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ABSTRACT

Recent advances have demonstrated the powerful reasoning capabilities of large
language models (LLMs), and accurately measuring the confidence of reasoning
paths is crucial for improving the performance and trustworthy of Al systems.
Benefiting from consistency function for reasoning, the self-consistency method
often provides an effective confidence estimation. However, it suffers from the
variance issue, which extremely constrains the performance when the sampling
is insufficient. Existing methods such as the temperature sampling cannot well
resolve this problem as it not only necessitates a calibration set but also tends to
sacrifice the reasoning capability of LLMs. In this paper, we propose a data-free,
and highly sampling efficient method to control the variance. The merit of our
approach lies in a reasonable integration of the LLM’s probability estimation and
the self-consistency confidence. Our theoretical analysis confirms the efficacy of
our method by achieving a lower estimation error and a higher error reduction
rate. Furthermore, an in-depth analysis of the error decomposition reveals an im-
proved technique, which can significantly improve error reduction rate with only a
small scale of bias induced. Experimental results across seven benchmark datasets
demonstrate that our proposed approaches achieve superior confidence estimation,
boosting the accuracy on both mathematical reasoning tasks and code generation
tasks. Our code is provided in the supplementary material.

1 INTRODUCTION

Recently, large language models (LLMs) have made significant progress in various applications,
including problem solving (Lewkowycz et al.,|[2022bj |L1 et al., 2024), planning (Valmeekam et al.,
2023; Deng et al.l2024), and decision making (Ouyang & Lil 2023} Sblendorio et al., 2024)), show-
casing their strong reasoning capabilities. The confidence in reasoning, i.e., the likelihood of the
reasoning answer being correct, can help refine the answers from reasoning paths (Wang et al.,
2022)), enhance the interpretability of reasoning results (Stengel-Eskin & Durmel 2023)), and ulti-
mately contribute to building trustworthy artificial intelligence systems (Guo et al.,|2017; [Felicioni
et al., 2024). However, recent studies (Shen et al., 2024} |Geng et al., |2024} |Zhao et al.| 2024) have
shown that LLMs often fail to provide reliable confidence estimates, underscoring the importance
of accurate confidence estimation for LLM reasoning.

There are several typical confidence estimation methods for LLM reasoning, i.e., perplexity (Chen
et al.,|1998)), verbalized confidence (Xiong et al.,2023; [Tian et al.,|2023)), and self-consistency con-
fidence (Wang et al, 2022} |Chen et al.l |2023). Among them, our empirical studies show that, on
math reasoning tasks, self-consistency confidence with a proper consistency function can consis-
tently provide superior and satisfactory performance in both accuracy and calibration error metrics.
However, the self-consistency confidence suffers from the large variance issue when the sampling is
insufficient. This is because an accurate self-consistency confidence is computationally infeasible,
and existing methods tend to adopt the Monte-Carlo sampling as an estimation, which suffer from
low variance reduction efficiency of a linear rate.

A straightforward method to reduce the variance could be controlling the sampling temperature,
since the decrease of temperature can narrow down the sampling space and alleviate the requirement
of sample size. Nevertheless, the tuning of temperature often necessitates an additional calibration
set, and a low temperature also limits the reasoning capability, degrading the LLM performance.
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In addition, our empirical results show this issue is further enlarged, as the increase of the reason-
ing difficulty. To this end, we explore a new problem, namely, Resource-Constrained Confidence
Estimation for LLM Reasoning, where the sample size is limited and additional calibration set is un-
available. The constraints in sampling size and additional dataset is very practical in LLM reasoning
tasks, especially considering huge computational overhead (Zhou et al., 2024) and the expensive
labeling cost (Lightman et al.| [2023). Hence, our goal is to estimate accurate self-consistency confi-
dence using given samples to achieve better reasoning performance.

To address this problem, we propose to integrate the prediction probability of LLMs into the self-
consistency confidence estimation, which forms our Perplexity Consistency confidence estimation
approach (PC). The rationale of this approach lies in that using the accurate LLM prediction prob-
ability with zero variance instead of the crude Monte-Carlo sampling can significantly reduce the
variance. In addition, theoretical analysis also confirms that the integration could indeed reduce the
estimation error and achieves a quadratic O(1/n?) decreasing rate. Moreover, the decomposition
of estimation error guides us to further boost the convergence rate to be exponential in n, through
pruning the low probability reasoning paths. To achieve this, we propose Reasoning Pruning to
model the confidence distribution and automatically remove the reasoning paths with low probabil-
ity. Combining PC approach and Reasoning Pruning, we build our Reasoning-pruning Perplexity
Consistency confidence estimation approach (RPC). Our experimental results on seven benchmark
datasets, including mathematical reasoning and code generation tasks, demonstrate that our pro-
posed PC and RPC approaches deliver superior performance compared to existing methods.

The contributions of this paper are summarized as follows:

(1) We introduce and highlight a new problem setting, namely, Resource-Constrained Confi-
dence Estimation for LLM Reasoning, which aims to accurately estimate self-consistency
confidence with a constrained sample size and without additional calibration set in order to
achieve improved reasoning performance.

(2) We propose the PC and RPC approaches, which leverage accurate LLM prediction prob-
abilities to reduce the variance in crude Monte-Carlo sampling process and prune low-
probability reasoning paths to achieve faster convergence, respectively.

(3) Our theoretical analysis demonstrates that PC achieves a quadratic error decreasing rate of
O(1/n?), which is faster than the linear rate of standard self-consistency method. Further-
more, the decomposition of the estimation error guides us in designing our approach to
boost the convergence rate to be exponential in n.

(4) We conducted experiments on four mathematical reasoning tasks, and the results demon-
strate that our PC and RPC approaches achieve significant improvements in both accuracy
and calibration error. Moreover, the results from code generation tasks further confirm the
generalizability of our approaches.

The remainder of this paper is organized as follows: Section[2]briefly reviews the confidence estima-
tion methods of LLMs and some evaluation metrics for them. Section [3reveals the self-consistency
confidence estimation problem through empirical observations, followed by some discussion of the
practical constraints. In Section[d] we present the estimation error reduction methods PC and RPC,
and provide some theoretical analyses of their efficacy and efficiency. Section [3]reports our experi-
mental results. We conclude the paper in Section [6]

2 PRELIMINARY AND RELATED WORK

2.1 CONFIDENCE OF TRADITIONAL MODELS

Assume a neural network model fy for a K-classification task. Given any data point (x,y), we
denote the logit vector predicted by the neural network as fg(x). The confidence of this prediction
can be computed using the Softmax function, i.e.,

exp([fo(@)]y)
S exp(fo(@)])

pe(y|x) = )
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where § = argmax;c(k) [fo(z)]i- The confidence of a model is considered well-calibrated if it
reflects the true probability of its prediction being correct, i.e.,

Play) (I =y|po(§|a) =c) =c. )

To measure the calibration performance, expected calibration error (ECE) and its upper bound Brier
score (BS), are usually adopted. We formulate ECE and BS as follows, where I(-, -) is an indicator
function determining whether the two predictions are equal.

ECE: E. [Py (5=y|pe(d|x)=c)—c],

3
BS:  Eay [SX, (1iy) - poly: [2)?] . ®
Existing studies (Guo et al.,[2017)) reveal that recent models are usually not well-calibrated. Thereby,
several in-process methods (e.g., mix-up (Hendrycks et al., 2019), label smoothing (Miiller et al.,
2019), and focal loss (Mukhoti et al.||2020)) and post-hoc methods (e.g., isotonic regression (Barlow
& Brunkl, [1972)), Platt scaling (Platt et al., [1999), and temperature scaling (Guo et al., 2017)) have
been thoroughly explored to achieve a better calibration.

2.2 CONFIDENCE OF LLMSs

Recent advances of LLMs exhibit their strong capabilities in reasoning tasks such as arith-
metic (Lewkowycz et al.| 2022a)), commonsense (Zhao et al., 2023)), and symbolic reasoning (Gao
et al., [2023). Among these studies, the introduction of well-calibrated confidence can further con-
tribute to migrate the bias and alleviate the hallucination of LLMs (Zheng et al., 2023; Bubeck et al.,
2023} |Geng et al.l 2024). Specifically, given an LLM pg(- | ) parameterized by 8, the reasoning
task takes a token sequence x as input, and generates a token sequence ¥ = (t1,to,...,t,,) as
the answer, where each token ¢; is sampled from the parametric distribution of LLM pg(¢; | @, t<;).
Naively, we can extend the confidence from traditional models to LLMs, through simply aggregating
the confidence of each output token in the answer ¢ (we name it token-level confidence), i.e.,

pe™ (G 2) = oty | @) - polta | @,11) - potm | @, tmr): @

However, such confidence is highly sensitive to the length of output token sequence, and several
adaptions are proposed in literature. Next, we briefly summarize three common confidence measures
for the reasoning paths generated of LLMs.

Sentence-level Confidence (PPL). Huang et al.| (2023) and Duan et al.| (2024) propose using the
geometric mean version to replace the naive token-level confidence:

P (@) = (po(ty | @) - polta| @, tr) -~ poltm | @ tem 1)) 5
which is also called perplexity of the LLM answer (Chen et al.,|1998; Blei et al., [2003]).

Self-consistency Confidence (SC). The consistency (Wang et al., 2022} (Chen et al [2023; |Cheng
et al.,|2024) between different generated answers, known as self-consistency, has been shown to be
able to improve the reasoning performance of LLMs. To this end, recent work (Xiong et al., |2023;
Yadkori et al., 2024} [Becker & Soattol 2024) proposes establishing LLM confidence also based on
the self-consistency. To compute this confidence, an consistency function I (-, -) should be defined
to determine the consistency between a pair of generated answers. Then, for any given input x and
its associated answer y generated by the LLM, the self-consistency method additionally builds a
reference answers of size n, i.e., §i, . . . , Un, sampled from LLM’s parametric distribution pg(9; | x).
The self-consistency confidence is computed according to the proportion of the consistency between
the associated answer ¢ and a series of reference answers, i.e.,

s 2) = Qe(@.91) + - + e (9. 9n)) /1, ©

There are quite a few strategies to implement the consistency function I (-, ) toward different tasks,
such as Jaccard similarity and logical entailment in commonsense reasoning (Lin et al.,[2023}; |Kuhn
et al.}2023)), numerical comparison in math problem solving (Yu et al.,|2024), and execution match-
ing (Chen et al., 2022) in code generation.

Verbalized Confidence (VERB). Another approach to defining LLM confidence is verbaliza-
tion (Kadavath et al., [2022; Xiong et al., 2023} Tian et al., |2023), which directly prompts the LLM
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Figure 2: Several factors impact the variance of SC method. (a) shows that performance converges
more slowly with n on difficult dataset; (b) shows that high temperatures offer large sampling space
measured by perplexity; (c) shows that high temperatures provide better performance upper bound.

to express the confidence level péVB) (9 | ) alongside the output answer g (e.g., “Read the question,

provide your answer, and your confidence in this answer.”). Existing work demonstrates that the
verbalized confidence can be further improved with proper instruction fine-tuning (Mielke et al.,
2022; |Lin et al.| 2022} |[Zhang et al., |2024)). In addition, there are a series of variants to the verbal-
ization method, including multi-agent deliberation (Yang et al., 2024), top-k ranking (Tian et al.,
2023)), few-shot prompting (Liu et al., 2023)), and reflection (Dhuliawala et al., 2023} Zhao et al.,
2024]). Particularly, to integrate verbalization with chain-of-thought prompting in reasoning tasks, a
multi-step version has been developed (Xiong et al.L|2023). This version initially assigns confidence
levels to individual reasoning steps and then aggregates these to form the overall confidence.

3 PROBLEM ANALYSIS

Empirical observations. We first evaluate the performance of the existing calibration metrics for
LLM reasoning. Specifically, we use the MATH dataset (Hendrycks et al.,2021b) with InternLM-2-
MATH-Plus 7B model and standard temperature (T = 1.0). Note that BS involves the enumeration
of all outputs, which is virtually impractical for LLMs reasoning, and thus we replace enumeration
by sampling and summation by expectation:

BS : E(y4)Eg [(Is(#,y) — po(¥ | ))?] .

where ¥ is also sampled from LLM parametric distribution pg (9 | €); Ls(+, -) denotes the semantic
equivalence between two answers, i.e., whether the two answers have the same meanings although
they may be expressed in different forms. For the consistency function I (-, -) in SC, we instantiate
it using the answer comparison (Yu et al., [2024), which is commonly used in math reasoning. As an
ablative version, we also define a naive version of SC by using string comparison instead, denoted
as Naive SC method.

Results shown in Table [I] demonstrate that the self-consistency confidence SC achieves the best
performance across accuracy and calibration metrics. This observation is also confirmed by our
detailed results in Appendix[C.2] In addition, we use the sentence-level confidence PPL as a baseline,
and compute the accuracy gap and the ECE gap from the baseline to Naive SC and Sc with various
sample sizes n. The results shown in illustrate that SC, using an appropriate consistency
function, can consistently outperform PPL when n is sufficient.
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Challenges. Although promising, SC’s performance faces a dilemma. On one hand, its performance
could be significantly affected by the sampling sufficiency of reference answer. For example, as
shown in the requirements of sample size dramatically grows as the reasoning problems
become much harder (e.g., MATH—AIME). On the other hand, constructing a large collection of
reference answers is often computationally expensive and time-consuming. For example, generating
a 100-sized reference answers for all problems in MATH, which contains 5,000 problems, using a
single A800 GPU would take about 18 hours. The total emissions are estimated to be 4.14 kg CO
when using Google Cloud Platform in the asia-southl region (Lacoste et al., [2019). This dilemma
raises a key question: Is it possible to accurately estimate self-consistency confidence, even when
the sample size is limited?

Since the sampling estimation in self-consistency confidence is unbiased, the error from insufficient
sampling is mainly caused by variance. The above question then becomes: How to effectively control
the variance of self-consistency confidence, particularly when the sample size is limited?

To answer the above question, a straightforward method to control the variance could be choosing
a conservative temperature, which tends to narrow the sampling space of LLMs. To illustrate this,
we present the perplexity distribution at different temperatures in However, as evident
in although a low sampling temperature successfully decreases the induced variance,
it sacrifices model performance. In other words, a high temperature T offers better performance
potential but requires a larger sample size n, creating another dilemma between accuracy and effi-
ciency. Moreover, selecting an appropriate temperature T requires an additional calibration set and
computational resources (Guo et al., 2017)), which is expensive in practice.

To this end, our analysis motivates us to study a novel and challenging problem setting for LLM rea-
soning, namely, Resource-Constrained Confidence Estimation for LLM Reasoning. In this setting,
we aim to achieve better confidence estimation even when the sampled reference collection is of
small size, thereby improving both accuracy and reducing calibration error in LLM reasoning tasks.

4 METHODOLOGY

4.1 VARIANCE REDUCTION

For given input « and its associated prediction y, we define the oracle self-consistency confidence by
1. Formally, the oracle v is the cumulative probabilities of all generated answers that are consistent
to the prediction y. Since a closed-form expression of the oracle v is computationally infeasible, ex-
isting self-consistency confidence pfgsc)(y |x) = (Ic(y,91) + - + (Ic(Y, Yn)) /n is essentially
a Monte-Carlo sampling estimation to the oracle ©. Hence, the expectation is unbiased, and the

variance can be computed by M, which exhibits a linear convergence rate of the sample size n.

We propose to boost the variance reduction efficiency by directly using the prediction probability
of LLMs, rather than the crude sampling estimation. To achieve this, we first define I (-, -) as the
token-level consistency (i.e., string comparison). Then, by viewing I as a self-consistency function,
we can bridge the token-level confidence and its Monte-Carlo sampling estimation by

Py (@ 2) ~ Ir(g,90) + - + Ir(9,90)) /n.

Now, the self-consistency confidence estimation can be reformulated as

N 1 - -
P6(@le) = — Le(g.91) + -+ Lo (G, 90))

> [Hc(ﬁ,g) . Z:lh@y)}

. = N n
geset(Yi1,....Yn)

Q

A~ TL)/ ~
> @9 )],
ygeset(gn,---,Yn)
where set(y1, . .., Yn) denotes the set of reference answers, which remove the duplicate ones from

the original reference collection. We call this new version of confidence estimation by Perplexity
Consistency Confidence (PC), as it tends to combine token-level and self-consistency confidences.
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For ease of notation, we denote the original self-consistency by 1&1; and denote the perplexity con-
sistency confidence by 19, i.e.,

A | i) - 5 i j
%=Z%7 = Y ey @),
=1

geset(Yu,...,Yn)

We have the following two theorems, which compare the estimation errors between 1;1 and 1/32.

Theorem 1 (PC achieves lower estimation error than SC). Given a fixed LLM with parameters 0,
an input x and any output y. With a proper assumption, PC confidence estimation has a lower error
than SC confidence estimation:

E[(41 — ¥)?] < E[(¢2 — )2

Remarks. The proof is detailed in Appendix [A.T] The theorem states that PC possess a lower
estimation error when n is limited. We also carry out a synthesis experiment of this theorem in Ap-
pendix [A.3] which further illustrates the validity of required condition and the derived effectiveness.

Theorem 2 (PC achieves higher convergence rate than SC). Given a fixed LLM with parameters 0,
an pair of input x and output Yy, and a n-sized reference answers Y1, . . . , Yn. Then, PC confidence
estimation error decreases with a quadratic rate O(1/n?); while SC confidence estimation error
decreases with a linear rate O(1/n).

Remarks. The proof is presented in Appendix[A.2] The theorem illustrates that PC provides a higher-
order convergence rate in the sense of estimation error, indicating the performance improvement can
be consistently enlarged with n increased.

4.2 REASONING PRUNING

The following theorem gives an in-depth analysis of convergence rate in estimation error, revealing
a clue for further improving the variance reduction effectiveness.

Theorem 3 (The decomposition of PC estimation error). Given a fixed LLM with parameters 0, an

input x and any output Y. Let the answer space be divided into two parts Oy = {y | p(BTL) (g]z) <

n(=2)} and Qy = {§ | pe(glz) > n(=2)}. Then, the upper bound to the confidence estimation
error of SC can be decomposed into two parts, i.e.,

E((fy —9)’] < Y O™+ > 0(2).

YEM YEN

Remarks. The proof is shown in Appendix [A.2] The theorem indicates that the convergence rate
of variance reduction mainly hindered by generated answers in low token-level confidence region.
Upon these answers are removed, the convergence rate becomes exponential in n, which signifi-
cantly superior than the quadratic rate.

This theorem motivates us to propose the Reasoning Pruning to refine the reference collections by
removing reasoning paths in low token-level confidence region. However, determining the appropri-
ate threshold for reasoning path removal is challenging in practice, making an automated removal
strategy highly desirable. Inspired by studies on open-set recognition (Bendale & Boult, 2016)), we
assume that the token-level confidence distribution of each reference can be modeled as a mixture
of two Weibull distributions, representing high and low token-level confidence, respectively. The
probability density function (PDF) for the mixture is:

f(x) = w1 - fweibun (3 k1, A1) + w2 - fweivun (@5 k2, A2). (7)
where Weibull PDF is fweibun (z; k, A) = § (%)kil exp (f(ﬁ)k) Maximum likelihood estimation

(MLE) is employed to estimate the parameters, i.e., (k1, A1), (k2,\2), wi, and we. We denote
Weibull(k1, A1) as the high confidence distribution and Weibull(kz, A2) as the low confidence dis-
tribution.
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Figure 3: The illustration of the PC and RPC approaches. PC integrates the LLM probability
into self-consistency confidence estimation to reduce variance. RPC additionally remove the low-
probability answers to achieve a faster convergence rate of estimation error.
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Figure 4: The accuracy of the InternLM-2-MATH-Plus 7B model on MATH dataset, with different
sample size n and temperature T. Our proposed PC and RPC approaches consistently achieved the
best performance in all scenarios.

Then, for each output g with confidence ¢ = péTL) (9; ), we can compute its probability belonging

to the high confidence distribution Weibull(k1, A1) using Bayes’ theorem:

w1 - fweibu (& K1, A1)
w1+ fweibull (G5 k1, A1) + w2+ fwveibun (G k2, A2)

We remove reasoning paths with token-level confidence ¢ that satisfies Pgrei(¢) > 1 — Prei(6).
Moreover, to ensure the stability of the algorithm when n is limited, we employ the Truncated Mean
method (Marazzi & Ruffieux} |1999)), retaining outputs with token-level confidence greater than the
overall mean. This prevents the removal of too many reasoning paths due to potential inaccurate
estimation of the mixture distribution.

PRel (é) -

®)

We apply the Reasoning Pruning to the reference collection and then compute the confidence based
on Perplexity Consistency, forming our proposed Reasoning-pruning Perplexity Consistency confi-
dence RpC. The overall illustration of PC and RPC confidences are presented in the [Figure 3]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Comparison Methods. We compare three types of LLM confidences: sentence-level confidence
(Perplexity, PPL (Wang et al.| 2022)), self-consistency confidence (SC (Chen et al., [1998)), and
verbalized confidence (VERB (Tian et al.,|2023))). For mathematical reasoning tasks, the verbalized
confidence is computed based on the probability that the LLM responds “True” versus “False” when
asked an “Is-True” question. For code generation tasks, we extracted verbalized confidence scores
from model’s numerical likelihood expressions by prompting the LLM.

Datasets. For mathematical reasoning tasks, we evaluate each method on one common mathemat-
ical benchmark datasets, i.e., MATH (Hendrycks et al., 2021b)), and three challenging mathematical
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Figure 5: The ECE of InternLM-2-MATH-Plus Figure 6: The ECE of InternLM-2-MATH-Plus
7B model on MATH dataset with T = 1.0 and 7B model on MathOdyssey dataset with T = 1.0

n = 10. Both PC and RPC give satisfied ECE and n = 256. RPC gives the significant better
and RPC gives the minimal ECE. ECE than PC method.

Table 2: The accuracy and ECE of the InternLM-2-MATH-Plus 7B model on MATH and three
Olympiad-level datasets using non-conservative temperatures (T € {1.0,1.1,1.3}). The best per-
formance is highlighted in bold, while the second-best performance is underlined.

Methods T=1.0 ‘ T=11 ‘ T=13

"~ | Odyssey OlympiadBench AIME | Odyssey OlympiadBench AIME | Odyssey OlympiadBench AIME
PpPL 25.45 717 5.14 27.25 6.93 5.89 25.45 7.55 6.65
VERB 9.37 3.49 3.13 9.32 3.88 3.17 8.39 3.23 2217
Sc 28.92 11.06 9.54 28.41 10.79 8.57 27.63 10.40 8.20
Pc 28.28 11.06 9.65 28.79 10.83 8.68 28.02 10.67 8.68
RPC ‘ 33.16 11.21 9.75 ‘ 34.19 11.14 9.75 ‘ 32.13 11.29 8.90

datasets that include Olympiad-level problems, i.e., MathOdyssey (Fang et al.| 2024), Olympiad-
Bench (He et al[2024), and AIME (Zamil & Rabby, |2024). For code generation tasks, we evaluate
each method on three benchmark datasets, i.e., HumanEval (Chen et al.,[2021), MBPP (Austin et al.,
2021)), and introductory-level problems of APPS (Hendrycks et al., [2021a). We presents the details
of each dataset in Appendix

Implementation Details. For mathematical reasoning tasks, we evaluate the InternLM2-Math-
Plus models with 1.8B and 7B parameters (Ying et al.,|2024), as well as the DeepSeekMath-RL 7B
model (Shao et al., 2024). The consistency function I is answer comparison. For code generation
tasks, we evaluate the Deepseek-Coder 33B model. The consistency function I is constructed
based on semantic equivalence (Malik & Vojnar, |2021)) by clustering code base on given test cases.
All experiments were conducted on Linux servers equipped with A800 and H800 GPUs.

5.2 EXPERIMENTAL RESULTS

Results on MATH Dataset. We first conduct experiments on the MATH dataset using InternLM-2-
MATH-Plus 7B model with non-conservative temperatures (T € {1.0,1.1,1.3}) and various sample
sizes n. PC and RPC approaches give better accuracy compared to SC and PPL methods in[Figure 4]
The ECE in also demonstrates the superior performance of RPC approach with a limited
sample size of n = 10. These results demonstrate that our Perplexity Consistency method effec-
tively reduces the variance of SC, leading to more reliable confidence estimation. Moreover, our
RPC approach shows a significant performance improvement compared to PC, as shown in[Figure 4]
The performance gap between RPC and PC demonstrates that Reasoning Pruning effectively miti-
gates the variance introduced by non-conservative sampling temperatures, allowing RPC approach
to estimate reliable confidence using non-conservative sampling temperatures in practice. Over-
all, the RPC approach is proved to be practical for real-world reasoning tasks, and we recommend
employing non-conservative sampling temperatures when utilizing the RPC approach.

Results on Difficult Mathematics Datasets.  To further access the effectiveness of PC and
RPC, we evaluate each method on three challenging datasets that include Olympiad-level prob-
lems. For each problem, we sample 256 solutions using three non-conservative temperatures, i.e.,
T € {1.0,1.1,1.3}. shows that our RPC consistently achieves the highest accuracy across
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Figure 7: The accuracy of InternLM-2-MATH-Plus 7B model on hard DeepSeek-Coder 33B
datasets across different number of samplings n using sampling tempera- model on code genera-
ture 7' = 1.0. RPC gives the best performance in major cases. tion benchmarks.

Table 3: The accuracy of two different models on the four math reasoning datasets. The best perfor-
mance is highlighted in bold, while the second-best performance is underlined.

Methods | InternLM2-Math-Plus 1.8B | DeepSeek-Math 7B

‘ MATH MathOdyssey OlympiadBench AIME ‘ MATH MathOdyssey OlympiadBench AIME
PrL 32.44 15.94 2.26 1.39 41.52 21.59 5.22 2.89
VERB 6.40 2.27 0.58 0.20 13.02 1.76 2.09 1.70
Sc 36.61 14.40 6.07 2.68 53.54 36.25 11.49 9.36
Pc 36.88 14.65 6.07 2.68 53.56 36.25 11.45 9.65
RPC 38.16 15.68 6.54 343 53.58 37.28 11.60 9.86

all datasets and sampling temperatures, while PC consistently ranks second. The accuracy results
across various sampling sizes in [Figure 7] and the ECE results in further demonstrate the
superiority of the proposed approaches. These results demonstrate that the proposed approaches, es-
pecially the RPC approach, perform well on challenging mathematical reasoning datasets, enhancing
model performance by providing more accurate confidence.

Results of Different Models. To evaluate whether our approaches can generalize to different scales
and types of models, we conduct experiments on InternLM?2-Math-Plus 1.8B and DeepSeek-Math
7B models following the same setting using T = 1.0. The results in demonstrate that
proposed approaches, especially RPC, consistently outperform existing methods.

Results on Code Generation Tasks. To investigate whether our proposed approaches can general-
ize to other tasks, e.g., code generation tasks, we evaluate our approaches and comparison methods
on three code generation benchmarks, as shown in The results show that the PC approach
achieves the best accuracy across all datasets. The Reasoning Pruning in RPC did not improve
performance, because low-probability code is often incurs compilation errors, which are previously
removed in the code evaluation process. Despite this, RPC still ranks second with minimal perfor-
mance loss, demonstrating its robustness.

6 CONCLUSION

In this paper, we explore Resource-Constrained Confidence Estimation for LLM Reasoning, where
the goal is to estimate accurate self-consistency confidence with a limited sample size to achieve
better reasoning performance. We integrate the probability directly obtained from LLMs to reduce
the variance of crude Monte-Carlo sampling estimation method, forming the PC approach. Our
theoretical analysis guarantees that the estimation error decreases at a quadratic rate of O(1/n?).
Additionally, we introduce a Reasoning Pruning strategy, motivated by our decomposed estimation
error, to further boost the convergence rate to exponential in n. Experiments on four mathematical
reasoning tasks demonstrate the effectiveness of the proposed PC and RPC approaches. Furthermore,
results from code generation tasks highlight the generalizability of our methods.

One limitation of this work is that we were unable to explore additional mathematical models with
varying parameter scales due to resource constraints. However, we believe that our current exper-
iments are robust enough to validate our claims and demonstrate the superior performance of our
proposed approaches.
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A THEORETICAL RESULTS

Given an LLM parameterized by 8, we first sample n reference answers for the input x, denoted
by ¥;,4 = 1,...,n. For the LLM prediction output y, we define its token-level confidence as

¢ = p(TL) (g|x), and the ground-truth self-consistency confidence as ). We have two estimators for
, where the sampling estimation and the variance-reduction version are defined b
phing Yy

7 = I gv'gi 7 A~
¢1:Z¥7 b= Y L) o™ Gle).
i=1 geset(Y1,.-,Yn)

Now, we start to compute the variances of these two estimators. Since reference answers are i.i.d,
and I (9, ;) ~ Bernoulli(v)), the expectation and variance of 1) are

E[Z/Afl] =1, Var[z[;l] = w

As to the variance-reduction version, we first rewrite it as
- L TL
b= > Ie(5.9) g (glz)
geset(:’;l 7~~-7'gn)

= WG eset@,....gn) vy (Gl),
geQC

where Q¢ denotes the set of the reference answers that are consistent to . We denotes the token-
level confidence of g by ¢(g). Based on these definitions, we have the following property holds.

b= o)
YEQc
Then, its expectation can be computed by
Efio] = D (1= (1= 6()") ¢()
yele
Next, we can compute the expectation of squared confidence by
E[3] = Y (1-(1-6(@)") 6(9)*
IS o]
+ ) (=1 =e@)") A= (1= é(G2)") - 6(G1)b(F2)
Y1,92€0¢,91#Y2

Putting together, we derive the variance as

Varfiho] = Y (1= (1= ¢@)") - o(@)* - > 1—(1—¢@)")* (%)

yeQc YyeQo
=D (1=(1=¢@)")(1 - @) - b(H)*
geEQe

Using the bias-variance decomposition, we can compute the estimation error by

E[(¢2 — 9)*] = (Elys] - >+Varw2}
Z 3(G))" T D (= (= 0@)")(1 - 6(@)" - 6(5)?

A.1 PROOF OF[THEOREM 1]

Proof. We define the o as the minimal probablhty of all generated answers that are consistent to
the prediction y. Next, we should that wg is a tighter estimation of ) compared to wl with the
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assumption n(a?” + a") < Tw holds. The estimation error of 1/)2 can be computed by
E[(d2 — )] < (D] (1= ¢@)" 6@)* + Y (1-o(m)" - ¢(5)°
yeQe PEQC
= > > (=@ (1 @) d(G)6(H) + Y (1—d(@)" - 6()?
Y1EQc 2€Q¢ geEQe
<a®™ N o) D> ¢@)+a" Y $(F)
Y1€Qc Y26Qc yeQc

_ (a2n + an)wZ
According to the assumption, we have n(a?" + a”) < % Rearrange the inequality, we obtain
that 12 (02" 4 qn) < U=0)¥ )w . Therefore, the comparison E[(1)2 — ¢)2] < E[(¢1 — )2 holds. [

A.2  PROOF OF[THEOREM 2| AND [ITHEOREM J|
Proof. To analyze the upper bound to the variance, we decompose the set {2¢ into two parts, i.e.,

Qe=0UQ={geQc|é¢@) <n"2}u{gec|s@) >n"2}

Hence, we can obtain that the squared bias can be computed by

(E[o] =) = (> (1= ¢@)" - 0@ + > (1-6@)" - 6(7))

PISYY IS
_r (1-3%)\2
<( E n(=%) 4 E e
YEM YEQ:

The variance can be computed by
Valid <1 0 ol
yGQl YEQ2
where for the first part, we have
- . 5 1 . 1 _
S = (1= o@)) (1= 6@ @ <1 D SHE< Y 0
ge Yye YgE
and for the second part, we have

Yo 1= (1-¢@)")(1 - () <> 6@

YEQ: YENo

exp n¢ Z q/)e(l—a)

ISIOP)

Putting together, we can derive that the estimation error is bounded by

E[({2 —9)%] < O(n™" +17%)).

The estimation error converges to zero when r € (0,2), and  — 2 achieves a quadratic rate. O

A.3 ANALYSIS OF CONDITION IN[THEOREM 1]

We plot the trend of theorem holds in using three probability of semantic equivalence
outputs of ¢, where ¢ € {0.1,0.05,0.03}. Each figure presents three minimal probability among
all semantic equivalence outputs of ¢, denoted as P,,;,,. The condition of is satisfied
when corresponding line is below the dashed line.

The results show that our proposed PC approach outperforms SC method when number of samplings
n is limited, which is confirmed by our experimental results. These results indicate that our proposed
Pc approach achieves better performance in cases where a larger optimal n is required, such as when
the sampling temperature is high, the problem being addressed is more complex, or there are more
candidate answers to consider. The results also show that the proposed PC approach outperforms
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the SC method when the number of samples n is sufficient. This is because, with a sufficiently large
n, the PC approach is able to sample all possible outputs with a high probability, thereby achieving
nearly zero variance due to the incorporation of token-level confidence.

Moreover, the conditions are related to the minimal probability among all semantic equivalence
outputs of g, which can be quite small. We argue that the minimal probability can be controlled
by removing outputs with extremely small probabilities, as these low-probability outputs could also
be incorrect. Our advanced version of the PC approach, i.e., RPC approach, has demonstrated that
excluding such low-probability outputs can further improve overall performance.

P=0.1 P=0.05 P=0.03
25 Poin =0.02 P, =0015 Poin =0.008
P,,=003 30 Ppin =0.02 Ppin =0.01
20 P, = 0.05 P, =0.025 P, =0.015
15 209 L e e S 40
e i S
10 20
5
0 0 0
0 50 100 150 200 0 50 100 150 200 0 100 200 300 400
#Samplings n #Samplings n #Samplings n

Figure 9: The trend indicated by the theorem holds, and the condition is satisfied when the line is
below the dashed line

B DETAILS OF EXPERIMENTS SETTING

B.1 DATASETS

For mathematical reasoning tasks, we evaluate our proposed methods and comparison methods on
one common mathematical benchmark datasets, MATH as well as three challenging mathemati-
cal datasets that include Olympiad-level problems, i.e., MathOdyssey, OlympiadBench, and AIME
datasets. MATH (Hendrycks et al., 2021b) is a dataset comprised of challenging competition math
problems and we use its 5,000 testing data for evaluation. The MathOdyssey dataset (Fang et al.|
2024) contains 387 problems, covering advanced high-school level, university-level, and Olympiad-
level mathematics. The OlympiadBench dataset (He et al., [2024) contains 8,476 Olympiad-level
mathematics and physics problems. We select the English problems without images, resulting in
a testing dataset of 1,284 problems. The AIME dataset (Zamil & Rabbyl, [2024) contains 993 test
problems collected from the American Invitational Mathematics Examination, spanning from 1983
to 2024.

For code generation tasks, we conduct experiments on three common benchmark datasets.
HumanEval (Chen et al| [2021) contains 164 hand-written Python programming problems.
MBPP (Austin et al., 2021)(sanitized version) consists of 427 entry-level programming problems.
We also include the introductory-level problems of APPS (Hendrycks et al.,2021a), which contains
1000 problems.

B.2 DETAILES OF CODE REASONING TASK

Code generation. On the code reasoning task, we let LLM generate a code snippet to solve a given
programming problem, and then evaluate its functional correctness based on the ground-truth test
cases provided by the dataset. In detail, we set the top p to 0.95, the max generation length to 1024.
For code snippet post-processing, we first extract the code text from code block surrounded by triple-
backticks(* * V), and then we follow |Chen et al.| (2021) to truncate the generated code snippet before
the following stop sequences: ~\nclass”, ”\ndef”, ”\n#”, ”\nif”, ”\nprint”. At the same time, we
also obtain the log-probability of each token from the LLM response. For ”verbalization” setting, the
verbalized confidence is also extract from the text generated by LLM along with the code snippet.

Self-consistency on code. We follow |Chen et al. (2022) to sample 100 test cases for each pro-
gramming problem from the same model. And then we achieved self-consistency on code at the
semantic equivalence level, which based on the execution behavior of any two codes on this set of
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test cases. More formally, we implemented the consistency function I (-, -) as an indicator function
that indicates whether two codes are semantically equivalent, i.e., Io(x,y) = 1 if and only if code
x and y execute the same result on this set of test cases.

B.3 PROMPT TEMPLATES

Prompt for generating code. The prompt for generating code consists of a header, a functional
signature, and a docstring and LLLM needs to implement the body of this function.

from typing import List
def has_close_elements (numbers: List[float],
threshold: float) -> bool:
Check if in given list of numbers,
are any two numbers closer to
each other than given threshold.

nwn

nwn

from typing import List
def has_close_elements (numbers: List[float],
threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to
each other than given threshold.
mmnnw
pass
# check the correctness of has_close_elements
assert

Figure 10: An example of prompt for generating code in HumanEval dataset

Prompt for generating test cases. For generating test cases, we implemented the function body
with a “pass” statement on the basis of the prompt to generate the code, and added a comment to
require the LLM to generate test cases for the programming problem.

Prompt for code verbalized method. For generating code with verbalized confidence, we added
instructions for generating verbalized confidence, as well as format requirements to facilitate the
extraction of code and confidence score. We also gave a simple example to help LLM understand
the format requirements at then end of the prompt.

Prompt for math reasoning tasks.

The InternLM2-MATH-Plus 1.8B and 7B models are chat models that facilitate conversations be-
tween two roles: “user” and “assistant”. The prompt for the “user” role is provided in Prompt [I]
Similarly, the prompt for the DeepSeek-Math 7B model is shown in Prompt[2}

Prompt for math verbalized method.

We observed that the tuned math models are challenging to prompt for generating confidence. There-
fore, we adopted the methods from [Tian et al.|(2023)) to calculate the probability based on the like-
lihood of the first generated “True” token and the first generated “False” token. The corresponding
prompt is provided in Prompt[3]
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Come up with a solution that solves the following programming question and provide your
confidence score in this solution like 0%, 10%, ... 100%.

import heapg as hg

def heap_queue_largest (nums,n) :

rrr

Write a function to find the n largest integers from a given list
of numbers, returned in descending order.

rrr

AU

Format requirement: output in the form of the following example. Do not provide any
additional explanations. Here is an output example: Solution:

‘Y 'python

your code ...

AU

Confidence: ...

Figure 11: An example of prompt for verbalized confidence estimation in MBPP dataset.

Prompt 1: Prompt for InternLM-2-Math-Plus

Problem:\n{instruction}\n Let’s think step by step\n Solution:\n

Prompt 2: Prompt for DeepSeek-Math

instruction\n Please reason step by step, and put your final answer within \ \boxed{{}}.

Prompt 3: Prompt for DeepSeek-Math

Question: question\n Proposed Answer: answer\n Is the proposed answer:\n \t(A) True
or\n \t(B) False?\n The proposed answer is:

C DETAILED EXPERIMENTAL RESULTS

C.1 EXCLUDED AND RETAINED PERPLEXITY OF RPC APPROACH

We have plotted the excluded and retained confidence distributions using the Reasoning Pruning in
the RPC approach across each dataset, with temperatures T € {1.0,1.1, 1.3}, in We be-
lieve this visualization will help researchers better understand the workings of our RPC, particularly
how it filters out unreliable reasoning paths while retaining those with higher confidence.

C.2 FULL EXPERIMENTAL RESULTS

In this paper, we conduct experiments using InternLM?2-Math-Plus 1.8B model, InternL.M2-Math-
Plus 7B model, DeekSeek-Math 7B model under sampling temperature T € {1.0, 1.1, 1.3}. The full
experimental results measured by accuracy, ECE, and Brier score metrics are reported in

The results using the InternLM2-Math-Plus 1.8B model with T = 1.3 were
excluded because the generated answers caused the answer checker process to be suspended.

18
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Figure 12: The excluded and retained confidence distributions of RPC approach.

We also plot the ECE diagrams for the PPL, Sc, PC, and RPC methods under temperatures T &€
1.0,1.1, 1.3 using the InternL. M2-Math-Plus-7B model across four mathematical reasoning datasets,

as shown in [Figure 13} [Figure 14} [Figure 15| and [Figure 16} respectively.
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Table 4: Detailed results using InternLM-2-MATH-Plus 7B model. The best performance is high-
lighted in bold, while the second-best performance is underlined.

Methods MATH MathOdyssey OlympiadBench AIME
Accuracy (1) ECE(]) BS(}) | Accuracy (1) ECE(}]) BS(]) | Accuracy (1) ECE(]) BS () | Accuracy () ECE(l) BS({)

Sampling Temperature 7' = 1.0

PPL 46.68 49.52 49.13 25.45 70.04 67.81 717 87.60 83.25 5.14 90.30 86.35

VERB 25.81 48.12 43.51 9.37 71.14 64.02 3.49 85.77 79.38 3.13 87.52 80.40

Sc 50.50 6.60 15.49 28.92 11.64 18.53 11.06 20.95 12.60 9.54 13.94 10.13

Pc 50.86 6.30 15.69 28.28 12.08 18.18 11.06 20.71 12.46 9.65 13.79 10.18

Rrc 52.32 6.29 15.68 33.16 8.59 18.11 11.21 19.45 11.88 9.75 13.94 10.32
Sampling Temperature 7' = 1.1

PrL 47.06 48.38 47.88 27.25 67.20 64.76 6.93 86.35 80.82 5.89 88.39 83.60

VERB 24.80 48.70 43.82 9.32 73.07 66.12 3.88 85.61 79.09 3.17 87.27 80.10

Sc 50.79 5.04 15.43 28.41 10.82 18.28 10.79 20.18 12.06 8.57 13.61 9.08

Pc 50.98 4.94 15.49 28.79 10.27 18.23 10.83 19.77 11.90 8.68 13.47 9.13

RpC 53.18 4.66 15.83 34.19 6.13 17.95 11.14 18.28 11.21 9.75 12.74 10.20
Sampling Temperature 7' = 1.3

PrL 47.90 46.21 45.73 25.45 67.14 63.66 7.55 82.90 75.36 6.65 85.22 78.61

VERB 23.89 49.42 44.32 8.39 76.13 67.61 3.23 86.18 79.34 227 88.36 80.97

Sc 50.70 2.22 15.02 27.63 10.36 17.05 10.40 17.82 10.53 8.20 11.62 8.29

Pc 51.42 2.26 15.20 28.02 10.03 16.83 10.67 17.07 10.41 8.68 10.99 8.68

Rpc 53.44 2.67 15.41 32.13 5.75 16.72 11.29 15.63 10.28 8.90 11.00 8.99

Table 5: Detailed results using InternLM2-MATH-Plus 1.8B model. The best performance is high-
lighted in bold, while the second-best performance is underlined.

Methods MATH MathOdyssey OlympiadBench AIME
"~ | Accuracy (1) ECE(]) BS(]) | Accuracy () ECE(]) BS(}) | Accuracy (f) ECE(]) BS () | Accuracy (f) ECE() BS()

Sampling Temperature 7" = 1.0

PrL 3244 62.70 60.90 15.94 78.61 75.22 2.26 91.58 86.11 1.39 93.49 88.81

VERB 6.40 41.54 38.39 227 61.91 50.05 0.58 74.32 58.58 0.20 77.03 61.05

Sc 36.61 6.28 15.04 14.40 18.73 14.61 6.07 21.77 11.37 2.68 16.60 6.38

Pc 36.88 6.11 15.29 14.65 18.34 14.55 6.07 21.54 11.20 2.68 16.49 6.33

Rpc 38.16 6.14 15.45 15.68 16.78 14.23 6.54 20.23 10.78 3.43 15.82 7.03
Sampling Temperature 7 = 1.1

PpL 32.90 61.32 59.19 16.45 76.83 72.60 2.80 89.09 82.15 2.14 91.28 85.49

VERB 6.00 44.00 39.55 2.25 64.42 52.11 0.33 78.47 64.38 0.14 78.88 63.60

Sc 36.77 4.19 14.82 12.98 18.55 13.75 5.69 20.52 10.32 2.04 16.42 5.54

Pc 36.94 3.97 14.85 13.62 17.78 13.90 5.76 20.28 10.33 2.14 16.09 5.54

RpC 38.66 3.87 15.11 16.20 15.32 14.49 6.15 19.61 10.23 2.68 15.34 5.93

Table 6: Detailed results using DeekSeek-Math 7B model. The best performance is highlighted in
bold, while the second-best performance is underlined.

Methods MATH MathOdyssey OlympiadBench AIME
" | Accuracy (1) ECE () BS(]) | Accuracy (1) ECE(]) BS () | Accuracy () ECE() BS() | Accuracy () ECE({) BS()

Sampling Temperature 7" = 1.0

PpL 41.52 55.00 54.81 21.59 74.94 73.50 5.22 91.31 88.35 2.89 94.22 91.60

VERB 13.02 58.53 56.33 1.76 91.67 90.34 2.09 91.19 89.51 1.70 92.82 90.59

Sc 53.54 6.11 16.53 36.25 11.07 17.56 11.49 15.24 10.67 9.36 11.91 9.06

Pc 53.56 6.23 16.64 36.25 10.78 17.41 11.45 15.18 10.58 9.65 11.51 9.34

RpcC 53.58 6.26 16.69 37.28 9.55 17.78 11.60 15.21 10.77 9.86 11.52 9.26
Sampling Temperature 7" = 1.1

PpL 4242 53.56 5342 23.14 72.89 71.43 5.92 89.99 86.56 343 93.09 89.99

VERB 12.57 59.40 57.04 1.91 91.67 89.85 2.01 92.24 90.32 1.77 91.97 89.77

Sc 53.78 4.97 16.21 37.28 8.94 17.52 11.57 14.44 10.42 9.06 11.78 8.78

Pc 53.80 4.98 16.39 37.28 9.05 17.45 11.60 14.34 10.39 9.22 11.53 8.88

RpC 53.80 5.14 16.46 37.02 9.73 17.22 11.45 14.86 10.26 9.65 11.14 8.99
Sampling Temperature 7" = 1.3

PrL 43.62 51.23 51.14 25.19 69.41 67.59 6.54 87.97 83.51 3.86 91.37 87.22

VERB 12.12 60.18 57.51 1.75 91.79 90.24 1.65 92.61 90.90 1.54 93.25 91.08

Sc 54.29 3.50 15.97 38.43 7.66 17.66 10.98 13.42 9.19 9.49 9.89 8.74

Pc 54.38 3.55 16.16 38.82 7.80 17.72 10.90 13.47 9.13 9.43 9.96 8.71

Rpc 54.54 422 16.18 39.07 7.90 17.70 11.45 13.52 9.53 9.75 10.42 8.66
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Figure 13: The ECE of InternLM-2-MATH-Plus 7B model on AIME datasets with temperatures

1126 T € {1.0,1.1,1.3} and sample size n = 256.
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Figure 14: The ECE of InternLM-2-MATH-Plus 7B model on MATH datasets with temperatures
T € {1.0,1.1,1.3} and sample size n = 100.
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Figure 15: The ECE of InternLM-2-MATH-Plus 7B model on Odyssey datasets with temperatures
T € {1.0,1.1,1.3} and sample size n = 256.
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Figure 16: The ECE of InternLM-2-MATH-Plus 7B model on OlympiadBench datasets with tem-
peratures T € {1.0,1.1, 1.3} and sample size n = 256.
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