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Abstract

Understanding the optimization dynamics of neu-
ral networks is necessary for closing the gap be-
tween theory and practice. Stochastic first-order
optimization algorithms are known to efficiently
locate favorable minima in deep neural networks.
This efficiency, however, contrasts with the non-
convex and seemingly complex structure of neural
loss landscapes. In this study, we delve into the
fundamental geometric properties of sampled gra-
dients along optimization paths. We focus on
two key quantities, the restricted secant inequality
and error bound, as well as their ratio γ, which
hold high significance for first-order optimization.
Our analysis reveals that these quantities exhibit
predictable, consistent behavior throughout train-
ing, despite the stochasticity induced by sampling
minibatches. Our findings suggest that not only
do optimization trajectories never encounter sig-
nificant obstacles, but they also maintain stable
dynamics during the majority of training. These
observed properties are sufficiently expressive to
theoretically guarantee linear convergence and
prescribe learning rate schedules mirroring em-
pirical practices. We conduct our experiments on
image classification, semantic segmentation and
language modeling across different batch sizes,
network architectures, datasets, optimizers, and
initialization seeds. We discuss the impact of each
factor. Our work provides novel insights into the
properties of neural network loss functions, and
opens the door to theoretical frameworks more
relevant to prevalent practice.

1. Introduction
Despite the theoretical complexity of their loss landscapes,
deep neural networks have demonstrated remarkable empir-
ical reliability across a broad range of applications. Blum
& Rivest (1992) proved decades ago that neural network
training is NP-hard. The intricacy of their loss functions,
especially the non-convexity implying potential bad local
minima and saddle points, has led to an enduring conundrum
concerning the empirical efficiency of stochastic first-order
optimization methods for training neural networks.

Numerous studies have strived to reconcile this apparent
contradiction, focusing on the behaviors of stochastic gra-
dient descent (SGD) and its variants at local minima and
saddle points (Panageas et al., 2019; Jin et al., 2019). The
central hypothesis in these works posits that the efficiency
of training arises from the ability of these algorithms to
navigate complex loss landscapes adeptly and manage non-
convexity.

Conversely, other investigations have empirically found loss
landscapes to be simpler than their theoretical complexity
might suggest (Lucas et al., 2021). Notably, Goodfellow
et al. (2015) observed that “in fact, on a straight path from
initialization to solution, a variety of state of the art neural
networks never encounter any significant obstacles.“

Notwithstanding, our current understanding of how neu-
ral loss landscapes are empirically simpler than expected
remains quite limited. There is yet to emerge a robust math-
ematical characterization of this empirical simplicity. Con-
sequently, we contend that the theoretical assumptions cur-
rently in use fail to accurately capture the objective functions
typical in deep learning. This discrepancy is a significant
barrier to applying theoretical insights effectively in the
optimization of neural networks.

One such common assumption, smoothness, is illustrative
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Figure 1. Cosine similarities between the gradients Gt sampled at step t and the difference (wt − wT ) between current weights and final
weights, averaged over each epoch. The shaded regions denote the range from minimum to maximum values observed at each epoch. The
results are presented for a selection of scenarios: (top left) varying depths and widths of ResNet on ImageNet, (top right) different batch
sizes on WikiText-2 using a Transformer, (bottom left) a range of optimizers on CIFAR-10 using ResNet-18, and (bottom right) distinct
architectures on Vaihingen semantic segmentation. This figure highlights the stability of the cosine similarity throughout most of training,
suggesting it as a fundamental characteristic of neural network training.

of this gap. Despite its popularity, smoothness is encum-
bered by several limitations: it is computationally intensive
to approximate for large neural networks, and necessitates
additional assumptions such as bounded gradients for theo-
retical guarantees in stochastic settings (Qian et al., 2019;
Shamir & Zhang, 2013) although recent works have tried
to discard them (Nguyen et al., 2018; Loizou et al., 2021).
Finally, recent findings suggesting certain directional sharp-
ness in neural networks (Dinh et al., 2017) call into question
the suitability of smoothness as a measure of their simplic-
ity.

To address these issues, our study undertakes an empirical
analysis of the geometric properties of the loss function
in regions traversed by first-order optimization algorithms.
Our focus is on a variant of the quantities involved in the
Restricted Secant Inequality (RSI) (Zhang & Yin, 2013) and
Error Bound (EB) (Luo & Tseng, 1993), which pertain to
the relationship between sampled gradients, current iterate,
and final iterate of the optimization sequence. Our findings
indicate that these quantities and their ratio exhibit stable,
predictable patterns throughout training across diverse set-
tings, thereby quantitatively characterizing the simplicity of
neural loss landscape geometry. Furthermore, these quan-
tities offer several advantages over smoothness, including
efficient estimations post-training, inherent compatibility
with stochasticity due to direct measurement on sampled
gradients, and a well-behaved empirical nature that still

allows the derivation of theoretical results such as linear
convergence or the prescription of learning rate schedules.

Our key contributions are as follows:

• We devise an experimental procedure for examining the
geometry of optimization paths on common architec-
tures. We assume almost-everywhere differentiability,
but not smoothness.

• We execute experiments across a range of realistic
deep learning settings, identifying consistently verified
properties. For instance, the cosine similarity between
the negative stochastic gradient and the direction to
the final iterate is almost always positive and exhibits
remarkable stability across iterations and epochs.

• We demonstrate how our empirical investigations can
inform the prescription of learning rate schedules,
aligning with established empirical knowledge.

• We provide an extensive discussion on the implications
and limitations of our findings.

Collectively, our work quantifies crucial geometric proper-
ties of stochastic gradients along deep learning optimization
paths, underlining their importance in understanding neural
network optimization and enhancing current methodolo-
gies.
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2. Related Work
Our investigation centers on the application of RSI and EB
to enhance our comprehension of the geometric principles
governing neural network optimization. Consequently, our
work intersects with previous research on neural loss land-
scapes and the utilization of RSI and EB in optimization.

RSI and EB: The study of RSI and EB for first-order
optimization is not new. RSI (Zhang & Yin, 2013) has
been applied in numerous theoretical works (Yi et al.,
2019; Schöpfer, 2016; Yuan et al., 2016; Karimi et al.,
2016). EB (Luo & Tseng, 1993) has seen less extensive
study (Dmitriy Drusvyatskiy, 2018), possibly due to the
dominance of smoothness —a condition stronger than EB—
in the field. It should not be confused with error bounds
on the distance to a set, a term also prevalent in optimiza-
tion literature (Qian et al., 2023; Zhou & So, 2015). Both
RSI and EB, along with other conditions, were analyzed
in Guille-Escuret et al. (2021). Furthermore, it was demon-
strated in Guille-Escuret et al. (2022) that gradient descent
is optimal for the class of functions defined by this pair of
conditions.

Neural Loss Landscape Geometry: The intricacies of neu-
ral loss landscapes have been a focal point of research since
the emergence of deep learning. Efforts have ranged from
loss landscape visualizations (Li et al., 2018) to investiga-
tions of low loss basin connectivity (Garipov et al., 2018)
and linear mode connectivity (Nagarajan & Kolter, 2019;
Frankle et al., 2020). While prior research has noted the
seeming simplicity of loss landscape geometry along opti-
mization paths (Lucas et al., 2021; Goodfellow et al., 2015),
these observations often involve straightforward phenomena
such as monotonic decrease along linear interpolations. Our
work takes this approach a step further by studying quantifi-
able properties with theoretical implications. Additionally,
others have examined the geometric properties of neural
loss landscapes in the near-infinite width, or Neural Tangent
Kernel (NTK), regime (Jacot et al., 2018; Lee et al., 2019).
These studies suggest that neural network training can be
approximated by linear dynamics or that the loss surface ad-
heres to the Polyak-Łojasiewicz condition (Liu et al., 2022).
Concurrently to our work, Liu et al. (2023) showed that the
Aiming condition, which is related to RSI, is theoretically
verified for sufficiently large width, which also corresponds
to the NTK regime. Unfortunately, this scenario was found
to be irrealistic in empirical settings (Chizat et al., 2019),
although recent studies have delved into the evolution of the
NTK under more realistic conditions (Fort et al., 2020). In
contrast, our work aims to directly verify that the proper-
ties we study are relevant to real-world settings. We also
note the active research direction regarding the influence of
BatchNorm on the optimization trajectory (Santurkar et al.,
2018b; Ioffe & Szegedy, 2015a).

3. Background
The training of a neural network on a dataset comprised of
n examples can typically be formulated as the finite-sum
optimization problem

min
w∈Rd

L(w) := 1

n

n∑
i=1

li(w), (1)

where w are the parameters of the neural network, L is
the empirical risk, and li corresponds to the loss function
for the i-th data sample, for i = 1, . . . , n. We denote the
empirical risk with respect to any minibatch B ⊆ [n] of size
m as LB := 1

m

∑
i∈B li. Throughout this work, we assume

the loss to be differentiable, but we do not require it to be
smooth.

Given an objective function L with a convex set of global
minima X ⋆, and letting w⋆

p be the orthogonal projection
of w into X ⋆, we now recall the definitions of RSI− and
EB+ as provided by Guille-Escuret et al. (2021) and Guille-
Escuret et al. (2022),

Definition 3.1 (Lower Restricted Secant Inequality). Let
µ > 0. L ∈ RSI−(µ) iff:

∀w ∈ Rd,∇L(w)T (w − w⋆
p) ≥ µ

∥∥w − w⋆
p

∥∥2
2
. (2)

Definition 3.2 (Upper Error Bounds). Let L > 0. L ∈
EB+(L) iff:

∀w ∈ Rd, ∥∇L(w)∥2 ≤ L
∥∥w − w⋆

p

∥∥
2
. (3)

The classes of functions RSI− and EB+ are thus defined in
the literature as those respecting the above bounds over the
entire parameter space. However, in this work, our focus
lies not merely on their extremal values but on the local
quantities bounded by RSI− and EB+.

For simplicity, we refrain from introducing new terminology,
and henceforth denote these quantities as RSI(G,w,w⋆)
and EB(G,w,w⋆), where G is an estimator for the gradient
at w. We do not mandate G to be the full gradient of L; it
could, for instance, correspond to the gradient ∇LB with
respect to a minibatch B. Similarly, w⋆ is not assumed to
be a minimum of the objective function. Formally, for any
vector field G, and any w⋆ ∈ Rd, w ̸= w⋆:

RSI(G,w,w⋆) := G(w)T (w−w⋆)

∥w−w⋆∥2
2

and

EB(G,w,w⋆) :=
∥G(w)∥2
∥w − w⋆∥2

.

The ratio between RSI and EB imparts a direct geometrical
interpretation:

γ(G,w,w⋆) := RSI(G,w,w⋆)
EB(G,w,w⋆) = G(w)T (w−w⋆)

∥G∥2∥w−w⋆∥2
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= cosine(G(w), w − w⋆),

where cosine(w1, w2) is the cosine of the angle between
vectors w1 and w2.

This ratio, γ, signifies the alignment between the negative
sampled gradient and the direction from w to w⋆. When
γ approaches 1, it indicates a negative gradient strongly
directed toward w⋆. Conversely, a γ close to 0 suggests a
gradient almost orthogonal to w−w⋆. A negative γ indicates
a negative gradient directed away from w⋆. Additionally,
γ can be interpreted as the inverse of a local variant of the
condition number, κ := supEB

inf RSI , which is a measure of the
complexity of optimizing L in prior works (Guille-Escuret
et al., 2021).

RSI and EB are intrinsically connected to the dynamics of
stochastic gradient descent (SGD). Indeed, the distance to
w⋆ following an SGD step with step size η can be precisely
articulated using RSI and EB. For all w ̸= w⋆,B,

∥∥w − η∇LB(w) − w
⋆∥∥2

2

=
∥∥w − w

⋆∥∥2

2
− 2η∇LB(w)

T
(w − w

⋆
) + η

2 ∥∇LB(w)∥2
2

=
(
1 − 2ηRSI

(
∇LB, w, w

⋆)
+ η

2
EB

2 (
∇LB, w, , w

⋆)) ∥w − w
⋆∥2

2.

(4)

Consequently, with a step size of

η⋆ := argmin
η
∥w − η∇LB(w)− w⋆∥2 = RSI(∇LB,w,w⋆)

EB2(∇LB,w,w⋆)
,

(5)
SGD guarantees

∥wt+1 − w⋆∥2 =
√
1− γ(∇LB, w, w⋆)2 ∥wt − w⋆∥2 .

(6)

Furthermore, if inf
w,B

RSI(∇LB, w, w
⋆) ≥ µ and

sup
w,B

EB(∇LB, w, w
⋆) ≤ L hold for some µ > 0, L > 0,

then equation 4 demonstrates that running SGD with a fixed
step size of η = µ

L2 will converge to w⋆ at a guaranteed
rate:

∥wt − w⋆∥22 ≤ (1− µ2

L2 )
t ∥w0 − w⋆∥22 , (7)

This holds irrespective of how the minibatches are sampled.
Under these assumptions, this rate is, in fact, worst-case
optimal among all continuous first-order algorithms (Guille-
Escuret et al., 2022).

Experimental Measurement of RSI and EB: One of the
most significant challenges in experimentally measuring
RSI and EB lies in the selection of w⋆. Even in cases where
the objective function admits an unique global minimum,
finding it in the context of deep neural networks is compu-
tationally infeasible (Blum & Rivest, 1992). To navigate
this complication, we initially train a neural network and

subsequently choose the final iterate wT of the optimiza-
tion sequence. Given successful training, the sequence will
converge to the vicinity of a (local) minimum, and measur-
ing RSI and EB with respect to this minimum will provide
insightful understanding of the training dynamics.

Notably, under this procedure, wT is dependent on the opti-
mization sequence rather than being predetermined. There-
fore, interpreting the ensuing results warrants care, see Sec-
tion 6.

Considering that saving all gradients and iterates observed
during training would be prohibitively resource-intensive,
we perform two identical training runs. The first run com-
putes w⋆ = wT , and the second run computes RSI and EB
along the optimization path. A detailed description of our
experimental protocol is provided in Algorithm 1 in Ap-
pendix A.1, and we share our code at https://github.
com/Hiroki11x/LossLandscapeGeometry.

4. Empirical Geometry of Landscapes Along
Optimization Paths

Figure 1 offers an initial glance at our results, outlining the
behavior of γ across four datasets, with variations across ar-
chitecture, batch size, and optimization technique. Figure 2
presents a more streamlined view on three of these datasets,
exhibiting not only γ but also RSI and EB on a single run
to preserve clarity. To avoid precision issues when wt ap-
proaches wT , the results from the final epoch have been
excluded. Our hyperparameters were initially adjusted to
optimize validation accuracy, echoing practical conditions.
All experiments were coded in PyTorch (Paszke et al., 2019)
and detailed descriptions of the specific training configura-
tions, along with final test performances, are available in
Appendix A to ensure full reproducibility.

CIFAR-10 (ResNet-18): Across the entire training run, not
a single iteration exhibits a negative γ, though depending
of the seed, it may happen that one or two iterations toward
the end of training exhibit slightly negative γ (see Figure 4).
Even though there are slight fluctuations across epochs, γ
predominantly remains within the [0.0075, 0.02] range and
does not exhibit substantial shifts. While the variance of
RSI and EB across iterations tends to increase as training
progresses, their mean values largely remain stable.

ImageNet-1K (ResNet-50): Except for a few iterations at
the very early stage, γ remains positive throughout all of
training. Moreover, the variance across iterations is notably
low until the last epochs. Epoch-wise, RSI, EB, and γ
increase monotonically, with a sharp rise observed towards
the end.

WikiText-2 (Transformer): Throughout training, γ re-
mains strictly positive and always exceeds 0.05 after the
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Figure 2. Depicted are the trends of RSI (top), EB (middle) and γ (bottom) across three different scenarios: image classification on
CIFAR-10 with a ResNet-18 (left), image classification on ImageNet with a ResNet-50 (middle) and language modeling on WikiText-2
with a transformer model (right).

second epoch. The cosine similarity maintains a remarkable
stability, exhibiting only minor variations across iterations
and epochs. While RSI and EB show very low variance
within epochs, they do increase towards the end of the train-
ing period.

4.1. Fundamental properties

Upon careful analysis, we find that the optimization trajec-
tories of deep neural networks exhibit the following major
characteristic features:

• The cosine similarity, γ, is almost always positive.

• γ demonstrates notable stability across both epochs
and iterations, rarely departing from its (low) average
value.

• RSI and EB follow predictable trends, contingent upon
whether the model adheres to an interpolation or a non-
interpolation regime.

Interpolation vs Non-Interpolation Regime: The behav-
ior of RSI and EB are directly tied to how well the final
iterate w⋆ interpolates the training data. For CIFAR-10,
where the model reaches close to 0 training loss, RSI and
EB retain relatively stable mean values up to the last epochs,
which is made possible by stochastic gradients decreasing
to 0 as wt approaches w⋆. Conversely, in scenarios where
the model fails to interpolate the training data, such as for
ImageNet and WikiText-2, stochastic gradients remain sig-
nificant. In such a scenario, RSI and EB inevitably rise
to infinity as wt − w⋆ approaches zero. This phenomenon
is particularly obvious with ImageNet due to the learning
rate decay, which induces minuscule distances between wt

and w⋆ in the later stages of training. Additional experi-
mental results supporting this interpretation are provided in

Appendix C.

Late Training Behavior: The results obtained towards the
end of training should be interpreted with caution. Be-
sides the previously described phenomenon in the non-
interpolation regime, the correlation between sampled gra-
dients and wt − w⋆ increases as the sequence nears its
termination. Intuitively, w⋆ approximates a minima, and
the approximation error becomes significant as iterates get
sufficiently close. Further discussion on related implications
can be found in Section 6.

Low Value of Cosine Similarity: The low values of γ
empirically encountered are to be expected: if γ was stable
at reasonably high values, then we would find a near-minima
in a small number of steps using SGD, which is notoriously
not the case for modern problems. Instead, optimization
sequences approach their final iterate at a slow but regular
pace. While the stability and positivity of γ imply a linear
convergence rate, its low value indicate a linear rate close to
1, similarly to a strongly convex and smooth objective being
badly conditioned. A plausible cause for γ being small is
that the useful signal from generalizable features in sampled
gradients is dominated by that of spurious and coincidental
correlations.

Significance: These observations imply that, despite the
well-documented non-convexity of the loss landscapes asso-
ciated with neural networks and the inherent stochasticity
introduced by minibatch sampling, the learning process of
neural networks remains remarkably consistent. The net-
works progress steadily towards their destination throughout
the training, with each stochastic gradient contributing valu-
able information to reach the final model state. With very
few exceptions, gradients always point toward the right di-
rection, and training trajectories never take a wrong turn
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when optimizing the loss function. We find these obser-
vations to be particularly remarkable on ImageNet. Given
the presence of 1000 semantic classes (exceeding the batch
size) and in excess of 5000 minibatches per epoch, the con-
sistence of the cosine similarity γ throughout entire epochs
seems surprising. In addition, Section 6 establishes links be-
tween empirically adopted learning rate schedules and RSI
and EB. Overall, RSI and EB are powerful tools to capture
the elusive simplicity of neural loss landscapes, with empiri-
cal properties theoretically guaranteeing linear convergence
rates. We thus encourage future works to consider RSI and
EB to characterize the classes of objectives encountered in
deep learning applications.

We further explore the impact of various factors and pro-
vide a more comprehensive substantiation of our findings in
Section 5. Following this, we discuss the implications and
potential limitations of our observations in Section 6. We
also discuss plausible causes in Appendix D.

5. Influence of Training Settings
Batch Size: The top right of Figure 1 delineates the cosine
similarities corresponding to batch sizes ranging from 32
to 256 on the WikiText-2 dataset. As a complementary
experiment, Figure 6 in Appendix B portrays the cosine
similarities associated with batch sizes from 64 to 512 on the
CIFAR-10 dataset. The outcomes of both these experiments
consistently reveal a positive correlation between batch size
and cosine similarity. This outcome is foreseeable: for two
minibatches Bi and Bj , we have

RSI(∇LBi
+∇LBj

) = RSI(∇LBi
) + RSI(∇LBj

),
EB(∇LBi

+∇LBj
) ≤ EB(∇LBi

) + EB(∇LBj
).

It should be noted that the selection of batch size not only af-
fects the measurement of RSI and EB, but it also influences
the optimization trajectory and the speed of convergence.
Therefore, direct numerical comparisons across different
batch sizes ought to be interpreted with caution. Nonethe-
less, our observations suggest that cosine similarities may
scale with the square root of the batch size.

Optimizer: Figure 1 (bottom left) illustrates the cosine sim-
ilarity for three distinct optimizers utilized on the CIFAR-10
dataset. Intriguingly, Adam appears to result in lower cosine
similarity values, albeit with reduced variance. We hypothe-
size that Adam, by amplifying the effective step size along
directions with lower curvature, traverses further in flat di-
mensions, thereby leading to a reduced alignment compared
to SGD. This conjecture is substantiated by Figure 24 in
Appendix C, demonstrating that the journey undertaken by
Adam indeed surpasses that of SGD in terms of distance.
Notably, the employment of a momentum value of 0.9 with
SGD does not significantly impact the value of γ, compared
to not using momentum. Prior works also suggest that the

optimization methods may affect the geometry of visited
regions (Cohen et al., 2021).

Model Depth and Width: Our attention now turns to the
impact of depth and width on the geometric characteristics
of the optimization trajectory, as depicted in Figure 1 (top
left). In this experiment, we trained ResNets of varying
depth — 18, 50, and 152 layers — with both standard and
doubled width. A salient observation is that an increase
in depth slightly enhances the cosine similarities, while an
increase in width appears to have a comparatively trivial
impact. These findings could potentially shed light on the
prevalent trend in contemporary neural network designs
favouring increased depth over width (He et al., 2016).

6. Key Takeaways and Discussion
Geometrically Justified Learning Rate Schedules: As es-
tablished in equation 5, we define the locally optimal learn-
ing rate (loLR) as the minimizer of ∥wt − η∇LBt − w⋆∥2,
η⋆(w) = RSI(w)

EB2(w)
.

It is important to note, however, that η⋆ may not necessarily
be globally optimal. Indeed, certain methodologies may
initiate slower but accumulate more information, ultimately
leading to faster convergence over a large number of steps.
Furthermore, as the measurement of RSI and EB requires
the knowledge of w⋆, which in turn depends on the learning
rate (LR), the expression cannot be utilized to dynamically
tune it.

Despite these limitations, we find intriguing parallels be-
tween the evolution of the loLR derived from our experi-
ments and the shape of empirically validated LR schedules,
as demonstrated in Figure 3. For instance, a widely adopted
strategy for training on ImageNet involves a linear warm-
up phase of the LR for the initial few epochs, followed by
a cosine annealing phase. This pattern is mirrored in our
empirical observations on ImageNet, except for a sharper
decrease immediately after warmup.

Moreover, the results on WikiText-2 echo two popular prac-
tices: linearly decreasing the LR and increasing the batch
size over time. These intriguing observations suggest that
the geometry of the loss landscape could potentially inform
the design of more effective learning rate schedules.

Lastly, the apparent correspondence between loLR and em-
pirical learning rate strategies implies that the efficiency of
fixed learning rates may be contingent upon the stationarity
of RSI and EB. Similarly, the existence of straightforward
and efficient learning rate schedules can be associated with
the predictable evolution of these geometrical properties.
This strongly reinforces the view that such geometrical at-
tributes play a substantial role in the widespread practical
successes of deep learning.
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Figure 3. Left panel: The locally optimal learning rate, derived as per equation 5, for various architectures implemented on the CIFAR-10
dataset. Right panel: The locally optimal learning rate, similarly determined, across a spectrum of batch sizes employed on the WikiText-2
dataset.

Biases Induced by Using Final Iterates as Reference
Points: A critical limitation of our experimental approach is
the inescapable correlation between w⋆ and the optimization
sequence. This association must be thoroughly addressed to
appropriately interpret our findings.

• Initialization: Firstly, RSI and EB may represent local
properties of the loss landscape, and could be dependent on
the initialization region. However, this possibility is refuted
by the left panel of Figure 4, which demonstrates minimal
variation in γ measurements across different random seeds.

• Epoch Budget: Secondly, our results might be influenced
by the particular moment when we terminate the optimiza-
tion sequence to extract w⋆. The right panel of Figure 4
presents different measurements for epoch budgets ranging
from 100 to 280, with all other parameters kept consistent.
Our findings indicate a relative similarity in results before
the sequence nears w⋆, suggesting that our experiments do
not display excessive sensitivity to the epoch budget.

• Induced Bias: However, this experiment also underscores
the phenomenon detailed in Section 4.1: as the sequence
approaches completion, the correlation between sampled
gradients and wt − w⋆ - induced by gradient updates - be-
comes increasingly significant. This correlation is a by-
product of the optimization method, rather than a feature
of local geometry, and augments the value of RSI and γ by
diminishing the impact of stochasticity. Consequently, this
correlation should be taken into account when interpreting
RSI and EB in the concluding epochs.

A compelling illustration of this correlation can be seen in a
discrete isotropic random walk with a fixed step size s in a
dimension d. When dimension d significantly exceeds the
number of steps, each pair of steps can be assumed to be
nearly orthogonal with high probability. In such a setting,
if we denote (xt)t=0...T as the sequence generated by the
random walk, we can calculate that, with high probability,

∀t,

(xt − xt+1)
T (xt − xT )

∥xt − xT ∥22
≈ ∥xt − xt+1∥22
∥xt − xT ∥22

≈ 1

T − t
> 0

and
∥xt − xt+1∥2
∥xt − xT ∥2

≈ 1√
T − t

(8)

Consequently, the cosine similarity γ(xt) ≈ (T − t)−0.5

remains strictly positive, and experiences a sharp increase
toward the end, exemplifying the effect of the correlation
induced by the selection of w⋆. It’s worth noting that in the
case of neural networks, γ remains approximately constant
for the majority of training (as is clearly visible in Figure 1),
which marks a distinction in their dynamics. Nonetheless,
akin to the random walk scenario, it can be anticipated that
the correlation induced by the choice of w⋆ would become
increasingly evident as the number of remaining iterations
diminishes.

Contrasting Examples: Functions Without Beneficial
Geometric Properties: We now turn our attention to de-
lineating the behaviors that could potentially manifest in
stochastic and non-convex optimization scenarios. To this
end, we have engineered two illustrative counter-examples
which effectively demonstrate that the consistency observed
in Sections 4 and 5 is not a mere byproduct of our experi-
mental paradigm.

Our first example, termed Asymmetric Linear Model
(ALM), entails the training of a linear model with the objec-
tive of consistently yielding outputs that are lower than their
corresponding targets. The error between these values is cal-
culated on stochastic minibatches using Root Mean Square
Error (RMSE), thereby introducing a substantial degree of
stochasticity. Despite this, the objective is a finite sum of
convex functions and thus remains convex.

The second function, designated Sinusoidal Mixture (SM),
is deterministic but exhibits a pronounced degree of non-
convexity. The mathematical expressions for both ALM and

7
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Figure 4. Depiction of cosine similarities during the training of a ResNet-18 on the CIFAR-10 dataset, with variations in (left) initialization
seed and (right) epoch budget.
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SM are presented below, with coefficients ai, xi, yi drawn
randomly from normal distributions,

ALM(w) =
∑
i

[
max(0, wTxi − yi)

]2
;

SM(w) = ∥w∥22 + 100
∑
i

sin(aiwi)
2.

(9)

We show in Appendix the level lines of both functions (see
Figure 14 and Figure 15).

Figure 5 presents the measurements of RSI and γ for both
ALM and SM. Although these functions are characterized by
relatively simple functional forms and do not simultaneously
exhibit stochasticity and non-convexity, they demonstrate
unpredictable trajectories and negative values for RSI and
γ. This evidence compellingly suggests that the observed
simplicity associated with neural networks is not a trivial
characteristic.

7. Conclusion
We have conducted an extensive series of experiments, as-
sessing RSI and EB across a broad spectrum of training
settings. These experiments reveal that these geometric
properties display a collection of desirable characteristics,
effectively demonstrating that neural network training pro-
ceeds smoothly, maintaining a consistently steady advance-
ment towards its destination throughout the training process.

These results contrast starkly with the theoretical complexity
of neural landscapes and potentially open new pathways
for developing theoretical results tailored to deep learning,
or for designing optimization algorithms that exploit the
geometry of empirical objective functions.

A noteworthy point is that while RSI and EB appear to en-
capsulate significant beneficial aspects of neural networks,
they likely do not encompass the entire scope of these advan-
tages. There may be additional, complementary properties
yet to be discovered. An intriguing indication of this is
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the fact that vanilla gradient descent has been proven to be
exactly optimal for functions verifying the lower restricted
secant inequality and upper error bound (Guille-Escuret
et al., 2022). Given the well-documented efficacy of mo-
mentum in training neural networks, we conjecture that
momentum exploits additional properties not captured by
RSI and EB, which we encourage future works to explore.
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A. Experimental Setting
A.1. Algorithm

Algorithm A.1 provides a detailed account of our experi-
mental protocol. This algorithm describes our methodology
to measure RSI and EB values throughout the training pro-
cess.

Intuitively, the algorithm follows two training runs with
identical initialization and minibatch sampling. The first
runs aims at computing the last iterate w⋆ and saving it, and
the second runs uses w⋆ to compute RSI and EB.

This approach removes the necessity to save all gradients
throughout the run (in order to compute RSI and EB at the
end), which would be unreasonably expensive in memory.

Algorithm 1 Measurement of RSI and EB

Input: initial weights w0, sequence of minibatches
B0...T−1

1: for t = 0, . . . , T − 1 do
2: compute gradient Gt = ∇LBt

(wt)
3: update weights wt+1 = Opt(w0...t, G0...t))
4: end for
5: w⋆ ← wT

6: reset weights to w0

7: for t = 0, . . . , T − 1 do
8: compute gradient Gt = ∇LBt

(wt)

9: compute RSIt =
GT

t (wt−w⋆)

∥wt−w⋆∥2
2

10: compute EBt =
∥Gt∥2

∥wt−w⋆∥2

11: update weights wt+1 = Opt(w0...t, G0...t))
12: end for
Output: RSI0...T−1, EB0...T−1

A.2. Implementation and Environment for Experiments

Computational Environment: We perform our exper-
iments mainly with cluster A (redacted until publica-
tion). For cluster A, each node is composed of NVIDIA
A100×4GPU and AMD Milan 7413 @ 2.65 GHz 128M
cache L3×2CPU. As a software environment, we use Rocky
Linux 8.7, gcc 9.3.0, Python 3.10.2, pytorch 1.13.1, torchvi-
sion 0.14.1, cuDNN 8.2.0, and CUDA 11.4.

Licence of Datasets: It should be noted that the CIFAR-10
dataset (Krizhevsky et al., 2012) does not explicitly stipulate
any licensing terms 3. The authors of the CIFAR-10 merely
ask users of their dataset to provide appropriate citation.
ImageNet-1K (Deng et al., 2009) does not explicitly state
its license 4. Licenses of the WikiText-2 (Logan et al., 2019)

3https://www.cs.toronto.edu/~kriz/cifar.
html

4https://www.image-net.org/challenges/

is CC-BY-SA-3.0 5. No license is specified for the dataset
in Vaihingen (Cramer & Haala, 2010), but it is allowed to
be used in scientific papers. However, acknowledgment and
citation are required6.

The WIkiText-103 dataset is available under the Creative
Commons Attribution-ShareAlike License.

Implementation: All codes for experiments are mod-
ifications of the codes provided by PyTorch’s official
implementation for image classification and language
modeling tasks7 and Audebert et al. (2017) for segmentation
task 8. The license for the official Pytorch implementation
is the BSD-3-Clause, and the license for the segmentation
task implementation is GPLv3. Our code can be found at
the link below.
https://github.com/Hiroki11x/
LossLandscapeGeometry

A.3. Datasets description

CIFAR10: CIFAR-10 dataset (Krizhevsky et al., 2012),
one of the most widely used datasets for machine learning
research, is a unique resource that offers a robust benchmark
for algorithms, primarily image recognition. The dataset is
a curated collection of 60,000 color images, each of a size
of 32x32 pixels, uniformly divided across ten distinctive
classes. These classes encompass various common objects:
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. Each class in the CIFAR-10 dataset is
represented equally, with 6,000 images per category. The
dataset is split into two segments: a training set comprising
50,000 images and a test set of 10,000 images.

ImageNet-1K: The ImageNet-1K dataset, a subset of the
more extensive ImageNet database (Deng et al., 2009), has
become an essential resource for research in machine learn-
ing, particularly for image recognition and classification
tasks. ImageNet-1K is an extensively curated dataset of
approximately 1.28 million high-resolution color images
spread across 1,000 distinct categories or classes. These
classes span various objects, organisms, and phenomena,
capturing a rich diversity of the visual world.

WikiText-2: The WikiText-2 dataset (Logan et al., 2019)
is a significant benchmark for various natural language pro-
cessing tasks, specifically those related to language mod-
eling. It comprises over 2 million tokens extracted from

LSVRC/2012/index.php
5https://www.salesforce.com/

products/einstein/ai-research/
the-wikitext-dependency-language-modeling-dataset/

6For more details, see page 7 of https://www2.isprs.
org/media/komfssn5/complexscenes_revision_
v4.pdf

7https://github.com/pytorch/examples
8https://github.com/nshaud/DeepNetsForEO
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verified Wikipedia articles. WikiText-2 retains the original
structure and complexity of the language found in the source
articles. This characteristic has enabled training models to
handle various language structures and styles. The dataset is
divided into three segments: a training set with roughly 2.08
million tokens, a validation set with approximately 217,000
tokens, and a test set with about 245,000 tokens.

Vaihingen: The Vaihingen dataset (Rottensteiner et al.,
2012) is a land covering remote sensing dataset. Its pur-
pose is to segment correctly aerial images of the Vaihingen
city in Germany. It is composed of 33 tiles and we use 11
tiles for training, 5 tiles for validation, and the remaining
17 tiles for testing our model, which is the split used in (Fa-
tras et al., 2021). Furthermore, we only consider the RGB
components of the Vaihingen dataset. We follow the train-
ing procedure and PyTorch implementation from (Audebert
et al., 2017). We build our training (resp. validation) dataset
by taking randomly 256 × 256 patches from the training
(resp. validation) tiles. The number of images seen during
a training epoch is set to 10.000 patches while it is set to
1000 for the validation set.

A.4. Hyperparameters and Detailed Configurations

In the experimental procedure of our study, we employed
a systematic grid search method to explore hyperparame-
ters. This approach facilitates the identification of the most
effective combinations that provide superior performance.

The specifics concerning the batch size and the total num-
ber of epochs allocated for each dataset and corresponding
model have been exhaustively tabulated in Table 1. These
parameters were meticulously selected to ensure optimal
learning while mitigating overfitting concerns.

Further, we present detailed settings of specific ablation
experiments in Table 2, 3,4, and 5. These ranges were de-
fined based on prior search of hyperparameters maximizing
validation performance.

’SGD’ denotes the standard SGD algorithm without mo-
mentum, ’Momentum’ denotes SGD with momentum with
β = 0.9, and ’Adam’ denotes the Adam algorithm with
β1 = 0.9 and β2 = 0.999.

CIFAR10: We train a ResNet-18 (He et al., 2016) for 190
epochs on CIFAR-10 (Krizhevsky et al., 2012) with SGD
+ momentum using a batch size of 256, a weight decay of
10−6, and a fixed step size of 10−2 as a default configura-
tion.

For batch-size experiments, the learning rate was designated
as 5.0×10−3 for a batch size of 64, and subsequently scaled
proportionally to the square root of the batch size, adhering
to the guidelines from prior research (Krizhevsky, 2014).

ImageNet-1K: We train a ResNet-50 on ImageNet (Deng

et al., 2009) for 180 epochs with SGD + momentum using a
batch size of 256, weight decay of 10−4, and a learning rate
of 10−3. The learning rate is subjected to a linear warmup
for the first 3 epochs, followed by cosine annealing as a de-
fault configuration. We indicate by ’max LR’ the maximum
value of the learning rate, reached after the warmup epochs.

WikiText-2: We train a transformer (Vaswani et al., 2017)
9 on WikiText-2 (Merity et al., 2016) for 20 epochs with
Adam (Kingma & Ba, 2017) using a batch size of 32, weight
decay of 10−5 and learning rate of 10−4.

Vaihingen: We train a SegNet (Badrinarayanan et al., 2017)
and a UNet (Ronneberger et al., 2015). We augment our
data with flip and mirror transformations. We use a batch
size of 10 patches taken randomly within images as done in
(Audebert et al., 2017). We train for 25 epochs with SGD +
momentum, learning rate 0.01 and weight decay 1e−5. We
then do an extra epoch with the learning rate and the weight
decay divided by 10. Note that we train both the UNet and
the SegNet from scratch.

9We use pytorch official implementation of transformer
for language model: https://github.com/pytorch/
examples/blob/main/word_language_model/
model.py
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Table 1. Default setting of experiments
Task Dataset Model Batch size Epochs

Image Classification

CIFAR-10 ResNet18-1 [64, 128, 256, 512] [100, 190, 280]
Medium-MLP [64, 128, 256, 512] [100, 190, 280]

ImageNet-1K

ResNet-18-1 256 [90, 180]
ResNet-18-2 256 [90, 180]
ResNet-50-1 256 [90, 180]
ResNet-50-2 256 [90, 180]

ResNet-152-0.5 256 [90, 180]
ResNet-152-1 256 [90, 180]

Word Language Model WikiText-2 Transformer [32, 64, 128, 256] 20

Segmentation Vaihingen UNet 10 26
SegNet 10 26

Table 2. Hyperparameter: Image Classification Task (CIFAR-10)

Task Model Dataset Optimizer Batch size LR Epochs Budget

Optimizer ResNet18-1 CIFAR-10
[SGD,

Momentum,
Adam]

256
[0.0001,
0.0005,
0.001]

[100, 190, 280]

Seed ResNet18-1 CIFAR-10 Momentum 256 0.01 190
Batch Size ResNet18-1 CIFAR-10 Momentum [64, 128, 256, 512] 0.005 10 190

Model
[Medium-MLP,

ResNet18-2] CIFAR-10 Momentum 256 0.01 150

Table 3. Hyperparameter: Image Classification Task (ImageNet-1K)

Task Model Dataset Optimizer Batch size max LR Epochs Budget

Model

[ResNet18-1,
ResNet18-2,
ResNet50-1,
ResNet50-2,

ResNet152-05,
ResNet152-1]

ImageNet-1K Momentum 256 0.1 [90, 180]

Table 4. Hyperparameter: Language Model Task (WikiText-2)

Task Model Dataset Optimizer Batch size LR Epochs Budget
Batch Size Transformer WikiText-2 Adam [32, 64, 128, 256] 0.0001 11 20

Table 5. Hyperparameter: Segmentation Task (Vaihingen)

Task Model Dataset Optimizer Batch size LR Epochs Budget
Model [UNet, SegNet] Vaihingen Momentum 10 0.01 26

10The base learning rate is configured with an assumption of a batch size of 64. If the batch size is doubled, the learning rate should be
multiplied by the square root of 2.

10Same as above.
11Same as above.
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A.5. Validation performance

To support the relevance of our experimental setting, we
report the validation performance in the standard settings of
each dataset and model.

Table 6. Validation accuracy on CIFAR-10 with batch size 256.

Model Validation accuracy
ResNet18-1 90.25
Vanilla MLP 59.42

Table 7. Validation accuracy on ImageNet with batch size 256.

Model Validation accuracy
ResNet18-1 67.63
ResNet18-2 69.75
ResNet50-1 72.31
ResNet50-2 73.67
ResNet152-0.5 72.23
ResNet152-1 73.07

Table 8. Validation perplexity on WikiText-2 with batch size 64.

Model Validation perplexity
Transformer 60.72

Table 9. Validation accuracy on Vaihingen with batch size 10.

Model Validation accuracy
SegNet 84.56
UNet 85.40

B. Ablation Study
In this section, we provide additional results that did not
fit in the main paper for ablation studies. For instance, in
addition to the cosine similarities presented in figure 1, we
provide the individual values of RSI and EB.

We provide in Figure 6 the cosine similarities for different
batch sizes on CIFAR-10, as a complement to Figure 1 to
study the impact of batch size RSI and EB.
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Figure 6. cosine similarities measured during the training of a
ResNet-18 on CIFAR-10, for batchsizes ranging from 64 to 512.
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Figure 7. RSI and EB throughout training of a transformer on
WikiText-2 with different batch sizes. This figure is complemen-
tary to figure 1.
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Figure 8. RSI and EB throughout training for the training of a
ResNet18 on CIFAR-10 with different optimizers. This figure is
complementary to figure 1.
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Figure 10. RSI and EB throughout training for the training of a
ResNet18 on ImageNet with different random seed. This figure is
complementary to figure 4.
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C. Additional figures
In this section, we introduce additional figures supporting
claims or conjectures made in the main paper.

Figure 24 shows the evolution of ∥wt − w⋆∥2 throughout
training. We can see Adam traverses a larger distance than
Vanilla SGD and Momentum SGD, and evolves as a more
regular pace. We believe this could be a factor in the lower
cosine similarities exhibited by Adam in Figure 1.

Figure 12 indicates the value of ∥wt−w⋆∥2 over training in
the three settings of Figure 2. An important remark is that
due to the cosine decreasing learning rate schedule, in the
case of ImageNet, this distance becomes negligible in the
last 25 epochs. This raise precision issues as discussed in
section 4.1. Since wt is subject to negligible variations in the
last 25 epochs of the ImageNet experiment, Figures 1 and
Figure 2 omit the epochs after 155 in the case of ImageNet,
in order to improve readability and focus on meaningful
settings.

Figure 14 and Figure 15 show the level lines of the synthetic
functions introduced in Section 6 as example of irregular
behavior for RSI, EB and γ.
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Figure 13. ∥wt − w⋆∥2 over training of a ResNet18-1 on CIFAR-
10, with different optimizers.
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Figure 14. Level sets for the asymmetric linear model from Section
6, averaged over minibatches. The loss landscape is nicely convex,
but the irregular behaviors observed in Figure 5 (left) result from
the stochasticity induced by optimizing over minibatches.
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Figure 15. Level sets for the sinusoidal mixture from Section 6.
The optimization is done deterministically (full batch), but the
irregular behaviors observed in Figure 5 (left) result from the
obvious non-convexity of the function.
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D. Plausible causes
In this section, we examine potential factors that might
be contributing to the remarkable geometric regularity ob-
served via RSI and EB within the loss landscapes of neural
networks. These are conjectural in nature, and we advocate
for more rigorous investigation in future work to substantiate
these propositions.

• Architectural Characteristics: The deep learning land-
scape has witnessed a plethora of architectural enhance-
ments since its inception. Notably, ResNets incorporate
advanced features such as skip-connections and batch nor-
malization (Ioffe & Szegedy, 2015b), which were found
to simplify the structure of the loss landscape (Santurkar
et al., 2018a; Li et al., 2018). It is plausible that such fa-
vorable geometric attributes could play a significant role
in the success of neural network architectures. Therefore,
our observations may be more a byproduct of the selec-
tion of high-performing networks rather than an universal
characteristic.

Nonetheless, Figure 16 provides an interesting compari-
son of cosine similarities derived from the training of a
wide 4-layer Perceptron (MLP) with ReLU activations and
a double-width ResNet-18. Despite a similar parameter
count, these two architectures exhibit a considerable perfor-
mance gap. Intriguingly, not only does the MLP not exhibit
inferior geometrical properties, but it actually shows greater
regularity in cosine similarity compared to the ResNet-18.
This result suggests that the beneficial geometry of neural
loss landscapes is not simply a consequence of extensive
architectural tuning, but potentially a more intrinsic feature.
Nonetheless, prior work concluded that skip connections
significantly simplify the loss landscape at higher depth (Li
et al., 2018).

• High Dimensionality: Our conjecture is that the primary
contributor to the regular patterns observed by RSI, EB,
and γ is the large dimensionality of neural loss landscapes.
Assuming that a significant number of dimensions maintain
a degree of independence, even when the gradient occasion-
ally points in the ’wrong direction’ in certain dimensions,
this can be offset by averaging over a sufficiently vast num-
ber of dimensions. However, formalizing such an effect
is challenging due to the evident dependencies between
dimensions.

• Properties of Real-World Data: Lastly, the geomet-
ric simplicity of optimization paths might be influenced
by inherent properties of real-world data distributions.
For instance, it is commonly postulated that unstructured
data from real-world applications resides within lower-
dimensional manifolds. Analogous properties could be piv-
otal in shaping loss landscapes, which appear more benign
than what worst-case scenarios might suggest.

0 20 40 60 80 100 120 140
epochs

0.00

0.02

0.04

0.06

0.08

0.10

co
si

ne
 s

im
ila

rit
ie

s

CIFAR-10 Classification

Architectures
MLP
ResNet18 2x width

Figure 16. Comparison of cosine similarities derived from a
CIFAR-10 classification task employing two distinct architectures:
a straightforward Multi-Layer Perceptron (MLP) and a more com-
plex ResNet-18 structure.
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E. Additional Experiments
In this section, we introduce additional experimental results
to support our claim made in the main paper.

E.1. Image Classification

To further investigate the performance of different archi-
tectures, MobileNet-V2 (Sandler et al., 2018) and VGG
(Simonyan & Zisserman, 2014) were incorporated into the
image classification task. For the CIFAR-10 dataset, models
were trained for 400 epochs using Momentum SGD as the
optimizer. The training parameters were set as follows: a
batch size of 256 and a learning rate of 0.001.

VGG-11, VGG-19, MobileNet-V2 on CIFAR10:

The performance of VGG-11, VGG-19, and MobileNet-V2
on CIFAR10 aligns with our overall observations. VGG-19
and MobileNet-V2 exhibit highly stable positive γ values,
with minimal variation between them. VGG-11, on the
other hand, displays a slightly higher average γ value com-
pared to VGG-19 and MobileNet-V2. However, VGG-11
demonstrates a significantly greater variance in cosine sim-
ilarity across training epochs, with a wider gap between
the minimum and maximum values observed compared to
its counterparts. Despite this variance, VGG-11 remains
relatively stable overall. Notably, in the final 5% of training
epochs, VGG-11 experiences a few instances of negative
cosine similarity, a phenomenon not observed in VGG-19
or MobileNet-V2.
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Figure 17. Comparison of cosine similarities derived from a
CIFAR-10 classification task employing three additional archi-
tectures: VGG-11, VGG-19, and MobileNet-V2.
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Figure 18. ∥wt − w⋆∥2 over training of a VGG-11, VGG-19 and
MobileNet-V2 on CIFAR-10.

MobileNet-V2 on ImageNet:

On ImageNet, MobileNet-V2 exhibits similar behavior to its
ResNet counterparts, demonstrating consistent performance
in line with our prior observations. Notably, MobileNet-
V2 displays stable positive γ values metrics that remain
consistent across minibatches but exhibit a gradual increase
over training epochs.
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Figure 19. Comparison of cosine similarities derived from an
ImageNet-1K classification task employing an additional architec-
ture: MobileNet-V2.
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Figure 20. ∥wt − w⋆∥2 over training of a MobileNet-V2 on
ImageNet-1K.
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E.2. Language Modeling

To further assess the performance of our language modeling
approach, we introduce validation experiments on two ad-
ditional datasets: the Penn Treebank dataset (Marcus et al.,
1993) and WikiText-103 (Merity et al., 2016).

For the Penn Treebank dataset, we utilize the processed
version provided by Mikolov et al. (2010). This dataset,
widely recognized for evaluating sequence labeling models,
is partitioned as follows: sections 0-18 for training (38,219
sentences, 912,344 tokens), sections 19-21 for validation
(5,527 sentences, 131,768 tokens), and sections 22-24 for
testing (5,462 sentences, 129,654 tokens).

WikiText-103, a collection of over 100 million tokens ex-
tracted from verified Wikipedia articles, offers a signifi-
cantly larger dataset compared to WikiText-2, being more
than 55 times larger. It also features a more extensive vocab-
ulary and consists of complete articles, making it ideal for
evaluating models that leverage long-term dependencies.

For both training scenarios, the Adam optimizer was em-
ployed with a fixed learning rate of 0.0001. The batch
size was set to 256 for Penn Treebank training and 32 for
WikiText-103 training. A training budget of 20 epochs was
allocated for Penn Treebank and 2 epochs for WikiText-103.

Transformer for Language Modeling on Penntreebank:

On the Penn Treebank language modeling task, the trans-
former models exhibit performance characteristics consis-
tent with those observed on Wikitext-2.
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Figure 21. Comparison of cosine similarities derived from a lan-
guage modeling task employing an additional dataset: Penn Tree-
bank Dataset.
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Figure 22. ∥wt − w⋆∥2 over training of transformer model on
Penn Treebank.

Transformer for Language Modeling on WikiText-103:

To further validate the findings of our numerical experiments
on natural language processing tasks, we extend our analysis
to include WikiText-103 in addition to WikiText-2.
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Figure 23. Comparison of cosine similarities derived from a lan-
guage modeling task employing an additional dataset: WikiText-
103 Dataset.
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Figure 24. ∥wt − w⋆∥2 over training of transformer model on
WikiText-103.
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