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ABSTRACT

Context can strongly affect object representations, sometimes leading to unde-
sired biases, particularly when objects appear in out-of-distribution backgrounds
at inference. At the same time, many object-centric tasks require to leverage the
context for identifying the relevant image regions. We posit that this conundrum,
in which context is simultaneously needed and a potential nuisance, can be ad-
dressed by an attention-based approach that uses learned binary attention masks
to ensure that only attended image regions influence the prediction. To test this
hypothesis, we evaluate a two-stage framework: stage 1 processes the full image
to discover object parts and identify task-relevant regions, for which context cues
are likely to be needed, while stage 2 leverages input attention masking to restrict
its receptive field to these regions, enabling a focused analysis while filtering out
potentially spurious information. Both stages are trained jointly, allowing stage 2
to refine stage 1. The explicit nature of the semantic masks also makes the model’s
reasoning auditable, enabling powerful test-time interventions to further enhance
robustness. Extensive experiments across diverse benchmarks demonstrate that
this approach significantly improves robustness against spurious correlations and
out-of-distribution backgrounds. Code is available in this anonymized repository

1 INTRODUCTION

Deep learning models often rely on contextual cues to learn object representations. While this can
be beneficial for certain tasks, it can also introduce spurious correlations on which the model learns
to rely, hampering generalization Rosenfeld et al. (2018); Choi et al. (2012); Xiao et al. (2021). A
common example is when models prioritize background cues over intrinsic object properties, leading
to failures in out-of-distribution (OOD) settings where such correlations no longer hold Aniraj et al.
(2023), something that happens often in practice Beery et al. (2018). It is therefore crucial to ensure
that the model focuses on task-relevant image regions.

Models that integrate spatial attention maps directly into their inference process can help guiding the
model towards focusing on relevant image regions and have the potential to provide guarantees of
faithfulness, as they reveal the reasoning of the model. Typically, such methods apply a learned soft
attention mask to a high-level feature map : a technique we refer to as late masking. However, this
approach is undermined by two distinct sources of information leakage that limit robustness. First,
the late application of the mask means that deep features are already contaminated by background
information due to the vast receptive fields of modern architectures. Second, the soft, non-binary
nature of the attention masks assigns non-zero weights to all locations, allowing for further, residual
leakage from spurious regions. This combination of flaws, illustrated in Fig. 1 (top), critically
undermines the model’s ability to ignore spurious cues.

To truly prevent reliance on spurious cues, we posit that a solution is a model architecturally blind
to them. We study a two-stage framework with early masking that provides this architectural guar-
antee. Building on a recent part-discovery method Aniraj et al. (2024), our Stage 1 (Selector) pro-
cesses the full image to generate a discrete, binary mask identifying relevant foreground regions.
Subsequently, our Stage 2 (Predictor), a second Vision Transformer, receives only the input tokens
corresponding to this foreground mask. By operating on this subset of the input, its receptive field
is strictly constrained, making it physically impossible to access or exploit information from the
masked-out background regions. The two stages are trained jointly, allowing the downstream task
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Figure 1: Previous attention-based approaches apply the attention mask to a deep feature tensor,
where all locations can be affected by the whole image due to large receptive fields (top). Our
approach ensures that only the selected tokens contribute to the downstream task (bottom).

to refine the foreground selection. This design ensures the model learns using only the object it-
self, leading to state-of-the-art results on several challenging robustness benchmarks. Furthermore,
the explicit semantic masks make the model’s reasoning auditable and enable powerful test-time
interventions to further enhance performance.

2 RELATED WORKS

Spatial attention in computer vision. Attention mechanisms induce the model to focus on a subset
of the input that is deemed relevant to the task at hand. Originally introduced to reduce computa-
tional load in image classification Mnih et al. (2014), spatial attention gained traction in caption-
ing Xu et al. (2015), visual reasoning Hudson & Manning (2018), and other tasks Guo et al. (2022)
where focusing on key image regions allows the model to decompose the complex task into mul-
tiple, simpler ones. Recent work on part discovery Huang & Li (2020); van der Klis et al. (2023);
Aniraj et al. (2024) also leverages attention mechanisms. These approaches assume that focusing
the attention on the correct parts will lead to better classification results, and leverage this learning
signal to discover the semantic parts that compose the objects of interest. However, this paradigm is
fundamentally limited by two sources of information leakage: they perform late masking on deep
features already contaminated by background cues due to large receptive fields, and they use soft
attention masks that allow for residual leakage from all image regions. This can potentially reduce
faithfulness, or the degree to which only task-relevant image areas are effectively accessible. This
concern has led to work measuring the faithfulness of attention maps in ViTs Wu et al. (2024b), as
well as improving it Xie et al. (2022); Wu et al. (2024a); Ntrougkas et al. (2024). Our work proposes
an architectural solution that directly addresses these sources of leakage.

Local object representations. Object-centric computer vision tasks require representations that
remain invariant to changes in backgrounds and co-occurring objects. Previous works provide local
object representations via mask-invariance losses Stone et al. (2017), clustering-like losses Yun et al.
(2022) or directly altering the attention mechanism Ibtehaz et al. (2024). While some methods aim
to align post-hoc explanations with segmentation maps Ross et al. (2017), they do not guarantee that
only attended areas contribute to the decision, with studies highlighting information contamination
from outside the object attention masks due to large receptive fields Aniraj et al. (2023).

Input attention maps for interpretability. Auxiliary mask predictors have been proposed to ex-
plain black-box classifiers by identifying minimal masks that preserve predictions without retrain-
ing Yuan et al. (2020); Phang et al. (2020); Stalder et al. (2022); Brinner & Zarrieß (2023); Zhang
et al. (2024). Others use post hoc attribution maps to guide training Ismail et al. (2021). Closer to
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our approach, joint amortized explanation methods (JAMs) Chen et al. (2018); Yoon et al. (2018);
Ganjdanesh et al. (2022) jointly learn selector and predictor models. However, a key limitation of
these methods is that a selector driven only by a simple classification loss can fail to distinguish
causal features from spurious ones, or even encode class information directly into the selection pat-
tern Jethani et al. (2021); Puli et al. (2024). Some of the proposed solutions to this problem involve
either unstructured selection masks Jethani et al. (2021) or simplistic ones parametrized as a single
spatial Gaussian Ganjdanesh et al. (2022). More recently, COMET Zhang et al. (2024) proposed to
aim at finding the complete foreground, rather than just a sufficient mask. We explore the suitabil-
ity of solving this by integrating part-shaping losses into the selector while seeking compatibility
with vision transformers, and focus our evaluation on the impact on robustness against OOD back-
grounds. Furthermore, this semantic part-based approach enables a unique capability absent in prior
work: auditable, test-time interventions.

Input attention maps for robustness. Joint learning of input masks has also been explored to
enhance robustness. Xiang et al. (2021) shows that limiting the receptive field and applying targeted
patch masking improves adversarial robustness. Spurious correlations can be mitigated by isolating
foreground regions and building image composites with mismatched backgrounds Xiao et al. (2023);
Noohdani et al. (2024); Chakraborty et al. (2024), encouraging the model to rely on foreground cues.
Asgari et al. (2022) masks key image regions using attribution maps, forcing the model to identify
alternative features and assess potential spurious correlations. Multiple spurious cues can coexist in a
dataset, and techniques designed to mitigate one may inadvertently amplify another Li et al. (2023).
In this work, we leverage part discovery to simultaneously model several of these correlations.

Token Pruning and Sparse Attention. Efficiency-oriented approaches such as sparse attention Wei
et al. (2023); Zhu et al. (2023) or token pruning Tang et al. (2023); Rao et al. (2021); Chen et al.
(2021) select tokens mainly to speed up inference based on task discriminativeness. However, simi-
lar to JAMs, a selector guided solely by task discriminativeness can inadvertently learn to prioritize
spurious-but-predictive features over causal ones. In contrast, iFAM’s token selection is driven by a
joint objective that couples classification with part-shaping losses to discover semantically consistent
foreground regions that are also useful for solving the downstream task.

3 METHODOLOGY

iFAM (Inherently Faithful Attention Maps for vision transformers) depicted in Fig. 2, consists of
two stages: the first one has access to the whole image and predicts which image regions should
be selected for the second stage. These selected regions then define the receptive field used by the
second stage for solving the downstream task. This design ensures that the second stage can only
pay attention to the selected image regions, guaranteeing that it cannot make use of any information
outside the mask.

3.1 EARLY VS LATE MASKING

Existing attention-based methods (Late Masking) typically learn two functions on the input: a
selector that produces a mask, and a feature extractor. An image feature vector is then computed by
masking the high-level features from the feature extractor. If we denote the selector model as hθs(·)
and the feature extractor as hθp(·), this process can be described as:

y = gϕ(hθp(x)⊙ hθs(x)) (1)

where hθp(x) is a high-level feature tensor, hθs(x) produces a corresponding mask, ⊙ denotes
element-wise multiplication, and a final classification head gϕ(·) produces the logits y.

Our approach (Early Masking) ensures faithfulness by applying the selector before the predictor.
The selector model, hθs(·), produces an input-level binary mask s ∈ {0, 1}H×W . The predictor
network, hθp(·), is then architecturally constrained to only process information from the unmasked
regions of the input image x. This guarantees that the predictor’s receptive field is strictly determined
by the selector’s mask.

Implementation on a ViT with attention masks. For a ViT-based predictor hθp , this input-level
masking is implemented by modulating the self-attention mechanism in each layer. Rather than a
simple element-wise multiplication on the input, we control which tokens can exchange information.
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Figure 2: Left: iFAM first discovers task-relevant regions (Stage 1) and then classifies using only the
selected regions (Stage 2), preventing reliance on background cues. Right: At test time, we leverage
the model’s inherently faithful region attribution to design (training-free) intervention strategies that
further enhance robustness to spurious correlations.

Given the binary token selection mask s ∈ {0, 1}N derived from the input mask, we construct an
attention mask M ∈ RN×N :

Attention(Q,K,V) = softmax

(
QK⊤
√
D

+M

)
V, (2)

where the elements in M are defined as:

Mij =

{
−∞, if si = 0 or sj = 0

0, otherwise.
(3)

This forces attention to and from masked-out tokens to be zero, preventing any information leakage.
The final prediction y is then computed by applying the classification head to the output of the
masked predictor: y = gϕ(hθp(x, s)).

3.2 STAGE 1: IDENTIFYING RELEVANT IMAGE REGIONS

To identify relevant image regions for the downstream task, we leverage the PDiscoFormer part
discovery method Aniraj et al. (2024). This approach, guided solely by image-level class labels
and part-shaping priors, partitions the image into K + 1 regions: K distinct foreground parts plus
the background, which is discarded. The discovered parts are shared across classes. Each part
is associated with a learned prototype, encouraging semantic consistency across the dataset. The
prototypes are also trained to be mutually de-correlated, so that each part captures a distinct aspect
of the object. To this end, we use the original PDiscoFormer default settings.

3.3 STAGE 2: MASKED-INPUT CLASSIFICATION

PDiscoFormer suffers from the same issues that we have identified as flaws in attention mechanisms:
it uses soft attention masks that are applied to a high-level representation. To address this drawback,
we propose to make the masks binary, via discretization, and to use them to explicitly define the
receptive field of the second stage model, using Eq. (2).
Discrete masks. PDiscoFormer produces part attention maps that assign, for each image token, a
weight distribution across parts, with weights summing to one. These weights are designed to ap-
proach a hard assignment via Gumbel softmax, where one part receives a weight close to one, while
the others are close to zero. However, we emphasize that these maps still remain a soft distribution
across parts. This may seem as a subtlety, but we argue that only a truly discrete attribution map
can provide faithfulness guarantees by fully preventing information leakage. To tackle this issue, we
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introduce a discretization step for the obtained part maps prior to the second stage. At this point, the
foreground parts are merged together to obtain a binary input mask for the second stage model. With
the aim to allow gradient flow between the second and first stages, we employ the straight-through
gradient trick used by Gumbel softmax Jang et al. (2017), where the hard masks are used in the
forward pass and the soft ones in the backward pass.
Input image masks. An additional requirement in order to prevent information leakage, related to
the receptive fields of modern computer vision architectures, is to adopt early masking Aniraj et al.
(2023). That is, masking directly the input of the model instead of doing so at a higher-level rep-
resentation. In this way, only the unmasked tokens are considered by the ViT, thus eliminating any
possible information contamination from the unattended regions. To mitigate potential impacts on
training dynamics from removing background tokens, our ViT architecture also incorporates register
tokens, which are restricted to attend only to the foreground.

3.4 AUDITABLE ROBUSTNESS VIA TEST-TIME INTERVENTIONS

A key benefit of our framework is its inherent transparency, setting it apart from end-to-end black-
box models. The explicit, semantically consistent part masks are auditable, enabling a novel form
of human-AI collaboration: targeted, user-driven interventions at test time. We demonstrate this
unique capability with two complementary methods:
Drop a part that captures a spurious object. While the Stage-1 selector is designed to discover the
most informative, causal image regions, setting the number of parts K too high can cause some parts
to learn spurious correlations. A key feature of our auditable framework is the ability to mitigate
this at test time. iFAM allows a user to select a subset of the discovered parts to feed into the Stage-
2 classifier. Since the learned parts are shared across classes and semantically consistent across
the dataset, this intervention can be performed globally. For instance, a user can manually inspect
a few images to identify a part that consistently captures a spurious element and exclude it from
the second stage (see Appendix D). Importantly, this process can be automated: a leave-one-out
(LOO) analysis on a validation set can programmatically identify and exclude parts whose removal
consistently improves per-class performance, offering a scalable solution.

Drop tokens assigned to a part with low confidence. In cases where OOD objects present at in-
ference time lead to false positive part detections, it is possible to simply remove the low confidence
tokens from any given part. This can be achieved by checking whether the assigned parts are un-
expectedly distant from the corresponding prototype in the feature space, based on statistics drawn
from the training set Liu et al. (2020). Specifically, a distance-based threshold τ qk can be calibrated
on the training set given a large percentile q, such that q is the proportion of tokens assigned to part
k that have a distance to the corresponding part prototype smaller than τ qk . At inference, tokens
assigned to part k with distance exceeding τ qk are reclassified as background.

Finally, since these two approaches are complementary, the first addressing part-level intervention
while the second covers individual tokens from all parts, they can be adopted simultaneously.

4 EXPERIMENTAL SETUP

We evaluate our method’s ability to discover task-relevant regions and ignore spurious correlations
using only image-level class labels. To do so, we test on a diverse suite of benchmarks specifically
designed with known biases, spanning binary, fine-grained, and large-scale classification challenges.
Implementation details are provided in Appendix A.

Datasets and Evaluation Metrics. To thoroughly assess robustness, our evaluation begins with
two binary classification tasks with strong background correlations. In MetaShift cat vs. dog Liang
et al. (2022); Wu et al. (2023), dogs (resp. cats) predominantly appear in outdoor (resp. indoor) envi-
ronments during training, while the test set contains only indoor backgrounds, making dogs harder to
detect. Similarly, in Waterbirds Sagawa et al. (2020), derived from CUB Wah et al. (2011), training
set presents a 95% correlation between species (waterbird/landbird) and background (water/land),
with the hardest test groups consisting of waterbirds on land and landbirds on water. We extend this
evaluation to more complex scenarios, including the 200-way fine-grained task CUB evaluated on
Waterbird200’s adversarial backgrounds and the medical dataset SIIM-ACR Zawacki et al. (2019),
where artifacts such as chest tubes can bias pneumothorax detection Saab et al. (2022). Finally, to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results on MetaShift, Waterbird, ImageNet-1K (IN-1K), and IN-9 (Original: IN-9O; Mixed-Same:
MS; Mixed-Rand: MR). BG-GAP = MS − MR (lower is better). Shaded columns: robustness metrics. †

models trained with extra supervision; ‡ larger-capacity models. K: number of foreground parts. LLE: Last
Layer Ensemble Li et al. (2023), SWAG Singh et al. (2022), MAE He et al. (2022), ^: Frozen backbone,
: Fine-tuned backbone, : Intervention, gt: Ground Truth Masks, f: FOUND (Saliency detection) Siméoni
et al. (2023), 1: SWAG Singh et al. (2022) pre-train + LLE Li et al. (2023), 2: MAE He et al. (2022) pre-train
+ LLE Li et al. (2023), R-50: ResNet50, R-152: ResNet152.

MetaShift Waterbird
Method Arch. K AA WGA K AA WGA
Early maskgt† (upper bound) ViT-B – – – 1 99.2 97.2
Late maskgt† (upper bound) ViT-B – – – 1 95.7 84.0
ERM Wu et al. (2023) R-50 – 72.9 62.1 – 97.0 63.7
ERM ViT-B – 75.8 62.5 – 95.0 80.7
DinoV2^ ViT-B – 83.2 72.6 – 95.9 88.5
DinoV2 PCA Darbinyan et al. (2023) ViT-B – – – – 97.4 94.0
DinoV2 ViT-B – 84.7 76.8 – 98.6 95.8
MaskTune Asgari et al. (2022) R-50 – – – – 93.0 86.4
GroupDRO Sagawa et al. (2020) R-50 – 73.6 66.0 – 91.8 90.6
DISC Wu et al. (2023) R-50 – 75.5 73.5 – 93.8 88.7
PDiscoFormer Aniraj et al. (2024) ViT-B 2 86.9 81.0 4 96.0 87.4
PDiscoFormer Aniraj et al. (2024) ViT-B 4 83.2 75.5 8 94.2 84.3
Late maskf Siméoni et al. (2023) ViT-B 1 82.3 73.5 1 95.3 83.3
Early maskf Siméoni et al. (2023) ViT-B 1 84.5 77.1 1 98.6 95.2
iFAM ViT-B 2 89.1 86.3 4 98.7 96.4
iFAM ViT-B 4 88.7 88.6 8 99.0 97.0

(b) Results on ImageNet-9 (IN-9) Backgrounds Challenge
Method Arch. IN-1K IN-9O MS MR BG-GAP ↓
ERM Wightman et al. (2021) R-50 81.2 96.4 90.0 84.6 5.4
ERM ‡ Wightman et al. (2021) R-152 83.5 97.3 92.1 87.4 4.7
ERM Touvron et al. (2022) ViT-B 83.8 97.9 92.4 87.9 4.6
ERM ‡ Touvron et al. (2022) ViT-L 84.8 98.0 93.0 89.4 3.6
DinoV2 Darcet et al. (2024) ViT-B 84.6 98.1 93.1 87.1 6.0
DinoV2 ‡ Darcet et al. (2024) ViT-L 86.7 98.3 95.5 90.2 5.3
MaskTune Asgari et al. (2022) R-50 - 95.6 91.1 78.6 12.5
LLE Li et al. (2023) R-50 76.3 95.5 88.3 83.4 4.9
SWAG+LLE1Li et al. (2023) ViT-B 85.2 98.0 92.4 87.9 4.5
MAE+LLE2Li et al. (2023) ViT-B 83.7 97.4 92.5 88.3 4.2
MAE+LLE ‡2 Li et al. (2023) ViT-L 85.8 97.4 93.5 89.8 3.6
PDiscoFormer (K=1) Aniraj et al. (2024) ViT-B 83.3 98.4 93.9 88.6 5.3
iFAM (K=1) ViT-B 84.3 97.5 93.5 91.1 2.4

demonstrate scalability, we use the ImageNet-9 (IN-9) Backgrounds Challenge Xiao et al. (2021).
This benchmark measures background reliance via the BG-GAP, which is the accuracy drop when
evaluating on images with same-class (Mixed-Same) versus random-class (Mixed-Rand) back-
grounds. Across all relevant datasets, we report standard average accuracy (AA) alongside crucial
robustness metrics, such as worst group accuracy (WGA) and the BG-GAP.
Baselines. We compare our method against several baselines, including the late-masking PDisco-
Former Aniraj et al. (2024), standard CNN/ViT models, and specialized de-biasing methods. We
also evaluate against saliency-based masking techniques Siméoni et al. (2023) and report results
from models trained with extra supervision (e.g., ground-truth masks) as upper bounds.

5 RESULTS AND DISCUSSION

5.1 RESULTS ON ROBUSTNESS BENCHMARKS

Results in Tables 1 and 2 show that our two-step approach, which explicitly limits the predictor’s
receptive field to the discovered foreground regions, leads to significant improvements in robustness
on datasets with spurious background correlations. Qualitative results are provided in Appendix D.
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Table 2: Results on CUB, Waterbird200 (CUB with OOD backgrounds) and SIIM-ACR. Shaded columns: ro-
bustness metrics. † models trained with extra supervision . ^ : Frozen backbone, : Fine-tuned backbone,
: Intervention, AUC: Area Under the Curve, seg : Supervised Semantic Segmentation

(a) Results on CUB and Waterbird200
CUB Waterbird200

Method K in-distrib. OOD
Early maskseg †Aniraj et al. (2023) (upper bound) 1 91.4 88.8
Late maskseg †Aniraj et al. (2023) (upper bound) 1 90.7 74.8

ViT-B DinoV2^ - 89.2 76.6
ViT-B DinoV2 - 91.6 68.4
PDiscoFormer Aniraj et al. (2024) 4 89.1 76.0
PDiscoFormer Aniraj et al. (2024) 8 88.8 76.8
PDiscoFormer Aniraj et al. (2024) 16 88.7 75.8
iFAM 4 90.1 86.1
iFAM 8 90.4 86.2
iFAM 16 90.6 86.2

(b) Results on SIIM-ACR
Method K A. AUC WG AUC
BBox-ERM † Saab et al. (2022) (upper bound) - 92.4 72.0
Seg-ERM † Saab et al. (2022) (upper bound) - 93.3 82.0
ResNet50 Saab et al. (2022) - 90.9 45.5
ResNet50 JTT Liu et al. (2021) - 92.6 55.9
ResNet50 GEORGE Sohoni et al. (2020) - 92.0 63.4
ViT-B RAD-DINO^ - 90.6 40.6
ViT-B RAD-DINO - 92.6 54.3
PDiscoFormer Aniraj et al. (2024) 8 92.6 48.1
iFAM 8 92.1 65.9

Results on MetaShift and Waterbird. Tab. 1-a highlights the advantage of using a pretrained DI-
NOv2 backbone, as also noted by Darbinyan et al. (2023). Notably, simply fine-tuning DINOv2
surpasses all prior OOD robustness methods, while the same ViT-B pretrained on ImageNet does
not, underscoring the impact of self-supervised pretraining. Additionally, early masking consistently
outperforms late masking in robust accuracy, whether using ground-truth masks or saliency-based
selection Siméoni et al. (2023). Our method significantly improves upon these baselines, improving
WGA from 81.0% to 88.6% on MetaShift and from 94.0% to 97.0% on Waterbird, effectively halv-
ing the error. Only early masking with ground-truth segmentation surpasses our results.
Results on IN-9. Tab. 1-b presents background sensitivity using the BG-GAP metric, which quanti-
fies the accuracy difference between the Mixed-Same and Mixed-Rand variants. Surprisingly, vision
transformers (ViTs) with advanced pre-training, such as DINOv2 Oquab et al. (2023); Darcet et al.
(2024), perform worse than standard CNNs and ViTs trained purely on IN-1K following modern
training protocols Touvron et al. (2022); Wightman et al. (2021), suggesting that pre-training does
not inherently improve background robustness. While ResNets trained with de-biasing methods Li
et al. (2023); Asgari et al. (2022) show slightly improved BG-GAP, they perform significantly worse
on individual IN-9 variants, and ViTs with post-pretraining de-biasing objectives Li et al. (2023)
offer only marginal gains. In contrast, our iFAM model achieves the lowest BG-GAP of 2.4, outper-
forming its baseline (PDiscoFormer) and all other models, including larger architectures like ViT-L
and ResNet152, which demonstrates the gains stem from our design rather than model capacity. We
use only K = 1 for part-discovery methods due to the lack of common semantic parts across classes
in this dataset.
Results on CUB and Waterbird200. Tab. 2-a shows that fine-tuning a DINOv2 ViT-B backbone
does not scale well to fine-grained tasks. The fine-tuned CUB baseline underperforms its frozen
counterpart on Waterbird200, despite a 2% in-distribution gain, suggesting overfitting to background
cues. All late-masking models, including PDiscoFormer, saturate around 76% on Waterbird200,
indicating that background biases persist even with an oracle late mask. Despite using only self-
discovered masks, our method achieves 86.2%, closely matching early-masked models from Aniraj
et al. (2023), which rely on supervised segmentation masks.
Results on SIIM-ACR. For SIIM-ACR (Tab. 2-b), training RAD-DINO or PDiscoFormer with late
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Table 3: Results of applying the token removal intervention on MetaShift, Waterbird, SIIM-ACR, and the OOD
Waterbird200 dataset.

MetaShift (K=8) Waterbird (K=16) SIIM-ACR (K=8) Waterbird200 (OOD)
Method AA WGA AA WGA A. AUC WG AUC K=4 K=8 K=16
iFAM 84.5 78.8 98.8 97.0 92.1 65.9 86.1 86.2 86.2
q=97% +0.2 +0.3 -0.1 -0.4 -0.1 +0.1 +0.7 +0.5 +1.1
q=99% +0.2 +1.3 0.0 +0.4 +0.1 +0.5 +0.5 +0.7 +0.7

masking alone results in a biased model that overly relies on spurious correlations, leading to a WG
AUC close to random performance. However, our method, with K = 8, achieves 65.9% WG AUC.
This result can be further improved to 69.0% after interventions (see sec. 5.2), approaching the
72.0% obtained with ground-truth bounding boxes, despite not using such additional annotations.

Parts WGA
All 78.8
– 64.7
– 75.8
– 75.8
– 78.8
– 75.5
– 81.7
– 77.1
– 69.9

WG
Parts AUC
All 65.9
– 65.0
– 59.9
– 63.7
– 67.3
– 65.2
– 65.6
– 66.7
– 65.5

Figure 3: Leave-one-out (LOO) part removal intervention results on MetaShift (left) and SIIM-
ACR (right) for K = 8. The bottom right image shows a heatmap of the average pneumothorax
occurrence across the dataset.

5.2 ADDITIONAL ROBUSTNESS VIA INTERVENTIONS

In this experiment, we assess the impact of our intervention strategies on robustness to spurious
correlations. Due to the weakly supervised nature of part discovery, our model may (i) identify
spurious parts in datasets with stronger spurious correlations (e.g., MetaShift, SIIM-ACR), which
can be tackled via leave-one-out (LOO) or (ii) assign out-of-distribution (OOD) objects to the
foreground (e.g., Waterbird200), which we tackle via unconfident token removal.
Part-Removal Intervention on MetaShift. Fig. 3 (left) presents part assignment maps in MetaShift
when using a too large number of parts, K = 8, color-coded, alongside WGA results from leave-
one-out (LOO) evaluation. Most parts consistently capture coherent semantics. However, the brown
part captures indoor elements, likely due to correlations between indoor backgrounds and the cat
class. This demonstrates the power of the model’s auditability: by inspecting the parts and removing
this single spurious one, a user can steer the model to improve WGA from 78.8% to 81.7%, whereas
removing other parts either reduces performance or has no effect.
Part-Removal Intervention on SIIM-ACR. Fig. 3 (right) shows SIIM-ACR results. Each part
learns to focus on a different area of the torso. Removing the red part increases WG AUC by nearly
1.5 points. This part predominantly covers the central chest region, which has little overlap with
common pneumothorax locations (see the heat map of average pneumothorax occurrence), but often
contains spurious cues, such as drainage tubes.
Token Removal Intervention. Tab. 3 shows that this intervention consistently results in better OOD
performance for all datasets, while the in-distribution performances are maintained. We also provide
a more detailed analysis of this intervention in Appendix C where we study its effects on foreground
discovery and the part assignment consistency in OOD settings.
Combining interventions. In Tab. 4 we also explore combining both intervention strategies and
observe that they are highly complementary, leading to over four point improvement on MetaShift
to 83.2% WGA when using K = 8, up from 78.8%, and over three points in SIIM-ACR, leading to
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Table 4: Results on MetaShift and SIIM-ACR with combined interventions with K = 8.

MetaShift SIIM-ACR
Method AA WGA A. AUC WG AUC
PDiscoFormer Aniraj et al. (2024) 83.2 75.5 92.6 48.1

LOO 85.2 76.8 92.6 48.1
LOO + q=99% 85.4 76.8 92.6 48.2

iFAM 84.5 78.8 92.1 65.9
LOO 84.7 81.7 90.6 67.3
LOO + q=99% 84.8 83.0 91.1 69.0

Table 5: Ablation results with K = 4.

CUB Waterbird200 MetaShift
in-distrib. OOD AA WGA

Full iFAM 90.1 86.1 88.7 88.6
No second stage 89.1 76.0 83.2 75.5
Soft masks 90.6 85.7 88.0 86.3
K = 1 w/o shaping (JAM) 90.3 80.2 85.4 79.1
No stage-1 classif. 88.9 85.0 86.9 82.3
Frozen stage-2 89.1 83.7 85.0 85.0

69% WG AUC, up from 65.9%. By contrast, PDiscoFormer benefits only marginally, with gains of
about one WGA point on MetaShift and 0.1 WG AUC on SIIM-ACR.

5.3 ABLATION STUDIES

To understand the contribution of each component in our proposed method, we conduct an ablation
study on the 200-way CUB/Waterbird200 benchmark and the binary MetaShift task (Tab. 5).

The results in Tab. 5 confirm that each component of our design is critical for OOD robustness. The
most significant contribution comes from the two-stage architecture itself. Removing the second
stage (“No second stage”), which reduces the model to a single-stage late-masking approach, causes
the largest drop in OOD performance: WGA on MetaShift falls from 88.6% to 75.5%, and accuracy
on Waterbird200 drops from 86.1% to 76.0%. Furthermore, replacing our discrete hard masks with
continuous soft masks (“Soft masks”) also degrades OOD performance, confirming that a strict
removal of background tokens is necessary to prevent information leakage.

Crucially, we evaluate a variant where we remove the part-shaping losses (“K = 1 w/o shaping
(JAM)”), reducing our selector to a standard Joint Amortized Model (JAM). The poor performance
of this baseline (79.1% WGA on MetaShift and 80.2% on Waterbird200) provides direct empirical
evidence that our semantic part-shaping objective is the key component that advances beyond prior
selector-predictor architectures. Finally, ablating the Stage-1 classification loss and keeping Stage-2
frozen also reduce performance, validating our end-to-end joint training strategy.

6 CONCLUSION

Limitations. The main limitation of our approach is the extra computational cost incurred by the
use of two forward passes: one for part discovery and the second for the downstream task. While
the straight-through gradient requires the entire image to be processed during training, the second
pass only requires access to a subset of the image at inference, allowing optimization via patch token
pruning Li et al. (2022).
Conclusion. We investigated a two-step framework where stage 1 processes the full image to dis-
cover task-relevant regions, while stage 2 operates exclusively on this binary selection. By guaran-
teeing the receptive field of the stage 2 predictor through attention masking, we ensure that only the
regions identified by stage 1 influence its representations, thereby minimizing background-related
biases. Empirically, we show that this approach significantly improves robustness on benchmarks
designed to test resilience against such biases. Our findings highlight the importance of inherently
faithful attention mechanisms for developing robust computer vision systems.
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A IMPLEMENTATION DETAILS

All models are implemented in PyTorch, using a ViT-B backbone Darcet et al. (2024) initialized with
DINOv2 weights Oquab et al. (2023) (or RAD-DINO for SIIM-ACR Pérez-Garcı́a et al. (2025)).

A.1 TRAINING SETTINGS

We trained all models for 90 epochs using the AdamW optimizer Loshchilov & Hutter (2019).
During the part discovery stage, we followed the procedure outlined in the original paper Aniraj et al.
(2024). Specifically, the class token, position embedding, and register token were kept unfrozen,
while the remaining ViT layers were frozen. In this stage, we trained these unfrozen tokens along
with the randomly initialized layers, including the projection, modulation, and final classification
layers. In the second stage, we fine-tuned all parameters of the model.

To adjust the learning rate dynamically, we employed a cosine annealing schedule Loshchilov &
Hutter (2022). The initial learning rates were set as follows: 10−6 for the fine-tuned tokens of
the ViT backbone in both stages and for the layers of the second-stage ViT, 10−3 for the linear
projection layer forming the part prototypes, and 10−2 for the modulation and final linear layers
used for classification in both stages.

We used a variable batch size, with a minimum of 16, depending on the available computational re-
sources. To scale the learning rate appropriately, we applied the square root scaling rule Krizhevsky
(2014). Regularization was performed using gradient norm clipping Pascanu et al. (2013) with a
constant value of 2 and a normalized weight decay Loshchilov & Hutter (2019) set to 0.05.

The PDiscoFormer losses were configured as in the original paper Aniraj et al. (2024), with one
exception for the biomedical dataset SIIM-ACR Zawacki et al. (2019). For this dataset, we disabled
the background loss Lp0 by setting its weight to 0, as this loss assumes the background part is
more likely to occur at the image boundaries — an assumption that does not necessarily hold for
pneumothorax occurrences.

Finally, we used a constant part dropout value of 0.3 for both stages of the model in all experiments.
The dropout value for the first stage aligns with that used in the original PDiscoFormer paper Aniraj
et al. (2024), while the value for the second stage was ablated in Table 5 of our main paper.

Scaling up to larger datasets. For larger datasets such as ImageNet1K Russakovsky et al. (2015),
we adopted optimizations including Automatic Mixed Precision (AMP) Micikevicius et al. (2018)
and temporal averaging using Exponential Moving Average (EMA) Kingma (2015); Morales-
Brotons et al. (2024) to accelerate and stabilize training. By leveraging these optimizations, we
were able to double the batch size, leading to a 3.5× reduction in training time, all while main-
taining performance. Additionally, we found that larger datasets benefited from longer training,
prompting us to increase the total number of epochs to 120.

Baseline Training Settings. Wherever possible, we report results from cited papers or evaluate
public weights; otherwise, we re-train baselines using the experimental setup from the original paper.

B TRAINING TIME AND INFERENCE SPEED

We use an input image size of 518 for the CUB Wah et al. (2011), Waterbirds Sagawa et al. (2020),
SIIM-ACR Zawacki et al. (2019) aligning with the default resolution of DINOV2. This higher
resolution is consistent with prior works van der Klis et al. (2023); Aniraj et al. (2024); Saab et al.
(2022). For the MetaShifts Liang et al. (2022) and ImageNet1K datasets, we adopt a reduced input
size of 224, resulting in lower computational requirements.

Training Time. On a machine with 8 NVIDIA A100 GPUs, the training times are as follows:
approximately 3 hours for CUB and Waterbirds, 5 hours for SIIM-ACR, 11 minutes for MetaShifts,
and 34 hours for ImageNet-1K (with AMP and EMA optimizations).

Inference Speed. On an RTX 3090, models trained on CUB (input size: 518) run at 43 im-
ages/second, while those trained on MetaShift (input size: 224) reach 151 images/second. These
results are reported without any inference-time optimizations. We believe future work can further
improve speed by leveraging the sparsity of second-stage inputs.
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CUB iFAM WB200 iFAM q = 99% q = 97%

Figure 4: Qualitative results of part discovery of our model on the CUB dataset (K = 8), along with results on
the corresponding out-of-distribution (OOD) images from the WB200 (WaterBirds200) dataset and the effect
of the test-time intervention of thresholding on the OOD images.

C DETAILED ANALYSIS OF TOKEN REMOVAL

C.1 QUALITATIVE ANALYSIS

Fig. 4 illustrates OOD token removal for K = 8. In CUB (second column), discovered parts align
well with the bird. However, in Waterbird, background objects are often misassigned to foreground
parts. Since these objects have representations farther away from part prototypes, applying a 97th

percentile threshold effectively removes them. This results in a small but consistent improvement in
Waterbird200 (Tab. 3), with over a one-point gain at K = 16.

C.2 QUANTITATIVE ANALYSIS

In Table 3, we demonstrated that the OOD token removal intervention consistently improves clas-
sification accuracy. To provide a deeper analysis, we now evaluate its effect on part assignment
consistency and foreground discovery capability using the metrics defined below.

Evaluation Metrics. The CUB dataset provides ground-truth annotations for parts in the form of
keypoints, which denote the centroid locations of parts within each image, as well as foreground-
background masks. Since the images in the Waterbird200 dataset are identical to those in CUB,
differing only in their adversarial backgrounds, the CUB annotations can also be used for Water-
bird200. We evaluate foreground discovery using mean Foreground Intersection-over-Union (Fg.
mIoU) and part assignment consistency using Keypoint Regression (Kp).

1. Fg mIoU. This metric assesses the model’s ability to identify the foreground region relevant
for downstream classification. We merge all detected foreground parts and compute the
IoU between the merged parts and the ground-truth foreground-background masks from
the CUB dataset.

2. Kp. Following Hung et al. (2019), we measure part assignment consistency by deriving
landmark locations through a trained linear regression model. This model maps the 2D
geometric centers of the part assignment maps to their corresponding ground-truth part
landmarks. The predicted landmarks are then compared against ground-truth annotations
on the test set, with the evaluation metric being the normalized mean L2 distance.
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Table 6: Quantitative analysis of the effect of the token removal intervention on part assignment
consistency using keypoint regression (Kp) and foreground discovery (Fg. MIoU) on the OOD
Waterbird200 dataset. K: Number of foreground parts.

Method K Kp ↓ Fg. MIoU ↑ Top-1
Acc. ↑

iFAM
4

10.3 63.7 86.1
q = 97% 8.4 65.2 86.8
q = 99% 9.2 65.9 86.6

iFAM
8

9.3 68.6 86.2
q = 97% 6.7 71.4 86.7
q = 99% 7.3 72.4 86.9

iFAM
16

8.0 70.2 86.2
q = 97% 6.2 72.9 87.3
q = 99% 6.5 73.1 86.9

Results on Foreground Discovery. The low-confidence token removal technique consistently im-
proves Foreground MIoU across all values of K on the OOD Waterbird200 dataset (see Tab. 6).
However, increasing the threshold (e.g., q=97%) leads to a slight reduction in MIoU compared
to using q = 99%. For instance, at K = 8 (results shown in Figure 4 of the main paper), the
baseline model achieves a Foreground MIoU of 68.6%, which improves to 72.4% with q=99%,
but drops to 71.4% with q = 97%, suggesting that a stricter confidence threshold may inadver-
tently remove some foreground regions. Despite this, the drop in classification accuracy is minimal
(from 86.9% to 86.7%), indicating that the model remains robust to removed foreground regions.
Similar trends are observed across other values of K, where q=99% generally leads to the best
Foreground MIoU, while q=97% provides slightly better classification performance.

Results on Part Assignment Consistency. The intervention improves keypoint regression (Kp)
values across all K values, indicating that the centroids of part assignment maps align more closely
with ground-truth annotations. For instance, at K = 16, the Kp value improves from 8% (baseline)
to 6.2% ( q = 97%), likely due to the removal of low-confidence tokens near part boundaries, as
shown in Fig. 4.

Overall, these results suggest that low-confidence token removal enhances both foreground discov-
ery and part assignment consistency, with q=99% generally yielding the best Foreground MIoU,
while q=97% slightly improves classification performance.

D QUALITATIVE RESULTS FOR PART DISCOVERY

To complement the quantitative evaluations in the main paper, we provide additional qualitative
results in Figures 5 to 10. These results demonstrate our model’s ability to discover meaningful
parts and accurately identify foreground regions, which are crucial for downstream classification
tasks and improving model interpretability.

Results on CUB and WaterBird. In datasets such as CUB and Waterbird, where all images belong
to a single super-class (birds), the granularity of the discovered parts improves as K increases. The
identified parts generally align well with the foreground regions, as shown in Fig. 5 and Fig. 6.

Results on MetaShifts. For the binary classification task in MetaShifts (Cat vs. Dog), illustrated
in Fig. 7, the model assigns a single part (blue) to both cats and dogs when K = 1. At K = 2, the
same part (orange) is assigned to both classes, while another part (blue) is allocated to objects that
frequently co-occur with these animals in the training set. However, at higher values of K, such as
K = 8, the model begins to identify more non-causal or spurious parts.

Results on ImageNet-1K. Qualitative results on ImageNet-1K for various animal classes, including
birds, cats, dogs, and insects, are shown in Figures 8, 9, and 10 for K = 1. At this setting, the
model effectively performs foreground discovery, which appears to generalize well across the 1000
classes of ImageNet. This observation aligns with our quantitative results on background robustness
in Table 1-b of the main paper.
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Figure 5: Qualitative results for part discovery for the iFAM model (without any ) trained on the
CUB dataset for different values of K, the number of foreground parts.
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Figure 6: Qualitative results for part discovery for the iFAM model (without any ) trained on the
Waterbirds dataset for different values of K, the number of foreground parts.

E USE OF LLMS IN WRITING

LLMs were used strictly for grammatical corrections and eventual rephrasing of the authors’ original
content.
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Figure 7: Qualitative results for part discovery for the iFAM model (without any ) trained on the
MetaShifts dataset for different values of K, the number of foreground parts.
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Figure 8: Qualitative Results on ImageNet-1K for Birds (without any ) for K = 1.
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Figure 9: Qualitative Results on ImageNet-1K for Cats and Dogs (without any ) for K = 1.
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Figure 10: Qualitative Results on ImageNet-1K for Insects (without any ) for K = 1.
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