gender bias. We see that CMID address SNoB bias better than ERM and Decoupled,
achieving a lower p(p., r.) and improved accuracy.

Table 9: Comparison of accuracy in
occupation prediction and the cor-
relation between gender and occu-
pation prediction on Bios data.

6 CONCLUSION

We proposed a new framework (CMID) to mitigate simplicity bias, and showed that it yields
improvements over ERM and many other previous approaches across a number of OOD generalization,
robustness and fairness benchmarks. A natural direction of future work is to further explore the
capabilities and limitations of our approach, and to also further understand its theoretical properties.
More broadly, our work suggests auditing large models with respect to much simpler models can
lead to improved properties of the larger models along certain robustness and fairness axes. It would
be interesting to explore the power of similar approaches for other desiderata, and to understand its
capabilities for fine-tuning large pre-trained models.
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A ESTIMATING CMI

In this section, we describe our technique to compute the CMI regularization for our approach, as
mentioned in Section 3. We begin with the relevant notation.

Let Z = (X,Y) denote an input-label pair, where X € X,Y € {0,1}, sampled from some
distribution D, D denote a dataset with n samples, M (0) : X — [0, 1] denote a model, parameterized
by € (shorthand M). The predictions of the model are given by 1[M(X) > 0.5]. Subscripts
(*)s and (-). denote simple and complex, respectively. Let M denote the class of all models M,
ly(Z) + X x {0,1} — R denote a loss function. Let H(-) denote the Shannon entropy of a
random variable. I(-;-) measures Shannon mutual information between two random variables. With
slight abuse of notation, let M and Y also denote the (binary) random variables associated with the
predictions of model M on datapoints X;’s and the labels Y;’s, across all ¢ € [n], respectively. Let

oz, T) = denote the sigmoid function, with temperature parameter 7.
Tx

1+e~
To estimate CMI, first consider the conditional (joint) distributions over n samples:

_ v ze,L]]l[Yz:y] C(M(X;),m) ((Ms(X;), m)
piM=m, M,=mY =y) = Yiem1lYi=y| ’

where m,m’,y € {0,1}, ((M(X;),1)=1[M(X;)>0.5], and (M (X;),0)=1—1[M(X;)>0.5].

Note that the CMI computed using these would not differentiable as these densities are computed
by thresholding the outputs of the model. Since we want to add a CMI penalty as a regularizer to
the ERM objective and optimize the proposed objective using standard gradient-based methods, we
need a differentiable version of CMI. Thus, for practical purposes, we use an approximation of the
indicator function 1[x > 0.5], given by o(x — 0.5, T"), where T determines the degree of smoothness
or sharpness in the approximation.

This can be easily generalized for multi-class classification with C classes. In that case, m, m’,y €

{0,---,C — 1}, M(X;) is a C-dimensional vector with the '™ entry indicating the probability of
predicting class m, and {(M (X;), m)= 1[argmax M;(X;) = m]. To make this differentiable, we
Jjelc]

use the softmax function with temperature parameter 7" to approximate the indicator function.

Using these densities, the estimated CMI is:

In(M, M,|Y) ZpY i) > p(M =m, M;=m'|Y =y)log

m,m’

p(M=m, M;=m'|Y =y)
p(M=m|Y =y)p(M;=m'|Y =y)

@

This estimate is differentiable, making it compatible with gradient-based methods. Therefore, we
utilize it as a regularizer for the proposed approach.

A.1 EVALUATING THE ESTIMATED CMI

In this section, we evaluate the reliability and scalability of Method 10 classes 200 classes
the CMI estimate in (2) compared to the original CMI, which I(M,M,]Y)  141£33 233£27

is computed with discretized model outputs. We consider In(M, M[Y) 2017442 243£33
CMNIST data with the hyperparaI.neter. valueg as mentioned Table 10: Comparison of computation
in Section H21 f01'r the' rgsults in this section. Tab'le. 10 times (in milliseconds) for the original
compares the times (in milliseconds) to compute the original CMI and the estimated CMI in (2)
CMI and the estimated CMI, using batch size 64, for 10 )
classes and 200 classes. We see that the computation time for the estimated CMI does not increase
significantly as the number of classes increases.

Fig. 5 compares the estimated CMI for different values of the temperature parameter 7' with the
original CMI. The values shown in the figure are computed with batch size 1000, while for training,
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Figure 6: Comparison of the orig-
Figure 5: (Left) Sigmoid functions for different values of the inal CMI for models trained with
temperature parameter 7. (Right) Comparison of the original ERM and CMID as a function of
CMI with the estimated CMI using different values of 7. training time.

we use the estimated CMI with 7" = 12.5 and batch size 64. We see that as 7" increases, the sigmoid
approximates the indicator function more closely and the estimated CMI tends closer to the original
CML. Fig. 6 compares the CMI computed with discretized outputs using batch size 1000, when the
model is trained with ERM or CMID. We see that regularizing the estimated CMI causes the original
CMI to decrease over time, whereas training with ERM leads to an increase in the CMI. This shows
that the solution learned by ERM makes predictions aligned with those of the simple model, whereas
our approach CMID learns a model which attains low CMI with the simple model.

A.2 EFFECT OF THE SIMPLE MODEL ARCHITECTURE

In Fig. 2 (Section 3), we compared the effect of using various sim-
. 80
ple model architectures on the performance of the model learned e Train
by CMID on the Waterbirds dataset. In this section, we conduct —e— 00D Test
a similar experiment to analyze the effect of using various simple
70 :k'

model architectures on the CMNIST dataset. Fig. 7 compares the
performance of CMID when using a linear model and an MLP as
the simple model. We observe that using a linear model is more
effective in this case, since the benchmark model for this task is
a MLP. As a result, the MLP may capture both the features, and 60

Accuracy

T T
Linear MLP

I’eglllé.lﬂZl.ng the CMI with respect to this model may not be very Simple Model
effective in reducing the reliance on just the spurious features.
Waterbirds CMNIST Figure 7: Performance of CMID
Lmea{ r Shallov\i rCNN ResNel}? ResNel§9 Linear MLP using different simple model ar-
LR 5x10° 107° 5x10° 2x10° 00l 0.0l

chitectures for CMNIST dataset.
Table 11: Training details for the simple models.

We note that in these experiments (for both Waterbirds and CMNIST datasets), we only tune the
learning rate (LR) and weight decay ()\2) for training the simple model (as listed in Table 11). The
rest of the hyperparameter values for training the final model are kept consistent across each dataset
(as listed in Table 14 for CMNIST and Table 16 for Waterbirds).

B CELEBA: INVARIANT AND SPURIOUS FEATURES HAVE SIMILAR
COMPLEXITY

In our subgroup robustness experiment for
CelebA (Table 8 in Section 5.3), we found that  Predict invariant feature  Predict surrogate feature
our method did not yield a significant improve- _ Train Test Train Test

ment in worst-group accuracy. We investigate 891+ 1.5 843406 924+24 883+16
this further in this section. We show that for the
CelebA dataset, the complexity of the invariant

Table 12: Comparison between performance for
and surrogate features are actually quite similar, Predicting the simple feature and the complex fea-
The experiment is similar to the experiments we ture on CelebA dataset.

did for CMNIST and Waterbirds in Section 2. We create a subset of the CelebA dataset by sampling
an equal number of samples from all four subgroups. Table 12 presents a comparison of the results
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when predicting the invariant feature (hair color) and the surrogate feature (gender) using the simple
model (2DConvNet2). We observe that the performance for both tasks is comparable, suggesting that
the features exhibit similar complexity.

We contrast these results with those for CMNIST and Waterbirds in Table 2. For CMNIST and
Waterbirds, there was a significant difference in the accuracy to which the simple model could predict
the invariant and surrogate feature. For CelebA, the difference is much smaller which suggests that
spurious features are not simpler than invariant features for this dataset—explaining why our method
is not as effective for it.

C FURTHER RELATED WORK

Fairness. Several works aim to ensure fair predictions of models across subgroups in the data,
which are defined based on sensitive demographic information. Commonly used notions of group
fairness include demographic parity (Dwork et al., 2012), which aims to ensure that the representation
of different demographic groups in the outcomes of a model is similar to their overall representation,
and equalized odds (Hardt et al., 2016), which aims for equal predictive performance across groups
using metrics such as true positive rate. Fairness interventions used when group information is
available include: data reweighting to balance groups before training (Kamiran & Calders, 2012),
learning separate models for different subgroups (Dwork et al., 2018), and post-processing of trained
models, such as adjusting prediction thresholds based on fairness-based metrics (Hardt et al., 2016).

Various approaches have been proposed to achieve fairness when demographic information may not be
available. Multicalibration (Hebert-Johnson et al., 2018) aims to learn a model whose predictions are
calibrated for all subpopulations that can be identified in a computationally efficient way. Hashimoto
et al. (2018) proposes a distributionally robust optimization (DRO)-based approach to minimize
the worst-case risk over distributions close to the empirical distribution to ensure fairness. Lahoti
et al. (2020) proposes adversarial reweighted learning (ARL), where an auxiliary model identifies
subgroups with inferior performance and the model of interest is retrained by reweighting these
subgroups to reduce bias.

Feature Diversification and De-biasing Methods. Deep neural networks are known to exhibit
unwanted biases. For instance, CNNs trained on image data may exhibit texture bias (Geirhos et al.,
2022), and language models trained on certain datasets may exhibit annotation bias (Gururangan et al.,
2018). Several methods have been proposed to mitigate these biases. Bahng et al. (2020) introduce
a framework to learn de-biased representations by encouraging them to differ from a reference set
of biased representations. Li et al. (2022) propose to trains two models alternatively, using one to
identify biases using an equal opportunity violation criterion and training the other with a reweighted
cross-entropy loss to make unbiased predictions. Dagaev et al. (2023) reduce shortcut reliance by
upweighting samples based on the misclassification probability of a simple model to train a complex
model. Utama et al. (2020) propose a confidence regularization approach to encourage models to
learn from all samples. Recent works also show that deep neural networks tend to amplify the societal
biases present in training data (Wang et al., 2019; Jia et al., 2020) and they propose domain-specific
strategies to mitigate such amplification.

Several works aim to improve feature learning for better generalization. Zhang et al. (2022) aims to
learn a shared representation using a succession of training episode, where they train new classifiers
in each episode to do better on misclassified samples from previous episodes. Teney et al. (2022)
also involves learning a shared representation and training multiple classifiers, where the alignment
between their gradients is regularized to encourage feature diversity. Pagliardini et al. (2023); Lee
et al. (2022) do so by encouraging disagreement between two models leveraging unlabeled samples
from the target domain.

D CONNECTIONS WITH PRIOR WORK

In general, prior work focuses on one or two of the applications that we consider, while our approach
proves effective across several datasets for all cases.
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Several methods that aim to improve subgroup robustness or OOD generalization, such as IRM
(Arjovsky et al., 2020), GDRO (Sagawa* et al., 2020), PI (Bao et al., 2021) and BLOOD (Bae et al.,
2022), require knowledge of group or environment labels. This additional information is not always
available and consequently these methods have limited applicability in such cases. Approaches like
JTT (Liu et al., 2021a) and EIIL (Creager et al., 2021) overcome this requirement. However, these
methods rely on incorrect predictions (Liu et al., 2021a; Creager et al., 2021) of one model to train
another model by upweighting such samples (Liu et al., 2021a) or learning features that generalize
across such samples (Creager et al., 2021). As a result, they may not be effective in settings where
the spurious feature is highly predictive. Such settings can be relevant when our goal is to mitigate
simplicity bias. For example, in the slab dataset (Figure 4), the simple model achieves perfect
accuracy, but has a much worse margin compared to the global max margin predictor. Our approach
is still effective in such cases because it relies on prediction probabilities rather than thresholded
predictions, which enables the differentiation between features that result in smaller margin or low
confidence predictions and those that lead to better margin or high confidence predictions.

We note that debiasing/feature diversification methods (Nam et al., 2020; Bahng et al., 2020; Li
et al., 2022; Zhang et al., 2022; Teney et al., 2022) can often be computationally expensive. Some of
these involve training two complex models simultaneously (Nam et al., 2020; Bahng et al., 2020)
or alternatively (Li et al., 2022). Zhang et al. (2022); Teney et al. (2022) involve training multiple
models and returning the average or selecting the best one among them, respectively. In contrast,
our results show that the simple approach to train a single model with the CMI regularization can
prove effective across several settings. While methods like Pagliardini et al. (2023); Lee et al. (2022)
are simpler, they require access to additional data from a target domain to encourage disagreement
between two models for feature diversification. Our approach does not have such a requirement and
allows for diversification directly on the training data.

In addition, our approach is theoretically grounded and explicit in its assumptions, which could make
it easier for a practitioner to evaluate and use. In particular, our definition of spurious features gives
an explicit characterization of features/biases that we regard as undesirable and our approach seeks to
reduce, which can allow the user to understand the situations when the approach might be effective.
We note that most approaches developed to improve subgroup robustness or OOD generalization
either lack theoretical guarantees (Bao et al., 2021; Bae et al., 2022; Liu et al., 2021a) or show results
tailored to one of these two settings. Sagawa* et al. (2020); Duchi et al. (2019) seek to optimize the
worst-case risk over a small set of groups and hence, guarantees on worst-group risk developed in
prior work on DRO which considers all subsets of the data as the groups of interest, apply in these
cases. However, these methods may not generalize to unseen environments, as is often times the
case in the OOD generalization problem. On the other hand, Arjovsky et al. (2020) prove that IRM
can recover the optimal invariant predictor that can generalize to any environment, under certain
assumptions on the training data. However, follow up work (Rosenfeld et al., 2021) shows that
IRM may fail to recover such a predictor if the training set does not contain samples from several
environments. In contrast, we show that our approach reduces reliance on the spurious feature in a
Gaussian mixture based data setting, and also obtain an OOD generalization guarantee in a causal
learning framework, without requiring group or environment labels.

E LIMITATIONS OF OUR APPROACH

We note that like any other regularization or inductive bias, CMID may not be effective for every task.
For certain tasks, spurious features as defined by us in Section 2 may not actually be spurious, and
we may not always want to reduce reliance on features that are simple and highly predictive of the
label. However, it is worth noting here that it is impossible for a single algorithm to perform well in
all cases. This is established by the No Free Lunch theorem: there is no inductive bias that is suitable
for all tasks (Shalev-Shwartz & Ben-David, 2014) and relatedly, it is impossible to generalize without
certain assumptions on the train and test distributions (Wolpert, 1996).

In most cases, we assume that the test data is i.i.d. and indeed, simplicity bias is useful in explaining
in-distribution generalization of NNs in these cases. However, these observations may not necessarily
extend to situations where the i.i.d. assumption on the test set is violated. Generalization under
distribution shift is significantly different and in such cases, simplicity bias can prevent the model from
learning more complex, task-relevant features that may generalize better. Consequently, alleviating
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simplicity bias can be a useful inductive bias in such cases. This is consistent with our experimental
evaluations on several datasets from various modalities and domains.

Even in situations where mitigating simplicity bias is useful, there can be cases where the separation
between the feature complexity of spurious and invariant features may not be very large. This can
make the selection of an appropriate simple model class for our approach challenging. Indeed, in our
experiments, we found that for the CelebA dataset, the spurious and task-relevant features are not
significantly different in terms of complexity (Appendix B). Consequently, our approach does not
lead to much improvement in the worst-group accuracy on this dataset.

We also note that in general, use of methods designed to improve OOD generalization and subgroup
robustness can lead to a drop in the accuracy on the training set or the i.i.d. test set, compared to
ERM. This is seen in some of our experimental results as well. This is because a model trained with
the ERM objective relies strongly on the spurious feature(s), which is predictive on the train set as
well as the i.i.d. test set. In contrast, improvement on OOD test sets is achieved by leveraging other
features, which may be less predictive on the train set but generalize better.

F ADDITIONAL THEORETICAL RESULTS

F.1 EFFECT OF CMI REGULARIZATION

In this section, we consider the same setup as in Section 4 and present some additional results.

In Fig. 8, we visualize the relationship - CMID. €203  — o CMID. c201 - CMID. €20.03

between % and Z—% predicted in Theo- ;
rem 1 (assuming p1 = po and = 0.95.) ;'

We see that a lower value of ¢ promotes / o/ iy
conditional independence with X5 and up- i ]

weighs w; more strongly. When ¢ — 0, i
we — 0.

wi/wz

~
.
N\
\
\
Spurious

Next, we consider the case where there f o ) '

are multiple spurious features, by adding ailo} Invariant

another feature

Xy ~ N(a'ug, Ug)’ where a/ ~ yR(n') Figure 8: Effect of CMI reg}llarization (V\{I‘t Xg) for differ-
(3) ent values of ¢ (correspoqdmg to regularization strength).

Left: Lower values of c indicate stronger CMI regular-

ization, resulting in more upweighting of w; wrt ws.

Inset shows a zoomed-in region and markers compare

the three solutions when o3 /o = 1/6. Right: Decision

boundaries for predictors corresponding to the markers.

to the setup in Assumption 1. We show
that regularizing CMI with respect to the
optimal predictor that uses X5 and X3
also results in w; being upweighted. We
consider the constrained problem:

ERM¢ (M) = argmin E (w; X1 + wo X + w3 X3 — y)?
weM

s.t. (w1 X1 4+ weXo + w3 Xs; wy Xo + w3 Xsly) < v, )
where (w3, w}) oc (uy/0%, p/0k?) (the weights for the optimal linear model which uses X and
X3). We show the following result.

Theorem 2. Let the data be generated as per Assumption 1 and (3). Let v =0.5log(1 + 02) for

|waph+wsps|

/
= ¢, where
[wi]oy

2 2
some sufficiently small ¢, and 7% = 2. Then the solution to (4) satisfies:
2 3

12 12

! /

d =2cq/ —’;22 + —i% . Moreover, wa, w3 o c'w;.
2 3

Similar to before, the result says that for a sufficiently small CMI constraint we learn a model which
mainly uses the invariant feature.

F.2 OOD GENERALIZATION IN A CAUSAL LEARNING FRAMEWORK

Following the setting in Arjovsky et al. (2020); Liu et al. (2021b), we consider a dataset D =
{D*}ces,,, which is composed of data D¢ ~ D¢ gathered from different training environments
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e € &, where e denotes an environment label, n. represents the number of samples in e. &, denotes
the set of training environments.

The problem of finding a predictor with good OOD generalization performance, can be formalized as:

argminmax Ep[€a(Z)|e],
MeMm ©e€€

i.e., optimizing over the worst-case risk on all environments in set £. Usually, £ D &, and hence,

the data and label distribution can differ significantly for e € &, and e € £ \ &,.. This makes the

OOD generalization problem hard to solve.

The invariant learning literature assumes the existence of invariant and variant features. In this section,
we assume that the model of interest, say M (X) is composed of a featurizer @ and a classifier w on
top of it, i.e. M(X) = w o ®(X). For simplicity, we omit the argument X and assume that learning
a featurization includes learning the corresponding classifier, so we can write M = ©. Let F be a
random variable sampled from a distribution on £.

Definition 3 (Invariant and Variant Predictors). A feature map © is called invariant and is denoted
by @ if Y L E|®, whereas it is called variant and is denoted by W if Y [ E|W.

Several works (Arjovsky et al., 2020; Liu et al., 2021b; Creager et al., 2021) attempt to recover the
invariant feature map by proposing different ways to find the maximally invariant predictor (Chang
et al., 2020), defined as:

Definition 4 (Invariance Set and Maximal Invariant Predictor). The invariance set I with respect to
environment set £ and hypothesis class M is defined as:

Te(M)={®:Y L E|®} = {d: H]Y|S] = H]Y|®, E]}.

The corresponding maximal invariant predictor (MIP) of Zg (M) is &* = argmax I(Y; P).
PELe (M)

The MIP is an invariant predictor that captures the most information about Y. Invariant predictors
guarantee OOD generalization, making MIP the optimal invariant predictor (Theorem 2.1 in Liu et al.
(2021Db)).

As discussed in Section 1, most current work assumes that the environment labels e for the datapoints
are known. However, environment labels typically are not provided in real-world scenarios. In this
work, we don’t assume access to environment labels and instead, we rely on another aspect of these
features: are they simple or complex? We formalize this below:

Assumption 2 (Simple and Complex Predictors). The invariant feature comprises of complex features,
ie. & = [P, where . € M. The variant feature comprises of simple and complex features, i.e.,
U* = (., V), where ¥, € M., ¥s € My and I(Y; W) > 0.

We consider the underlying causal model in Rosenfeld et al. (2021)
which makes the following assumption.

Assumption 3 (Underlying Causal Model). Given the model in
Fig. 9, I(®,W]Y) =0 and [(¥,, W,|Y) > [(F,, 0|V, E). (¥} (%)

The following simple result shows that our method finds the maximal
invariant predictor, and thus generalizes OOD.

Proposition 2. Let ERM(M,) = M. Under Assumptions 2 and  Figure 9: Our causal model.

3, the solution to the problem: Latent variables Z;,, and Z,;
. CAsE _ correspond to invariant and
aﬁ%ﬂan b (Z) st 1M MY) =0 ©) variant features ¢* and ¥™ re-

spectively.

is M = ®*, the maximal invariant predictor.

Here, we note that Assumption 2 is key to our result. Although this assumption may not always hold
directly in practice, it characterizes the condition under which our approach can recover the invariant
predictor even though it does not have an explicit causal/invariant learning motivation or access to
environment labels.
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G PROOFS FOR THEORETICAL RESULTS

In this section, we present the proofs for the theoretical results in Section 4 and Appendix F.

G.1 PROOF OF PROPOSITION 1

We first restate Proposition 1:

Proposition 1. ERM(M) satisfies = —Z . When “1 02 <1 ERM(M )= { é} (upto scaling).
1 2

Proof. We have:

E (w1 X) +weXo —y)? = wi(o] + p3) +wi(o5 + p3) + 1 — 2wy g — 2wapth + 2wiwafig ih.

Since arg min E (w1 X7 + waXo — y)2
weM

with respect to w; and wo to be 0. Subsequently, we solve the resulting set of equations. By taking

the gradient and setting it to 0, we obtain the following set of equations:

is a convex problem, to find the minimizer we set gradients

2wi (0 + 1) — 21 + 2wap iy = 0, (6)
2ws (05 + pi3) — 24ty + 2wipapry = 0. @)
1
From (7), wy = i} # Substituting this in (6) and solving for w;, we get:
02 ,U

where 0’22 = O’% + ug — u'22. Using this, we get the expression for ws:

192

=

Thus, for ERM(M), %L =

> wg

,\J\
q
= N

"

-

Next, consider ERM over M. If wy = 0, we use (6) and get [ S + 7 O] as the solution, for which

the loss value is 2 + 7 If wy = 0, we use (7) and get { , 2‘;“2} as the solution, for which the loss
2 2
2 2 2 ’
is —22—>. When £% 22 < 1, the latter has a smaller loss and thus, ERM(M,)is [0, %2 —L_|. O
Oy F Hy" O3 72 4 L%

G.2 PROOF OF THEOREM 1

Theorem 1. Let data be generated as per Assumption 1. For v = 0.5log(1 + ¢?) for some c:

2
H1 T2

1. When % a‘ﬁ =, the solution to (1) is the same as ERM(M), so =2 7
2

ws = i

=

2. Otherwise, wy is upweighted and the solution to (1) satisfies }Z;‘ = %

243

Proof. Consider the constraint I (w; X7 + wo Xa; w3 Xa|y) < v. As we are working with continuous
random variables in this setup, we employ differential entropy for our entropy computations. The
entropy of a Gaussian random variable X with variance o2 is given by H(X) = 0.5(log(2m0?) 4 1).
Using this and the definitions of CMI and conditional entropy, we have:

T(wi X1 + woXo, w3 Xoly) = H(u X1 + waXaly) — H(wi X1 + waXo|y, wh Xs)
= H(w1 Xy + we Xoly) — Hw1 Xqly) = %10g (%) ]

22



Under review as a conference paper at ICLR 2024

2 _2
Using v = 0.5log(1 + c2), the constraint becomes: Z;Z% < 2. Thus, (1) reduces to solving:
1%1

min E (w; X1 + wy X5 — ) s.t. |waloz

w1,ws lwiloy =

If % 2152 < ¢, ERM(M) satisfies the constraint and serves as the solution to (1). Otherwise, since
2
this is a convex optimization problem with an affine constraint, the constraint must be tight. Therefore,

we determine the solution by finding ERM(M) subject to IZ? }Z; = ¢. The solution is given by:
phoy nhoy
1 2 . 145272,
— ( NS c) — ,O1 ( T L)
R ©3 vy, |0 2T Coaot | 2 75 2cp1
= 2 2 2CH1 1y H 2 B2 2
o2 Tlte <ag+1>+ o103 o3 Tite <ag+1>+ o103

G.3 PROOF OF THEOREM 2
Theorem 2. Let the data be generated as per Assumption 1 and (3). Let v =0.5log(1 + 02) for

2 2 ’ 7
. o o . . w “+w:
some sufficiently small ¢, and —0,22 = —Uf’z. Then the solution to (4) satisfies: lwapytwsps| zml‘af” al
2 3

2 2
/ L /
c =2cy/ —’;22 + —‘032 . Moreover, wy, w3 X C w1.
2 3

PFOOf: Let Zl = ’LU1X1 + U}2X2 + ’LU3X3 and ZQ = w§X2 + ’LU;Xg Then,
(21, Zaly) = H(Z1|y) + H(Z2ly) — H(Z1, Za|y).

= ¢, where

Since all features are Gaussian, we have:
H(Z|y) = 0.5(10g(w%0% + w%a% + wgag) + log(27) + 1),

H(Zo]y) = 0.5(log((w3)*03 + (w3)?03) + log(27) + 1),
H(Zy1, Zs|y) = 0.5log |K| + log(27) + 1,

where K is the covariance matrix of Z; and Z5 conditioned on y. We can calculate K as follows.
Since all features are conditionally independent, we have:

s B(Z, —E(Z1))? = wio} + wios + wios.
s B(Z) — E(Z1))(Zy — B(Z2)) = wowhos + wswios.

* B(Zy — E(Z))* = (w5)*03 + (w5)*03.

Thus, |K| = (wio? + wios + wio?)((wh)?os + (wh)?03) — (wewjos + wswios)?. Using these,
the constraint becomes:

(w%of—&—wgog—&-wgog)((w;)zag-f—(wg)2092, < 2
log (rorsrrorad Lok i ) e ) < log(1+ &%)

. (wowiodtwsuiod)? <2

wiof((w3)?oi+(ws)?of)+ofos(wiws—wiwe)? —

(wawioi+wswio2)? —c?osol (whws—wiws)? < CQ
wiof((w3)?of+(w5)?o3) -

—

\/g\w2w;a§+w3w§ ag\
20203|waw} —waw}|

Assume that c is sufficiently small, i.e., ¢ < . Then, we get the condition:

(wawjodtwswiod) 4 2
wio? ((w3)203 +(w3)207) =

* 2 * 2
U w
wa Uf;z +ws 2?3
2 3 *\2 2 *\2 2
= [wilo < 20\/(“)2) o5 + (w3)?o3.
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When [w}, wi] = v [ph /0, 1h/of’], where v is some constant, we get:

. ’ ‘73 ’ ‘7§
w2 Lo Uéz +wzpg Géz

|wi oy - ol ol

g
2 = 0—,32, we get:
3

|wzu2+w3u3| < 2 #z _,'_#732 =
|wi oy 2 o3 .

#z #s
When Z& 10 <, ERM(M), i.e., [wy,wa, ws] o [%, £, %] satisfies the constraint, and thus
1 2 3

is the solution to (4). Otherwise, since (4) is a convex problem with an affine constraint, the constraint
must be tight. Therefore, we find ERM(M) subject to the equality constraint |wapuy + wspus| =
¢’ o1 |w1|. The solution is given by:

/Ul

14+c —
— 1 251
wy =
1= 07 , L uf Hs ’
1+Z%+2 s +(c) - ‘72+N2 U3+M3 -
1 M -+ _9 Mz H3
o3+u3 2+#3 o3+uz o3 +u3
wy [, _ng wy [ _nZ
o — o o3+u3 oi+u3 e — o o3+u3 o3+n3
=co ; =co - .
2 1W1 ,U“/z N ;Uf/32 . Nf,22 IJ/32 ) 3 1W1 #/22 N l»’f/32 . H/22 'ugz
o3+us ' o3+u3 o3+uz of+u3 o3+us L o3tpi Costus o3ty
O
G.4 PROOF OF PROPOSITION 2
Proposition 2. Let ERM(M) = M. Under Assumptions 2 and 3, the solution to the problem:
argmin By (Z) s.t. I(M; MZ|Y)=0 )

MeMm

is M = ®*, the maximal invariant predictor.

Proof. Using Assumption 2, the class of simple models only contains variant predictors, so
ERM(M) = ¥,. Consequently, the constraint in (5) can be written as I (M; ¥,|Y") = 0.

Considering the set of candidate predictors for M, namely {0,P.,¥,,¥.}, we examine the
CMI constraint for each. Using the definition of mutual information, we have I(0,%,|Y) = 0
and I (¥, %s|Y) = H(¥,|Y). According to the definition of variant predictor, H(¥,|Y) >
H(W,|Y,E) > 0.

From Assumption 3, which states that the invariant and variant predictors are conditionally inde-
pendent, we can deduce that I(®., ¥s|Y) = 0. From Assumption 3, we also have I(¥,, 7,|Y) >
IV, WY, E) > 0.

Using these results, the feasible set is [0, §.], which corresponds to the invariance set Zp(M).

Consequently, problem (5) is equivalent to finding arg max I(Y’; ®). The solution to this problem is
Pelp (M)
@, which represents the MIP &*. O

H EXPERIMENTAL SETTINGS

We begin by describing some common details and notation that we use throughout this section.
As in the main text, we use A to represent the regularization strength for CMI. To ensure effective
regularization, we adopt an epoch-dependent approach by scaling the regularization strength using
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the parameter S. Specifically, we set A = A\, (1 4 ¢/S) at epoch ¢. The temperature parameter 7 is
set as 12.5 throughout the experiments. Additionally, we use LR to denote the learning rate, BS to
denote the batch size, and A, to denote the weight decay parameter, which represents the strength of
{o-regularization. When using the Adam optimizer, we employ the default values for momentum.

The experiments on Slab data, CMNIST and CPMNIST data and Adult-Confounded data were
implemented on Google Colab. The ImageNet-9 experiments were run on an AWS G4dn instance
with one NVIDIA T4 GPU. For experiments on the subgroup robustness datasets and the Camelyon17-
WILDS data, we used two NVIDIA V100 GPUs with 32 GB memory each. We only used CPU cores
for the Bios data experiments.

H.1 MITIGATING SIMPLICITY BIAS EXPERIMENTS

This section includes the details for the experiments showing that CMID mitigates simplicity bias
where we use the Slab data and the ImageNet-9 data.

H.1.1 SLAB DATA

Dataset. All the features in the 3-Slab and 5-Slab data are in the range [—1, 1]. The features are
generated by defining the range of the slabs along each direction and then sampling points in that
range uniformly at random. The base code for data generation came from the official implementation
of Shah et al. (2020) available at .
We consider 10° training samples and 5 x 10* test samples. In both the cases, the linear margin
is set as 0.05. The 3-Slab data is 10-dimensional, where the remaining 8 coordinates are standard
Gaussians, and are not predictive of the label. The slab margin is set as 0.075. The 5-Slab data is
only 2-dimensional, and the slab margin is set as 0.14.

Training. We consider a linear model for the simple model and following Shah et al. (2020), a
1-hidden layer NN with 100 hidden units as the final model (for both ERM and CMID). Throughout,
we use SGD with BS = 500, Ay = 5 x 10~ for training. The linear model is trained with LR = 0.05,
while the NN is trained with LR = 0.005.

For the 3-Slab data, the models are trained for 300 epochs. We consider A, € {100, 150,200} and
choose A\, = 150 for the final result. For the 5-Slab data, the models are trained for 200 epochs
and we use a 0.99 momentum in this case. We consider A. € {1000, 2000, 2500, 3000} and choose
Ac = 3000 for the final result. Note that we consider significantly high values of A, for this dataset
compared to the rest because the simple model is perfectly predictive of the label in this case. This
implies that its CMI with the final model is very small, and the regularization strength needs to be
large in order for this term to contribute to the loss.

H.1.2 TEXTURE VS SHAPE BIAS ON IMAGENET-9

Dataset ImageNet-9 (Xiao et al., 2020) is a subset of ImageNet with nine condensed classes that
each consist of images from multiple ImageNet classes. These include dog, bird, wheeled vehicle,
reptile, carnivore, insect, musical instrument, primate, and fish.

Calculating shape bias  The GST dataset (Geirhos et al., —— 2eNet:0 Class _ GST Dataset Classes

2022) consists of 16 shape classes. To interpret a predic- dog dog

tion from a model trained on ImageNet-9 as a GST dataset bird bird
prediction, we consider a subset of classes from both and wheeled vehicle bicycle, car, truck
use the mapping listed in Table 13. Specifically, to de- carnivore bear, cat

termine whether a model trained on ImageNet-9 predicts _musical instrument keyboard

correctly on a GST image, we first determine which of
the 5 ImageNet-9 classes from the Table has the highest
probability based on the model’s output, and then use the
mapping to obtain the predicted GST class label.

Table 13: ImageNet-9 classes mapped to
corresponding GST dataset classes.

Thus, following the procedure detailed in s
the shape bias is calculated as:

number of correct shape predictions

shape bias = — .
P number of correct shape predictions + number of correct texture predictions
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Training We use ResNet50 pretrained on ImageNet data as the simple model, and train it on
ImageNet-9 using Adam with LR = 0.001,BS = 32,y = 10~* for 10 epochs. We do not
consider a simpler architecture and training from scratch since this pre-trained model already exhibits
texture bias. For the final model, we consider the same model and parameters, except we use SGD
with 0.9 momentum as the optimizer and Ao = 0.001 for both ERM and CMID and train for 10
epochs. Values of CMID specific parameters were A, = 15,5 = 10. For tuning, we consider
LR € {107°,107%,1073} for both the models and BS € {16, 32}, A5 € {0.0001,0.001,0.01} and
Ac € {0.5,15,25,50}. We implement JTT to obtain the results. The first-stage model is trained for
1 epoch, and we consider the upsampling parameter (Liu et al., 2021a) \,,;,, € {5, 20, 50, 100} for
tuning. The other hyperparameters are the same as our approach.

H.2 BETTER OOD GENERALIZATION EXPERIMENTS

This section includes the details for the experiments showing that CMID leads to better OOD general-
ization. For this, we used CMNIST and CPMNIST, Camelyon17-WILDS and Adult-Confounded
datasets.

H.2.1 CMNIST aANnD CPMNIST

Dataset. Following Bae et al. (2022), we use 25, 000 MNIST images (from the official train split)
for each of the training environments, and the remaining 10, 000 images to construct a validation set.
For both the test sets, we use the 10,000 images from the official test split.

Training. The details about model architecture and parameters for training the simple model with
ERM and the final model with CMID, for both the datasets, are listed in Table 14. Following Bae et al.
(2022), the MLP has one hidden layer with 390 units and ReLU activation function. In both the cases,
the simple model is trained for 4 epochs, while the final model is trained for 20 epochs. We choose
the model with the smallest accuracy gap between the training and validation sets. For tuning, we
consider the following values for each parameter: for the simple model, LR € {0.005,0.01,0.05},
A2 € {0.001,0.005, 0.01}, and for the final model, LR € {0.001,0.005}, A\ € [3,8] and S € [3, 6],
where lower values of S were tried for higher values of . and vice-versa.

For the final results, we report the mean and standard deviation by averaging over 4 runs. For
comparison, we consider the results reported by Bae et al. (2022) for all methods, except EIIL
(Creager et al., 2021) and JTT (Liu et al., 2021a). Results for EIIL are obtained by using their publicly
available implementation for CMNIST data (available at ),
and incorporating the CPMNIST data into their implementation. The hyperparameter values in
their implementation are kept the same. We implement JTT to obtain the results. We consider
LR € {0.001,0.005,0.01} and the parameter for upweighting minority groups (Liu et al., 2021a)
Aup € {5,10,15,20, 25} for tuning.

Dataset Simple Model Optimizer LR BS Ao Final Model Optimizer LR BS . S
CMNIST Linear SGD 0.01 64 0.005 MLP SGD 0.001 64 4 4
CPMNIST Linear SGD 0.01 64 0.001 MLP SGD 0005 64 5 3

Table 14: Training details for CMNIST and CPMNIST.

H.2.2 CAMELYON17-WILDS

Dataset. Camelyonl7-WILDS (Koh et al., 2021) contains 96 x 96 image patches which may or
may not display tumor tissue in the central region. We use the same dataset as Bae et al. (2022),
which includes 302, 436 training patches, 34, 904 OOD validation patches, and 85,054 OOD test
patches, where no two data-splits contain images from overlapping hospitals. We use the WILDS
package, available at for dataloading.

Training. For the simple model, we train a 2DConvNet1 model (see Section H.3.2 for details) for
10 epochs. We use the Adam optimizer with LR = 10~*,BS = 32, A, = 10~*. For the final model,
we train a DenseNet121 (randomly initialized, no pretraining) for 5 epochs using SGD with 0.9
momentum with LR = 1074 BS = 32, A, = 0.01 and A\ = 0.5, .S = 10. We use the same BS and
Ao values as Bae et al. (2022) for consistency. For tuning, we consider LR € {10_57 1074, 10_3} for
both the models and A\, € {0.5,2,5,15} for CMID. While Bae et al. (2022) and Koh et al. (2021)
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use learning rates 10~ and 0.001, respectively, we found a learning rate of 10~* was most suited
for our approach. We select the model with the highest average accuracy on the validation set to
report the final results, and report the mean and standard deviation by averaging over 3 runs. For
comparison, we use the results reported by Bae et al. (2022) for all the methods, except JTT. For
the results for JTT, we implement the method and tune A, € {20, 50, 100} and number of epochs
to train the first-stage model as {1,2}. The rest of the hyperparameters are kept the same as our
approach. We noticed that JTT (Liu et al., 2021a) had high variance in test accuracy across multiple
runs for different random weight initialization. To account for this, we ran JTT and CMID over the
same 8 seeds and randomly choose 3 of them to report the average accuracies over.

H.2.3 ADULT-CONFOUNDED

Dataset. The UCI Adult dataset (Newman et al., 1998; Leisch & Dimitriadou, 2021), comprises
48, 842 census records collected from the USA in 1994. It contains attributes based on demographics
and employment information and the target label a binarized income indicator (thresholded at
$50, 000). The task is commonly used as an algorithmic fairness benchmark. Lahoti et al. (2020);
Creager et al. (2021) define four sensitive subgroups based on binarized sex (Male/Female) and
race (Black/non-Black) labels: Non-Black Males (G1), Non-Black Females (G2), Black Males (G3),
and Black Females (G4). They observe that each subgroup has a different correlation strength with
the target label (p(y = 1|G)), and thus, in some cases, subgroup membership alone can be used to
achieve low error rate in prediction.

Based on this observation, Creager et al. (2021) create a semi-synthetic variant of this data, known as
Adult-Confounded, where they exaggerate the spurious correlations in the original data. As G1 and
G3 have higher values of p(y = 1|G) across both the splits, compared to the other subgroups (see
Creager et al. (2021) for exact values), these values are increased to 0.94, while they are set to 0.06
for the remaining two subgroups, to generate the Adult-Confounded dataset. In the test set, these are
reversed, so that it serves as a worst-case audit to ensure that the model is not relying on subgroup
membership alone in its predictions. Following Creager et al. (2021), we generate the samples for
Adult-Confounded dataset by using importance sampling. We use the original train/test splits from
UCI Adult as well as the same subgroup sizes, but individual examples are under/over-sampled using
importance weights based on the correlation on the original data and the desired correlation.

Training. We use a linear model (with a bias term) as the simple model, and following Creager et al.
(2021) use an Adagrad optimizer throughout. We use BS = 50. The simple model is trained for 50
epochs, with LR = 0.05, A2 = 0.001. Following Creager et al. (2021); Lahoti et al. (2020), we use a
two-hidden-layer MLP architecture for the final model, with 64 and 32 hidden units, respectively. It
is trained with LR = 0.04, A\, = 4,5 = 4 for 10 epochs. We also construct a small validation set
from the train split by randomly selecting a small fraction of samples (5 — 50) from each subgroup
(depending on its size) and then upsampling these samples to get balanced subgroups of size 50. We
choose the model with lowest accuracy gap between the train and validation sets. For tuning, we
consider LR € {0.01,0.02,0.03,0.04,0.05} and A, S € {3,4,5}. For the final results, we report
the mean and accuracy by averaging over 4 runs. For comparison, we reproduced the results for ERM
from Creager et al. (2021), and thus, consider the values reported in Creager et al. (2021) for ERM,
ARL and EIIL. We implement JTT to obtain the results. We use LR = 0.05 and A\ = 0.001 to train
the final model and tune the parameter for upweighting minority groups (Liu et al., 2021a) A, over
{10, 20, 25, 30}. The remaining parameters are kept the same as for our approach.

H.3 SUBGROUP ROBUSTNESS EXPERIMENTS

This section includes the details for the experiments showing that CMID enhances subgroup robust-
ness, where we use four benchmark datasets: Waterbirds, CelebA, MultiNLI and CivilComments.

H.3.1 DATASETS

We consider the following datasets for this task. We follow the setup in Sagawa* et al. (2020) for the
first three and Koh et al. (2021) for CivilComments-WILDS.
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Waterbirds Waterbirds is a synthetic dataset created by Sagawa* et al. (2020) consisting of bird
images over backgrounds. The task is to classify whether a bird is a landbird or a waterbird. The
background of the image land background or water background, acts a spurious correlation.

CelebA CelebA is a synthetic dataset created by Liu et al. (2015) containing images of celebrity
faces. We classify the hair color as blonde or not blonde, which is spuriously correlated with the
gender of the celebrity male or female, as done in Sagawa* et al. (2020); Liu et al. (2021a).

MultiNLI MultiNLI (Williams et al., 2018) is a dataset of sentence pairs consisting of three classes:
entailment, neutral, contradiction. Pairs are labeled based on whether the second sentence entails, is
neutral with, or contradicts the first sentence, which is correlated with the presence of negation words
in the second sentence (Sagawa* et al., 2020; Liu et al., 2021a).

CivilComments-WILDS CivilComments-WILDS is a dataset of online comments proposed by
Borkan et al. (2019). The goal is to classify whether a comment is foxic or non-toxic, which is
spuriously correlated with the mention of one or more of the following demographic attributes: male,
female, White, Black, LGBTQ, Muslim, Christian, and other religion (Park et al., 2018; Dixon et al.,
2018). Similar to previous work (Koh et al., 2021; Liu et al., 2021a), we evaluate over 16 overlapping
groups, one for each potential label-demographic pair.

H.3.2 MODEL ARCHITECTURES

In this section, we discuss the architectures we consider for the simple models for this task. For
the two image datasets, a shallow 2D CNN is a natural choice for the simple model as 2D CNNs
can capture local patterns and spatial dependencies in grid-like data. On the other hand, for the two
text datasets with tokenized representations, we consider a shallow MLP or 1D CNN for the simple
model. MLPs can capture high-level relationships between tokens by treating each token as a separate
feature, while 1D CNNi5s can capture local patterns and dependencies in sequential data.

Leaky Avg

Conv ReLU Pool

Figure 10: Left: 2DConvNet1 and Right: 2DConvNet2 architectures.

Figure 11: Left: 2MLP and Right: 1DConvNet architectures.

Next, we describe the details for the model architectures. Let F' denote the filter size and C' denote
the number of output channels (for convolutional layers) or the output dimension (for linear/fully
connected (FC) layers). Throughout, we use F'=2 for the average pooling layers. Fig. 10 shows the
2DConvNet1 and the 2DConvNet2 architecture, which were used as simple models for Waterbirds
and CelebA, respectively. These were the only two architectures we considered for the 2DCNN on
these datasets. In 2DConvNet 1, the 2D convolutional layers use F'=7,C' =10 and F'=4, C' =20,
respectively, while C' = 2000 for the FC layer. In the 2DConvNet2 architecture, F' =5,C = 10
for the 2D convolutional layer and C' = 500 for the FC layer. Fig. 11 shows the 2MLP and the
1DConvNet architecture, which were used as simple models for MultiNLI and CivilComments-
WILDS, respectively. For tuning, we considered these models as well as a IDCNN with one less 1D
convolutional layer than 1DConvNet for both the datasets. In 2MLP, the FC layers use C'=100 and
C =25, respectively. In the 1DConvNet architecture, the 1D convolutional layers use F'=7,C' =10,
F=5C=32and F=5,C =64, respectively, while C'=>500 for the FC layer.
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H.3.3 TRAINING DETAILS

We utilize the official implementation of Sagawa* et al. (2020) available at

as baseline code and integrate our approach into it. Most hyper-
parameter values are kept unchanged, and we list the the important parameters along with model
architectures for all the datasets in Table 15. For the simple models, we consider shallow 2D
CNNs for the image datasets, and MLP and 1D CNN for the text data, as discussed in the pre-
vious section. In all cases, the simple model is trained for 20 epochs. For the final model, fol-
lowing Sagawa* et al. (2020), we use the Pytorch torchvision implementation of ResNet50
(He et al., 2016) with pretrained weights on ImageNet data for the image datasets, and the Hug-
ging Face pytorch-transformers implementation of the BERT bert-base-uncased
model, with pretrained weights (Devlin et al., 2019) for the language-based datasets.

Dataset Simple Model Optimizer LR  BS Ao Final Model ~ Optimizer LR BS Ao Ae S #epochs
Waterbirds 2DConvNet1 Adam 10° 32 101 ResNet50 SGD 5x10°7 128 1077 20 4 100
CelebA 2DConvNet2 Adam 107° 32 5x107*  ResNet50 SGD 3x107% 128 0.001 10 5 50
MultiNLI 2MLP Adam  0.005 16 10~* BERT AdamW  5x107° 32 0 75 10 5
CivilComments  1DConvNet Adam  107* 16 107* BERT AdamW 107° 32 0.001 25 10 10
Table 15: Training details for subgroup robustness datasets.
Table 16 shows the values of Datasel IR 3 5
LR, A, and S we consider for Waterbirds, CelebA [1,5] x 10°F {10, 15,20,25,50,75} {4,5,6,8,10}
tuning for the final model. Fol- _MultiNLL CivilComments {1,2,5} x 107° {10, 25,50, 75} {10}

lowing Sagawa* et al. (2020),
we keep A2 = 0 for MultiNLI.
For the rest, we consider \y €
{0.0001, 0.0005, 0.001}. For results, we choose the model with the best worst-group accuracy on
the validation set. For comparison, we consider the values reported in Liu et al. (2021a).

Table 16: Values considered for tuning the hyperparameters for
training the final model for the four subgroup robustness datasets.

H.3.4 FURTHER DISCUSSION ON EXPERIMENTAL RESULTS

Waterbirds CelebA MultiNLI CivilComments
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Figure 12: Scatter plots comparing worst-group and average accuracy of various methods on four
benchmark datasets for subgroup robustness. The dotted line is the x = y line. The dashed line

represents the trade-off between average and worst-group accuracy.

Fig. 12 shows scatter plots comparing worst-group and average accuracy of various methods on
four benchmark datasets for subgroup robustness. The dashed line represents the trade-off between
average and worst-group accuracy. Points on or close to this line correspond to methods that shift the
balance between the invariant/spurious features, so that the gains in the worst-group accuracy match
the decrease in the average accuracy. We observe that GDRO in all cases as well as CMID and JTT
in several cases (except Waterbirds and MultiNLI, respectively) lie far from this line. This suggests
that in most cases, these methods allow for more gains in the worst-group accuracy compared to the
decrease in the average accuracy.

H.4 BIAS IN OCCUPATION PREDICTION EXPERIMENT

Social Norm Bias Cheng et al. (2023) considers the task of predicting a person’s occupation based
on their textual bio from the Bios dataset (De-Arteaga et al., 2019). Based on this task, Cheng
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et al. (2023) formalizes a notion of social norm bias (SNoB). SNoB captures the extent to which
predictions align with gender norms associated with specific occupations. In addition to gender-
specific pronouns, these norms encompass other characteristics mentioned in the bios. They represent
implicit expectations of how specific groups are expected to behave. Cheng et al. (2023) characterizes
SNoB as a form of algorithmic unfairness arising from the associations between an algorithm’s
predictions and individuals’ adherence to inferred social norms. They also show that that adherence
to or deviations from social norms can result in harm in many contexts and that SNoB can persist
even after the application of some fairness interventions.

To quantify SNoB, the authors utilize the Spearman rank correlation coefficient p(p., r..), where p,.
represents the fraction of bios associated with occupation c that mention the pronoun ‘she’, and r,
measures the correlation between occupation predictions and gender predictions. The authors employ
separate one-vs-all classifiers for each occupation and obtain the occupation prediction for a given
bio using these classifiers. For gender predictions, they train occupation-specific models to determine
the gender-based group membership (female or not) based on a person’s bio, and use the predictions
from these models. A higher value of p(p., r.) represents a larger social norm bias, which indicates
that in male-dominated occupations, the algorithm achieves higher accuracy on bios that align with
inferred masculine norms, and vice versa.

Training We use a version of the Bios data shared by the authors of De-Arteaga et al. (2019).
We used the official implementation of Cheng et al. (2023), available at

, to obtain results and for comparison purposes. In this implementation,
they consider 25 occupations and train separate one-vs-all linear classifiers for each occupation based
on word embeddings to make predictions. We directly used their implementation to obtain results for
ERM and Decoupled (Dwork et al., 2018) on the data.

For our approach, we employed linear models for both the simple model and the final model. We
directly regularized the CMI with respect to the ERM from their implementation. The final model
was trained for 5 epochs using SGD with LR = 0.1, BS = 128, A\, = 5,5 = 5. We only tuned the
LR for this case, considering values of 0.05 and 0.1.
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