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Abstract

Camera images are ubiquitous in machine learning research. They also play a central role in
the delivery of important services spanning medicine and environmental surveying. However,
the application of machine learning models in these domains has been limited because
of robustness concerns. A primary failure mode are performance drops due to differences
between the training and deployment data. While there are methods to prospectively validate
the robustness of machine learning models to such dataset drifts, existing approaches do
not account for explicit models of the primary object of interest: the data. This makes it
difficult to create physically faithful drift test cases or to provide precise specifications of
data models that should be avoided during the deployment of a machine learning model. In
this study, we demonstrate how these shortcomings can be overcome by pairing machine
learning robustness validation with physical optics. We examine the role raw sensor data and
differentiable data models can play in controlling performance risks related to image dataset
drift. The findings are distilled into three applications. First, drift synthesis enables the
controlled generation of physically faithful drift test cases. (Revision#:2, Requested change
#:3.) The results for absolute and relative changes in task model performance obtained
with our method diverge markedly from an augmentation testing alternative that is not
physically faithful. Second, the gradient connection between machine learning model and our
data models allows for drift forensics that can be used to specify performance-sensitive data
models which should be avoided during deployment of a machine learning model. Third,
drift adjustment opens up the possibility for processing adjustments in the face of drift. This
can lead to speed up and stabilization of classifier training at a margin of up to 20% in
validation accuracy. Alongside our data model code we release two datasets to the public
that we collected as part of this work. In total, the two datasets, Raw-Microscopy and
Raw-Drone, comprise 1,488 scientifically calibrated reference raw sensor measurements, 8,928
raw intensity variations as well as 17,856 images processed through our data models with
twelve different configurations. A guide to access the open code and datasets is available at
https://anonymous.4open.science/r/tmlr/README.md.

1 Introduction

In this study we demonstrate how explicit data models for images can be constructed to enjoy advanced
controls in the validation of machine learning model robustness to dataset drift. We connect raw image
data, differentiable data models and the standard machine learning pipeline. This combination enables three
novel, physically faithful validation protocols that can be used towards intended use specifications of machine
learning systems, a necessary pre-requisite for the use of any technology in many application domains such as
medicine or autonomous vehicles.

Camera image data are a staple of machine learning research, from the early proliferation of neural networks
on MNIST [1–4] to leaps in deep learning on CIFAR and ImageNet [5–7] or high-dimensional generative
models [8, 9]. Camera images also play an important role in the delivery of various high-impact public and
commercial services. Unsurprisingly, the exceptional capacity of deep supervised learning has inspired great
imagination to automate or enhance such services. During the 2010s, "deep learning for ..." it rang loud in
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most application domains under the sun, and beyond [10], spanning medicine and biology (microscopy for
cell detection [11–14], histopathology [15, 16], opthalmology [17–19], malaria detection [20–23]), geospatial
modelling (climate [24–26], precision farming [27–29], pollution detection [30–32]) and more.

However, the excitement has been reined in by calls for caution. Machine learning systems exhibit particular
failure modes that are contingent on the makeup of their inputs [33–35]. Many findings from the machine
learning robustness literature confirm supervised learning’s tremendous capacity for identifying features
in the training inputs that are correlated with the true labels [36–40]. But these findings also point to a
flipside of this capacity: the sensitivity of the resulting machine learning model’s performance to changes -
both large and small - in the input data. Because this dependency touches on generalization, a summum

bonum of machine learning, the implications have been studied across most of its many sub-disciplines
including robustness validation [41–54], formal model verification [55–71], uncertainty quantification [72–82],
out-of-distribution detection [34, 83–87], semi- [88–90] and self-supervised learning [91, 92], learning theory
and optimization [93–96], federated learning [97–99], or compression [100–102], among others.

We refer to the mechanism underlying changes in the input data as dataset drift1. Formally, we characterize
it as follows. Let (XRAW , Y ) : Ω → R

H,W × Y be the raw sensor data generating random variable 2 on some
probability space (Ω, F ,P), for example with Y = {0, 1}K for a classification task. Raw inputs xRAW are in a
data state before further processing is applied, in our case photons captured by the pixels of a camera sensor
as displayed in the outputs of the ”Measurement” block in Figure 1. The raw inputs xRAW are then further
processed by a data model ΦProc : RH,W → R

C,H,W , in our case the measurement hardware like a camera
itself or other downstream data processing pipelines, to produce a processed view v = ΦProc(xRAW) of the
data as illustrated in the output of the ”Data model” block in Figure 1. This processed view v could for
example be the finished RGB image, the image data state that most machine learning researchers typically
work with to train a task model ΦTask : RC,H,W → Y. Thus, in the conventional machine learning setting
we obtain V = ΦProc(XRAW ) as the image data generating random variable with the target distribution
Dt = P ◦ (V , Y )−1. A different data model Φ̃Proc generates a different view Ṽ = Φ̃Proc(XRAW ) of the same
underlying raw sensor data generating random variable XRAW , resulting in the dataset drift

Ds = P ◦ (Ṽ , Y )−1 ̸= Dt. (1)

This characterization of dataset drift is closely related to the concept of distributional robustness in the sense
of Huber where "the shape of the true underlying distribution deviates slightly from the assumed model"
[104]. In practice, a possible reason for such a dataset drift to occur in images is a change in the camera
types or settings, for example different acquisition microscopes across different lab sites s and t that lead to
drifted distributions Ds ≠ Dt. Anticipating and validating the robustness of a machine learning model to
these variations in a realistic way is not just an engineering concern but also mandated by quality standards
in many industries [105–107]. Omissions to perform physically accurate robustness validations has, among
other reasons, slowed or prevented the rollout of machine learning technology in impactful applications such
as large-scale automated retinopathy screening [108], machine learning melanoma detection [109, 110] or yield
prediction [111] from drone cameras.

Hence, the calls for realistic robustness validation of image machine learning systems are not merely an exercise
in intellectual novelty but a matter of integrating machine learning research with real world infrastructures
and performance expectations around its core ingredient: the data.

1.1 Dataset drift validation for images: status quo

How can one go about validating a machine learning model’s performance under image dataset drift? The
dominant empirical techniques can broadly be categorized into augmentation and catalogue testing approaches,

1Note that the nomenclature around dataset drift is as heterogenous as the disciplines in which it is studied. See [103]
for a good discussion of cross-disciplinary terminological ambiguity. Here we are concerned with dataset drift as defined in
Equation (1), that is changes in V that are induced by changes in ΦProc which some works also refer to as covariate shift or
more generally as distribution shift.

2We write an uppercase letter A for a real valued random variable and a lowercase letter a for its realization. A bold
uppercase letter A denotes a random vector and a bold lowercase letter a its realization. For N ∈ N realizations of the random
vector A we write a1, ..., aN . The state space of the random vector A is denoted by A = {A(ω) | ω ∈ Ω}.
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Figure 1: Schematic illustration of an optical imaging pipeline, the data states and novel, raw-enabled drift
controls. Data x transitions through different representations. The measurement process yields metrologically
accurate raw data xRAW, where the errors on each pixel are uncorrelated and unbiased. From the RAW
sensor state data undergoes stages of image signal processing (ISP) ΦProc, the data model we consider here.
Finally, the data is consumed by a machine learning task model ΦTask which outputs ŷ. Combining raw data
with the standard machine learning pipeline and a differentiable data model ΦProc enables useful controls for
dataset drift comprising 1 drift synthesis, 2 drift forensics, and 3 processing adjustments under drift.

each with their own benefits and limitations (see Table 1 for a conceptual comparison). Augmentation
testing involves the application of perturbations, for example Gaussian noise, to already processed images
[43, 112, 113] in order to approximate the effect of dataset drift. Given a processed dataset this allows
for fast and easy generation of test samples. However, [114] point out that perturbations applied to an
already processed image can produce drift artifacts that are unfaithful to the physics of camera processing.
Results in optics further support the concern that the noise obtained from an image processing pipeline is
distinct from noise added to an already processed image [115, 116]. For illustration, assume we carry out
augmentation testing to test the robustness of the task model wrt. to the dataset drift (1). Let ξ ∼ Dnoise

be a noise sample additively applied to the the view resulting in v + ξ. Doing so, the task models robustness
is tested wrt. the distribution P ◦ (V + Ξ)−1 that might not approximate Ds well. Since P is unknown, this
is difficult to resolve but at least we could require that a sample used for robustness testing is an element
of the image Φ̃Proc [X RAW ] of X RAW under Φ̃Proc. Following this argumentation, we define a physically

faithful data point wrt. the dataset drift (1) as a view ṽ that satisfies ṽ ∈ Φ̃Proc [X RAW ]. In augmentation
testing, the test samples are not restricted to physically faithful data points wrt. to any dataset drift, since
v + ξ ∈ Φ̃Proc [X RAW] might not hold true for any data model.

A physically faithful alternative to augmentation testing is what we call catalogue testing. It involves the
collection of datasets from different cameras which are then used as hold-out robustness validation datasets
[49, 117–119]. It does not allow for as flexible and fast in-silico simulation of test cases as augmentation
testing because cataloguing requires expensive data collection after which the test cases are "locked-in".
Notwithstanding, catalogue testing comes with the appealing guarantee that test samples conform to the
processing physics of the different cameras they were gathered from, ensuring that only physically faithful
data points are used for testing.
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Augmentation testing Catalogue testing Data models

Simulation of test samples 6 : 6

Physically faithful test samples : 6 6

Differentiable data model : : 6

Table 1: A conceptual comparison of different empirical approaches to dataset drift validation for machine
learning task models. While augmentation testing allows the flexible, ad-hoc synthesis of test cases, they are,
in contrast to catalogue testing, not guaranteed to be physically faithful. Pairing qualified raw data with
explicit data models allows for flexible synthesis of physically faithful test cases. In addition, the differentiable
data model opens up novel drift controls including drift forensics and drift adjustments.

However, the root of input data variations - the data model of images - has received little attention in
machine learning robustness research to date. While machine learning practitioners are acutely aware of
the dependency between data generation and downstream machine learning model performance, as 75%
of respondents to a recent study confirmed [120], data models are routinely treated as a black-box in the
robustness literature. This blind spot for explicit data models is particularly surprising since they are standard
practice in other scientific communities, in particular optics and metrology [121–124], as well as advanced
industry applications, including microscopy [125–127] or autonomous vehicles [128–130].

1.2 Our contributions

In this study we bridge the disconnect between machine learning model robustness research and explicit
data models from physical optics. Combining raw image data, differentiable data models ΦProc of image
signal processing (ISP) and the standard machine learning pipeline enables us to go beyond what is possible
with augmentation and catalogue testing. We provide explicit, differentiable models of the data generating
process for flexible, physically faithful robustness validation of image machine learning models. Our core
contributions are:

• We collected and publicly release two raw image datasets in the camera sensor state for advanced
data models. These raw datasets come with full annotations and processing variations for both a clas-
sification (Raw-Microscopy, 17,860 total samples) and a regression (Raw-Drone, 10,412 total samples)
task as well as precise calibration information. The data can be downloaded from the anonymized
record https://zenodo.org/record/5235536 as well as through the data loader integrated in our
code base that is linked below.

• We provide modular PyTorch code for explicit and differentiable data models ΦTask from raw camera
sensor data. All code is anonymized and accessible at https://anonymous.4open.science/r/tmlr/

README.md.

• The combination of raw sensor data and modular ΦProc data models enables three novel dataset drift

controls for machine learning robustness validation:

1 Drift synthesis: Controlled synthesis of physically faithful drift test cases across a range of
possible data models. This is demonstrated for a classification and a regression task, showing that
the change in absolute and (Revision#:2, Requested change #:3.) relative task model performance
diverges markedly from what physically unfaithful alternatives like augmentation testing suggest
(Section 5.1).

2 Drift forensics: Given a particular data model ΦProc, the gradient from the upstream task
model ΦTask can propagate to ΦProc, thus enabling precise data forensics: the gradient can be used
to identify data model configurations of ΦProc under which ΦTask should not be used (Section 5.2).

3 Drift adjustments: Lastly, the gradient connection between data ΦProc and task model ΦTask

opens up the possibility for processing adjustments in the face of drift. This can speed up and
stabilize classifier training at a margin of up to 20% in validation accuracy (Section 5.3).
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2 Related work

While physically sound data models of images have to the best of our knowledge not yet found their way into
the machine learning robustness and dataset drift literature, they have been studied in other disciplines, in
particular physical optics and metrology. Our ideas on data models and dataset drift controls we present in
this manuscript are particularly indebted to the following works.

Raw image data Camera raw files contain the data captured by the camera sensors [121]. In contrast
to processed formats such as .jpeg or .png, raw files contain the sensor data with minimal processing
[115, 131, 132]. The processing of the raw data usually differs by camera manufacturer thus contributing to
dataset drift. Existing raw data sets from the machine learning, computer vision and optics literature can be
organized into two categories. First, datasets that are sometimes treated - usually not by the creators but
by users of the data - as raw data but which are in fact not raw. Examples for this category can be found
for both modalities considered here [133–143]. All of the preceding examples are processed and stored in
formats including .jpeg, .tiff, .svs, .png, .mp4 and .mov. Second, datasets that are labelled raw data
which are raw. In contrast to the labelled and precisely calibrated raw data presented here, existing raw
datasets [144–147] are collected from various sources for image enhancement tasks without full specification
of the measurement conditions or labels for classification or segmentation tasks.

Data models for images [148, 149] employ deep convolutional neural networks for modelling a raw image
data processing which is optimized jointly with the task model. In contrast, we employ a parametric data
model with tunable parameters that enables the modular drift forensics and synthesis presented later. [150]
propose a differentiable image processing pipeline for the purpose of camera lens manufacturing. Their goal,
however, is to optimize a physical component (lens) in the image acquisition process and no code or data is
publicly available. Existing software packages that provide low level image processing operations include
Halide [151], Kornia [152] and the rawpy package [153] which can be integrated with our Python and PyTorch
code.

Drift synthesis As detailed in Section 1, the synthesis of realistic drift test cases for a task model in
computer vision is often done by applying augmentations directly to the input view vGC, e.g. a processed
.jpeg or .png image. Hendrycks et al. [43] have done foundational work in this direction developing a
practical, standardized benchmark. However, as we explain in Section 1.1 there is no guarantee that noise
added to a processed image will be physically faithful v + ξ ∈ Φ̃Proc [XRAW]. This is problematic, as nuances
matter [154] for assessing the cascading effects dataset drift has on the task model ΦTask downstream
[120, 155]. For the same reason, the use of generative models [47] like GANs has been limited for test data
generation as they are known to hallucinate visible and less visible artifacts [156, 157]. Other approaches,
like the WILDS data catalogue [158, 159], build on manual curation of so called natural distribution shifts,
or, like [68], on artificial worst case constructions. These are important tools for the study of dataset drifts,
especially those that are created outside the camera image signal processing. Absent raw sensor data, the
shared limitation of catalogue approaches is that metrologically faithful drift synthesis is not possible.

Drift forensics Phan et al. [160] use a differentiable raw processing pipeline to propagate the gradient
information back to the raw image. Similar to this work, the signal is used for adversarial search. However,
Phan et al. optimize adversarial noise on a per-image basis in the raw space xRAW, whereas our work modifies
the parameters of the data model ΦProc itself in pursuit of harmful parameter configurations. The goal in
this work is not simply to fool a classifier, but to discover failure modes and susceptible parameters in the
data model ΦProc that will have the most influence on the task model’s performance.

Drift adjustments An explicit and differentiable image processing data model allows joint optimization
together with the task model ΦProc. This has been done for radiology image data [161–163] though the
measurement process there is different and the focus lies on finding good sampling patterns. For optical data,
a related strand of work is modelling inductive biases in the image acquisition process which is explained and
contrasted to this work above [116, 150].
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3 Preliminaries: the image data model

Before proceeding with a description of the methods we use to obtain the data models ΦProc in this study,
let us briefly review the distinction between raw data xRAW, processed image v and the mechanisms
ΦProc : RH,W → R

C,H,W by which an image data transitions between these states. The raw sensor image

xRAW obtained from a camera differs substantially from the processed image that is used in conventional
machine learning pipelines. The xRAW state appears like a grey scale image with a grid structure (see xraw

in Figure 1). This grid is given by the Bayer color filter mosaic, which lies over sensors [121]. The final
RGB image v is the result of a series of transformations applied to xRAW. For many steps in this process
different possible algorithms exist. Starting from a single xRAW, all those possible combinations can generate
an exponential number of possible images that are slightly different in terms of colors, lighting and blur
- variations that contribute to dataset drift. In Figure 1 a conventional pipeline from xRAW to the final
RGB image v is depicted. Here, common and core transformations are considered. Note that depending on
the application context it is possible to reorder or add additional steps. The symbol Φi is used to denote
the ith transformation and vi (view) for the output image of Φi. The first step of the pipeline is the black

level correction ΦBL, which removes any constant offset. The image vBL is a grey image with a Bayer filter
pattern. A demosaicing algorithm ΦDM is applied to construct the full RGB color image [164]. Given vDM,
intensities are adjusted to obtain a neutrally illuminated image vWB through a white balance transformation
ΦWB. By considering color dependencies, a color correction transformation ΦCC is applied to balance
hue and saturation of the image. Once lighting and colors are corrected, a sharpening algorithm ΦSH is
applied to reduce image blurriness. This transformation can make the image appear more noisy. For this
reason a denoising algorithm ΦDN is applied afterwards [165, 166]. Finally, gamma correction, ΦGC, adjusts
the linearity of the pixel values. For a closed form description of these transformations see Section 4.2.
Compression may also take place as an additional step. It is not considered here as the input image size is
already small. Furthermore, the effect of compression on downstream task model performance has been
thoroughly examined before [167–171]. However, users of our code can add this step or reorder the sequence
of steps in the modular processing object class per their needs3.

4 Methods

In order to perform advanced drift controls, raw sensor data and differentiable data models are required,
both of which we will explain next.

4.1 Raw dataset acquisition

As public, scientifically calibrated and labelled raw data is, to the best of our knowledge, currently not
available, we acquired two raw datasets as part of this study: Raw-Microscopy and Raw-Drone. We make both
datasets publicly available at https://zenodo.org/record/5235536. Raw-Microscopy consists of expert
annotated blood smear microscope images. Raw-Drone comprises drone images with annotations of cars. Our
motivation behind the acquisition of these particular datasets was threefold. First, we wanted to ensure that
the acquired datasets provide good coverage of representative machine learning tasks, including classification
(Raw-Microscopy) and regression (Raw-Drone). Second, we wanted to collect data on applications that, to our
minds, are disposed towards positive welfare impact in today’s world, including medicine (Raw-Microscopy)
and environmental surveying (Raw-Drone). Third, we wanted to ensure the downstream machine learning
task models are such where errors can be costly, here patient safety (Raw-Microscopy) and autonomous
vehicles (Raw-Drone), and hence where extensive robustness and dataset drift controls are particularly
relevant. Since data collection is an expensive project in and of itself we did not aspire to provide extensive
benchmark datasets for the respective applications, but to collect enough data to demonstrate the advanced
data modelling and dataset drift controls that raw data enables.

3See pipeline_torch.py and pipeline_numpy.py in our code.
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Figure 2: Processed samples and labels of the two datasets, Raw-Microscopy (columns one to four) and
Raw-Drone (columns five and eight), that were acquired for the dataset drift study presented here.

In the following we provide detailed information on the two datasets and, following good metrological practices,
the calibration setups of the acquisition process. Samples of both datasets can be inspected in Figure 2 and
Appendix A.3. Full datasheet documentation following [172] is also available in Appendix A.5.

Raw-Microscopy Assessment of blood smears under a light microscope is a key diagnostic technique [173].
The creation of image datasets and machine learning models on them has received wide interest in recent
years [13, 174, 175]. Variations in the image processing can affect the downstream task model performance
[176]. Dataset drift controls can thus help to specify the perimeter of safe application for a task model.
A raw dataset was collected for that purpose. A bright-field microscope was used to image blood smear
cytopathology samples. The light source is a halogen lamp equipped with a 0.55 NA condenser, and a
pre-centred field diaphragm unit. Filters at 450 nm, 525 nm and 620 nm were used to acquire the blue,
green and red channels respectively. The condenser is followed by a 40× objective with 0.95 NA (Olympus
UPLXAPO40X). Slides can be moved via a piezo with 1 nm spatial resolution, in three directions. Focus
was achieved by maximizing the variance of the pixel values. Images are acquired is 16 bit, with a 2560 ×
2160 pixels CMOS sensor (PCO edge 5.5). The point-spread function (PSF) was measured to be 450 nm
with 100 nm nanospheres. Mechanical drift was measured at 0.4 pixels per hour. Imaging was performed on
de-identified human blood smear slides (Ma190c Lieder, J. Lieder GmbH & Co. KG, Ludwigsburg/Germany).
All slides were taken from healthy humans without known hematologic pathology. Imaging regions were
selected to contain single leukoytes in order to allow unique labelling of image patches, and regions were
cropped to 256 × 256 pixels. All images were annotated by a trained hematological cytologist using the
standard scheme of normal leukocytes comprising band and segmented neutrophils, typical and atypical
lymphocytes, monocytes, eosinophils and basophils [177]. To soften class imbalance, candidates for rare
normal leukocyte types were preferentially imaged, and enrich rare classes. Additionally, two classes for debris
and smudge cells, as well as cells of unclear morphology were included. Labelling took place for all imaged
cells from a particular smear at a time, with single-cell patches shown in random order. RI were extracted
using JetRaw Data Suite features. Blue, red and green channels are metrologically rescaled independently in
intensity to simulate a standard RGB camera condition. Some pixels are discarded complementary on each
channel in order to obtain a Bayer filter pattern.

Raw-Drone Automated processing of drone data has useful applications including precision agriculture
[178] or environmental protection [179]. Variation in image processing has been shown to affect task model
performance [111, 115], underlining the need for drift controls. For the purposes of this study, a raw car
segmentation dataset was created for the drone image modality. A DJI Mavic 2 Pro Drone was used,
equipped with a Hasselblad L1D-20c camera (Sony IMX183 sensor) having 2.4 µm pixels in Bayer filter array.
The objective has a focal length of 10.3 mm. The f-number was set to N = 8, to emulate the PSF circle
diameter relative to the pixel pitch and ground sampling distance (GSD) as would be found on images from
high-resolution satellites. The PSF was measured to have a circle diameter of 12.5 µm. This corresponds to a
diffraction-limited system, within the uncertainty dominated by the wavelength spread of the image. Images
were taken at 200 ISO, a gain of 0.528 DN/e−. The 12-bit pixel values are however left-justified to 16-bits, so
that the gain on the 16-bit numbers is 8.448 DN/e−. The images were taken at a height of 250 m, so that the
GSD is 6 cm. All images were tiled in 256 × 256 patches. Segmentation color masks were created to identify
cars for each patch. From this mask, classification labels were generated to detect if there is a car in the
image. The dataset is constituted by 548 images for the segmentation task.
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Both datasets include six additional raw variations at different intensity scales, augmented with JetRaw Data
Suite.

4.2 Data models: Image signal processing ΦProc

The second ingredient to this study are the data models of image processing which form the basis for the drift
controls presented later. Let (XRAW , Y ) : Ω → R

H,W × Y be the raw sensor data generating random variable
on some probability space (Ω, F ,P), with Y = {0, 1}K for classification and Y = {0, 1}H,W for segmentation.
Let ΦTask : RC,H,W → Y be the task model determined during training. The inputs that are given to the task
model ΦTask are the outputs of the data model ΦProc. We distinguish between the raw sensor image xRAW

and a view v = ΦProc(xRAW) of this image, where ΦProc : RH,W → R
C,H,W models the transformation steps

applied to the raw sensor image during processing.

The objective in supervised machine learning is to learn a task model ΦTask : RC,H,W → Y within a fixed
class of task models H that minimizes the expected loss wrt. the loss function L : Y × Y → [0, ∞), that is to
find Φ⋆

Task such that

inf
ΦTask∈H

E[L (ΦTask(V ), Y )]

is attained. Towards that goal, ΦTask is determined during training such that the empirical error

1

N

N�

n=1

L (ΦTask(vn), yn)

is minimized over the sample S = ((v1, y1), ..., (vN , yN )) of views. Modelling in the conventional machine
learning setting begins with the image data generating random variable (V , Y ) = (ΦProc(XRAW ), Y ) and
the target distribution Dt = P ◦ (V , Y )−1. Given a dataset drift, as specified in Equation (1), without a
data model we have little recourse to disentangle reasons for performance drops in ΦTask. To alleviate this
underspecification, an explicit data model is needed. We consider two such models in this study: a static
model Φstat

Proc and a parametrized model Φpara
Proc.

In the following, we denote by xRAW ∈ [0, 1]H,W the normalized raw image, that is a grey scale image with a
Bayer filter pattern normalized by 216 − 1, i.e.

xRAW =




A1,1 . . . A1, W
2

. . .

. . .

. . .
A H

2
,1 . . . A H

2
, W

2




with Ah,j =

�
r2h+1,2w+1 g2h+1,2w

g2h,2w+1 b2h,2w

�
,

where the values r2h+1,2w+1, g2h+1,2w, g2h,2w+1, b2h,2w correspond to the values measured through the different
sensors and normalized by 216 − 1. We provide here a precise description of the transformations that we
consider in our static model, followed by a description how to convert this static model into a differentiable
model.

4.2.1 The static data model Φstat
Proc

Following common steps in ISP, the static data model is defined as the composition

Φstat
Proc = ΦGC ◦ ΦDN ◦ ΦSH ◦ ΦCC ◦ ΦWB ◦ ΦDM ◦ ΦBL, (2)

mapping a raw sensor image to a RGB image. We note that other data model variations, for example by
reordering or adding steps, are feasible. The static data models allow the controlled synthesis of different,
physically faithful views from the same underlying raw sensor data by manually changing the configurations
of the intermediate steps. Fixing the continuous features, but varying ΦDM, ΦSH and ΦDN results in twelve
different views for the configurations considered here. Samples for each of the twelve data models are provided
in 3a. The individual functions of the composition Φstat

Proc are specified as follows. If not stated otherwise,
writing the equation vc,h,w = ac,h,w + bc,h,w defines vc,h,w for all 1 f c f 3, 1 f h f H and 1 f h f W .
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(a) Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve
static data models Φ

stat
Proc used for the drift synthesis experiments in Section 5.1.

A version with higher resolution is omitted here to save space and can instead be
found in Figure 8 in the appendices.

Data models Used functions

bi,s,me ΦBil
DM ΦSF

SH ΦMD
DN

bi,s,ga ΦBil
DM ΦSF

SH ΦGD
DN

bi,u,me ΦBil
DM ΦUM

SH ΦMD
DN

bi,u,ga ΦBil
DM ΦUM

SH ΦGD
DN

me,s,me ΦMen
DM ΦSF

SH ΦMD
DN

me,s,ga ΦMen
DM ΦSF

SH ΦGD
DN

me,u,me ΦMen
DM ΦUM

SH ΦMD
DN

me,u,ga ΦMen
DM ΦUM

SH ΦGD
DN

ma,s,me ΦMal
DM ΦSF

SH ΦMD
DN

ma,s,ga ΦMal
DM ΦSF

SH ΦGD
DN

ma,u,me ΦMal
DM ΦUM

SH ΦMD
DN

ma,u,ga ΦMal
DM ΦUM

SH ΦGD
DN

(b) Abbreviations of the twelve
configurations of the static data
model Φ

stat
Proc used in the drift

synthesis experiments.

Figure 3

Black level correction (BL) removes thermal noise and readout noise generated from the camera sensor.
The transformation is given by

ΦBL : [0, 1]H,W → [0, 1]H,W , xRAW �→ vBL,

with

(vBL)2h+1,2w+1 = x2h+1,2w+1 − bl1

(vBL)2h,2w+1 = x2h,2w+1 − bl2

(vBL)2h+1,2w = x2h+1,2w − bl3

(vBL)2h,2w = x2h,2w − bl4,

By design of bl ∈ R
4, black level correction ensures that vBL is again an element of [0, 1]H,W .

Demosaicing (DM) is applied to reconstruct the full RGB color image, by applying a certain interpolation
rule. We use one out of the three demosaicing algorithms BayerBilinear (ΦBil

DM), Menon2007 (ΦMen
DM ) and

Malvar2004 (ΦMal
DM) from the python package color-demosaicing and denote this transformation by the map

ΦDM : [0, 1]H,W → [0, 1]3,H,W , v �→ vDM.

White balance (WB) is applied to obtain a neutrally illuminated image. The transformation is given by

ΦWB : [0, 1]3,H,W → [0, 1]3,H,W , v �→ vWB,

where wb ∈ [0, 1]3 adjusts the intensities by

(vWB)c,h,w = wbc · (vDM)c,h,w.

Color correction (CC) balances the saturation of the image by considering color dependencies. Let
M ∈ R

3,3 be the color matrix. The transformation is defined by

ΦCC : [0, 1]3,H,W → R
3,H,W , v �→ vCC,

where

vCC =




(vCC)1,h,w

(vCC)2,h,w

(vCC)3,h,w


 = M




(vWB)1,h,w

(vWB)2,h,w

(vWB)3,h,w


 .

The entries of the resulting vCC are no longer restricted to [0, 1].

Sharpening (SH) reduces the blurriness of an image. We use the two methods sharpening filter (ΦSF
SH)

and unsharp masking (ΦUM
SH ) that are applied after a transformation of the view vCC to the Y UV -color

space. To convert the view to the Y UV -color space we use the skimage.color function rgb2yuv (ΦY UV ). The
sharpening filter

SF : R3,H,W → R
3,H,W ,
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is defined by a channel-wise convolution

(SF (v))c,h,w = ((vc ⋆ k)h,w)
c

with k :=




0 −1 0
−1 5 −1
0 −1 0


 (3)

of the view

v = ΦY UV (vCC).

For unsharp masking we use the ski.filters function unsharp_mask modeled by UM . To formally define the
sharpening we write

ΦSH : R3,H,W → R
3,H,W , v �→ vSH

where

vSH = algo ◦ ΦY UV (vCC) with algo ∈ {SH, UM}.

Denoising (DN) reduces the noise in an image that is (partly) introduced by SH and transforms the
Y UV -color space view back to the RGB-color space. For the latter transformation, the skimage.color function
yuv2rgb (Φ−1

Y UV ) is used. We apply one out of the two methods Gaussian denoising (ΦGD
DN) and Median

denoising (ΦGD
DN). For Gaussian denoising, we apply a Gaussian filter (GF) with standard deviation of Ã = 0.5

from the scipy.ndimage package. For median denoising we apply a median filter (MF of size 3 from the
scipy.ndimage package. Formally, this reads as

ΦDN : R3,H,W → R
3,H,W , v �→ vDN

where

vDN = Φ−1
Y UV ◦ algo(vSH) with algo ∈ {GF, UM}.

Gamma correction (GC) equilibrates the overall brightness of the image. First, the entries of the view
vDN are clipped to [0, 1] leading to

(vCP )c,h,w = (vDN)c,h,w 1{0f(vDN)c,h,wf1} + 1{(vDN)c,h,w>1}.

Second, the brightness adjusting transformation is defined by

ΦGC : R3,H,W → [0, 1]3,H,W , v �→ vGC = (vCP )
1
γ

for some µ > 0 applied element-wise. Note that zero-clipping is necessary for vGC to be well-defined.

In total, we define the composition

Φstat
P roc : [0, 1]H,W �→ [0, 1]3,H,W

of the above steps

Φstat
Proc := ΦGC ◦ ΦDN ◦ ΦSH ◦ ΦCC ◦ ΦWB ◦ ΦDM ◦ ΦBL (4)

and call Φstat
Proc the static pipeline.

To test the effect of different static data models on the performance of two task models, we fix the continuous
features bl, wb, M and µ, but vary the demosaicing method, the sharpening method and the denoising
method, resulting in twelve different views, generated by different configurations of Φstat

Proc. An overview of the
data model configurations and their corresponding abbreviations can be found alongside processed samples in
Figures 3a and 3b.

4.2.2 The parametrized data model Φpara
Proc

For a fixed raw sensor image, the parametrized data model Φpara
Proc maps from a parameter space Θ to a

RGB image. It is similar to the static data model with the notable difference that each processing step is
differentiable wrt. its parameters θ. This allows for backpropagation of the gradient from the output of the
task model ΦTask through the data model ΦProc all the way back to the raw sensor image xRAW to perform
drift forensics and drift adjustments. Hence, we aim to design a data model Φpara

Proc : RH,W × Θ → R
C,H,W

that is differentiable in θ ∈ Θ satisfying

Φstat
Proc = Φpara

Proc

�
·, θstat

�

for some choice of parameters θstat and some fixed configuration of the static pipeline Φstat
Proc.

Black level correction (BL) For the parametrized black level correction define the map

Φstat
BL : [0, 1]H,W × R

4 → R
H,W , (xRAW, θ1) �→ vBL = ΦBL(xRAW)|bl=θ1

.
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and set Θ1 := R
4.

Demosaicing (DM) We first convert vBL to a three channel image [R, G, B] ∈ R
3,H,W where the entries of

R, G and B are zero except

R2h+1,2w+1 = vBL2h+1,2w+1
, B2h,2w = vBL2h,2w

,

G2h+1,2w = vBL2h+1,2w
, G2h,2w+1 = vBL2h,2w+1

.

To parametrize ΦBil
DM define the map

Φpara
DM : [0, 1]H,W × R

3,3,3 → R
3,H,W , (vBL, θ2) �→ vDM

with θ2 = [k1, k2, k3], where the kernels k1, k2, k3 ∈ R
3,3 are separately applied to each color channel resuling

in

vDM1,h,w
= (R ⋆ k1)h,w

vDM2,h,w
= (G ⋆ k2)h,w

vDM3,h,w
= (B ⋆ k3)h,w .

The source code of BayerBilinear shows that the parameter choice

k1 = k3 =




0 0.25 0
0.25 1 0.25

0 0.25 0


 and k2 =




0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25




leads to

ΦBil
DM = Φpara

DM (·, θ2).

Towards the definition of the parameter space set Θ2 := R
3,3,3 × Θ1.

White balance (WB) For the parametrized white balance define the map

Φpara
WB : R3,H,W × R

3 → R
3,H,W , (vDM, θ3) �→ vWB = ΦWB(vDM)|wb=θ3

and set Θ3 := R
3 × Θ2.

Color correction (CC) For the parametrized color correction define the map

Φpara
CC : R3,H,W × R

3,3 → R
3,H,W , (vWB, θ4) �→ vCC = ΦCC(vWB)|M=θ4

and set Θ4 := R
3,3 × Θ3

Sharpening (SH) We parametrize the sharpening filter configuration of the static pipeline, by using the
entries of k ∈ R

3,3 defined in (3) as parameters leading to

Φpara
SH : R3,H,W × R

3,3 → R
3,H,W , (vCC, θ5) �→ vSH = ΦSH(vCC)|k=θ5

and Θ5 := R
3,3 × ¹4.

Denoising (DN) We parametrize the configuration where the Gaussian denoising method is applied.
Applying the Gaussian filter from scipy.ndimage with Ã = 0.5 is equivalent to a convolution of the view in
the Y UV -color space with a specific kgauss ∈ R

5,5. For the specific values of kgauss see K_BLUR at the
code of the parametrized pipeline. Therefore, to parametrize DN we define the map

Φpara
DN : R3,H,W × R

5,5 → R
3,H,W , (vSH, θ6) �→ vDN = ΦDN(vSH)|kgauss=θ6

and set Θ6 := R
5,5 × Θ5

Gamma correction (GC) Define the parametrized gamma correction by

Φpara
GC : R3,H,W × R → [0, 1]3,H,W , (vDN, θ7) �→ v = vGC = ΦGC(vDN)|µ=θ7

.

Using all the above steps, we define for θ = (θ1, ..., θ7) ∈ Θ the parametrized processing model

Φpara
P roc : [0, 1]3,H,W × Θ → [0, 1]3,H,W , (xRAW, θ) �→ v

by the composition

v =
�

Φ
para

GC
(·, θ7) ◦ Φ

para

DN
(·, θ6) ◦ Φ

para

SH
(·, θ5) ◦ Φ

para

CC
(·, θ4) ◦ Φ

para

WB
(·, θ3) ◦ Φ

para

DM
(·, θ2) ◦ Φ

para

BL
(·, θ1)

�
(xRAW) . (5)

We call Φpara
Proc the parametrized data model. The operations used above are differentiable except for the

clipping operation in the GC that is a.e.-differentiable, since the set {0, 1} of non-differentiable points has
measure zero. Assuming in addition that P ((vDN)c,h,w ∈ {0, 1}) = 0 holds true for the entries of vDN results
in an a.e.-differentiable processing model. We further say that Φpara

Proc is differentiable, noting that this holds
only a.e. under the aforementioned assumption.
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4.3 Task models ΦTask

Finally, with the data models in place, we also employ two task models in the experiments. For the classification
task on the Raw-Microscopy dataset a 18-layer residual net (ResNet18) [180] was used as reference task
model. To segment cars from the Raw-Drone dataset the convolutional neural network proposed in [181]
(U-Net) was used. Both task models were trained using data augmentation to avoid naive robustness failures.
A detailed description of the task models and their hyperparameters is given in A.2.

5 Applications

With raw data, data models and task models in place we are now in a position to perform advanced controls for
dataset drift validation comprising 1 drift synthesis, 2 modular drift forensics and 3 processing adjustments
under drift.

5.1 Drift synthesis

The static data model enables physically faithful synthesis of drift test cases: individual components of the
data model can be swapped out, allowing the controlled creation of different, physically faithful processed
views from one raw reference dataset. A usage scenario of drift synthesis for machine learning researchers
and practitioners is the prospective validation of their task model to drift from different camera devices, for
example microscopes across different labs, without having to collect measurements from the different devices.

For each data configuration laid out in Section 4.2, the task models were trained for 100 epochs on image
data processed through the training data model. Hyperparameters were kept constant across all runs to
isolate the effect of varying the data models. Then, dataset drift test cases were synthesized by processing
the raw test data through the remaining eleven data models. The task models were then evaluated on test
data from all twelve data models. All results that follow are reported as the mean with error bars over a
5-fold cross-validation4. The metrics used to evaluate the task models are accuracy for classification and IoU
for segmentation.

The leukocyte classification model, as displayed in the left matrix of Figure 4, has a critical drop for few
configurations, suggesting that it is relatively robust to processing induced dataset drift except for the
(ma,s,me) configuration. Note that diagonal elements serve as reference corresponding to test data that
was processed in the same way as the training data. The segmentation task model (left matrix in Figure 5)
displays a more heterogeneous pattern with symmetries for certain combinations of data models, such as (bi,
u, me/ga) and (me, s, me/ga), which are mutually destructive to the task model performance. The average
performance drop of the task models between train and test data models is from 0.82 to 0.8 for classification
and from 0.71 to 0.65 for segmentation.

Under augmentation testing with the Common Corruptions Benchmark [43] corruptions such as Gaussian blur
are applied to already processed images v. (Revision#:2, Requested change #:3) Only those corruptions that
can plausibly be related to the ISP were used in this comparison. Others, such as Fog, Spatter, Motion, Snow,
Frost were excluded5. In contrast to physically faithful test data, the performance drops under corruptions
are more severe across the board: from 0.82 to 0.55 for classification and from 0.71 to 0.49 for segmentation6.
This is more than thirteen and four times as much as for the physically faithful drifts synthesized with the
data models considered here. (Revision#:2, Requested change #:3.) Similarly, the conclusions for model
selection diverge depending on whether physically faithful data or corruptions are used. In terms of the
average performance across all test conditions, none of the top-3 ranking training data models overlap between
ISP and common corruptions on the classification task. For segmentation, only one of the training data
models (bi,s,ga) overlaps in the top-3 under ISP and common corruptions. Similarly, the training data
models under which task models perform best in individual testing conditions vary widely between ISP and
common corruptions, both for classification and segmentation. (Revision#:2, Requested change #:3.) We

4You can find a full description of task model hyperparameters and experimental setup in Appendix A.2.
5A comparative overview of included and excluded corruptions can be found in Figure 10 of Appendix A.4
6Results at additional severity levels for the common corruptions can be found in Appendix A.4.
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1 Drift synthesis with Φstat
Proc: Microscopy

Figure 4: Top: 5-fold cross-validation results of the Raw-Microscopy drift synthesis experiments. Each cell
contains the average accuracy with a color coded border for the standard deviation. Task models were trained
on the data models on the vertical axis and then tested on processed data as indicated on the horizontal
axis. (Revision#:2, Requested change #:3.) Numbers 1-3 left to the vertical axis denote the ranking of task
models according to their average accuracy across all test pipelines respective corruptions. Stars denote
the train pipeline under which the task model performed best on the respective test pipeline/corruption.
Full ranking results can be found in Tables 7 to 9 of Appendix A.4. Left: Varying the data model leads to
mild performance drops except (ma,s,me). Diagonal is ΦProc = Φ̃Proc. Right: Comparison to the corruption
benchmark at medium severity (level 3). The average performance drop is more than thirteen times higher
compared to data model variations. First column is ΦProc = Φ̃Proc. Bottom: Visual inspection of worst case
train/test pipelines from the results in (a). Small, local changes caused by the data model induced drift
lead to performance drops. Top: A Raw-Microscopy sample with (me, u, me) and (ma, s, me) data models.
Bottom: A Raw-Drone sample with (ma, s, ga) and (bi, u, me) data models.

argue under such circumstances, when the conclusions we arrive at diverge between two synthetic robustness
testing protocols, data models are preferable because the data generating process is physically faithful. It
is transparent and explicit what steps in this process change between shift views that are used for testing,
allowing extrapolation to real-world deployment environments matching these data models. As common
corruptions have no metrological specification it is challenging to relate them to physically faithful data
synthesis in one-to-one comparison. We do however provide a purely qualitative matching heuristic based on
visual perception of the drift artifacts in Figure 10 (Appendix A.4).

The qualitative difference between physically faithful drift test cases and augmentation testing can also be
appreciated in the samples of the bottom rows of Figures 4 and 5. For each task we display a sample from
the drift test configuration with the worst case performance drop between train and test data conditions.
We show the sample viewed from training data model (A), the test data model (B), and the difference
between both (|A-B|) along the red, green and blue channel. For both tasks, the drift artifacts (|A-B|) are

13
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1 Drift synthesis with Φstat
Proc: Drone

Figure 5: 5-fold cross-validation results of the Raw-Drone drift synthesis experiments. Each cell contains the
average IoU with a color coded border for the standard deviation. Task models were trained on the data
model on the vertical axis and then tested on processed data as indicated on the horizontal axis. (Revision#:2,
Requested change #:3.) Numbers 1-3 left to the vertical axis denote the ranking of task models according
to their average IoU across all test pipelines respective corruptions. Stars denote the train pipeline under
which the task model performed best on the respective test pipeline/corruption. Full ranking results can be
found in Tables 7, 10 and 11 of Appendix A.4. Left: Varying the data model leads to mixed performance
drops. Diagonal is ΦProc = Φ̃Proc. Right: Comparison to the corruption benchmark at medium severity
(level 3). The average performance drop is more than four times higher compared to data model variations.
First column is ΦProc = Φ̃Proc.

more localized than the artifacts obtained from augmentation testing. This makes sense, as changes in the
composition of the test data models ΦProc maintain the physical faithfulness of the remaining data model,
whereas augmentation testing spreads noise globally across all pixels which is not guaranteed to be physically
faithful.

Why does physically faithful matter for dataset drift testing? A test result is only as reliable as its constituting
parts. If we are to rely on robustness test results to decide whether to use a task model in a certain data
environment or not, we need to ensure the test cases represent real-world data models. If the test cases are
not physically faithful, the results based on them are of limited use to make decisions.

5.2 Drift forensics

Similarly, clear specification of the limitations of use is a mandated requirement for many products that
can potentially contain machine learning components, such as software as a medical device [105, 106] or
autonomous vehicles [182]. Without knowledge and control over the data acquisition process in practice this
can be difficult to achieve. Raw data combined with a differentiable data model mitigates that challenge.
Φpara

Proc enables the analysis of the task model’s susceptibility to dataset drift in an interpretable manner
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2 Drift forensics with ∇θ¼∥V − "V ∥2
2 − L( "V , Y )

Figure 6: Top left: Test accuracy on the Raw-Microscopy test set after 20 epochs of adversarial search in the
data model for varying regularization weight parameters ¼. The individual plots depict the various pipeline
parameter selections. Top right: Plot showing ℓ2-norm (of processed images between the adversarially trained
"Φ

para

Proc and the default Φpara
Proc) versus attained accuracy of the task model. The metrics are evaluated on

the test set after 20 epochs of adversarial optimization for varying regularization weight parameter ¼. The
individual plots depict the various data model parameter selections. A lower regularization results in a bigger
search space for adversarial optimization. Bottom: Processed samples from the drift forensics after 20 epochs
with varying regularization weights ¼.

using adversarial search. Related work, such as [160] also uses a differentiable raw processing pipeline to
propagate the gradient information back to the raw image. There, however, the signal is used in a classical
adversarial setup, to optimize adversarial noise on a per-image basis. Here, gradient updates are not applied
to individual images, but to the data model parameters. The goal of such an analysis is to identify the
parameter configurations of the data model under which the task model should not be operated. The resulting
adjustments correspond to plausible changes which reflect changes in data model, for example due to changing
camera ISPs. In order to limit the parameter ranges, we chose an explicit constraint in the RGB space.

minimize
"θ∈Θ

¼∥V − "V ∥2
2 − L( "V , Y ) , (6)

where V = Φpara
Proc(XRAW, θ) are the RGB images obtained from the original data model and "V =

Φpara
Proc(XRAW, "θ) are the RGB images obtained from adversarial search on the data model parameters.

Equation (6) maximizes the classification loss under a relaxed ℓ2-constraint controlled by the hyperparameter
¼ g 0. This procedure yields data model parameters that deteriorate the task model performance while
keeping the measured distortion minimal and the within constraints of physical faithfulness. All of the
pipeline’s parameters are optimized jointly to search for a task model’s overall data model related weaknesses.
Targeting select parameters is also possible and provides insight into a parameter’s effect on the task model’s
performance.

The plot in the top left of Figure 6 shows sensitivities of the task model accuracy to a variety of targeted
parameter choices. With increased relaxation of the ℓ2-regularization, the accuracy declines exposing
configurations under which the task model deteriorates. As to be expected, the setting allowing for all
parameters to be altered shows the biggest effect on the resulting performance. Individually, changes in the
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3 Drift adjustments with Φpara

Proc

(a) Low intensity (0.001) XRAW with Φpara
Proc (b) High intensity (1.0) XRAW with Φpara

Proc

Frozen Learned Validation metric Frozen Learned Validation metric
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Figure 7: Low (a) and high (b) intensity images processed by a frozen and a learned pipeline. This type
of drift adjustment would not be possible with processed data that is typically used for machine learning
experiments. The plots in the rightmost column of each block display the mean of validation metrics over
five cross validation runs. Error bars are reported as one standard deviation. Optimization step 1439 and 915
correspond to epoch 60 into training.

black level configuration Φpara
BL and the denoising parameters Φpara

DN pose the greatest risk for task model
performance, requiring a higher relaxation weight in order to be able to affect the outcome of the task.

For comparison, the plot in the top right of Figure 6 shows the regularization weight ¼ against the resulting
ℓ2. Interestingly, a higher norm in the resulting RGB images does not directly translate to the most severe
performance degradation of the task model. At ℓ2 = 10−5, changes in the Gaussian blur parameters induce a
norm almost twice as large as the changes in the black level parameters. However, the corresponding drop in
accuracy caused by Gaussian blur is around one third less relative to black level. Similarly, at ℓ2 = 10−5,
the sharpening filter parameters incur a norm but do not lead to accuracy drops of the task model. This
underscores the importance of precise data models for dataset drift validation. Physically faithful yet small
changes, as visible in the samples in bottom row of Figure 6, in processed images can have larger impact on
the performance than large changes.

(Revision#:1, Requested change #:2.) Here we demonstrated drift forensics on the classification task because
we suspect it is the setting where forensics can be particularly useful. This is because regression models, in
contrast to classification models, are less susceptible to instabilities. Classification problems are inherently
discontinuous while inverse problems inherently allow for more stable solutions [183]. Additional drift forensic
results on the segmentation task model with Raw-Drone data can be found in Appendix A.4.2. However, the
performance drops are, as expected, less severe.

(Revision#:2, Requested change #:4.) A practical use-case of drift forensics looks follows: party A develops
and trains a model and then licenses it to party B for use. Party B wants to know what the data conditions
are under which the model performs well and under which conditions it should not be used. Party A runs
drift forensics and provides party B with a forensic signature, as in Figure 6, detailing which parameters
in the processing can be changed and which should not be touched. Party B can use this information to
calibrate their data processing and knows which data settings to avoid for the specific task model.

5.3 Drift adjustments

In the previous two experiments we demonstrated how raw data and a differentiable data model can be used
to identify and then modularly test for unfavorable data models that should be avoided during deployment of
the machine learning task model. The same mechanics can also be exploited to adjust the task model under
dataset drift. In the drift adjustment setting, the gradient from the task model ΦTask is propagated into the
data model ΦProc to jointly optimize both of them.
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In the drift adjustment experiment, a parametrized data model Φpara
Proc is paired with a task model. As

a form of drift, the task model is trained with very low intensity (0.001) raw data xRAW that is being
processed through Φpara

Proc. In the learned setting, the data model parameters are jointly optimized with the
task model parameters. In the frozen setting, only the task model parameters are optimized and the data
model parameters are kept fixed7.

In the left column (a) of Figure 7 these two scenarios are compared. The learned data model is better able
to accommodate the dataset drift as visible in the improved stability of the learning trajectory. This is
indicated by the blue line which displays the validation accuracy against optimization steps for the first half
of training (step 1439 corresponds to epoch 60). It exceeds that of the frozen data model (red line) by up to
25 percentage points in accuracy at a lower variance. In fact, the processed image from a learned data model
(see learned column in block (a) of Figure 7 for an example) can contain visible artifacts that aid stability and
generalization vis-a-vis the image from the frozen baseline data model which, arguably, looks cleaner to the
human eye. A possible explanation for the improved learning trajectory could be that a varying processing
pipeline automatically generates samples akin to data augmentation. Such uses could further be explored in
scarce data settings like fine tuning, semi-supervised or few-shot learning. Having gradient access to the data
model thus offers the opportunity to optimize data generation itself for a given machine learning task.

For the segmentation task (bottom row Figure 7) the stabilization effect is not observable. This could be due
to the low resolution of the problem itself as the processing may not have a large effect on enhancing the
solid blocks of cars in the raw data as well as evidence suggesting that inverse problems are inherently less
unstable [183].

Similar outcomes for stability and artifacts can also be observed for the reverse situation (high intensity
1.0 xRAW) in the right column (b) of Figure 7. (Revision#:1, Requested change #:2.) We demonstrated
how parametrized data models can be used to control drift under physically faithful constraints. Going
beyond physically faithful drift controls, an interesting future extensions to these experiments includes
training directly on raw data to optimize task model performance. Additional results illustrating two learning
trajectories in this setting can be found in Appendix A.4.3.

6 Discussion

The main message we hope to to convey in this manuscript is this: black-box data models for images do not
have to be the norm in machine learning research and engineering. Leveraging established knowledge from
physical optics enables us to push the modelling goalpost further towards machine learning’s core ingredient:
the data. Paired with raw data, precise differentiable data models for images allow for advanced controls of
dataset drift, a common and far reaching challenge across many machine learning disciplines. Interesting uses
beyond robustness validation in areas of machine learning that are held back by black-box data also appear
opportune.

Drift synthesis allows the physically faithful synthesis of drift test cases. In contrast to augmentation testing,
the performance drops for physically faithful test cases are less severe across the board for both uses cases
in our experiments. The difference between physically faithful and augmentation drift test cases can also
be appreciated qualitatively where the former maintains the noise structure of the data model composition
while the latter spreads noise globally across all pixels which is not guaranteed to adhere to real-world
measurements and their processing. A plausible practical application scenario of drift synthesis for machine
learning researchers and practitioners is the prospective validation of their task model to drift from different
camera devices, for example microscopes across different lab sites or autonomous vehicles, without having to
collect measurements from the different devices. Drift synthesis could also be interesting for other application
domains that rely on data synthesis (semi- [88–90] and self-supervised learning [91, 92]) or on precise data
models (aleatoric uncertainty quantification [72–82], out-of-distribution detection [34, 83–87]). While we
cross-validated a substantial number of data model variations in our experiments, it should be noted that
further variations, for example by reordering or adding steps, are possible. Furthermore, it should not be

7The initialization of Φ
para

Proc
(both frozen and learned) is set to standard values which can be found in Appendix A.1 as well

as in pipeline_torch.py of the code.
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overlooked that dataset drift can also be caused by factors outside the ISP data model, for example the
optical components of a camera. Our current data models are not yet capable of capturing factors that go
beyond the ISP. Integrating work from lens manufacturing [150] to expand the reach explicit data models
offers a promising next step for drift synthesis.

Drift forensics allow the precise specification of data model limitations of use for a given machine learning task
model. Data models under which the task model should not be operated can be identified by gradient search
and then documented. In our demonstration, the setting allowing for all parameters to be altered shows the
biggest effect on the resulting performance. Individually, changes in the black level configuration and the
denoising parameters pose the greatest risk for performance of the task model at hand. Interestingly, a higher
norm in the resulting RGB images does not directly translate to the most severe performance degradation
of the task model. This underscores the importance of precise data models for dataset drift validation. In
practice, clear specification of the limitations of use is a mandated requirement for many products that
can potentially contain machine learning components, such as software as a medical device [105, 106] or
autonomous vehicles [182]. Drift forensics with explicit data models can help to align machine learning and
data engineering with such regulatory constraints. Explicit data models combined with gradient search may
also be interesting to explore in areas such as formal model verification [55–71] to obtain tighter error bounds.
A caveat to be noted is that our experiments were carried out only under an ℓ2-constraint. Other constraints
are feasible, depending on the particular use case to be analyzed, and can be plugged into our code8

We also showed how differentiable data models can be used for drift adjustments where the data model
parameters are jointly optimized with the task model parameters. It leads to improved stability of the
learning trajectory on the classification task in both directions (low and high intensity measurements).
Interestingly, the processed image from a learned data model can contain visible artifacts that aid stability
and generalization vis-a-vis the image from the frozen baseline data model which arguably looks cleaner to the
human eye. In practice, the extension of the gradient connection from the task model ΦTask to the data model
ΦProc enables the extension of machine learning right into the data generating process. Thus, data generation
itself can be optimized to best suit the task model at hand. Furthermore, the stabilization effect could prove
useful for learning problems where training is costly and speedup precious (for example large models or
large datasets). This capacity could also be exploited in other areas that deal with heterogenous training
or deployment environments, such as different clients in federated learning [97–99] or domain adaptation
techniques [184]. However, the above drift adjustment benefits could only be observed for the classification
task, not the regression task, possibly due to the low resolution of the segmentation problem. How far we
can push the gradient into the real world is an interesting future direction for data modelling. Including
more parts of the data acquisition hardware into the data model and consequently the machine learning
optimization pipeline appears feasible [185] and represents an important next step in aligning machine learning
with real world data infrastructures.

Finally, raw data, which is already routinely used in optical industries [125–130], for representative machine
learning tasks has to become more accessible to researchers to align robustness research with physically
faithful data models and infrastructures. (Revision#:1, Requested change #:1.) While most optical imaging
devices support the extraction of raw data and this procedure is well established in industry and physics,
data collection procedures for machine learning robustness research still have to catch up in order to make
raw datasets and their benefits more widely available. Norms around established benchmarking datasets of
processed images, such as CIFAR or ImageNet, can slow down this progress. To that end, we collected and
publicly release two raw image datasets in the camera sensor state. Granted, the size of Raw-Microscopy
and Raw-Drone is still limited because data collection is expensive in both time and money. Better APIs to
optical hardware would allow more researchers and industries to make their raw data accessible.

Use of Personal Data and Human Subjects The microscopy slides were purchased from a commercial
lab vendor (J. Lieder GmbH & Co. KG, Ludwigsburg/Germany) who attained consent. The drone dataset
does not directly relate to people. Instances with potential PIIs such as faces or license plates were removed.
Full datasheet documentation following [172] can be found in Appendix A.5.

8Argument args.adv_aux_loss in train.py
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Negative Societal Impact Machine learning risk management, such as the drift controls, can make ML
deployment possible and safer. More deployment translates to increases in automation. A net risk-benefit
analysis of automation is beyond the scope of this manuscript. What we do know is that steel can be cast
into ploughs and swords. We are against the use of our findings for the latter purpose.
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A Appendices

A.1 Data model samples and initialization

Figure 8: Samples for both datasets, Raw-Microscopy and Raw-Drone, from all twelve pipelines used in the
drift synthesis experiments. The legend for abbreviations can be found in Figure 3b.
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The following values were used to initialize the parametrized pipeline (both "Frozen" and "Learned") in
experiment Section 5.3:

1 class ParametrizedProcessing (nn. Module ):

2 """ Differentiable processing pipeline via torch transformations

3

4 Args:

5 camera_parameters ( tuple (list), optional ): applies given camera parameters in

processing

6 track_stages (bool , optional ): whether or not to retain intermediary steps in

processing

7 batch_norm_output (bool , optional ): adds a BatchNorm layer to the end of the

processing

8 """

9

10 def __init__ (self , camera_parameters =None , track_stages =False , batch_norm_output =True):

11 super (). __init__ ()

12 self. stages = None

13 self. buffer = None

14 self. track_stages = track_stages

15

16 if camera_parameters is None:

17 camera_parameters = DEFAULT_CAMERA_PARAMS

18

19 black_level , white_balance , colour_matrix = camera_parameters

20

21 self. black_level = nn. Parameter ( torch . as_tensor ( black_level ))

22 self. white_balance = nn. Parameter ( torch . as_tensor ( white_balance ). reshape (1, 3))

23 self. colour_correction = nn. Parameter ( torch . as_tensor ( colour_matrix ). reshape (3, 3))

24

25 self. gamma_correct = nn. Parameter ( torch . Tensor ([2.2]) )

26

27 self. debayer = Debayer ()

28

29 self. sharpening_filter = nn. Conv2d (1, 1, kernel_size =3, padding =1, bias= False )

30 self. sharpening_filter . weight .data [0][0] = K_SHARP . clone ()

31

32 self. gaussian_blur = nn. Conv2d (1, 1, kernel_size =5, padding =2, padding_mode =’reflect

’, bias= False )

33 self. gaussian_blur . weight .data [0][0] = K_BLUR . clone ()

34

35 self. batch_norm = nn. BatchNorm2d (3, affine = False ) if batch_norm_output else None

36

37 self. register_buffer (’M_RGB_2_YUV ’, M_RGB_2_YUV . clone ())

38 self. register_buffer (’M_YUV_2_RGB ’, M_YUV_2_RGB . clone ())

39

40 self. additive_layer = None

where

1 K_G = torch . Tensor ([[0 , 1, 0],

2 [1, 4, 1],

3 [0, 1, 0]]) / 4

4

5 K_RB = torch . Tensor ([[1 , 2, 1],

6 [2, 4, 2],

7 [1, 2, 1]]) / 4

8

9 M_RGB_2_YUV = torch . Tensor ([[0.299 , 0.587 , 0.114] ,

10 [ -0.14714119 , -0.28886916 , 0.43601035] ,

11 [0.61497538 , -0.51496512 , -0.10001026]])

12 M_YUV_2_RGB = torch . Tensor ([[1.0000000000 e+00 , -4.1827794561e -09 , 1.1398830414 e+00] ,

13 [1.0000000000 e+00 , -3.9464232326e -01 , -5.8062183857e -01] ,

14 [1.0000000000 e+00 , 2.0320618153 e+00 , -1.2232658220e -09]])

15

16 K_BLUR = torch . Tensor ([[6.9625e -08 , 2.8089e -05 , 2.0755e -04 , 2.8089e -05 , 6.9625e -08] ,

17 [2.8089e -05 , 1.1332e -02 , 8.3731e -02 , 1.1332e -02 , 2.8089 e -05] ,

18 [2.0755e -04 , 8.3731e -02 , 6.1869e -01 , 8.3731e -02 , 2.0755 e -04] ,
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19 [2.8089e -05 , 1.1332e -02 , 8.3731e -02 , 1.1332e -02 , 2.8089 e -05] ,

20 [6.9625e -08 , 2.8089e -05 , 2.0755e -04 , 2.8089e -05 , 6.9625e -08]])

21 K_SHARP = torch . Tensor ([[0 , -1, 0],

22 [-1, 5, -1],

23 [0, -1, 0]])

24 DEFAULT_CAMERA_PARAMS = (

25 [0. , 0., 0., 0.] ,

26 [1. , 1., 1.] ,

27 [1. , 0., 0., 0., 1., 0., 0., 0., 1.] ,

28 )

Note that the camera parameters are camera, and conversely in our case dataset, dependent and defined in
the dataset classes.
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A.2 Description of the task models ΦTask

ResNet18 This model is designed to classify images from ImageNet [186] and has therefore an output
dimension of 1000. In order to use the model to classify images from Raw-Microscopy, we changed the output
dimension of the fully-connected layer to nine. The model was trained for 100 epochs using pre-trained ResNet
features. Hyperparameters were kept constant across all runs to isolate the effect of varying image processing
pipelines. For implementation the code provided at https://pytorch.org/hub/pytorch_vision_resnet/

was used. The model consists of 34 layers with approximately 11.2 million trainable parameters. The storage
size of the model is 44.725 MB.

U-Net++ The model was trained for 100 epochs using pretrained ResNet features as the encoder of the
U-Net++. Hyperparameters were kept constant across all runs to isolate the effect of varying image processing
pipelines. For implementation we used the code provided at https://github.com/qubvel/segmentation_

models.pytorch. The model has approximately 26.1 million trainable parameters. The storage size of the
model is 104.315 MB.

For a summary of the training procedure see Table 2.

Classification Segmentation

Φ
T

a
sk

ResNet18 based on [180] U-Net++ based on [181]
trained with Adam [187] for 100 epochs trained with Adam for 100 epochs
learning rate: 10−4 learning rate: 7.5 · 10−5

mini-batch size: 128 mini-batch size: 12

Table 2: Summary of the training procedure for both task models.

34

https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch


Under review as submission to TMLR

Table 3: A set of random test samples for the segmentation task under learned processing. Top row: Targets,
middle row: predictions of the task model after the first epoch, last row: predictions of the task model after
the last epoch.
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A.3 Dataset information

In the following, core information on the two acquired datasets is provided. In Appendix A.5 you can also
find detailed datasheets for both datasets, following the documentation good practices introduced by [172].

A.3.1 Raw-Microscopy

Raw-Microscopy for segmentation comes with 940 raw images, twelve differently processed variants totaling
11280 images and six additional raw intensity levels totaling 5640 samples.

Class Proportion in %

Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Table 4: The proportion of the classes in Raw-Microscopy.

Composition of Raw-Microscopy

Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif

Raw image format Please see Section 4.1

Table 5: A summary of the composition of Raw-Microscopy.

A.3.2 Raw-Drone

Raw-Drone for segmentation comes with 548 raw images, twelve differently processed variants totaling 6576
images and six additional raw intensity levels totaling 3288 samples.
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Figure 9: Datasets visualization. (Top-left) RGB raw microscopy classes are shown. (Top-right) Drone raw
images are shown with the segmentation mask applied over it. (Bottom) Different intensity realizations are
shown for the microscopy case. Images on the top are directly print out in the same scale of the original
image. Images in the bottom row are normalized on their own min and max values to highlight the role of
noise levels on low intensity images.
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Composition of Raw-Drone

Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif

Mask format .png

Raw image format .DNG

Table 6: A summary of the composition of Raw-Drone.
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A.4 Additional results

A.4.1 Drift synthesis

(Revision#:2, Requested change #:3. (see revision tracker)) Relative ranking results requested by reviewer
Yyad.

Microscopy-ISP Microscopy-CC Drone-ISP Drone-CC
Rank Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score Train pipeline Avg. score

1 ma,s,me 0.83 bi,u,me 0.63 ma,u,ga 0.68 ma,s,ga 0.60
2 ma,u,me 0.83 me,s,me 0.63 bi,s,ga 0.68 bi,s,ga 0.57
3 ma,u,ga 0.82 bi,u,ga 0.62 bi,s,me 0.67 me,s,ga 0.57
4 bi,s,me 0.81 ma,s,me 0.62 ma,s,me 0.67 ma,s,me 0.55
5 bi,u,me 0.81 me,u,me 0.62 me,u,ga 0.67 me,s,me 0.55
6 me,s,me 0.81 ma,s,ga 0.62 me,u,me 0.67 ma,u,ga 0.55
7 bi,s,ga 0.81 ma,u,me 0.61 ma,u,me 0.66 bi,s,me 0.54
8 me,s,ga 0.80 me,s,ga 0.60 ma,s,ga 0.66 ma,u,me 0.54
9 me,u,me 0.80 bi,s,me 0.59 bi,u,me 0.65 me,u,me 0.53
10 ma,s,ga 0.80 ma,u,ga 0.59 me,s,me 0.65 me,u,ga 0.51
11 bi,u,ga 0.79 bi,s,ga 0.58 me,s,ga 0.64 bi,u,me 0.48
12 me,u,ga 0.79 me,u,ga 0.58 bi,u,ga 0.61 bi,u,ga 0.46

Table 7: Rankings of task models from Section 5.1 trained on different data models (columns 2, 4, 6, 8)
according to their average accuracy or IoU (columns 3, 5, 7, 9) across all test pipelines respective corruptions.
ISP corresponds to drift synthesis with physically faithful data models, CC corresponds to common corruptions.

Microscopy-ISP

Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 ma,u,me ma,u,me ma,u,ga ma,u,ga ma,s,me ma,u,ga ma,u,ga ma,u,ga ma,u,me me,s,ga ma,u,ga ma,u,ga

2 ma,u,ga ma,u,ga bi,s,ga bi,s,ga bi,s,me me,s,ga ma,s,me ma,u,me ma,s,me ma,u,ga ma,u,me ma,u,me

3 bi,s,ga bi,s,ga ma,s,me ma,s,me bi,u,ga ma,s,ga ma,u,me ma,s,me bi,s,ga ma,s,ga ma,s,me ma,s,me

4 ma,s,me ma,s,me ma,u,me ma,u,me ma,u,me ma,s,me bi,s,ga me,u,me me,s,ga me,u,ga me,u,me me,u,me

5 bi,s,me bi,u,me me,u,me me,u,me bi,u,me ma,u,me me,u,me ma,s,ga bi,u,me me,s,me bi,s,ga bi,s,ga

6 bi,u,me me,u,me bi,u,me bi,u,me ma,u,ga me,s,me me,s,ga bi,s,ga ma,u,ga ma,u,me me,u,ga me,u,ga

7 me,s,me bi,s,me bi,s,me me,s,me me,s,me me,u,me me,s,me me,s,ga me,u,me ma,s,me me,s,me me,s,me

8 me,s,ga me,s,me me,s,me bi,u,ga bi,s,ga bi,u,me ma,s,ga me,s,me me,s,me me,u,me bi,s,me bi,s,me

9 me,u,me me,s,ga bi,u,ga bi,s,me me,s,ga me,u,ga bi,u,me bi,u,me bi,s,me bi,s,me me,s,ga me,s,ga

10 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,me bi,s,me ma,s,ga bi,s,ga ma,s,ga ma,s,ga

11 bi,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,s,ga me,u,ga me,u,ga me,u,ga bi,u,me bi,u,me bi,u,me

12 me,u,ga bi,u,ga me,s,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga

Table 8: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test pipeline (columns 2 - 13).

Microscopy-CC

Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,u,me ma,u,me bi,u,me bi,u,me ma,s,ga bi,s,ga bi,s,ga bi,s,ga me,s,me ma,s,me bi,s,ga

2 ma,u,ga ma,s,ga ma,s,ga me,u,me bi,u,me ma,u,me ma,u,ga bi,u,ga ma,s,me me,u,me ma,u,ga

3 bi,s,ga me,u,me me,s,me bi,u,ga me,s,me ma,u,ga ma,s,me me,u,ga bi,u,ga me,s,me ma,u,me

4 me,s,me me,s,ga ma,u,me me,s,me me,u,me bi,u,me ma,u,me ma,s,me ma,s,ga bi,u,ga ma,s,me

5 ma,s,me bi,u,me me,s,ga ma,s,me bi,u,ga me,u,me bi,u,me ma,u,me bi,s,me bi,s,ga me,u,me

6 me,u,me ma,u,ga me,u,me ma,u,me ma,s,me ma,s,me me,s,me bi,s,me bi,u,me bi,u,me me,s,ga

7 me,s,ga me,s,me bi,s,me ma,u,ga ma,u,me me,s,ga bi,u,ga bi,u,me me,s,ga ma,u,ga me,s,me

8 bi,u,me bi,s,me bi,u,ga me,s,ga me,s,ga ma,s,ga me,u,ga me,s,me ma,u,ga ma,s,ga bi,u,ga

9 bi,u,ga ma,s,me ma,s,me me,u,ga bi,s,me me,s,me me,u,me ma,s,ga me,u,ga bi,s,me bi,u,me

10 ma,s,ga bi,u,ga ma,u,ga ma,s,ga ma,u,ga bi,u,ga me,s,ga ma,u,ga bi,s,ga me,s,ga ma,s,ga

11 bi,s,me bi,s,ga bi,s,ga bi,s,me me,u,ga bi,s,me ma,s,ga me,u,me me,u,me me,u,ga me,u,ga

12 me,u,ga me,u,ga me,u,ga bi,s,ga bi,s,ga me,u,ga bi,s,me me,s,ga ma,u,me ma,u,me bi,s,me

Table 9: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test corruptions (columns 2 - 12).

(Revision#:1, Requested change #:1.) Additional results for reviewer jubj
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Figure 10: (Revision#:2, Requested change #:3. (see revision tracker) A comparative overview of the
physically faithful data models (ISPs, top-left) and the Common Corruptions (CC, top-right) used in the the
drift synthesis experiments of Section 5.1. A matching heuristic based on possible visual perception of the
drift artifacts (top-middle) is provided for readers who would like to relate specific data models to specific
corruptions. However, we emphasize that this is a purely qualitative heuristic and has no metrological basis.
Since CCs are not physically faithful it is not clear how to relate them to actual variations in the optical data
generating process. Finally, corruptions that were excluded from the experiments in Section 5.1 are displayed
(bottom). The CC examples where stitched from the original paper [188] for authenticity.
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Drone-ISP

Rank bi,s,me bi,s,ga bi,u,me bi,u,ga ma,s,me ma,s,ga ma,u,me ma,u,ga me,s,me me,s,ga me,u,me me,u,ga

1 bi,s,me bi,s,ga bi,u,me bi,u,me ma,u,ga ma,s,ga ma,u,ga ma,u,ga ma,s,me ma,s,ga ma,u,ga ma,u,ga

2 bi,u,me bi,s,me bi,s,me bi,s,me ma,s,me me,s,ga me,u,me me,u,me ma,s,ga me,s,ga me,u,me me,u,ga

3 ma,u,ga ma,u,ga bi,u,ga bi,u,ga bi,s,ga ma,s,me ma,u,me ma,u,me ma,u,ga ma,s,me ma,s,me me,u,me

4 bi,s,ga ma,s,me ma,u,ga ma,u,ga me,u,ga me,s,me bi,s,me bi,s,me bi,s,ga me,s,me me,u,ga ma,s,me

5 me,u,me me,u,ga me,u,me me,u,me ma,s,ga bi,s,ga ma,s,me ma,s,me me,u,ga bi,s,ga ma,u,me ma,u,me

6 bi,u,ga ma,s,ga bi,s,ga bi,s,ga ma,u,me ma,u,ga bi,s,ga bi,s,ga me,s,me ma,u,ga bi,s,me bi,s,me

7 ma,s,me ma,u,me ma,u,me ma,u,me me,u,me me,u,ga me,u,ga me,u,ga me,s,ga me,u,ga bi,u,me bi,s,ga

8 me,u,ga me,s,ga ma,s,me ma,s,me me,s,me me,u,me bi,u,me bi,u,me me,u,me me,u,me bi,s,ga bi,u,me

9 ma,u,me me,u,me me,u,ga me,u,ga bi,s,me ma,u,me bi,u,ga ma,s,ga ma,u,me ma,u,me me,s,me ma,s,ga

10 me,s,me me,s,me me,s,me me,s,me me,s,ga bi,s,me ma,s,ga me,s,me bi,s,me bi,s,me bi,u,ga me,s,me

11 ma,s,ga bi,u,me me,s,ga ma,s,ga bi,u,me bi,u,me me,s,me bi,u,ga bi,u,me bi,u,me ma,s,ga bi,u,ga

12 me,s,ga bi,u,ga ma,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga bi,u,ga bi,u,ga me,s,ga me,s,ga

Table 10: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test pipeline (columns 2 - 13).

Drone-CC

Rank identity gauss noise shot impulse speckle gauss blur zoom contrast brightness saturate elastic

1 ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,ga bi,s,me bi,s,ga bi,s,ga ma,s,ga ma,s,ga

2 bi,s,ga me,s,ga me,s,ga me,s,ga me,s,ga bi,s,ga ma,s,ga ma,s,ga ma,s,ga ma,s,me ma,u,ga

3 me,s,ga bi,s,ga bi,s,ga me,s,me bi,s,ga ma,s,me bi,s,ga me,s,me ma,s,me ma,u,ga ma,s,me

4 ma,s,me me,s,me ma,s,me bi,s,ga ma,s,me ma,u,ga me,s,ga ma,s,me me,s,me me,u,ga bi,s,ga

5 ma,u,ga ma,u,ga me,s,me ma,u,ga me,s,me bi,u,me ma,u,me bi,s,me ma,u,me me,s,ga bi,s,me

6 bi,s,me ma,u,me ma,u,ga ma,u,me ma,u,ga bi,s,me me,s,me ma,u,me ma,u,ga bi,s,ga bi,u,me

7 me,u,ga me,u,me ma,u,me me,u,me bi,s,me me,s,ga ma,s,me ma,u,ga me,u,me bi,s,me me,s,ga

8 bi,u,me ma,s,me bi,s,me ma,s,me ma,u,me ma,u,me bi,u,me me,s,ga bi,s,me me,s,me me,u,me

9 ma,u,me bi,s,me me,u,me bi,s,me me,u,me me,u,me me,u,me bi,u,me me,u,ga me,u,me me,u,ga

10 me,u,me me,u,ga me,u,ga me,u,ga me,u,ga me,s,me bi,u,ga bi,u,ga me,s,ga bi,u,me me,s,me

11 me,s,me bi,u,me bi,u,me bi,u,me bi,u,me me,u,ga ma,u,ga me,u,ga bi,u,me ma,u,me ma,u,me

12 bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga bi,u,ga me,u,ga me,u,me bi,u,ga bi,u,ga bi,u,ga

Table 11: Ranking of task models from Section 5.1 trained under different train pipelines (rows) for each
individual test corruptions (columns 2 - 12).

ISP Common corruptions benchmark [43]
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Figure 11: Experiment from Section 5.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [43]
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Figure 12: Experiment from Section 5.1 with strong severity (level 5) for the Common corruptions benchmark.

ISP Common corruptions benchmark [43]
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Figure 13: Experiment from Section 5.1 with weak severity (level 1) for the Common corruptions benchmark.
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ISP Common corruptions benchmark [43]
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Figure 14: Experiment from Section 5.1 with strong severity (level 5) for the Common corruptions benchmark.
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A.4.2 Drift forensics

(Revision#:1, Requested change #:2.) Additional results for reviewer jubj

Figure 15: Drift forensics experiment from Section 5.2 with the Raw-Drone dataset.
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A.4.3 Drift adjustments

(Revision#:1, Requested change #:2.) Additional results for reviewer Yyad

Figure 16: Two training runs where tasks models are trained directly on Raw-Microscopy (top) and Raw-Drone
(bottom) data. The classification model (top) achieves similar accuracy as the learned setting in Section 5.3.
However, the learning trajectory is more volatile. Despite stabilizing quicker, the segmentation model (bottom)
does not reach the same IoU as compared to the data models (both learned and frozen).
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A.5 Dataset documentation

We follow the datasheets documentation framework proposed in [172], using the template https:

//de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth from Christian
Garbin.

A.5.1 Datasheet for Raw-Microscopy

Motivation

For what purpose was the dataset created?

With Raw-Microscopy we provide a publicly available
raw image dataset in order to examine the effect of the
image signal processing on the performance and the
robustness of machine learning models. This dataset
enables to study these effects for a supervised mul-
ticlass classification task: the classification of white
blood cells (WBCs).

Who created this dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?

This dataset has been created by ANONYMIZED.
Single-cell images were annotated by a trained cytolo-
gist.

Who funded the creation of the dataset?

The creation of the dataset has been funded by
ANONYMIZED.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people,
countries)?

An instance is a tuple of an image and a label. The
image shows a human WBCs and the label indicates
the morphological class of this cell. The following
eight morphological classes appear in the dataset: Ba-
sophil (BAS), Eosinophil (EOS), Smudge cell / debris
(KSC), atypical Lymphocyte (LYA), typical Lympho-
cyte (LYT ), Monocyte (MON), Neutrophil (band)
(NGB), Neutrophil (segmented) (NGS). The nith class
consists of images that could not be assigned a class
(UNC) during the labeling process.

How many instances are there in total (of each
type, if appropriate)?

The data set consists of 940 instances. For the pro-
portion of each class in the dataset see table 12.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of in-
stances from a larger set?

The dataset does not contain all possible instances.
It is limited to WBC classes normally present in the
peripheral blood of healthy humans. In order to cope
with intrinsic class imbalance in cell distribution, rare
cell class candidates such as Basophils were preferen-
tially imaged.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or fea-
tures?

Each instance consists of an image of 256 by 256 pixels.
The image is a raw image in .tiff format.

Is there a label or target associated with each in-
stance?

Each instance is associated to a label, that indicates
the morphological class of the image.

Is any information missing from individual in-
stances?

No information is missing.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)?

No, relationships between individuals are not made
explicit.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)?

There are no recommended data splits. All the data
splits that we used for our experiments were randomly
picked.

Are there any errors, sources of noise, or redun-
dancies in the dataset?

https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth
https://de.overleaf.com/latex/templates/datasheet-for-dataset-template/jgqyyzyprxth


To the best of our knowledge, there are no errors
in the dataset. However, a key source of variability
between slides from different laboratories and process-
ing times is stain intensity. The samples used in this
work all come from the same source, hence we assume
the preanalytic treatment and staining protocol to
be similar. As all images were obtained on the same
microscopy equipment, focus handling and illumina-
tion are identical for all samples. Image labelling was
performed by one trained morphologist with experi-
ence in hematological routine diagnostics. It is known
that morphology annotations are subject to inter- and
intra-rater variability. However, as we limit ourselves
to normal WBCs the labeling is expected to be stable.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confiden-
tiality, data that includes the content of individu-
als non-public communications)?

The dataset consist of medical data, disclosing the
morphological classes of single human WBCs. In prin-
ciple, the distribution of cell types conveys information
on the health state of a patient.
However, the subjects in this dataset are fully de-
identified, so that the image data cannot be linked
back to the healthy donors of the scanned blood
smears. Furthermore, it is not disclosed which cell
image was taken from which blood smear, so that no
frequencies of individual cell types can be determined.
Additionally, we only consider cell types present in nor-
mal blood, so that no specific hematologic pathology
can be deduced from cell morphologies.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety?

No. The dataset does not contain data with any of
the above properties.

Does the dataset relate to people?

Yes. The dataset consist of images of human WBCs.

Does the dataset identify any subpopulations
(e.g., by age, gender)?

The donors of the blood smears used in this dataset
are fully deidentified, and no information on subpipu-
lation composition is provided.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from
the dataset?

No. It is not possible to identify individuals from an
image of their white blood cells or visa versa.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms of
government identification, such as social secu-
rity numbers; criminal history)?

No. While the distribution of cell types for a specific
patient could reveal information about that patient’s
health status, isolated single-cell images of normal
leukocytes do not allow for this inference.

Any other comments?

See table 13 for a summary of the composition of
Raw-Microscopy.

Class Proportion in %

Basophil (BAS) 1.91
Eosinophil (EOS) 5.74
Smudge cell / debris (KSC) 17.34
atypical Lymphocyte (LYA) 3.19
typical Lymphocyte (LYT) 24.47
Monocyte (MON) 20.32
Neutrophil (band) (NGB) 0.85
Neutrophil (segmented) (NGS) 22.98
Image that could not be assigned a class (UNC) 3.19

Table 12: The proportion of the classes in Raw-
Microscopy.

Collection Process

How was the data associated with each instance
acquired?

Images of the dataset have been acquired directly
from a CMOS imaging sensor. They are in a raw
unprocessed format.

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or sen-
sor, manual human curation, software program,
software API)?



Imaging data have been obtained via a custom bright-
field microscope.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling proba-
bilities)?

Images have 256×256 pixel size and have been cropped
from larger images. The dataset corresponds to a selec-
tion of white blood cells in the acquired large images.
A sampling strategy aimed at increasing the propor-
tion of rare classes of white blood cells has been used.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?

A research assistant has been involved in the data
collection process and has been compensated with a
monthly salary.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)?

Data have been collected on a timeframe of two
months, corresponding to the availability of the phys-
ical samples to image. Data have been collected on
purpose for this work.

Were any ethical review processes conducted
(e.g., by an institutional review board)?

The microscopy data was purchased from a commer-
cial lab vendor (J. Lieder GmbH & Co. KG, Lud-
wigsburg/Germany) who attained consent from the
subjects included.

Does the dataset relate to people?

Yes. The dataset consists of microscopic images of
human white blood cells.

Did you collect the data from the individuals in
question directly, or obtain it via third parties or
other sources (e.g., websites)?

Data have not been obtained via third parties.

Were the individuals in question notified about
the data collection?

As the blood smear slides were bought from a com-
pany, notification to individuals of the data collection
has been performed by the company.

Did the individuals in question consent to the col-
lection and use of their data?

Yes, they did.

If consent was obtained, were the consenting in-
dividuals provided with a mechanism to revoke
their consent in the future or for certain uses?

We do not know the conditions of consent adopted
by the selling company. However, we believe the com-
pany provided the individuals a complete freedom in
revoking their consent in the future, if desired.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted?

No, this kind of analysis has not been conducted.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, to-
kenization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)?

Intensity scaled images are generated with Jetraw
Data Suite for both datasets, which applies a physi-
cal model based on sensor calibration to accurately
simulate intensity reduction. Microscopy Raw images
are extracted from RGB Microscopy data through a
pixel selection from images taken with three filters, in
order to have a Bayer Pattern. Pixels intensities are
rescaled with Jetraw Data Suite to match the mea-
sured transmissivities of a Bayer colour filters array.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support
unanticipated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label
the instances available?

All code used in the experiments of this manuscript
is publicly available. Jetraw products that were used
for acquiring the data are commercially available.

Uses



Has the dataset been used for any tasks already?

The dataset has not yet been used.

Is there a repository that links to any or all pa-
pers or systems that use the dataset?

The repository at https://anonymous.4open.

science/r/tmlr/README.md associated to this work,
maintained by ANONYMIZED.

What (other) tasks could the dataset be used
for?

The dataset can be used to study the effect of image
signal processing on the performance and robustness
of any other machine learing model implemented in
PyTorch, designed for a supervised multiclass classifi-
cation task.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?

To the best of our knowledge, we do not recognize
such impacts.

Are there tasks for which the dataset should not
be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, or-
ganization) on behalf of which the dataset was
created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tar-
ball on website, API, GitHub)

A guide to access the dataset is available at https:

//anonymous.4open.science/r/tmlr/README.md.
Moreover, the dataset can be downloaded anony-
mously and directly at https://zenodo.org/

record/5235536 under the doi: 10.5281/zen-
odo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright
or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)?

The dataset will be distributed under the Creative
Commons Attribution 4.0 International.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances?

No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual in-
stances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?

ANONYMIZED on behalf of ANONYMIZED.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

By email address via
ANONYMIZED.

Is there an erratum?

At the time of submission, there is no such erratum. If
an erratum is needed in the future it will be accessible
at ANONYMIZED

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of
instances.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances (e.g., were individuals in ques-
tion told that their data would be retained for a
fixed period of time and then deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be
supported/hosted/maintained?

https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://zenodo.org/record/5235536
https://zenodo.org/record/5235536


Older versions will be supported and maintained in
the future. The dataset will continue to be hosted as
long as https://zenodo.org/ exists.

If others want to extend/augment/build on/con-
tribute to the dataset, is there a mechanism for
them to do so?

For any of these requests contact either
ANONYMIZED or ANONYMIZED. For now, we
do not have an established mechanism to handle these
requests.

Composition of Raw-Microscopy

Type of instances Image and label
Objects on images White blood cells
Type of classes Morphological classes
Number of instances 940
Number of classes 9
Image size 256 by 256 pixels
Image format .tif

Raw image format Please see Section 4.1

Table 13: A summary of the composition of Raw-
Microscopy.

https://zenodo.org/


A.5.2 Datasheet for Raw-Drone

Motivation

For what purpose was the dataset created?

With Raw-Drone we provide a publicly available raw
dataset in order to examine the effect of the image
data processing on the performance and the robust-
ness of machine learning models. This dataset enables
to study these effects for a segmentation task: the
segmentation of cars. The dataset was taken with
specified parameters: sensor gain, point-spread func-
tion and ground-sampling distance, so that physical
models may be used to process the data. It also was
taken with a easily accessible and affordable system,
so that it may be reproduced.

Who created this dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?

The dataset was created by ANONYMIZED on behalf
of ANONYMIZED.

Who funded the creation of the dataset?

The data collection was funded by ANONYMIZED.
The calibration of the image characteristics was jointly
funded by ANONYMIZED.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people,
countries)?

An instance is a tuple of an image and a segmentation
mask. The image shows a landscape shot from above.
The segmentation mask is a binary image. A white
pixel in this mask corresponds to a pixel within a
region in the image where a car is displayed. A black
pixel in this mask corresponds to a pixel within a
region in the image where no car is displayed.

How many instances are there in total (of each
type, if appropriate)?

The dataset consists of 548 instances.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of in-
stances from a larger set?

The dataset does not contain all possible instances.
Only images with at least one white pixel in the asso-
ciated segmentation mask are considered.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or fea-
tures?

Both, the image and the segmentation mask consist
of 256 by 256 pixels. The image is a raw image in
.tif format and the the segmentation mask is in .png

format. The images are cropped sub-images of 12 raw
images in .DNG format, consisting of 3648 by 5472
pixels.

Is there a label or target associated with each in-
stance?

Each instance is associated to a binary segmentation
mask.

Is any information missing from individual in-
stances?

No information is missing.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)?

Since every image is a cropped sub-image of an origi-
nal image, several of these sub-images belong to the
same original image. All sub-images are disjoint, i.e.
no different images share a pixel from the original
image.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)?

There are no recommended data splits. All the data
splits that we used for our experiments were randomly
picked.

Are there any errors, sources of noise, or redun-
dancies in the dataset?

To the best of our knowledge, there are no errors in
the dataset. The segmentation mask is created by
hand and hence noisy, especially at the boundaries
between a region with a car and a region without a
car.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)?



The dataset is self-contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confiden-
tiality, data that includes the content of individu-
als non-public communications)?

No. The dataset does not contain data of any of the
above types.

Does the data set contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety?

No. The dataset does not contain data with any of
the above properties.

Does the dataset relate to people?

The dataset does not relate to people. The drone data
was screened for PIIs such as faces or license plates
on cars and removed by the data collection team.

Any other comments?

See table 14 for a summary of the composition of the
Raw-Drone.

Collection Process

How was the data associated with each instance
acquired?

The data was collected by flying a drone and saving
the raw data. The calibration data for the drone’s
imager was acquired both under laboratory conditions
and using a ground-based calibration target, so that
it could be acquired under operating conditions.

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or sen-
sor, manual human curation, software program,
software API)?

To acquire the drone images, we used a DJI Mavic 2
Pro Drone, equipped with a Hasselblad L1D-20c cam-
era (Sony IMX183 sensor). This system has 2.4 µm
pixels in Bayer filter array. Images were taken with
the drone hovering for maximum stability. This sta-
bility was verified to be better than a single pixel by
calculating the correlation of subsequent images. The
objective has a focal length of 10.3 mm. We operated
this objective at an f-number of N = 8, to emulate
the PSF circle diameter relative to the pixel pitch
and ground sampling distance (GSD) as would be

found on images from high-resolution satellites. Oper-
ating at N = 8 also minimises vignetting, aberrations,
and increases depth of focus. The point-spread func-
tion (PSF) was measured to have a circle diameter
of 12.5 µm using the edge-spread function technique
and a ground calibration target.This corresponds to
Ã = 2.52 px, which also corresponds to a diffraction-
limited system, within the uncertainty dictated by the
wavelength spread of the image. Images were taken
at 200 ISO, corresponding to a gain of 0.528 DN/e−.
The 12-bit pixel values are however left-justified to
16-bits, so that the gain on the 16-bit numbers is
8.448 DN/e−. The images were taken at a height of
250 m, so that the GSD is 6 cm. All images were tiled
in 256x256 patches. Segmentation color masks were
created to identify cars for each patch. From this
mask, classification labels were generated to detect if
there is a car in the image. The dataset is constituted
by 548 images for the segmentation task, and 930
for classification. Six additional intensity scales were
created with Jetraw.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling proba-
bilities)?

The entire dataset is presented.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?

The dataset was taken by a company employee, com-
pensated by his salary. Labeling was performed by
both a company employee and a PhD student, who’s
PhD is funded by the company.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances
(e.g., recent crawl of old news articles)?

The dataset was taken as the initial step of writing
this article.

Were any ethical review processes conducted
(e.g., by an institutional review board)?

The dataset does not contain any elements requiring
an ethical review process.

Does the dataset relate to people?



The dataset does not relate to people. There are indi-
viduals on the images, but it is not possible to identify
these individuals.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, to-
kenization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)?

No further processing was applied to the Raw-Drone
data.

Was the “raw” data saved in addition to the pre-
processed/cleaned/labeled data (e.g., to support
unanticipated future uses)?

Raw images are available in the dataset.

Is the software used to preprocess/clean/label
the instances available?

All code used in the experiments of this manuscript
is publicly available. Jetraw products that were
used for acquiring the data are commercially available.

Uses

Has the dataset been used for any tasks already?
The dataset has not yet been used.

Is there a repository that links to any or all pa-
pers or systems that use the dataset?

The repository at https://anonymous.4open.

science/r/tmlr/README.md associated to this work,
maintained by ANONYMIZED.

What (other) tasks could the dataset be used
for?

The dataset can be used to study the effect of image
signal processing on the performance and robustness
of any other machine learing model implemented in
PyTorch, designed segmentation task.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?

To the best of our knowledge, we do not recognize
such impacts.

Are there tasks for which the dataset should not
be used?

To the best of our knowledge, there are no such tasks.

Distribution

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, or-
ganization) on behalf of which the dataset was
created?

Yes. The dataset will be publicly available.

How will the dataset will be distributed (e.g., tar-
ball on website, API, GitHub)

A guide to access the dataset is available at https:

//anonymous.4open.science/r/tmlr/README.md.
Moreover, the dataset can be downloaded anony-
mously and directly at https://zenodo.org/

record/5235536 under the doi: 10.5281/zen-
odo.5235536.

When will the dataset be distributed?

The dataset is already publicly available.

Will the dataset be distributed under a copyright
or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)?

The dataset will be distributed under the Creative
Commons Attribution 4.0 International.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances?

No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual in-
stances?

There are no such restrictions.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?

ANONYMIZED on behalf of ANONYMIZED.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://anonymous.4open.science/r/tmlr/README.md
https://zenodo.org/record/5235536
https://zenodo.org/record/5235536


By email address via
ANONYMIZED.

Is there an erratum?

At the time of submisson, there is no such erratum. If
an erratum is needed in the future it will be accessible
at ANONYMIZED

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?

Yes. The dataset will be enlarged wrt. the number of
instances.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances (e.g., were individuals in ques-
tion told that their data would be retained for a
fixed period of time and then deleted)?

To the best of our knowledge, there are no such limits.

Will older versions of the dataset continue to be
supported/hosted/maintained?

Older versions will be supported and maintained in
the future. The dataset will continue to be hosted as
long as https://zenodo.org/ exists.

If others want to extend/augment/build on/con-
tribute to the dataset, is there a mechanism for
them to do so?

For any of these requests contact either
ANONYMIZED or ANONYMIZED. For now, we
do not have an established mechanism to handle these
requests.

Composition of Raw-Drone

Type of instances Image and mask
Objects on images Landscape shots from above
Number of instances 548
Number of original images 12
Image size 256 by 256 pixels
Mask size 256 by 256 pixels
Original image size 3648 by 5472
Image format .tif

Mask format .png

Raw image format .DNG

Table 14: A summary of the composition of Raw-
Drone.
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