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Abstract

The growing demand for personalized learning
underscores the importance of accurately predict-
ing students’ future performance to support tai-
lored education and optimize instructional strate-
gies. Traditional approaches predominantly fo-
cus on temporal modeling using historical re-
sponse records and learning trajectories. While
effective, these methods often fall short in cap-
turing the intricate interactions between students
and learning content, as well as the subtle se-
mantics of these interactions. To address these
gaps, we present EduLLM, the first framework
to leverage large language models in combina-
tion with hypergraph learning for student perfor-
mance prediction. The framework incorporates
FraS-HNN (Framelet-based Signed Hypergraph
Neural Networks), a novel spectral-based model
for signed hypergraph learning, designed to model
interactions between students and multiple-choice
questions. In this setup, students and questions
are represented as nodes, while response records
are encoded as positive and negative signed hyper-
edges, effectively capturing both structural and se-
mantic intricacies of personalized learning behav-
iors. FraS-HNN employs framelet-based low-pass
and high-pass filters to extract multi-frequency
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features. EduLLM integrates fine-grained se-
mantic features derived from LLMs, synergiz-
ing with signed hypergraph representations to
enhance prediction accuracy. Extensive experi-
ments conducted on multiple educational datasets
demonstrate that EduLLM significantly outper-
forms state-of-the-art baselines, validating the
novel integration of LLMs with FraS-HNN for
signed hypergraph learning.

1. Introduction
Background. In recent years, the increasing emphasis on
personalized learning has underscored the need for innova-
tive strategies to support individualized educational path-
ways (Mayer, 2019). A critical aspect of this effort is the
accurate prediction of student performance, which enables
educators to tailor instructional strategies, optimize learning
experiences, and improve educational outcomes (Dziuban
et al., 2015). While adaptive learning technologies have
demonstrated promise, they often struggle to capture the
intricate structural and semantic relationships inherent in
the learning process, such as interactions between students
and educational content.

Motivation. Existing approaches to student performance
prediction predominantly rely on temporal modeling and
graph neural networks (GNNs) to analyze historical answer-
ing records, learning trajectories, and pairwise connections
between learners and learning materials. Temporal mod-
els focus on sequential dependencies, while GNNs excel
at representing “student-content” interactions (Zhou et al.,
2020; Zhang & Chen, 2018). These methods have achieved
considerable success by capturing local relationships within
the learning ecosystem. However, their reliance on pairwise
modeling limits their capacity to represent higher-order in-
teractions involving multiple entities, such as a student’s
engagement with related questions or the interconnectedness
of various knowledge points within a course.

Hypergraph learning offers a compelling alternative by ex-
tending traditional graph structures to model higher-order
relationships (Antelmi et al., 2023; Dai & Gao, 2023; Kim
et al., 2024). Unlike GNNs, hypergraphs can represent in-
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teractions among multiple nodes simultaneously through
hyperedges, providing a richer representation of complex
relationships (Li et al., 2024). For instance, a student’s
responses to multiple-choice questions (MCQs) can be cap-
tured as hyperedges, effectively modeling both structural
and semantic associations. Despite this potential, the appli-
cation of hypergraph-based methods in student performance
prediction remains limited, particularly in contexts that re-
quire the integration of semantic insights and structural
information.

Meanwhile, the advent of large language models (LLMs)
has marked a transformative shift in natural language pro-
cessing. LLMs excel at extracting fine-grained semantic
features from textual data, such as the content of MCQs, and
offer a complementary approach to hypergraph learning by
enhancing the semantic granularity of question representa-
tions (Wang et al., 2024b). However, existing methods strug-
gle to effectively integrate LLMs with hypergraph-based
approaches, leading to feature embeddings that are noisy or
fail to capture the full complexity of student-content interac-
tions. Furthermore, many hypergraph learning frameworks
lack mechanisms for multi-scale representation, which are
critical for capturing both shared preferences among stu-
dents and individualized distinctions in learning behaviors.

Our Methodology. To address these challenges, this paper
introduces EduLLM, a unified framework that integrates
hypergraph learning with LLMs to enhance the precision
of student performance prediction. At its core, EduLLM
formulates the student performance prediction task as a
hypergraph learning problem, where interactions between
students and MCQs are modeled using signed hypergraphs.
In this formulation, students and questions are represented
as nodes, and their response records are encoded as positive
and negative signed hyperedges, capturing both structural
and semantic intricacies of the learning process. A key
innovation of EduLLM lies in its framelet-based signed
hypergraph neural network (FraS-HNN), which leverages
multiresolution signal processing to effectively learn hy-
pergraph representations. This model employs low-pass
filters to identify shared patterns in learning behaviors and
high-pass filters to highlight individual differences, provid-
ing a nuanced understanding of student-content interactions.
Framelet-based transformations further enable decomposi-
tion and reconstruction in the frequency domain, enhancing
the model’s ability to capture multi-scale features while re-
ducing noise and improving data compression. Fine-grained
semantic features extracted by LLMs are seamlessly inte-
grated into this framework, enriching the representation of
course content and improving prediction accuracy. Exten-
sive experiments on multiple educational datasets demon-
strate that EduLLM outperforms state-of-the-art baselines,
validating the effectiveness of combining hypergraph learn-
ing and LLM-based semantic analysis. By addressing limita-

tions in existing approaches, this framework provides robust
technological support for advancing personalized learning
and facilitating precise educational interventions.

Contribution. The primary contributions of this work are
summarized as follows:

• Problem Formulation Perspective: We redefine the
student performance prediction task as a hypergraph
learning problem by introducing signed hypergraphs to
represent interactions between students and questions,
where response records are modeled as positive and
negative signed hyperedges.

• Model Development: We design a framelet-based
signed hypergraph neural network (FraS-HNN) that
leverages multiresolution signal processing to effec-
tively learn hypergraph representations. This model
employs low-pass filters to capture shared preferences
among learners and high-pass filters to emphasize indi-
vidual distinctions, facilitating a nuanced understand-
ing of both structural and semantic relationships within
the signed hypergraph.

• Framework Design: We propose EduLLM, a uni-
fied framework that synergizes hypergraph learning
and LLM-based semantic analysis. By combining
hypergraph-based structural modeling with the seman-
tic granularity provided by LLMs, EduLLM achieves
a comprehensive representation of student-content in-
teractions. This integration significantly improves the
precision of student performance predictions, demon-
strating the effectiveness of the framework across mul-
tiple datasets.

2. Problem Formulation and Notation
In this section, we introduce how the interactions between
students and multiple-choice questions (MCQs) can be rep-
resented using a signed hypergraph. The interaction data
includes not only students’ responses to MCQs but also
detailed textual information associated with each question,
such as the question stem, options, answers, and explana-
tions. These interactions are naturally modeled as a signed
hypergraph, where nodes represent students and questions,
and hyperedges capture the relationships between students
and specific questions based on their responses.

Signed Hypergraph. The signed hypergraph is mathemati-
cally defined as G = (V, E), where V = U ∪ Q represents
the set of nodes, comprising the student set U and the ques-
tion set Q. The hyperedge set E consists of two components:
the positive hyperedge set E+ and the negative hyperedge
set E−. Specifically, a positive hyperedge e+ ∈ E+ con-
nects all students who answered a question correctly, while
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a negative hyperedge e− ∈ E− connects all students who
answered the same question incorrectly.

To formally describe the structure of the signed hypergraph,
we use an incidence matrix H ∈ {0, 1,−1}N×M where
N = |V| is the number of nodes andM = |E| is the number
of hyperedges. The matrix element H(v, e) encodes the
relationship between a node v ∈ V and a hyperedge e ∈ E :
(i) H(v, e+) = 1, if v belongs to a positive hyperedge e+;
(ii) H(v, e−) = −1, if v belongs to a negative hyperedge
e−; (iii) H(v, e) = 0 otherwise.

The degrees of nodes and hyperedges are represented by
the diagonal matrices Dv ∈ RN×N and De ∈ RM×M ,
respectively, as computed as follows:

Dv(v, v)=
∑
e∈E

|H(v, e)|, De(e, e)=
∑
v∈V

|H(v, e)|. (1)

Task Definition. Within this signed hypergraph framework,
the student performance prediction task is formulated as a
hyperedge sign prediction problem. Here, the objective is
to predict the unknown signs of hyperedges, representing
whether students correctly or incorrectly respond to spe-
cific questions. Given a signed hypergraph G = (V, E),
we aim to learn low-dimensional embeddings for students
and questions, denoted as zui

for student ui ∈ U and wqj

for question qj , where zui
,wqj ∈ Rd and d is the embed-

ding dimension. The embeddings are used to predict the
sign of an unknown hyperedge ei,j via a mapping function:
f(zui ,wqj ) → −1/+ 1.

Remark 1. We note that our problem formulation, i.e.,
modeling student–question interactions through signed hy-
pergraphs, differs fundamentally from conventional knowl-
edge tracing (KT) (Abdelrahman et al., 2023) and cognitive
diagnosis (CD) (Wang et al., 2024a) frameworks. KT and
CD are typically centered on tracking students’ mastery
of underlying concepts over time and rely heavily on fine-
grained mappings between questions and predefined con-
cepts. In contrast, our formulation operates at the question
level, leveraging signed hyperedges to encode the correct-
ness of student responses. This representation is inherently
incompatible with the structure and assumptions of most
KT/CD datasets, which are not designed to support signed
or higher-order relational modeling at the question level.
Technically, how to formulate signed hypergraphs within
the KT/CD setting, particularly in the context of modeling
concept-level mastery via Q-matrices, requires further in-
vestigation. We leave this as a potential direction for future
work to connect signed hypergraph learning with traditional
student modeling paradigms.

Remark 2. The signed hypergraph framework offers a
significant advantage over traditional signed graphs by its
ability to model higher-order relationships among students

and questions. While signed graphs are limited to pair-
wise interactions, signed hypergraphs enable hyperedges
to connect multiple nodes simultaneously, capturing group
interactions that are critical in educational settings. For
example, a single hyperedge in a signed hypergraph can
represent the collective response of multiple students to a
specific question, providing a richer and more expressive
representation of learning behaviors. This capability allows
the signed hypergraph to encode non-local relationships,
such as shared misconceptions among students or the inter-
play of multiple knowledge points within a course, which
signed graphs cannot adequately capture. These characteris-
tics highlight the potential of signed hypergraphs for more
comprehensive modeling of student-content interactions and
the advancement of personalized learning systems.

3. Method
3.1. Framework Overview

As shown in Figure 1, EduLLM consists of three key mod-
ules: i) an LLM-based semantic extraction module, which
extracts key components from MCQs (e.g., stems, options,
answers, and explanations) and generates semantic embed-
dings enriched with contextual knowledge; ii) a signed hy-
pergraph construction module, which models interactions
between students and MCQs by representing students and
questions as nodes and encoding correct and incorrect re-
sponses as positive and negative signed hyperedges; and iii)
FraS-HNN, a framelet-based signed hypergraph neural net-
work equipped with low-pass and high-pass filters for multi-
frequency hypergraph learning. As the novel component
of the framework, FraS-HNN is detailed in the following
section, while further details about the first two components
are provided in the Appendix D.

3.2. Construction of FraS-HNN

We propose FraS-HNN to analyze signed hypergraphs by
decomposing their signals into multi-frequency components.
This approach enables effective feature learning by leverag-
ing framelet theory, capturing both shared (low-pass) and in-
dividual (high-pass) features within the signed hypergraph.

Framelet Construction on Signed Hypergraphs. Let
G = (V, E) denote a signed hypergraph, where V repre-
sents the set of N nodes, and E represents the signed hy-
peredges (including both positive and negative ones). The
signed hypergraph Laplacian Ls encodes the structural re-
lationships within G. Its eigendecomposition is expressed
as: Ls = M∆M⊤, where M = [m1,m2, . . . ,mN ] is
the matrix of eigenvectors, and ∆ = diag(δ1, δ2, . . . , δN )
contains the eigenvalues.

Framelets are constructed using scaling and wavelet func-
tions Γ = {φ;ψ(1), . . . , ψ(k)}, with associated filter banks
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Figure 1. Schematic of our proposed EduLLM framework: The process begins with extracting semantic information from MCQs using
an LLM, where key components such as the question stem, options, answers, and explanations are identified and formatted into a
structured representation. The LLM generates semantic embeddings for the MCQs by recognizing keywords and calculating their relative
contributions. These embeddings, combined with Glove word embeddings, are incorporated into a signed hypergraph structure that
models the interactions between students and MCQs. In this signed hypergraph, students and MCQs are represented as nodes, and their
interactions are encoded as positive or negative signed hyperedges, reflecting correct and incorrect responses, respectively. FraS-HNN, the
proposed framelet-based signed hypergraph neural network, processes this hypergraph using multi-frequency signal analysis. Specifically,
the proposed spectral-based signed hypergraph convolution module leverages framelet-based low-pass and high-pass filters to capture
shared patterns among nodes while highlighting individualized distinctions within the hypergraph structure. These processed features are
then propagated through multiple layers of FraS-HNN to learn comprehensive embeddings for students and MCQs. The final prediction
module employs a MLP with a binary cross-entropy loss function to predict student performance, completing the framework.

Θ = {g;h(1), . . . , h(k)}. These filters satisfy:

φ̂(2ω) = ĝ(ω)φ̂(ω), ψ̂(r)(2ω) = ĥ(r)(ω)φ̂(ω), (2)

where f̂(ω) is the Fourier transform of f . The scaling
function φ captures shared patterns (low-pass), while the
wavelet functions ψ(r) (r = 1, . . . , k) highlight distinctions
(high-pass). For a node v at scale j, the low-pass and high-
pass framelets are defined as:

Φj,v(u) =

N∑
p=1

φ̂

(
δp
2j

)
mp(v)mp(u), (3)

Ψ
(r)
j,v(u) =

N∑
p=1

ψ̂(r)

(
δp
2j

)
mp(v)mp(u). (4)

Filter Design with Haar-Type Functions. For computa-
tional efficiency, FraS-HNN employs Haar-type filters to

construct the framelets. For a system with two levels of
decomposition (j = 1, 2) and one high-pass filter (r = 1),
the filters are defined as:

φ̂

(
∆

2

)
= cos

(
∆

8

)
cos

(
∆

16

)
, (5)

ψ̂(1)

(
∆

2

)
= sin

(
∆

8

)
cos

(
∆

16

)
, (6)

ψ̂(1)

(
∆

4

)
= sin

(
∆

16

)
, (7)

yielding one low-pass and two high-pass components. These
filters enable efficient decomposition of signals into multi-
frequency components.

Framelet-Based Signed Hypergraph Convolution.
From the implementation perspective, eigendecomposi-
tion of Ls can be computationally expensive for large
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hypergraphs. FraS-HNN addresses this by approximating
spectral filters using Chebyshev polynomials:

φ̂(∆) ≈
T∑

n=0

cnTn(∆), ψ̂(r)(∆) ≈
T∑

n=0

d(r)n Tn(∆), (8)

where Tn(x) is the n-th Chebyshev polynomial. This ap-
proximation reduces computational costs while retaining
spectral properties.

The framelet-based signed hypergraph convolution operator
is formally defined as:

F(X) =

J∑
j=1

k∑
r=1

T ⊤
j,rdiag(θj,r)Tj,rX

+ T ⊤
0,Jdiag(θ0,J)T0,JX,

(9)

where:T0,J and Tj,r are the low-pass and high-pass decom-
position operators, respectively, θj,r and θ0,J are trainable
spectral filters applied to the corresponding frequency com-
ponents. The decomposition operators are defined as:

T0,J =M⊤φ̂

(
∆

2J

)
M, Tj,r= M⊤ψ̂(r)

(
∆

2j+1

)
M. (10)

These operators project the signal X onto the low-pass and
high-pass framelets, enabling multi-frequency analysis.

Building FraS-HNN. FraS-HNN is constructed by stack-
ing multiple layers of framelet-based signed hypergraph
convolution. To improve learning stability and mitigate the
over-smoothing issue, FraS-HNN employs initial residual
and identity mapping techniques introduced in (Chen et al.,
2020). Each layer is defined as:

X(ℓ+1) = σ

((
(1− αℓ)F(X(ℓ)) + αℓX

(0)
)

·
(
(1− βℓ)I+ βℓΘ

(ℓ)
))

,

(11)

where X(ℓ) is the feature matrix at layer ℓ, X(0) is the initial
feature matrix, F(·) represents the framelet-based signed
hypergraph convolution operator, Θ(ℓ) is a trainable diag-
onal scaling matrix, αℓ ∈ [0, 1] balances the contributions
of the initial and current features, βℓ ∈ [0, 1] adjusts the im-
pact of the identity mapping, σ(·) is a non-linear activation
function (e.g., ReLU).

3.3. Training Objective

After obtaining the embeddings for each student i and ques-
tion j from the signed hypergraph learning module equipped
with the FraS-HNN model, we represent these embeddings
as zui and wj ∈ Rd , where d denotes the embedding di-
mension. The function f(zui ,wj) → {−1,+1} is used

to predict the sign of the unobserved hyperedge eij . To
accomplish this, we concatenate the student embedding zui

with with the question embedding wj , forming a combined
vector. This concatenated vector is then passed through a
multi-layer perceptron (MLP) to predict the edge sign, as
described by the following form:

ypred = MLP(zui
∥wj). (12)

Here, the predicted score ypred corresponds to the likelihood
that the hyperedge sign is positive, with higher scores indi-
cating a stronger probability of a positive sign, and lower
scores suggesting a negative sign.

For the training objective, we adopt the binary cross-entropy
loss function to optimize the hyperedge sign prediction task,
that is:

LCE = −y log(ypred) + (1− y) log(1− ypred), (13)

where y denotes the ground-truth label of the hyperedge
sign, with mapping {−1, 1} to {0, 1}.

Additional theoretical properties of FraS-HNN, along with
rigorous proofs, are provided in the Appendix B.

4. Experiments
In this section, we conduct a series of experiments to evalu-
ate the effectiveness of the proposed EduLLM framework.
The primary objectives are to address the following research
questions:

• Q1: How does EduLLM perform compared to state-of-
the-art signed graph representation learning methods
and classic graph neural network models?

• Q2: What are the contributions of high-pass infor-
mation, low-pass information, and semantic feature
embeddings to EduLLM’s performance?

• Q3: How do key hyperparameters impact the perfor-
mance of EduLLM?

• Q4: How robust is the EduLLM model with respect
to the LLM-induced semantic representation embed-
dings?

• Q5: How does the proposed FraS-HNN module benefit
the EduLLM framework from a hypergraph learning
perspective?

4.1. Baselines and Evaluation Metrics

To address Q1, we evaluate EduLLM on five real-world
datasets by comparing its performance against several base-
lines, including Random Embedding, Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), Graph Attention
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Networks (GAT) (Veličković et al., 2018), Signed Graph
Convolutional Network (SGCN) (Derr et al., 2018), Signed
Bipartite Graph Neural Network (SBGNN) (Huang et al.,
2021), Signed Bipartite Graph Contrastive Learning (SBCL)
(Wang et al., 2024b), and its variant version LLM-SBCL
(Wang et al., 2024b), see more details in the Appendix E.1.
For Q2 and Q3, we conduct ablation studies and sensitivity
analyses to examine the contributions of individual compo-
nents and the influence of key hyperparameters. To answer
Q4, we perform robustness tests to assess the reliability and
applicability of the integrated large language models. For
Q5, we replace the FraS-HNN module with other existing
HNN models while keeping the remaining components of
EduLLM unchanged. This allows for a convincing evalu-
ation of the role that FraS-HNN plays in learning signed
hypergraphs within the EduLLM framework.

Given the imbalance between positive and negative links in
the datasets, we employ two evaluation metrics: area under
the curve (AUC) and binary-average F1 score (Binary-F1).
Both metrics provide a balanced assessment of performance,
with higher values indicating better results.

4.2. Datasetes

Multiple Choice Questions (MCQs) are a fundamental tool
for assessing students’ knowledge and learning progress,
particularly on online education platforms where they play
a critical role in evaluating learners. In this study, we uti-
lize real-world datasets containing interaction information
between students and MCQs. Each interaction is recorded
as either a correct response (marked as ‘+’) or an incorrect
response (marked as ‘-’), enabling the construction of both
signed graphs (to align with baseline models) and signed
hypergraphs (to fit the problem formulation of EduLLM).
The five datasets (Wang et al., 2024b) used in our exper-
iments are derived from courses at three universities: the
Biology and Law courses from the University of Auckland,
the Cardiff20102 Medical School course from Cardiff Uni-
versity, and the biochemistry courses Sydney19351 and Syd-
ney23146 from the University of Sydney.

Signed Hypergraph Construction. To construct the signed
hypergraph for each dataset, we leverage the students’ re-
sponse records. Each student’s response to a question is
classified as either correct or incorrect. Since answering
processes for questions are independent, the hypergraph
structure naturally emerges from the data. Specifically: i)
For each question node qj ∈ V , students who correctly
answer the question form a positive hyperedge (‘+1’) con-
necting the question node with the corresponding student
nodes ui ∈ V; ii) Similarly, students who answer the ques-
tion incorrectly form a negative hyperedge (‘-1’) with the
same question node. Thus, each dataset is represented as a
signed hypergraph, where student nodes and question nodes

Table 1. Statistics of the five real-world datasets.
Biology Law Cardiff Sydney19 Sydney23

|U| 761 528 383 382 198
|V| 380 5600 1171 457 748
|E| 760 11,200 2,342 914 1,496
|E| 76,613 88,563 64,524 24,032 24,050
Pos Link 66.5% 93.1% 60.0% 53.1% 70.6%
Neg Link 33.5% 6.9% 40.0% 46.9% 29.4%

interact through hyperedges labeled to reflect the correct-
ness of responses. The hypergraph captures the higher-order
relationships between multiple students and questions, pro-
viding a richer structural representation compared to the
graph-based and signed graph-based models.

Table 1 provides a detailed comparison of the data charac-
teristics for both signed hypergraphs and signed graphs con-
structed from the five real-world datasets. In this table, the
number of hyperedges within the signed hypergraph is de-
noted by |E|, which captures the higher-order relationships
between multiple students and a single question. In contrast,
the number of edges within the signed graph is denoted
by |E|, representing the direct, individual interactions be-
tween students and questions. Naturally, |E| is significantly
smaller than |E|, reflecting the ability of hypergraphs to
represent co-occurrence (higher-order) relationships among
students and questions.

Further details on the datasets and the process of formu-
lating the original ’students-MCQs’ data sources as signed
hypergraphs are provided in Appendix C.

4.3. Experimental Setup

We note that, in our experiments, the semantic embeddings
are pre-encoded and provided by (Wang et al., 2024b), rather
than being directly derived from the original multiple-choice
question (MCQ) data (e.g., question stems, options, and ex-
planations). As a result, it is not feasible to directly compare
the performance of EduLLM using different LLM mod-
ules. To roughly investigate the impact of LLM-induced
embeddings, we conduct a robustness study as described
in Section 4.7 (for Q4). Meanwhile, using the same pre-
encoded semantic embeddings ensures a fair comparison
when analyzing the specific contribution of the FraS-HNN
module, as presented in Section 4.8 (for Q5).

The datasets are partitioned into three subsets to ensure a ro-
bust evaluation: 85% for training to capture underlying data
patterns, 5% for validation to fine-tune hyperparameters,
and 10% for testing to assess the model’s generalization
capability. Each model was trained for 300 epochs to en-
sure convergence while reducing the risk of overfitting. To
enhance the reliability of the results, all experiments were
repeated ten times. The mean and standard deviation of the
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Table 2. Performance comparison on five real-world educational datasets (average binary-F1 ± standard deviation).
Biology Law Cardiff20102 Sydney19351 Sydney23146

Random 0.350± 0.010 0.472± 0.001 0.136± 0.062 0.290± 0.014 0.288± 0.035
GCN 0.682± 0.058 0.823± 0.010 0.677± 0.024 0.642± 0.021 0.728± 0.013
GAT 0.618± 0.013 0.817± 0.050 0.571± 0.013 0.564± 0.022 0.608± 0.020
SGCN 0.768± 0.040 0.840± 0.013 0.607± 0.033 0.635± 0.044 0.726± 0.040
SBGNN 0.753± 0.014 0.861± 0.034 0.712± 0.016 0.673± 0.016 0.712± 0.021
SBCL 0.772± 0.016 0.901± 0.016 0.718± 0.018 0.674± 0.021 0.733± 0.019
LLM-SBCL 0.787± 0.014 0.908± 0.018 0.734± 0.023 0.694± 0.021 0.760± 0.022

EduLLM (Ours) 0.809 ± 0.010 0.945 ± 0.005 0.753 ± 0.011 0.712 ± 0.016 0.829 ± 0.006

performance metrics were reported to account for variations
due to data splits and random initialization, thereby ensuring
robust and unbiased evaluation. Detailed reproducibility pa-
rameters for the optimal results obtained in our experiments
are provided in the Appendix E.2.

4.4. Results and Discussion (Q1)

To address Q1, we compare EduLLM with various baseline
models on the five datasets. The comparison results, sum-
marized in Table 2, lead to the following key observations:

Superior Performance of EduLLM. Across all datasets,
EduLLM consistently outperformed all baseline models,
achieving the highest binary F1 scores. This result under-
scores the advantages of hypergraph-based models in cap-
turing multi-scale signed information. The use of framelet-
based hypergraph convolution, which effectively integrates
low-pass and high-pass information, was instrumental in
achieving this superior performance.

Limitations of Vanilla GNN Models. As evident from Ta-
ble 2, traditional unsigned graph learning methods such as
GCN and GAT demonstrate limited effectiveness in model-
ing signed graphs or hypergraphs. These models are unable
to fully capture the intricate signed interactions inherent
in educational contexts. In contrast, EduLLM leverages
its signed hypergraph structure to model these complex
relationships, consistently delivering better predictive per-
formance across all datasets.

FraS-HNN vs. Signed GNNs. Specifically, EduLLM also
outperforms state-of-the-art signed graph models, includ-
ing SGCN, SBGNN, SBCL, and its variant LLM-SBCL,
which integrates large language models. This significant im-
provement highlights the strength of FraS-HNN’s framelet-
based hypergraph convolution, which effectively captures
both local and global signed information. This enhanced
higher-order feature expressiveness give EduLLM a distinct
advantage over these competing models.

Robustness and Stability. Relatively, EduLLM exhibits
low standard deviations across all datasets, reflecting strong
stability and generalization capability. Moreover, the model
maintains solid performance despite the diversity of the

datasets, demonstrating its potential adaptability and appli-
cability in varying educational contexts.

4.5. Ablation Study (Q2)

To address Q2, we conduct an ablation study to evaluate the
contributions of high-pass information, low-pass informa-
tion, and semantic feature embeddings to the performance
of the EduLLM model. In particular, we compare the full
model with three ablated variants: i) w/o High: This variant
excludes the high-pass filter, retaining only the low-pass
filter. It evaluates the role of high-frequency information in
capturing fine-grained distinctions within the hypergraph;
ii)w/o Low: This variant removes the low-pass filter, re-
lying solely on the high-pass filter. It assesses the contri-
bution of low-frequency information in modeling shared
preferences and global patterns; iii) w/o LLM: This variant
eliminates the semantic embeddings derived from the LLM
and relies solely on structural embeddings. It investigates
the significance of incorporating semantic information into
the hypergraph representation.

Observation and Discussion. EduLLM’s integration of
both low-pass and high-pass features is theoretically moti-
vated, as discussed in the Appendix B, where FraS-HNN
is designed to comprehensively capture the diversity and
complexity of signed hypergraph signals. This balanced
integration of high- and low-frequency information, com-
bined with semantic embeddings, forms a robust founda-
tion for modeling diverse patterns within the data. The
results of the ablation study, presented in Table 3, demon-
strate the substantial contributions of each component to
the overall performance of EduLLM. Removing any of the
key components leads to a significant drop in binary-F1
scores across all datasets, underscoring their importance.
Specifically, the high-pass component plays a vital role in
capturing fine-grained distinctions, while the low-pass com-
ponent effectively models global relationships. Together,
these components of the framelet-based hypergraph convo-
lution highlight the potential for designing more advanced
hypergraph neural networks for signed hypergraph learn-
ing. Furthermore, the semantic embeddings induced by the
LLM significantly enhance the representation of knowledge

7



EduLLM

Table 3. Ablation study results (average binary-F1 ± standard deviation).
Full Model w/o High w/o Low w/o LLM

Biology 0.809 ± 0.010 0.801± 0.005 0.799± 0.005 0.795± 0.017
Law 0.945 ± 0.005 0.943± 0.017 0.934± 0.029 0.941± 0.013
Cardiff 0.753 ± 0.011 0.731± 0.019 0.741± 0.017 0.740± 0.004
Sydney19 0.712 ± 0.016 0.705± 0.014 0.693± 0.006 0.703± 0.033
Sydney23 0.829 ± 0.006 0.817± 0.261 0.823± 0.012 0.819± 0.016

Figure 2. Results for parameter sensitivity analysis on the Law dataset: α (LHS), γ (middle), λ (RHS), respectively.

points from the MCQs, demonstrating their ability to com-
plement the structural embeddings. Overall, these findings
highlight the individual and collective contributions of the
high-/low-pass components, and the LLM-induced semantic
information, to the overall merits of EduLLM.

4.6. Parameter Sensitivity Analysis (Q3)

To address Q3, we perform a detailed sensitivity analysis
on three key hyperparameters: α, γ, and λ. These hyper-
parameters are integral to balancing various components of
the model and influence its performance: 1) α regulates the
balance between the current feature representation and the
initial feature map; 2) γ controls the relative contribution of
the two computational branches in the model: one based on
random filtering and the other on adjacency matrix propaga-
tion. It adjusts the interaction dynamics between these two
pathways; 3) λ modulates the weight of each layer’s feature
updates relative to the initial features through the scaling
parameter θ. It affects the overall hierarchical learning of
feature representations across layers.

To evaluate the impact of these hyperparameters, we conduct
experiments by varying their values over a predefined range.
Due to page limitations, we present the sensitivity analysis
results on the Law dataset in Figure 2, while additional re-
sults on other datasets are included in the Appendix E.4. As
shown clearly in Figure 2, EduLLM performs stably across
a broad range of values for all three hyperparameters. While
slight variations in performance are observed as parameter
values change, the overall trends remain consistent, and no
abrupt performance degradation occurs. This stability, to
a certain extent, highlights the robustness of EduLLM to
parameter tuning, ensuring its adaptability and effectiveness
across different configurations.

4.7. Further Assessment for the Role of LLM-induced
Semantic Representation (Q4)

To address Q4, we conduct additional studies to evaluate the
robustness of EduLLM with respect to the semantic repre-
sentations induced by the large language model. Due to the
limitation that the semantic embeddings in our experiments
are pre-encoded and provided by Wang et al. (Wang et al.,
2024b), rather than derived directly from the original MCQ
data (e.g., question stems, options, and explanations), it is
not feasible to directly compare EduLLM using different
LLMs. As an alternative, we simulate variations in seman-
tic embeddings by introducing different levels of noise to
the pre-encoded embeddings of the MCQs. This approach
serves as a simple substitution for testing the robustness of
the LLM backbone, as the variance caused by the noise ap-
proximates the differences in embeddings generated by dif-
ferent LLMs. Specifically, we add additive white Gaussian
noise M ∼ N (0, σ2) ∈ Rd to the semantic embedding ten-
sor X ∈ Rd The noise level σ σ = p(max(X )−min(X )),
where p ∈ {0.01, 0.03, 0.05, 0.08, 0.1} indicates indicates
the relative strength of the added noise.

Following this design, we comprehensively evaluate the pre-
dictive performance of EduLLM under different noise levels.
The results, presented in Fig. 3, show that as p increases, the
model’s performance remains relatively stable, with only
minor declines observed at higher noise levels. This smooth
degradation is expected and indicates that EduLLM is robust
to variations in the semantic embeddings, suggesting that re-
placing the current LLM backbone with a different one does
not significantly impact the overall task performance. We
should note that these experiments validate the robustness
and reliability of EduLLM in handling noise interference,
highlighting its ability to maintain consistent predictive ac-
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Table 4. Performance comparison of EduLLM variants with different HNN modules.
Sydney19351 Sydney23146 Biology Cardiff20102 Law

EduLLM with HGNN 0.606± 0.014 0.619± 0.013 0.673± 0.006 0.624± 0.007 0.905± 0.011
EduLLM with HyperGCN 0.620± 0.012 0.650± 0.038 0.651± 0.016 0.625± 0.023 0.901± 0.032
EduLLM with AllDeepSets 0.626± 0.017 0.660± 0.012 0.697± 0.008 0.637± 0.023 0.898± 0.009
EduLLM with AllSetTransformer 0.618± 0.022 0.661± 0.010 0.689± 0.016 0.644± 0.029 0.906± 0.009
EduLLM with ED-HNN 0.662± 0.023 0.708± 0.032 0.715± 0.039 0.673± 0.026 0.910± 0.011
EduLLM with SheafHyperGNN 0.684± 0.023 0.711± 0.030 0.732± 0.022 0.687± 0.025 0.914± 0.013

EduLLM with FraS-HNN 0.712 ± 0.016 0.829 ± 0.006 0.809 ± 0.010 0.753 ± 0.011 0.945 ± 0.005

Figure 3. Performance demonstration for robustness analysis on
the Sydney23 dataset.

curacy even when faced with perturbations in the semantic
representations. This robustness underscores the potential of
EduLLM to generalize across different LLM backbones and
adapt to varying sources of semantic information. However,
as a limitation, this empirical study may not fully reflect the
role of LLM-induced semantic representations in EduLLM.

4.8. Further Study on the Role of FraS-HNN

In order to verify the advantages of FraS-HNN that ben-
efit EduLLM framework, we have included comparisons
with several HNN baselines, including HGNN (Feng et al.,
2019), HyperGCN (Yadati et al., 2019), AllDeepSets (Chien
et al., 2022), AllSetTransformer (Chien et al., 2022), ED-
HNN (Wang et al., 2023), and SheafHyperGNN (Duta et al.,
2023), by replacing the FraS-HNN backbone of EduLLM
with each of these HNN modules. As shown in Table 4,
EduLLM (with FraS-HNN) consistently outperforms the
variants equipped with each HNN module across all datasets,
demonstrating the effectiveness of FraS-HNN in modeling
signed high-order interactions and its potential to benefit
future research in (signed) hypergraph learning.

5. Related Works
Hypergraph neural networks and hypergraph representa-
tion learning have emerged as powerful tools for capturing
higher-order correlations in complex data, thereby extend-
ing the capabilities of traditional graph neural networks
(Antelmi et al., 2023; Kim et al., 2024). By modeling
relationships among multiple entities through hyperedges,

HNNs are well-suited for various real-world applications,
including recommendation systems, social network anal-
ysis, and bioinformatics. However, despite their promise,
existing representative HNNs, such as HGNN (Feng et al.,
2019), HyperGCN (Yadati et al., 2019), HNHN (Dong et al.,
2020), HCHA (Bai et al., 2021), HCoN (Wu et al., 2023),
UniGNN (Huang & Yang, 2021), AllDeepSets and AllSet-
Transformer (Chien et al., 2022), ED-HNN (Wang et al.,
2023), SheafHyperGCN and SheafHyperGNN (Duta et al.,
2023), are primarily limited to undirected and unsigned
hypergraph scenarios. Efforts to design HNNs for signed
hypergraphs remain in the early stages. Meanwhile, the
rapid development of LLMs has opened new opportunities
to combine hypergraph learning with LLMs, particularly
in applications where learning from raw data is challeng-
ing due to the multimodal nature of the information and
the complex, non-Euclidean relationships inherent in the
data. LLMs are well-suited to handle the multimodal as-
pect, while hypergraphs offer an effective framework for
modeling non-Euclidean relationships. To the best of our
knowledge, our work is the first to combine LLMs and
signed hypergraph learning for student performance pre-
diction in a real-world educational context. An extended
version of the related works is provided in the Appendix A.

6. Conclusion
This paper proposes EduLLM, a framework that integrates
LLMs with framelet-based signed hypergraph neural net-
works (FraS-HNN) for student performance prediction. As a
novel spectral-based model for signed hypergraph learning,
FraS-HNN leverages collaborative low-pass and high-pass
filters to enable multi-frequency feature learning, with rig-
orous theoretical guarantees for its multi-frequency analysis
properties in both forward and inverse transforms. This
design effectively captures both shared patterns among stu-
dents and individual distinctions in their learning behaviors.
By integrating LLM-induced semantic embeddings with
this advanced hypergraph representation, EduLLM achieves
superior performance across multiple datasets, addressing
the structural and semantic complexities of personalized
learning. For future work, we plan to develop more ad-
vanced signed hypergraph neural networks and explore their
applications in various domains.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
Proceedings of the International Conference on Learning
Representations, 2018.

Wang, F., Gao, W., Liu, Q., Li, J., Zhao, G., Zhang, Z.,
Huang, Z., Zhu, M., Wang, S., Tong, W., et al. A survey
of models for cognitive diagnosis: New developments
and future directions. arXiv preprint arXiv:2407.05458,
2024a.

Wang, P., Yang, S., Liu, Y., Wang, Z., and Li, P. Equivariant
hypergraph diffusion neural operators. In ICLR, 2023.

Wang, S., Ni, L., Zhang, Z., Li, X., Zheng, X., and Liu,
J. Multimodal prediction of student performance: A fu-
sion of signed graph neural networks and large language
models. Pattern Recognition Letters., 181:1–8, 2024b.

Wang, S., Xu, T., Li, H., Zhang, C., Liang, J., Tang, J., Yu,
P. S., and Wen, Q. Large language models for education:
A survey and outlook. arXiv preprint arXiv:2403.18105,
2024c.

Wei, H., Li, H., Xia, M., Wang, Y., and Qu, H. Predicting
student performance in interactive online question pools
using mouse interaction features. In Proceedings of the
10th International Conference on Learning Analytics &
Knowledge, pp. 645–654, 2020.

Wu, H., Yan, Y., and Ng, M. K.-P. Hypergraph collabora-
tive network on vertices and hyperedges. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45
(3):3245–3258, 2023.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis,
A., and Talukdar, P. HyperGCN: A new method for

11



EduLLM

training graph convolutional networks on hypergraphs. In
NeurIPS, pp. 1511–1522, 2019.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 5171–5181, 2018.

Zhang, Z., Liu, J., Zheng, X., Wang, Y., Han, P., Wang,
Y., Zhao, K., and Zhang, Z. RSGNN: A model-agnostic
approach for enhancing the robustness of signed graph
neural networks. In Proceedings of the ACM Web Confer-
ence 2023, pp. 60–70, 2023.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI Open., 1:57–81, 2020.

12



EduLLM

A. Extended Related Works
A.1. Student Performance Prediction

Student performance prediction involves leveraging historical data and advanced analytical methods to forecast a student’s
future performance in academic tasks such as exams, assignments, and course completion. The primary objective is to
predict students’ performance based on their prior learning data, enabling educational institutions and instructors to tailor
support and guidance to individual learning needs (Lin et al., 2023).

Early models for student performance prediction relied heavily on traditional machine learning methods, such as logistic
regression, decision trees, and support vector machines. However, these approaches faced significant limitations, particularly
in their reliance on manually extracted features and their inability to capture the complexity of student behavior. With the rise
of deep learning, classic models such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory (LSTM) networks, and Deep Neural Networks (DNN) have gained prominence due to their ability
to extract more complex features (Lin et al., 2023). Specifically, efforts to enhance personalized learning have resulted in
two main categories of prediction models: static models and sequential models (Li et al., 2020; Thaker et al., 2019). Static
models, such as those studied by Wei et al. (2020) and Daud et al. (2017), rely solely on historical data for predicting future
performance. While effective, these models fail to account for temporal dependencies and sequential relationships within the
learning process. On the other hand, sequential models like knowledge tracing and its variants (Piech et al., 2015; Nakagawa
et al., 2019) model the evolving knowledge of students, allowing for dynamic updates to their knowledge base and providing
more accurate predictions in certain settings.

However, despite these advances, many existing methods still overlook the complex, non-linear interactions among students
and learning content, as well as the rich semantic information embedded in educational resources. For instance, many
models focus on analyzing temporal dependencies or basic student-resource interactions without considering how the
deeper relationships between different learning materials influence student performance. In contrast, our proposed EduLLM
framework not only leverages the content of the questions and learner-question interaction data, but also integrates semantic
embeddings from LLMs, capturing the rich semantic context of educational resources. By using both structural and semantic
features, EduLLM overcomes the limitations of traditional methods, improving prediction accuracy and providing more
nuanced insights into student learning behaviors.

A.2. Signed Graph Neural Networks

Student performance prediction can be framed as a link sign prediction task within a signed bipartite graph, where positive
edges indicate correct answers and negative edges indicate incorrect ones (Derr et al., 2018; Zhang et al., 2023). Early
methods for signed graph embedding, such as SIDE (Kim et al., 2018) and SGDN (Jung et al., 2020), used random walks to
generate node embeddings. While these methods successfully captured structural information, they struggled to model the
nuanced relationships between the signs. Other techniques, such as signed Laplacian embedding (Derr et al., 2018) and
matrix factorization (Zhang et al., 2023), utilized mathematical tools to extract structural information from signed graphs
but were limited in handling the inherent balance and contrast of signed edges.

Recent advancements have incorporated neural network-based approaches to address these limitations. For instance, SGCN
(Derr et al., 2018) extends GCNs (Kipf & Welling, 2017) by incorporating balance theory to optimize sign prediction. SiNE
(Kim et al., 2018) combines triangular structures with balance theory to enhance signed graph representation learning. While
these models made strides in capturing local structural information, they still fall short of exploiting the global features
of signed graphs. More recent approaches, inspired by contrastive learning, such as Signed Graph Contrastive Learning
(SGCL) (Shu et al., 2021), SBGNN (Huang et al., 2021), and Signed Bipartite Graph Contrastive Learning (SBCL) (Wang
et al., 2024b), have focused on learning from signed graphs and signed bipartite graphs. However, these models primarily
focus on extracting local structural information, addressing only pairwise relationships between nodes. They do not consider
higher-order relationships, such as co-occurrences or interactions among multiple nodes, which are critical in more complex
scenarios. In contrast, our proposed EduLLM framework utilizes signed hypergraph models, which extend traditional
graph structures by considering higher-order interactions through hyperedges. This allows EduLLM to capture richer, more
complex relationships, addressing both local and global patterns within the data.
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A.3. LLMs for Education

LLMs have revolutionized several areas of the education sector, particularly in personalized learning, automated assessment,
and educational assistance (Kasneci et al., 2023; Wang et al., 2024c). For example, Brown et al. (2020) demonstrate the
potential of GPT-3 in few-shot learning, highlighting its ability to personalize learning by analyzing students’ behaviors
and language expressions. These models can generate individualized learning paths and resources, improving learning
outcomes. However, practical applications face certain challenges, particularly the need for large amounts of labeled data
for fine-tuning, which is often scarce and imbalanced in educational settings, limiting the models’ generalization and
deployment. The GPT-4 technical report (Achiam et al., 2023) demonstrates that LLMs can perform at a student level on
standardized tests in various mathematics subjects, including physics and computer science, for both multiple-choice and
open-ended questions. Furthermore, studies have shown that LLMs can be effectively used as writing or reading assistants in
educational contexts. For instance, a recent study (Susnjak & McIntosh, 2024) finds that ChatGPT is capable of generating
coherent and logically consistent responses across a range of disciplines, providing both depth and breadth in its answers.
Another quantitative analysis (Malinka et al., 2023) indicate that students who use ChatGPT, refining or incorporating the
model’s outputs into their own answers, outperform their peers in certain computer security courses. Additionally, recent
reviews (Tan et al., 2023; Wang et al., 2024c) have discussed potential applications of LLMs in educational settings, such as
enhancing teacher-student collaboration, enabling personalized learning, and automating assessment processes.

While there are certain concerns associated with the use of LLMs in practical applications (Kasneci et al., 2023), such as
issues related to plagiarism, potential biases in AI-generated content, overreliance on LLMs, and inequitable access for
non-English speakers, LLMs have nonetheless been recognized as a powerful tool for extracting rich semantic information
from multimodal educational resources. This implies that by leveraging the comprehensive semantic insights provided by
LLMs, in conjunction with advanced learning models, researchers can develop more effective models capable of addressing
complex tasks within specific domains, such as education. From this perspective, to the best of our knowledge, our proposed
EduLLM framework is the first to combine LLMs and signed hypergraph learning for student performance prediction.

B. Theoretical Properties of FraS-HNN
Preliminaries and Key Notations. Consider a signed hypergraph Gs = (V, E) with N nodes and signed hypergraph
Laplacian L. Let M = [m1,m2, . . . ,mN ] denote the matrix of eigenvectors of L, and ∆ = diag(δ1, δ2, . . . , δN ) be the
diagonal matrix of the corresponding eigenvalues. Framelets over the signed hypergraph are generated by a set of scaling
functions S = {φ̂, {ψ̂(r)}kr=1} ⊂ L1(R) associated with a filter bank η = {b(0); b(1), . . . , b(k)}, which satisfy the relations
for any ξ ∈ R:

φ̂(2ξ) = b̂(0)(ξ)φ̂(ξ), ψ̂(r)(2ξ) = b̂(r)(ξ)φ̂(ξ). (B-1)

These functions are defined as follows (for clarity, Equations (3) and (4) from Section 3.2 of the main manuscript are restated
here for reference):

Φj,v(u) =

N∑
p=1

φ̂

(
δp
2j

)
mp(v)mp(u), (B-2)

Ψ
(r)
j,v(u) =

N∑
p=1

ψ̂(r)

(
δp
2j

)
mp(v)mp(u). (B-3)

where mp(v) represents the v-th component of the eigenvector mp.

For integers J, J1 such that J > J1, we define a tight framelet system on signed hypergraphs (denoted as TiFraS(S, η;Gs)),
starting from scale J1, as a non-homogeneous, stationary affine system:

TiFraS(S, η;Gs))
J
J1
(Gs) =

{
ΦJ1,v | v ∈ V

}
∪
{
Ψ

(r)
j,v | v ∈ V, j = J1, . . . , J

}k
r=1

. (B-4)

Theorem B1 (Properties of Tight Framelets on Hypergraphs). Let J ≥ 1 be an integer, and consider the hypergraph
framelet system TiFraSJ

J1
(S, η;Gs) defined in (B-4), with hypergraph framelets Φj,v and Ψr

j,v . The following statements
are equivalent:
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Table B-1. Frequently used notations.

Notation Description
Gs = (V, E) Signed hypergraph with node set V and signed hyperedge set E .

M,∆ Eigenvector matrix M and eigenvalue diagonal matrix ∆ of the signed hypergraph Laplacian.
φ̂(·) Spectral low-pass filter (scaling function).

ψ̂(r)(·) Spectral high-pass filter for the r-th wavelet function.
T0,J Framelet decomposition operator for low-pass components at scale J .
Tj,r Framelet decomposition operator for the r-th high-pass component at scale j.
F(F) Framelet-based signed hypergraph convolution operator.
X Signal or feature matrix on the signed hypergraph.

X(ℓ),X(0) Feature matrix at layer ℓ and the initial feature matrix, respectively.
Θ(ℓ) Trainable diagonal scaling matrix at layer ℓ.
αℓ Learnable parameter balancing contributions from initial features and the transformed features.
βℓ Learnable parameter balancing the contributions of identity mapping.
σ(·) Non-linear activation function (e.g., ReLU).
Tn(x) n-th Chebyshev polynomial used for spectral filter approximation.
cn Coefficients for approximating the low-pass filter φ̂(·) using Chebyshev polynomials.

d
(r)
n Coefficients for approximating the high-pass filter ψ̂(r)(·) using Chebyshev polynomials.
δp Eigenvalue associated with the p-th node in the signed hypergraph Laplacian.
L Signed hypergraph Laplacian operator.

Wr,j ,W0,J Framelet decomposition matrices for high-pass (r, j) and low-pass (0, J) components.
J Number of decomposition scales (levels).
k Number of high-pass filters.

(i) For each J1 = 1, . . . , J , the framelet system on hypergraphs, TiFraSJ
J1
(S, η;Gs), is a tight frame for l2(Gs). That is,

∀f ∈ l2(Gs),

∥f∥2 =
∑
v∈V

∣∣∣ ⟨f,ΦJ1,v⟩
∣∣∣2 + J∑

j=J1

v∑
r=1

∑
v∈V

∣∣∣ 〈f,Ψ(r)
j,v

〉 ∣∣∣2. (B-5)

(ii) For all f ∈ l2(Gs) and for j = 1, . . . , J − 1, the following identities hold:

f =
∑
v∈V

⟨f,ΦJ,v⟩ΦJ,v +

k∑
r=1

∑
v∈V

〈
f,Ψ

(r)
J,v

〉
Ψ

(r)
J,v, (B-6)

∑
v∈V

⟨f,Φj+1,v⟩Φj+1,v =
∑
v∈V

⟨f,Φj,v⟩Φj,v +

k∑
r=1

∑
v∈V

〈
f,Ψ

(r)
j,v

〉
Ψ

(r)
j,v . (B-7)

(iii) For all f ∈ l2(Gs) and for j = 1, . . . , J − 1, the following identities hold:

∥f∥2 =
∑
v∈V

∣∣⟨f,ΦJ,v⟩
∣∣2 + k∑

r=1

∑
v∈V

∣∣〈f,Ψ(r)
J,v

〉∣∣2, (B-8)

∑
v∈V

∣∣⟨f,Φj+1,v⟩
∣∣2 =

∑
v∈V

∣∣⟨f,Φj,v⟩
∣∣2 + k∑

r=1

∑
v∈V

∣∣〈f,Ψ(r)
j,v

〉∣∣2. (B-9)
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(iv) The scaling functions in S = {φ̂, {ψ̂(r)}kr=1} ⊂ L1(R) satisfy

1 =

∣∣∣∣φ̂( δq2J
)∣∣∣∣2 + k∑

r=1

∣∣∣∣ψ̂(r)

(
δq
2J

)∣∣∣∣2 ∀q = 1, . . . , N, (B-10)

∣∣∣∣φ̂( λq
2j+1

)∣∣∣∣2 =

∣∣∣∣φ̂( δq2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣ψ̂(r)

(
δq
2j

)∣∣∣∣2 ∀ q = 1, . . . , N,
j = 1, . . . , J − 1.

(B-11)

(v) The identities in (B-10) hold and the filters in the filter bank η satisfy∣∣∣∣b̂(0)( δq2j
)∣∣∣∣2 + k∑

r=1

∣∣∣∣b̂(r)( δq2j
)∣∣∣∣2 = 1 ∀q ∈ θ

(j)
δ , j = 2, . . . , J, (B-12)

with

θ
(j)
δ :=

{
q ∈ {1, . . . , N} : φ̂

(
δq
2j

)
̸= 0

}
.

Proofs. (i)⇐⇒(ii). Let Γ(low)
j := span{Φj,v : v ∈ V} and Γ

(high,r)
j := span{Ψ(r)

j,v : v ∈ V}. Define projections

PΓ
(low)
j ,PΓ

(high,r)
j (with r = 1, . . . , k) by

PΓ
(low)
j (f) :=

∑
v∈V

⟨f,Φj,v⟩Φj,v, PΓ
(high,r)
j (f) :=

∑
c∈V

〈
f,Ψ

(r)
j,v

〉
Ψ

(r)
j,v , f ∈ l2(Gs). (B-13)

Since TiFraSJ
J1
(S, η;Gs) is a tight frame on signed hypergraphs for l2(Gs) (J1 = 1, . . . , J), we obtain by polarization

identity,

f = PΓ
(low)
J1

(f) +

J∑
j=J1

k∑
r=1

PΓ
(high,r)
j (f) = PΓ

(low)
J1+1(f) +

J∑
j=J1+1

k∑
r=1

PΓ
(high,r)
j (f) (B-14)

for all f ∈ l2(Gs) and for all J1 = 1, . . . , J . Thus, for J1 = 1, . . . , J − 1,

PΓ
(low)
J1+1(f) = PΓ

(low)
J1

(f) +

k∑
r=1

PΓ
(high,r)
J1

(f), (B-15)

which is (B-7).
Moreover, when J1 = J , (B-14) gives (B-6). Consequently, (i)=⇒(ii). Conversely, recursively using (B-15) gives

PΓ
(low)
m+1 (f) = PΓ

(low)
J1

(f) +

m∑
j=J1

k∑
r=1

PΓ
(high,r)
J1

(f) (B-16)

for all J1 ≤ m ≤ J − 1. Taking m = J − 1 together with (B-6), we deduce (B-14), which is equivalent to (B-5). Thus,
(ii)=⇒(i).

(ii)⇐⇒(iii). The equivalence between (ii) and (iii) simply follows from the polarization identity.

(ii)⇐⇒(iv). By the orthonormality of mp,

⟨f,Φj,v⟩ =
N∑

v=1

φ̂

(
δq
2j

)
f̂q mq(v),

〈
f,Ψ

(r)
j,q

〉
=

N∑
q=1

ψ̂(r)

(
δq
2j

)
f̂q mq(v),

where f̂q = ⟨f,mq⟩ is the Fourier coefficient of f with respect to mq . This together with (B-13), (B-2) and (B-3) gives, for
j ≥ 1 and r = 1, . . . , k, the Fourier coefficients for the projections PΓ

(low)
j (f) and PΓ

(high,r)
j (f):(

̂
PΓ

(low)
j (f)

)
q

=

∣∣∣∣φ̂( δq2j
)∣∣∣∣2 f̂q, (

̂
PΓ

(high,r)
j (f)

)
q

=

∣∣∣∣ψ̂(r)

(
δp
2j

)∣∣∣∣2 f̂q, ∀q = 1, . . . , N, (B-17)
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which implies that (B-6) and (B-7) are equivalent to (B-10) and (B-11) respectively. Thus, (ii)⇐⇒(iv).

(iv)⇐⇒(v). Based on the relations (B-1) that φ̂(2ξ) = b̂0(ξ)φ̂(ξ) and ψ̂(r)(2ξ) = b̂(r)(ξ)φ̂(ξ) for any ξ ∈ R, it can be
deduced that for q = 1, . . . , N and j ≥ 1,∣∣∣∣φ̂( δq2j

)∣∣∣∣2 + k∑
r=1

∣∣∣∣ψ̂(r)

(
δq
2j

)∣∣∣∣2 =

(∣∣∣∣ ( δq
2j+1

)∣∣∣∣2 + k∑
r=1

∣∣∣∣ ( δq
2j+1

)∣∣∣∣2
)∣∣∣∣φ̂( δq

2j+1

)∣∣∣∣2 .
This shows that (B-11) is equivalent to (B-12). Therefore, (iv)⇐⇒(v).

C. More Details on Datasets
In our experimental studies, we utilize five real-world datasets derived from courses at three universities: the Biology and
Law courses from the University of Auckland, the Cardiff20102 Medical School course from Cardiff University, and the
biochemistry courses Sydney19351 and Sydney23146 from the University of Sydney. These datasets serve as the foundation
for the student performance prediction task. To align with the problem formulation, we construct signed hypergraphs based
on student-question interaction data. This appendix provides further details on the process of defining signed (bipartite)
hypergraphs for each dataset, which serves as the input signal for the problem-solving framework (as illustrated in Figure 1).
Additionally, to demonstrate the advantages of using signed (bipartite) hypergraphs over signed (bipartite) graphs, we also
present the construction of signed graphs, which allows for comparative experimental studies and provides further insights
into the merits of EduLLM (as detailed in the following Appendix E.3).

Formulating Original ‘Students-MCQs’ Sources as Signed Hypergraph. To capture the complex interactions between
students and questions, we constructed signed hypergraphs using students’ answer records. Signed hypergraphs are
particularly effective in modeling higher-order relationships, as they allow us to categorize student responses into “correct”
or “incorrect” answers, with these responses forming hyperedges in the data. Specifically:

• For each question node qj , all students who correctly answered the question are connected to the question node via a
positive hyperedge, which is labeled as “+1”.

• In contrast, students who answered the question incorrectly are connected to the question node through a negative
hyperedge, labeled as “-1”.

This structure enables the representation of each dataset as a signed hypergraph, providing a more expressive framework
for modeling student-question interactions. By capturing higher-order relationships, signed hypergraphs offer a richer
representation compared to traditional signed graphs, overcoming their limitations. For a better clarity, a toy example for
signed hypergrpah construction is provided in the following Appendix D.

Formulating Original ‘Students-MCQs’ Sources as Signed Graph (as a Specific Comparison Case). In comparison,
signed graphs represent a simpler structure by focusing on individual interactions between students and questions. For each
dataset, we constructed a signed bipartite graph using the answer records:

• If a student ui answered a question qj correctly, an edge with a positive sign (“+1”) is established between the two
nodes.

• If the student’s answer was incorrect, an edge with a negative sign (“-1”) is created between the student node and the
question node.

The bipartite structure of signed graphs is more straightforward and is particularly suited for analyzing one-to-one relation-
ships between students and questions. From our statistical analysis, we observe that the overall correctness rates for most
courses ranged between 60% and 70%, except for the Law course, which exhibited an impressive correctness rate of 93%.

D. Additional Details on EduLLM’s Key Components
As outlined in Section 3.1, prior to the implementation of FraS-HNN, the core module for signed hypergraph learning, it is
crucial to first establish the modules for LLM-based semantic extraction and signed hypergraph construction. This part
provides further details on these two essential components.
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STEM Which planet has the shortest rotation 
period in Solar System?

Answer Optin B

Options A: Earth
B: Jupiter

Explan
-ation

Jupter has the shortest rotation in the Solar 
System,taking apporoximately 10 hours to 
complete one rotation.

C: Mars
D: Vens

MCQ

MCQ “sentence”

STEM Which.. Options  A: Earth   ꞏꞏꞏ   D: Vens Explanation Jupter has ... Answer Option B

Flatten

Question stem:     Which planet has the 
shortest rotation period in Solar System?
[A]: Earth                         [B]: Jupiter
[C]: Mars                          [D]: Vens

Question answer:     D
Explanation:      Jupter has the shortest 
rotation in the Solar System,taking 
apporoximately 10 hours to complete one 
rotation.

Transform

Key–Value Pairs

Figure D-1. Flatten MCQ component key-value pairs into a sequence form.

D.1. LLM-based Semantic Extraction

We recognize the significant potential of integrating semantic context into multiple-choice questions (MCQs), as it can
reveal latent knowledge that is crucial for prediction tasks. To enhance the representation of MCQs, we employ LLMs to
integrate semantic information, which enables the fusion of textual features with signed hypergraph data. We also note that
the procedure for LLM-based semantic extraction of questions is adapted from the related work by (Wang et al., 2024b). We
revisit the general process below not only for clarity but also to help readers better understand how to apply different LLM
tools or platforms in similar contexts in their future work.

MCQs are a cornerstone of educational assessments and are widely used in both traditional education and crowdsourced
learning platforms. However, conventional methods for representing MCQs often fail to leverage the full potential of
their semantic content, thereby limiting their utility in predictive modeling tasks. By incorporating semantic context, the
representation of MCQs can be significantly enriched, leading to improved performance in downstream prediction tasks.
Despite the broad application of MCQs in various educational contexts, the integration of textual and graph data to enhance
MCQ representations has been underexplored in the literature, underscoring the need for novel approaches to address this
gap.

In our EduLLM framework, we use LLMs to enrich MCQ representations with semantic context. The process begins by
transforming the various components of an MCQ into a flattened sentence format, as shown in Figure D-1. Each question
is reformulated into key-value pairs extracted from the question stem, answer options, and explanations. Using the LLM,
we extract a set of knowledge point terms from each MCQ, denoted as ki, and assign a corresponding weight to each
term, denoted as hi. Next, we compute word vectors for each term in the knowledge point set using GloVe embeddings
(Pennington et al., 2014). The word vectors are then averaged to obtain a representation for each knowledge point, denoted
as kpi.The semantic representation of the entire MCQ is constructed by taking a weighted average of the knowledge points’
vectors. The resulting semantic embedding for the question is denoted as wj , which is computed as: kpi = (

∑m
t=1 fi,t)/m,

wj = (
∑n

i=1 hikpi)/(
∑n

i=1 hi). Here, fi,t denotes represents the embedding of the t-th term in the i-th knowledge point.
These semantic embeddings are then combined with structural information from the graph data, resulting in a richer
representation for each node within the graph.

For the semantic extraction process, we utilize ChatGPT as the LLM, which allows us to extract n pairs of knowledge points
(ki and hi) in a single API request. Recall the schematic of EduLLM framwork shown in Figure 1, we design our prompts
to efficiently extract relevant keywords and their associated weights, with results returned in a structured JSON format.
This setup ensures that we can effectively handle large volumes of requests while maintaining the quality of the responses.
The LLM outputs contain essential elements for understanding the MCQs, enabling it to identify specific knowledge areas
related to the questions and generate meaningful semantic embeddings. A detailed description of the LLM API requests we
have designed is provided in the following illustration.
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• Task Objective: Your task is to extract key knowledge points from an MCQ created by a first-year student who studies Law in
college. The question consists of a stem, up to five options, an answer, and an explanation provided by the student author.

• Special Requirements: Please provide your response in JSON format with the following keys and format:

{"Keywords": [{"keyword": "keyword_name", "percentage": 0}]}

1. Each "keyword name" should be a word or a short term with less than five words.

2. The percentages of all keywords should add up to 1.

3. Only include the top five keywords to avoid excessive keyword extraction.

• In Context Learning: Here’s an example response format:

{"Keywords": [
{"keyword": "Legal person", "percentage": 0.8},
{"keyword": "Intellectual property rights", "percentage": 0.2 }

]}

• Context: Here’s the MCQ:

Question stem: Which of the following situations is most likely to be considered a breach of contract?

[A]: A party realizes after signing the contract that they are in financial difficulty and fails to make timely payments.

[B]: The contract specifies the delivery of a particular product, but the delivering party provides a different substitute product.

[C]: A party fails to fulfill their obligations on time due to force majeure (e.g., a natural disaster).

[D]: Both parties mutually agree to terminate the contract during the performance phase.

Question answer: B.

Explanation: Option B best fits the definition of a breach of contract. A breach occurs when one party fails to perform its
obligations according to the terms of the contract, or performs in a manner inconsistent with the contract’s requirements. In
this case, providing a substitute product instead of the one specifically agreed upon constitutes a violation of the contract terms.
Option A: While failing to make a timely payment might lead to a breach, ”financial difficulty” may be subject to further
analysis and is not automatically considered a breach in every case. Option C: A failure to perform due to force majeure is
generally regarded as an excusable non-performance, not a breach of contract. Option D: Mutually agreed termination of the
contract is a legitimate contractual decision and does not constitute a breach.

• LLM Response:

{
"Keywords": [

{"keyword": "breach of contract", "percentage": 0.6},
{"keyword": "substitute product", "percentage": 0.2},
{"keyword": "contract terms", "percentage": 0.1},
{"keyword": "force majeure", "percentage": 0.05},
{"keyword": "mutually agreed termination", "percentage": 0.05}

]
}

D.2. Toy Example for Signed Hypergraph Construction

Before proceeding to the signed hypergraph learning module, FraS-HNN, we first need to explicitly construct the structure
of the signed hypergraph, as outlined in Appendix C. This is essential for capturing the higher-order relationships between
students and MCQs. Specifically, to construct a signed hypergraph G = (V, E), we need to define the vertex set V and the
hyperedge set E , along with the incidence matrix H , which reflects the underlying structure of the hypergraph:

Vertex Set V : This set includes the set of students U and the set of questions Q. Specifically, U = {Student 1,Student 2, . . .}
represents the set of students, and Q = {Question 1,Question 2, . . .} represents the set of questions. There is no overlap
between students and questions, i.e., U ∩ Q = ∅.

Hyperedge Set E : The hyperedge set is used to represent interactions between students and questions. Based on the answers
provided by students, interactions are classified into positive and negative hyperedges. Specifically, positive hyperedges
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connect all students who answered a question correctly to the corresponding question, while negative hyperedges connect all
students who answered incorrectly to the corresponding question. The positive hyperedge set is denoted as E+, and the
negative hyperedge set as E−. Each positive hyperedge e+ ∈ E+ connects all students who answered correctly, and each
negative hyperedge e− ∈ E− connects all students who answered incorrectly.

Construction of the Incidence Matrix. To facilitate further processing and computation, we use an incidence matrix
H ∈ {0, 1,−1}N×M to represent interactions between students and questions. Here, N is the number of vertices (the sum
of the number of students and the number of questions), and M is the number of hyperedges (the total number of positive
and negative hyperedges). The matrix construction is as follows:

• H(v, e+) = 1, if v belongs to a positive hyperedge e+;

• H(v, e−) = −1, if v belongs to a negative hyperedge e−;

• H(v, e) = 0 otherwise.

For example, consider a scenario with 3 students and 2 questions. The interaction data between students and questions is
presented in Table D-1. In this table, a checkmark (✓) represents a correct answer, and a cross (×) represents an incorrect
answer.

Table D-1. A simple example for three students and two questions.

Student ID Question 1 Question 2

student 1 ✓ ×
student 2 × ✓
student 3 ✓ ✓

Based on the above interaction data, the incidence matrix H is constructed as follows:

Figure D-2. Incidence matrix and illustration of the signed hypergraph.

Clearly, this signed hypergraph consists of five nodes and four hyperedges: e+1 (Student 1, Student 3, Question 1), e+2
(Student 2, Student 3, Question 2), e−1 (Student 1, Question 2), and e−2 (Student 2, Question 1).

E. Additional Experimental Details and Further Results
E.1. Details for Baseline Models

In our experiments, we use several baseline models for performance comparison, including Random Embedding, Graph
Convolutional Network (GCN) (Kipf & Welling, 2017), Graph Attention Network (GAT) (Veličković et al., 2018), Signed
Graph Convolutional Network (SGCN) (Derr et al., 2018), Signed Bipartite Graph Neural Network (SBGNN) (Huang
et al., 2021), Signed Bipartite Graph Contrastive Learning (SBCL) (Wang et al., 2024b), and its variant version LLM-SBCL
(Wang et al., 2024b). Below is a brief description of each model:

• Random Embedding: This method generates random 64-dimensional embeddings for both students (zui ∈ R64)
and questions (zvj ∈ R64). These embeddings are concatenated, and a Logistic Regressor (LR) is trained on the
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concatenated embeddings to predict the sign in the test data. Since random embeddings do not incorporate any
graph-related information, this model serves as a lower-bound benchmark (Huang et al., 2021).

• GCN (Kipf & Welling, 2017): It utilizes message-passing based graph convolution to aggregate features from nodes
and their neighbors, capturing local graph structure information. Its hierarchical design, which allows stacking multiple
convolutional layers, enables the extraction of deeper graph features, making GCN suitable for node classification and
graph representation learning tasks.

• GAT (Veličković et al., 2018): It introduces a self-attention mechanism that assigns different weights to each node,
enabling the model to adapt to diverse graph structures for more flexible feature aggregation. This dynamic weighting
mechanism allows GAT to explicitly assess and quantify the importance of neighboring nodes, resulting in more precise
representation learning.

• SGCN (Derr et al., 2018): It leverages balance theory to incorporate negative links during aggregation. It addresses
the unique challenges posed by negative links, which carry distinct semantic meanings and form complex relationships
with positive links, enabling more accurate modeling of signed graphs.

• SBGNN (Huang et al., 2021): It employs advanced techniques for modeling signed bipartite graphs. We use the
publicly available code 1 with default settings and 300 training epochs for our implementation.

• SBCL (Wang et al., 2024b): It employs a single-headed GAT with two convolutional layers and 64-dimensional
random embeddings. We use publicly available code 2 with default settings and 300 training epochs for this model.

• LLM-SBCL (Wang et al., 2024b): It is a variant of SBCL that integrates semantic embeddings for question
components, which are generated by a large language model. This addition enhances the model’s ability to better
capture the semantic context of the questions.

E.2. Experimental Setup and Hyperparameter Settings

All experiments are conducted using the PyTorch framework and executed on a single NVIDIA RTX A6000 GPU to ensure
computational efficiency and consistency across all runs. To facilitate the reproducibility of our results, we provide the
corresponding hyperparameters that yield optimal performance in these experiments. These hyperparameter settings are
detailed in Table E-1, which allows for the accurate reproduction of the experimental setup and comparison of performance
results.

E.3. Further Study: EduLLM vs. EduLLM-SG (EduLLM with Signed GNNs)

The previous performance comparison between EduLLM and other baseline models has already demonstrated the superiority
of EduLLM. This advantage stems from the new problem formulation using signed hypergraphs and the incorporation of key
techniques, including both LLM-based semantic extraction and signed hypergraph learning. To further explore the benefits
of signed hypergraphs over signed graphs in solving this problem, a natural question arises: “Assuming the influence of
LLM is excluded, how does EduLLM perform when using signed graph learning while still employing framelet-based
convolutions?” To answer this, we revisit the problem formulation by replacing the signed hypergraph with a signed graph
(as described in Appendix C). In this case, EduLLM is refined by constructing framelet-based convolutions on the signed
graph, resulting in a variant model, which we term EduLLM-SG, as illustrated in Figure E-1.

Specifically, the signed (bipartite) graph consists of two types of nodes: students and questions. Interactions between students
and questions are represented by edges, where the sign of the edge indicates whether the student answered the question
correctly (positive) or incorrectly (negative). This graph is denoted as G = (U ,V, E), where U = {u1, u2, . . . , u|U|}
represents the set of students, V = {v1, v2, . . . , v|V|} represents the set of questions, and there is no overlap between the
two sets (i.e., U ∩ V = ∅). The edge set E ⊂ U × V represents the pair-wise relationships between students and questions,
divided into positive edges (E+) and negative edges (E−), with E = E+ ∪ E−, and E+ ∩ E− = ∅.

For a fair comparison, we apply the same experimental setups and hyperparameter settings, as detailed in Table E-1, to
the experimental study on EduLLM-SG. The results for both EduLLM-SG and EduLLM are presented in Table E-2. The

1https://github.com/huangjunjie-cs/SBGNN
2https://github.com/Alex-Zeyu/SBGCL
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Table E-1. Hyperparameter settings for the five datasets used in the experiments.

Dataset Hyperparameter Setting

Biology

Learning rate: 5e-3
Weight decay: 1e-4
Hidden Size: 64
Dropout ratio: 0.2
Level: 1

Layers: 36
Alpha: 0.5
Gamma: 0.5
Lambda: 0.8
Seed: 2000

Law

Learning rate: 5e-3
Weight decay: 1e-4
Hidden Size: 64
Dropout ratio: 0.2
Level: 2

Layers: 16
Alpha: 0.5
Gamma: 0.5
Lambda: 0.8
Seed: 2000

Cardiff

Learning rate: 5e-2
Weight decay: 1e-2
Hidden Size: 64
Dropout ratio: 0.2
Level: 2

Layers: 24
Alpha: 0.1
Gamma: 0.1
Lambda: 0.5
Seed: 2000

Sydney19

Learning rate: 1e-2
Weight decay: 1e-3
Hidden Size: 64
Dropout ratio: 0.2
Level: 2

Layers: 28
Alpha: 0.2
Gamma: 0.2
Lambda: 0.6
Seed: 2000

Sydney23

Learning rate: 5e-2
Weight decay: 1e-4
Hidden Size: 64
Dropout ratio: 0.2
Level: 2

Layers: 16
Alpha: 0.1
Gamma: 0.1
Lambda: 0.5
Seed: 2000

Table E-2. Comparison of EduLLM and EduLLM-SG Performance

EduLLM-SG EduLLM

Biology 0.807 ± 0.007 0.809 ± 0.010
Law 0.941 ± 0.030 0.945 ± 0.005
Cardiff 0.748 ± 0.003 0.753 ± 0.011
Sydney19 0.715 ± 0.012 0.712 ± 0.016
Sydney23 0.823 ± 0.014 0.829 ± 0.006

experimental results clearly show that EduLLM consistently outperforms EduLLM-SG, validating the effectiveness of using
signed hypergraphs in this specific educational application. By capturing higher-order interactions, the signed hypergraph
framework enables the model to more comprehensively represent the complex relationships between students and questions,
offering a richer and more expressive model than the signed graph approach. This advantage is especially evident in datasets
such as Biology and Law. However, for the Sydney19 dataset, EduLLM-SG achieves slightly better performance than
EduLLM. We hypothesize that this small difference may be due to the limited number of answer records and high data
sparsity in the dataset. In such sparse scenarios, the higher-order relationships captured by hypergraphs may not provide
enough discriminative power and may even introduce redundant information, leading to reduced performance. In contrast,
the simplicity of signed graphs can offer more effectiveness in these conditions.

Interestingly, despite not outperforming EduLLM, EduLLM-SG still surpasses all other baseline models recorded in Table 2
in the main manuscript, especially those that also use signed graphs (such as SGCN (Derr et al., 2018), SBGNN (Huang
et al., 2021), SBCL (Wang et al., 2024b), and LLM-SBCL (Wang et al., 2024b)). This further highlights the benefits of
the FraS-GNN approach (with the advantages of low-pass and high-pass filters inherited from FraS-HNN, as theoretically
studied in Appendix B) in signed graph learning. Overall, the experimental results presented in Table E-2, along with the
previous findings, convincingly demonstrate the effectiveness and advantages of EduLLM in this task.
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EduLLM

Figure E-1. The framework of EduLLM-SG

E.4. Additional Results on Parameter Sensitivity Analysis for EduLLM and EduLLM-SG

In line with the results presented in Figure 2 of the main manuscript, we provide additional empirical results on parameter
sensitivity analysis for EduLLM in Figure E-2 and for EduLLM-SG in Figure E-3. Overall, both models demonstrate low
sensitivity to variations in the parameters α, γ, and λ across most cases.

F. Further Highlights
We emphasize that although EduLLM in its current form is specifically designed for student performance prediction, an
important problem in educational data analytics and mining, the underlying signed hypergraph neural network (FraS-HNN)
has broader applicability. It holds strong potential for tackling analogous tasks in other domains and for advancing the
development of hypergraph-based machine learning models and techniques (Li et al., 2025a;b). This is particularly true
when signed hypergraph learning can offer effective solutions to the problem at hand. Signed hypergraphs are particularly
effective for problems involving multi-party interactions, where both positive and negative relationships need to be modeled,
making them suitable for various real-world applications. Thus, the potential for applying FraS-HNN or its future variants
goes beyond educational contexts, offering promising avenues for research and application across various interdisciplinary
fields.

For future work, we foresee the application of signed hypergraph learning (SHL) to a variety of specific tasks across different
fields, provided that the data sources and problem formulations align well with the SHL paradigm. Furthermore, to advance
research in SHL, the development of benchmark datasets of signed hypergraphs across various domains is highly expected.
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(a) Sydney23

(b) Sydney19

(c) Cardiff

(d) Biology

Figure E-2. Parameter sensitivity analysis for EduLLM across the Sydney23, Sydney19, Cardiff, and Biology datasets.
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(a) Law

(b) Sydney23

(c) Sydney19

(d) Cardiff

(e) Biology
Figure E-3. Parameter sensitivity analysis for EduLLM-SG across the Law, Sydney23, Sydney19, Cardiff, and Biology datasets.
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