
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUANTIZE-THEN-RECTIFY: ACCELERATING VQ-VAE
TRAINING IN LATENT FEATURE SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual tokenizers are pivotal in multimodal large models, acting as bridges between
continuous inputs and discrete token. Nevertheless, training high-compression-rate
VQ-VAEs remains computationally demanding, often necessitating thousands of
GPU hours. This work demonstrates that a pre-trained VAE can be efficiently
transformed into a VQ-VAE by controlling quantization noise within the VAE’s
tolerance threshold. We present Quantize-then-Rectify (ReVQ), a framework
leveraging pre-trained VAEs to enable rapid VQ-VAE training with minimal compu-
tational overhead. By integrating channel split quantization to enhance codebook
capacity and a post rectifier to mitigate quantization errors, ReVQ compresses
ImageNet images into at most 512 tokens while sustaining competitive reconstruc-
tion quality (rFID = 0.82). Significantly, ReVQ reduces training costs by over two
orders of magnitude relative to state-of-the-art approaches: ReVQ finishes full
training on a single NVIDIA 4090 in approximately 22 hours, whereas comparable
methods require 4.5 days on a 32 A100 GPUs. Experimental results show that
ReVQ achieves superior efficiency-reconstruction trade-offs.

1 INTRODUCTION

rFID↓

T
r
a
in

in
g
 T

im
e

(h
)↓

104

103

102

10

Token Length ↓
128

1.0

4.0

3.0

2.5

2.0

1.5

3.5

51220484096 1024 256

MaskBit

VQGAN

CODA

TokenBridge

TiTokViT-VQGAN

ReVQ512T

ReVQ256T

（Space Split）

Quantization

E
n

co
d

er

R
ec

ti
fi

er（Channel Multi-Grou）

Quantization
（Channel Multi-Group）

Quantization
（Channel Split）

Quantization

D
ec

o
d

er

E
n

co
d

er

D
ec

o
d

er

Input Recon.

Input Recon.

> 3,000
GPU hours

< 30
GPU hours

Figure 1: ReVQ achieves the optimal trade-off between training efficiency (requiring only 1 day on
a single NVIDIA 4090) and compression ratio (≤ 512 tokens for 256× 256 images), maintaining
highly competitive reconstruction quality, as demonstrated by an rFID score of 0.82, when compared
to state-of-the-art VQ-VAEs like MaskBit (Weber et al., 2024) (4.5 day on 32 A100s).

Large language models (LLMs) (Brown, 2020) have revolutionized artificial intelligence by utiliz-
ing discrete token sequences for next-token prediction. For integrating vision with LLMs, visual
tokenizers play a critical role in bridging continuous image spaces and discrete input formats of
LLMs. Vector-quantized variational autoencoders (VQ-VAEs) (Van Den Oord et al., 2017) serve as
foundational components by discretizing image latent spaces, enabling alignment between visual and
linguistic modalities in vision-LLM architectures (Esser et al., 2021; Razavi et al., 2019).

Despite significant advancements in reconstruction quality (Yu et al., 2022; Chang et al., 2022),
modern VQ-VAEs still face a fundamental challenge: a trade-off between training efficiency and
compression ratio. Current approaches can be broadly categorized into two distinct categories
(Fig. 1). (1) high-compression but high-cost methods (e.g., MaskBit (Weber et al., 2024), ≤ 256
tokens) demand substantial computational resources, requiring over 3, 000 gpu hours on A100 clusters.
This high computational cost limits accessibility to well-resourced institutions. (2) efficient but

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

low-compression methods (e.g., TokenBridge (Wang et al., 2025), 4096 tokens; CODA (Liu et al.,
2025), 2560 tokens) leverage pre-trained VAEs for rapid quantization but fail to achieve the short
token lengths necessary for downstream generative tasks (Rombach et al., 2022).

This work addresses the need for a VQ-VAE framework that achieves high compression ratios and
efficient training. We uncover an inherent relationship between VAEs and VQ-VAEs: under specific
conditions, a pre-trained VAE can be systematically transformed into a VQ-VAE with minimal
computational overhead. Unlike previous attempts such as TokenBridge (Wang et al., 2025) and
CODA (Liu et al., 2025), which compromise on token length, our Quantize-then-Rectify (ReVQ)
framework leverages pre-trained VAEs to facilitate fast VQ-VAE training while maintaining high
compression performance (Fig. 2). By integrating channel split quantization to enhance codebook
capacity and a post rectifier to alleviate quantization errors, ReVQ compresses ImageNet images
into at most 512 tokens while sustaining competitive reconstruction quality (rFID = 0.82). ReVQ
completes full training on a single NVIDIA 4090 in approximately 22 hours, in contrast to comparable
methods that require 4.5 days on a 32 A100 GPUs. The core contributions of this work are as follows:

• Connection between VAE and VQ-VAE: We formalize the boundary conditions for
converting a VAE into a VQ-VAE, establishing a linkage between these two model classes.

• Representative quantizer design: A post rectifier is introduced to alleviate quantization
errors, optimized for reduced gradient noise during training.

• Efficient ReVQ framework: ReVQ transforms a VAE into a VQ-VAE within one day on a
single NVIDIA 4090, trained solely with an l2 loss, achieving competitive reconstruction
quality while delivering a two-order-of-magnitude improvement in training speed.

• Extensive experimental analysis: Results on ImageNet demonstrate ReVQ achieves
superior balance between training efficiency and compression ratio, encoding images into
≤ 512 tokens with competitive rFID while drastically reducing computational demands.

2 RELATED WORK

VQ-VAEs (Van Den Oord et al., 2017) serve as a highly effective bridge between continuous
and discrete spaces, enabling the application of deep learning in diverse domains such as image
understanding (Bao et al., 2022; Ge et al., 2024; Jin et al., 2024) and generation (Esser et al., 2021;
Chang et al., 2022; Tian et al., 2024). Existing efforts to improve VQ-VAEs can be broadly categorized
into two main approaches: model structure and quantization strategy.

Model Structure. The original VQ-VAE (Van Den Oord et al., 2017) first introduced an effective
framework for discretizing continuous data. However, early VQ-VAEs often suffered from suboptimal
reconstruction quality. Subsequent research focused on refining model architectures to address this
limitation. First, diverse backbone networks were developed to enhance model capacity. VQ-
VAE2 (Razavi et al., 2019) employed a multi-scale quantization strategy to preserve high-frequency
details, while integrating Vision Transformers (Yu et al., 2022; 2024b; Cao et al., 2023) significantly
improved representational power. Second, the incorporation of generative adversarial networks
(GANs) (Goodfellow et al., 2014) brought substantial advancements. VQGAN (Esser et al., 2021)
improved the perceptual quality of reconstructed images by combining GANs with perceptual loss
functions (Larsen et al., 2016; Johnson et al., 2016). Third, semantic supervision emerged as an
effective approach. VAR (Tian et al., 2024) utilized DINO (Oquab et al., 2023) as a semantic prior to
enhance reconstruction fidelity, while ImageFolder (Li et al., 2025) introduced a semantic branch in
the quantization module supervised by contrastive loss.

Quantization Strategy. Conventional VQ-VAEs rely on nearest-neighbor search to map features
to codebook entries, a method that has been shown to have limitations in optimization stability and
codebook utilization. For improving optimization stability, various techniques have been proposed to
enhance training robustness: low-dimensional codebooks (Yu et al., 2022), shared affine transforma-
tions (Huh et al., 2023; Zhu et al., 2024), specialized initializations (Huh et al., 2023; Zhu et al., 2024),
and model distillation (Yu et al., 2024b). ViT-VQGAN (Yu et al., 2022) observed the sparsity in
high-dimensional feature spaces and demonstrated that reducing codebook dimensionality increases
feature-code proximity, thereby improving code utilization. Shared affine transformations (Huh et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

VAE

Encoder

VAE

Decoder

Reconstruction

Codebook 1

Rectifier

Input

Non-Activation Reset

Channel Split Quantization

ReVQ (ours)

Encoder Decoder

Reconstruction

Codebook

Input

Vanilla Quantization

Vanilla VQ

Figure 2: Comparison of Vanilla VQ and ReVQ. (Top) Vanilla VQ trains encoder, decoder, and
quantizer from scratch, demanding substantial computational resources. (Bottom) ReVQ freezes
pre-trained VAE encoder/decoder parameters, training only a quantizer and lightweight rectifier
for high-performance VQ-VAE. To boost quantizer capacity, it uses channel split quantization and
ensures codebook utilization via non-activation reset.

2023; Zhu et al., 2024) highlighted the sparsity and slowness of conventional codebook updates,
proposing an affine layer to convert sparse updates into dense transformations for more efficient
adaptation. K-Means initialization (Huh et al., 2023; Zhu et al., 2024) was identified as a reliable
method to mitigate premature convergence from arbitrary initializations, while distillation from
pre-trained models like MaskGiT (Chang et al., 2022) further boosted performance (Yu et al., 2024b).
OptVQ (Zhang et al., 2024) applied optimal transport theory to model the global distributional
relationship between codes and features, enhancing matching accuracy. To expand codebook capacity,
strategies such as residual mechanisms (Lee et al., 2022), multi-head mechanisms (Zheng et al., 2022),
and multi-group quantization (Ma et al., 2025) have been proposed. Meanwhile, lookup-free ap-
proaches like FSQ (Mentzer et al., 2023) and LFQ (Yu et al., 2024a) aimed to enhance reconstruction
efficiency by avoiding explicit codebook lookups.

3 METHOD

Training a VQ-VAE from scratch is computationally expensive. MaskBit (Weber et al., 2024) reports
3456 GPU hours (4.5 days on a 32 A100 GPUs for 1.35M iterations) for ImageNet (Deng et al., 2009),
which is prohibitive for most researchers. This work addresses the high training cost by analyzing
bottlenecks in VQ-VAEs and exploring strategies to accelerate VQ-VAE training. In Section 3.1,
we dissect the core components of VQ-VAE and identify time-consuming modules. Section 3.2
discusses key adaptations for converting VAEs to VQ-VAEs, including channel split quantization
and non-activation reset. Finally, Section 3.3 introduces ReVQ, a quantize-then-rectify approach that
transforms pre-trained VAEs into VQ-VAEs with minimal computational overhead.

3.1 PRELIMINARY: TIME-CONSUMING VQ-VAE TRAINING

Compact latent space representation of high-dimensional data is fundamental. Autoencoders (Hin-
ton and Salakhutdinov, 2006) initiated the exploration of low-dimensional image encoding, while
VAEs (Kingma, 2013) advanced this by introducing prior distributions, enabling data generation via la-
tent space sampling. With the GPT era, discrete image representations became necessary to align with
discrete base LLMs. VQ-VAEs (Van Den Oord et al., 2017) replaced continuous priors with discrete
codebooks, gaining wide use in image generation (Esser et al., 2021; Chang et al., 2022; Rombach
et al., 2022) and large-scale pre-training (Bao et al., 2022; Bai et al., 2024). Let X = {xi}Ni=1 denote
the image dataset. A standard VQ-VAE consists of an encoder fe(·), a decoder fd(·), and a quantizer
q(·). The encoder maps input image x to a 3D latent feature Ze = f(x) ∈ RH×W×D. For each
vector ze ∈ RD in Ze, the quantizer finds the nearest code vector in codebook C = {c1, c2, . . . , cn}
via nearest-neighbor search, yielding the quantized vector zq = q(ze). These form the quantized
feature map Zq , from which the decoder reconstructs the image as x̂ = fd(Zq).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1st 2nd 3rd 4th 5th 6th
Model Stage

0

20

40

60

80

FL
O

Ps
 (G

)

82.3

20.6 18.7

5.1 4.4 4.8
0

2

4

6

8

10

Pa
ra

m
s (

M
)

0.74 0.74

2.72 2.95

8.52
9.44

FLOPs (G) Params (M)

(a) Computation Statistics.

Image

(b) Anlysis of Noise tolerant ability of the VAE under different noise levels.

Figure 3: Research Motivation. (a) Computational statistics reveal that shallow layers dominate com-
putations, enabling substantial savings via pre-trained VAE. (b) VAE noise tolerance is demonstrated,
showing conversion to VQ-VAE feasible when quantization error is below the threshold.

Training Pipeline. The quantizer is typically implemented via nearest neighbor search (Van
Den Oord et al., 2017; Esser et al., 2021) as:

zq = q(ze, C) = ck, where k = argmin
j
∥ze − cj∥, (1)

with ∥·∥ denoting a distance metric (e.g., Euclidean). Large codebooks incur significant computational
costs for distance matrix computation. Lookup-free quantizers (Mentzer et al., 2023; Yu et al., 2024a)
avoid this by directly rounding feature map elements to integers for codebook indices. However,
quantization operation may get trapped in local minima, causing ”index collapse” (Huh et al.,
2023). To address this, some replace nearest neighbor search with distribution matching (Zhang
et al., 2024) to ensure full codebook utilization. Existing works train VQ-VAEs end-to-end by
minimizing reconstruction loss Lrec = ∥x− x̂∥ (Van Den Oord et al., 2017). Since reconstruction
may overemphasize low-level details, perceptual and adversarial losses (Esser et al., 2021; Chang
et al., 2022; Yu et al., 2022; Cao et al., 2023) are often added to enhance visual quality. Adversarial
loss has the most significant aesthetic impact, followed by perceptual loss, l1-based, and l2-based
reconstruction losses. The non-differentiable nearest neighbor search requires gradient approximation
via the straight-through estimator (Bengio et al., 2013; Huh et al., 2023).

Computation Statistics. To understand why VQ-VAE training is time-consuming, we analyze
FLOPs and parameters of a typical model (Weber et al., 2024) (see Fig. 3a). High computational
burden concentrates in shallow layers due to large input resolution, while deep layers have more
parameters. This motivates training VQ-VAEs on pre-downscaled inputs using pre-trained VAEs
to compress images into latent spaces first. Recent works like TokenBridge (Wang et al., 2025)
(4096 tokens per image) and CODA (Liu et al., 2025) (2560 tokens per image via residual coding)
demonstrate fast VQ-VAE development with pre-trained VAEs, though achieving lower compression
ratios than conventional models (256 tokens per image). Our work explores whether fine-tuning
pre-trained VAEs can yield VQ-VAEs with comparable compression efficiency and fast training.

3.2 CONVERSION OF VAE INTO VQ-VAE

In this section, we observe strong noise tolerance in autoencoders and present techniques for convert-
ing a standard VAE to a VQ-VAE. We encode an ImageNet image using DC-AE (Chen et al., 2024)
into a 2048 dimensional latent vector, normalize it via dataset statistics, and add Gaussian noise with
varying variances before reconstruction (Fig. 3b). Results show that reconstructed images retain high
quality when noise variance ≤ 0.3 (green boxes), but degrade significantly beyond this threshold
(red boxes). This indicates that while Eq. (1)-based vector quantization introduces noise, acceptable
reconstruction is maintained if quantization noise stays within the VAE’s tolerance threshold. Critical
factors include codebook capacity and optimization stability to avoid local minima.

3.2.1 CODEBOOK CAPACITY: CHANNEL SPLIT QUANTIZATION

The effective codebook capacity is critical for low quantization error. Consider a sample encoded
with B tokens from a codebook of size N . The number of token combinations is M = NB , defining
the upper bound of samples the codebook can represent. In practice, VQ-VAE’s effective codebook

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1st 2nd 3rd 4th 5th 6th

Encoder Parameters

0.00

0.25

0.50

0.75

Si
gn

al
­t

o­
N

oi
se

 R
at

io
0.50

0.59
0.51

0.55
0.60

0.71w/ VQ and w/o VQ SNR

(a) Signal-to-Noise Ratio.
-2 0 2

0.1

0.2

0.3

K
er

ne
l D

en
si

ty

Space

0
1

2
3

4
5

6
7

8
9

-2 0 2

0.05

0.10

0.15

0.20

0.25
Channel

0
1

2
3

4
5

6
7

8
9

(b) Correlation of channel and spatial features.

Figure 4: (a) SNR of the encoder gradient norm (w/ and w/o quantization). (b) Shows feature correla-
tions under different spliting, with channel-based spliting yielding more independent distributions.

capacity M often far exceeds training data size. For instance, ImageNet has A = 1, 281, 167 ≈ 220.29

images, and a VQ-VAE with B = 256 tokens and N = 1024 yields M = 1024256 ≈ 22560, where
M ≫ A. This raises the question: why doesn’t such vast capacity improve VQ-VAE training? The
answer partially stems from conventional quantizers with spatial dimension spliting. To address this
issue, we propose a channel split strategy: define zi

e = [Z ′
e](i,·) and apply quantization. Detailed

explanations can be found in the supplementary material Appendix C.

3.2.2 OPTIMIZATION STABILITY: NON-ACTIVATION RESET

Extensive research has shown that optimizing VQ-VAE is a highly non-convex problem, extremely
prone to index collapse (Huh et al., 2023; Zhang et al., 2024; Zhu et al., 2024). Failing to address its
unstable optimization may render increased codebook capacity ineffective. Some studies suggest
that alternating K-means initialization can resolve the unstable optimization (Huh et al., 2023).
Nevertheless, in large-scale problems, the overhead of K-means initialization is relatively high.
OptVQ (Zhang et al., 2024) points out the fundamental reason why nearest-neighbor based quantizers
are prone to local optima. Once a code ci is not selected by any sample in an iteration, it is highly
likely to never be selected thereafter. Inspired by this, we identify that the key to solving this problem
lies in ”discovering non-activations and resetting them”, thus proposing the Non-Activation Reset
strategy. Specifically, during each training epoch, for the codebook C, we count the activation time ti
of each code ci. At the end of the epoch, we sort the indices of the N codes in ascending order of
their ti values, obtaining I = {i1, i2, · · · , iN}. When there are r unactivated codes (i.e., the first r
indices in I have ti = 0), we perform the following reset operation:

ciu ← ciN+1−u
+ ϵ, u = 1, · · · , r, (2)

where ϵ is a small random perturbation to avoid overlapping between codes after reset. This operation
intuitively resets unactivated points to the vicinity of highly activated codes, sharing the burden of
frequently activated codes and promoting a more uniform activation frequency across codes.

We find that methods balancing codebook activation frequencies effectively prevent codebook collapse.
This is also reflected in the entropy regularization proposed in LFQ (Yu et al., 2024a) and the optimal
transport search in OptVQ (Zhang et al., 2024). The distinction lies in that our reset strategy requires
no additional loss functions or computational steps during training. Only a single reset operation at
the end of each epoch, making it a plug-and-play module in code implementation. We briefly analyze
in the supplementary material (Appendix D) whether the reset strategy can reduce quantization errors.

3.3 REVQ: QUANTIZE-THEN-RECTIFY

We primarily focus on analyzing the essential components for converting a VAE into a VQ-VAE
purely from the quantizer perspective. However, as shown in Fig. 10, the VQ-VAE converted from
DC-AE (Chen et al., 2024) can at most compress images into 512 tokens to achieve a moderately
effective model if relying solely on the quantizer. Further increasing the compression ratio would
lead to an exponential explosion in the required number of codebook. To address this, we introduce
the Quantize-then-Rectify (ReVQ) framework in this section. The proposed method posits that for
the quantized features Zq from quantizer q, a rectifier g should be constructed. The reconstructed
quantized features via the ReVQ method are thus given by:

Z ′
e = g (q(Ze, C)) . (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison with state-of-the-art methods on ImageNet.

Type Method Token Length #Codebook SSIM↑ PSNR↑ LPIPS↓ rFID↓

From
Scratch

ViT-VQGAN 1024 (16×16) 8,192 - - - 1.28
Mo-VQGAN 1024 (16×16×4) 1,024 0.673 22.420 0.113 1.12
ImageFolder 572 (286×2) 4,096 - - - 0.80
VQGAN 256 (16×16) 16,384 0.542 19.930 0.177 3.64
MaskGIT 256 (16×16) 1,024 - - - 2.28
RQ-VAE 256 (8×8×4) 16,384 - - - 3.20
MaskBit 256 (16×16) 4,096 - - - 1.61
COSMOS 256 (16×16) 64,000 0.518 20.490 - 2.52
VQGAN-LC 256 (16×16) 100,000 0.589 23.800 0.120 2.62
LlamaGen-L 256 (16×16) 16,384 0.675 20.790 - 2.19

Fine
Tuning

TiTok-S-128 128 4,096 - - - 1.71
CODA 2560 (256×10) 65,536 0.602 22.200 - 1.34

Frozen

TokenBridge 4096 64 - - - 1.11
ReVQ512T 512 16,384 0.692 23.923 0.093 0.82
ReVQ256T 256 65,536 0.624 21.773 0.131 2.56
ReVQ256T 256 262,144 0.640 22.267 0.122 1.92

Since the rectifier g is trained under relatively low-resolution cases, the comparisons in Table 2 show
that ReVQ can convert a VAE into a VQ-VAE extremely efficiently on a single RTX 4090 GPU. In
contrast, traditional VQ-VAE training may require 4.5 days on 32 A100 GPUs as reported in (Weber
et al., 2024). We now elaborate on the rectifier model design and training loss function.

Optimization-Friendly Rectifier Design. ReVQ adopts a decoder-only framework, mitigating the
optimization challenges of quantization noise. In contrast to VAE, quantization in VQ-VAE introduces
noise that affects the encoder’s gradient, hindering convergence. As shown in Fig. 4a, with identical
encoder-decoder structures and the same sample, quantization leads to an increase of at least 50% in
the encoder’s noise gradient, which impedes optimization. To address this, ReVQ employs a rectifier
model g, a decoder-only structure that prevents quantization’s impact on the encoder’s gradient. In
particular, we utilize the EfficientViT block (Cai et al., 2023) as the rectifier model, which avoids
upsampling/downsampling of latent variables and maintains consistent dimensions. This design
is inspired by DC-AE (Chen et al., 2024), which proposes a high-compression VAE architecture
capable of compressing images into 2048-dimensional vectors using a residual structure for image
reconstruction. Leveraging the EfficientViT block, ReVQ framework enhances the efficiency and
effectiveness of the rectifier model, optimizing training performance and compression efficiency.

Training Loss. Conventional VQ-VAE training typically combines loss functions like perceptual
loss (Johnson et al., 2016), Patch GAN loss (Isola et al., 2017), and l2/ l1 losses. In contrast, our
ReVQ framework simplifies the training process by treating the VAE as a black box and excluding the
need to compute its gradients, thereby reducing computational overhead. As a result, we exclusively
apply l2 loss in the latent space of Ze. The final optimization objective becomes:

min
θg,C

LReVQ = ∥Ze − g (q(Ze))∥22 , (4)

where θg denotes the parameters of the rectifier model and C represents the codebook parameters.
The detailed training algorithm for ReVQ is provided in Algorithm 1.

4 EXPERIMENT

In this section, we illustrate the reconstruction performance and training efficiency of ReVQ. We
first detail the experimental setup in Section 4.1, followed by presenting quantitative and qualitative
comparisons between ReVQ and other VQ-VAE methods in Section 4.2. Subsequently, ablation ex-
periments are conducted in Section 4.4 and Section 4.5 to validate the effectiveness of the quantization
module and the rectification module, respectively.

4.1 EXPERIMENTAL DETAIL

Model Setting. Our model consists of a quantizer and a decoder. Building upon the continuous
latent space of the VAE, we utilize and freeze both the encoder and decoder weights from the DC-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GT VQGAN MaskBitDC-AE

VAE VQ-VAE

ReVQ
262144 codes

ReVQ
65536 codes

Figure 5: Reconstruction results on ImageNet validation set (details marked in red boxes).

AE (Chen et al., 2024) without further modification. ImageNet (Deng et al., 2009) images are first
encoded via the VAE encoder, after which the resulting features are normalized using the global mean
and variance computed from the entire dataset. These normalized features are then provided as input
to our model and subsequently compressed into tokens of either 512 or 256 dimensions. The model is
optimized by minimizing the ℓ2 loss between the normalized latent features and their reconstructions.
The quantizer incorporates a channel split strategy in conjunction with a non-activation reset
strategy. The codebook size is 16384 for 512 token length, while it is set to 65536 or 262144
for 256 token length. Unless otherwise specified, we implement the rectifier using a three-layer
EfficientViT (Cai et al., 2023) block for 512 token length and a four-layer EfficientViT block for 256
token length. Both configurations maintain consistent input and output dimensions.

Optimizer Setting. All models are implemented using the PyTorch (Paszke et al., 2019) framework
and trained on a single NVIDIA 4090 GPU. AdamW (Loshchilov and Hutter, 2019) is used as the
optimizer. The batch size is determined dynamically based on the codebook size and GPU memory
constraints. Specifically, when the token length is configured as 512, a batch size of 128 is employed.
For a token length of 256, a batch size of 256 is applied with a codebook size of 65536, and reduced to
128 when the codebook size increases to 262144. The learning rate for all quantizers is initialized at
1.0×10−2, whereas the decoder’s learning rate is fixed at 5% of that of the quantizer. An exponential
learning rate scheduling policy is adopted. All models underwent training for 100 epochs.

4.2 PERFORMANCE COMPARISON

We conduct a comparative analysis of our ReVQ model against leading VQ-VAEs (Yu et al., 2022;
Zheng et al., 2022; Li et al., 2025; Esser et al., 2021; Chang et al., 2022; Lee et al., 2022; Weber
et al., 2024; Agarwal et al., 2025; Zhu et al., 2024; Sun et al., 2024; Yu et al., 2024b; Liu et al., 2025;
Wang et al., 2025) on the ImageNet (Deng et al., 2009) dataset, evaluating on the validation set using
four metrics: PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and rFID (Heusel et al.,
2017), as summarized in Table 1. Two salient observations emerge from our results. First, the model
with a token length of 512 demonstrates superior performance across all metrics, surpassing both
“Fine Tuning” and “Frozen” counterparts. Additionally, the configuration with a token length of 256
and a codebook size of 262144 achieves notable outcomes, surpassing all other 256 token length
models except MaskBit (Weber et al., 2024). Second, our model exhibits a significant advantage
in training efficiency. Compared with publicly available training durations of existing approaches,
ReVQ reduces the total GPU hours by 40× ∼ 150× in Table 2. Furthermore, Fig. 5 illustrates the
visual reconstruction quality. The red-boxed regions highlight ReVQ’s superior ability to preserve
fine-grained details, particularly in areas involving complex textures and facial features.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Training time across different methods.

Method #Code GPUs Training Time
MaskBit 4,096 32×A100 3456

TiTok-S-128 4,096 32×A100 1600

ReVQ512T 16,384 1×RTX 4090 22
ReVQ256T 65,536 1×RTX 4090 26
ReVQ512T 262,144 1×RTX 4090 40

Table 3: Spatial/channel split.

#Token #Code Type rFID

512 16,384
space 1.11

channel 0.82

256 65,536
space 2.91

channel 2.56

Figure 6: Generation samples on ImageNet using the ReVQ model with a diffusion model.

4.3 GENERATION EVALUATION

ReVQ leverages a rectifier model, serving as a decoder-only architecture, enabling seamless integra-
tion with the diffusion model employed in DC-AE (Chen et al., 2024). We first trained the ReVQ
quantizer using the configuration of the corresponding diffusion model in DC-AE. Then, the ReVQ
quantizer was integrated with the DC-AE decoder to evaluate its class-specific image generation
performance on ImageNet (Deng et al., 2009). The generator model used is USiT-H (Chen et al.,
2024), which denoises class-conditional noise in the latent space. The latent variables are then
mapped to images through the ReVQ quantizer and the DC-AE decoder. As shown in Fig. 7, while
ReVQ performs slightly worse than DC-AE in terms of generative performance, it still outperforms or
is comparable to most existing tokenizers. Additionally, Fig. 6 showcases some of ReVQ’s generation
results on ImageNet. The generated images exhibit high quality and demonstrate notable diversity.

4.4 ABLATION STUDY ON QUANTIZER DESIGN

Non-Activation Reset Strategy. Nearest-neighbor-based quantizers often face the challenge of
codebook collapse (Huh et al., 2023; Zhu et al., 2024; Zhang et al., 2024). To address this issue, we
propose the Non-Activation Reset strategy in this paper. We first visualize the dynamic process
of codebook changes under this strategy in Fig. 8. We randomly initialized several 2D data points,

Method Generator gFID
Open-Magvit2-B AR 3.08
LlamaGen-L AR 3.80
LDM-4 Diffusion 3.60
DC-AE Diffusion 1.88
ReVQ512T Diffusion 2.53

Figure 7: Quantitative comparison on ImageNet.

w
/o

R
es

et
w

/
R

es
et

Figure 8: The influence of the reset strategy.

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Codebook Size

0.00

0.05

0.10

0.15

0.20

Lo
ss

0.160

0.131

0.105

0.082
0.062

0.045

0.159

0.129

0.102

0.076

0.053
0.034

w/o Reset
w/ Reset

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Codebook Size

60.0%

70.0%

80.0%

90.0%

100.0%

U
sa

ge

98.7% 97.3%
94.6%

89.8%

80.5%

65.3%

100.0% 100.0% 100.0% 100.0% 99.9%
97.9%

w/o Reset
w/ Reset

Figure 9: Ablation on reset strategy.

2048 1024 512 256 128 64
Token Length

0.0

0.1

0.2

0.3

R
ec

. L
os

s

0.011
0.030 0.046

0.095

0.193

0.261

0.011
0.027

0.040
0.073

0.150

0.200

ReVQ w./o. Rectify
ReVQ(ours)

Figure 10: Ablation on rectifier.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablations on decoder types.

#Token #Code Decoder rFID LMSE

512 16,384
ViT 0.82 0.012

CNN 1.08 0.012
MLP 1.09 0.013

256 65,536
ViT 2.56 0.064

CNN 3.00 0.068
MLP 4.58 0.076

Table 5: Exploration of whether to add encoder.

#Token #Code with
Encoder? rFID LMSE

512 16,384
" 189.10 0.620
% 0.82 0.012

256 65,536
" 200.46 0.653
% 2.56 0.064

each represented by 1 token. Without the reset strategy, the codebook is heavily influenced by
the initialization, resulting in only a few codes being used (e.g., only 2 codes in this case) and a
quantization error of 2.8. With the Reset strategy, inactive codes are reset to data-dense regions
during training, as shown by the orange dashed arrows in the figure. This ensures all codes are
used, reducing the quantization error to 0.4. To more thoroughly demonstrate the effectiveness of
this strategy, we conducted quantitative experiments on 10% of the ImageNet dataset, as shown in
Fig. 9. The results show that without the reset strategy, codebook utilization decreases rapidly as the
codebook size increases, with only 65.3% of the codes utilized. In contrast, with the reset strategy,
codebook utilization remains above 97% without significant decline as the codebook size increases.

4.5 ABLATION STUDY ON RECTIFIER DESIGN

Effectiveness of Rectification. We initiate our analysis by evaluating the impact of the rectifier
module on model performance in Fig. 10. We conduct training on the ImageNet dataset using
different token lengths and their corresponding codebook sizes, with consistent training strategies
and an identical rectifier design. The use of the rectifier consistently reduces reconstruction loss
across all token lengths. Notably, the improvement is more pronounced when the baseline model is
weaker. Specifically, at a token length of 64, the rectifier yields a 23.3% decrease in reconstruction
loss, highlighting its effectiveness in improving representational fidelity under constrained settings.

Diverse Rectifier Architectures. We investigate the impact of different rectifier architectures (ViT,
CNN and MLP) on model performance. Experiments on the ImageNet dataset are conducted under
two settings: one with a token length of 512 and codebook size 16384, and another with token length
256 and codebook size 65536, keeping all other settings identical. Empirical results demonstrate that
the ViT rectifier outperforms CNN and MLP across both configurations. Conventional VQ-VAEs use
symmetrical architectures (Agarwal et al., 2025; Weber et al., 2024; Yu et al., 2024b). As mentioned
in Fig. 4a, a decoder-only structure is more conducive to optimization. Building on this, we explored
adding an encoder matching the rectifier architecture in Table 5, but this significantly increased
training difficulty and rFID. Therefore, we opted not to include an extra encoder before the quantizer.

5 DISCUSSION

This paper addresses the issue of time-consuming training in conventional VQ-VAEs. We discover
that a pre-trained continuous feature autoencoder (VAE) and a discrete feature VQ-VAE exhibit an
inherent connection. If the quantization error generated by the quantizer is smaller than the tolerance
threshold, the VAE model can be seamlessly converted into a VQ-VAE model. Specifically, we
propose a strategy named Quantize-then-Rectify. First, we freeze the parameters of the pre-trained
VAE and directly apply a channel split quantization strategy to transform continuous features into
discrete tokens. During training, we introduce a simple non-activation reset strategy to address
the commonly encountered “codebook collapse” problem. To further reduce quantization errors, a
learnable ViT model is employed as a rectifier after the quantizer to correct the quantized tokens.
Our experiments on the ImageNet dataset demonstrate that the proposed ReVQ method can achieve
a VQ-VAE with high compression ratio after approximately 1 day of training on a single 4090 GPU
server. In contrast, conventional VQ-VAE methods requiring comparable performance necessitate
4.5 days of training on a 32 A100 GPUs. However, as shown in Fig. 10, ReVQ currently cannot
match state-of-the-art approaches like TiTok in achieving extremely high compression ratios (e.g.,
compressing images into 32 tokens). We attribute this limitation to the architectural design of the
rectifier and plan to explore more reasonable model designs in future work to enhance the compression
capability of ReVQ. Beyond this, we will investigate the applicability of ReVQ across more data
modalities (such as video reconstruction) and downstream tasks (such as image generation), aiming
to broaden the methodological scope of ReVQ.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chattopadhyay,
Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform for physical ai. arXiv,
abs/2501.03575, 2025.

Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L Yuille, Trevor Darrell, Jitendra Malik,
and Alexei A Efros. Sequential modeling enables scalable learning for large vision models. In CVPR, pages
22861–22872, 2024.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. In ICLR,
2022.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv, abs/1308.3432, 2013.

Tom B Brown. Language models are few-shot learners. arXiv, abs/2005.14165, 2020.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale attention for
high-resolution dense prediction. In ICCV, pages 17302–17313, 2023.

Shiyue Cao, Yueqin Yin, Lianghua Huang, Yu Liu, Xin Zhao, Deli Zhao, and Kaigi Huang. Efficient-vqgan:
Towards high-resolution image generation with efficient vision transformers. In ICCV, pages 7368–7377,
2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image
transformer. In CVPR, pages 11315–11325, 2022.

Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and Song Han.
Deep compression autoencoder for efficient high-resolution diffusion models. arXiv, abs/2410.10733, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, pages 248–255, 2009.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In
CVPR, pages 12873–12883, 2021.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making llama see and
draw with seed tokenizer. In ICLR, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 27, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 30, 2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-through estimator:
Overcoming optimization challenges in vector quantized networks. In ICML, pages 14096–14113, 2023.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In CVPR, pages 1125–1134, 2017.

Yang Jin, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, CHEN Bin, Chengru Song, Di ZHANG,
Wenwu Ou, et al. Unified language-vision pretraining in llm with dynamic discrete visual tokenization. In
ICLR, 2024.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In ECCV, pages 694–711, 2016.

Diederik P Kingma. Auto-encoding variational bayes. arXiv, abs/1312.6114, 2013.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding beyond
pixels using a learned similarity metric. In ICML, pages 1558–1566, 2016.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation
using residual quantization. In CVPR, pages 11523–11532, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Bhiksha Raj, and Zhe Lin. Imagefolder: Autoregressive
image generation with folded tokens. In ICLR, 2025.

Zeyu Liu, Zanlin Ni, Yeguo Hua, Xin Deng, Xiao Ma, Cheng Zhong, and Gao Huang. Coda: Repurposing
continuous vaes for discrete tokenization. arXiv, abs/2503.17760, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiaojuan Qi. Unitok:
A unified tokenizer for visual generation and understanding. arXiv, abs/2502.20321, 2025.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization: Vq-vae
made simple. arXiv, abs/2309.15505, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without
supervision. arXiv, abs/2304.07193, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. NeurIPS, 32, 2019.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
NeurIPS, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, pages 10684–10695, 2022.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive
model beats diffusion: Llama for scalable image generation. arXiv, abs/2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable
image generation via next-scale prediction. In NeurIPS, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 30, 2017.

Yuqing Wang, Zhijie Lin, Yao Teng, Yuanzhi Zhu, Shuhuai Ren, Jiashi Feng, and Xihui Liu. Bridging continuous
and discrete tokens for autoregressive visual generation. arXiv, abs/2503.16430, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE TIP, 13(4):600–612, 2004.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
Maskbit: Embedding-free image generation via bit tokens. arXiv, abs/2409.16211, 2024.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu, Jason
Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. In ICLR, 2022.

Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion-tokenizer is
key to visual generation. In ICLR, 2024a.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen. An image is
worth 32 tokens for reconstruction and generation. In NeurIPS, 2024b.

Borui Zhang, Wenzhao Zheng, Jie Zhou, and Jiwen Lu. Preventing local pitfalls in vector quantization via
optimal transport. arXiv, abs/2412.15195, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In CVPR, pages 586–595, 2018.

Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized vectors for
high-fidelity image generation. NeurIPS, 35:23412–23425, 2022.

Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to 100,000 with a
utilization rate of 99%. arXiv, abs/2406.11837, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

TABLE OF CONTENT FOR APPENDIX

A Usage of Large Language Models in Paper Writing 12

B Reproducibility Statement 12

C Detailed Analysis of Channel Split Quantization 12

D On the Theoretical Analysis of Reset Strategy 13

E Algorithm of ReVQ Method 14

F Implementation Details 14

F.1 Datasets . 14

F.2 Configurations . 14

G Additional Experiments 15

G.1 Relationship between Token Length and Number of Codebooks 15

G.2 Detailed Results during Training . 16

G.3 More Generation Results on ImageNet . 17

G.4 More Visualizations on ImageNet . 17

A USAGE OF LARGE LANGUAGE MODELS IN PAPER WRITING

In the process of writing this paper, large language models (LLMs) were utilized in the following two
aspects:

Preliminary Literature Review: During the literature review phase, we used LLMs to quickly
familiarize ourselves with the background knowledge and recent advancements in the relevant field.
We first conducted a preliminary survey using the LLM, followed by further manual searches for
related papers on arXiv and Google Scholar to verify the information.

Assistance in Paper Writing: During the writing process, we employed LLMs to help check for
grammatical errors, refine sentences, and generate certain descriptive content. We ensured that all
generated content was thoroughly reviewed and revised to guarantee its accuracy and adherence to
academic standards.

We acknowledge the potential of LLMs in academic writing but also recognize their limitations. In
critical areas such as code implementation, experimental design, and result analysis, no LLMs were
used. All of these parts were completed independently by our team members.

The LLMs used in the above processes were OpenAI’s GPT-5. We strictly adhered to relevant
usage policies and ethical guidelines to ensure the originality and academic integrity of all generated
content.

B REPRODUCIBILITY STATEMENT

We provide the complete experimental code and details of the experimental process and settings in
the supplementary material to ensure the reproducibility of this method. For specifics, please refer to
the code files in the supplementary material.

C DETAILED ANALYSIS OF CHANNEL SPLIT QUANTIZATION

As mentioned earlier in Section 3.2.1, we employed a channel split quantization strategy to enhance the
expressive power of the codebook. Specifically, for an encoded feature map Ze ∈ RH×W×D, merging

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

the first two spatial dimensions results in Z ′
e ∈ RS×D, where encoding length is B = S = H ×W .

Traditional VQ uses a single codebook C: each spatial location’s feature vector zi
e = [Z ′

e](·,i) is
quantized as zi

q = q(zi
e, C). This imposes strong symmetry inductive bias by assuming identical prior

distributions p(zi
e), limiting degrees of freedom to N and causing training challenges. To tackle this

issue, we introduce a channel split strategy: define zi
e = [Z ′

e](i,·) and perform quantization. When
token length B differs from feature dimension D, we perform secondary spatial spliting after initial
channel-wise division, resulting in feature vectors of dimension d = (H ×W ×D)/B. Additionally,
we provide a detailed comparison of the differences between channel split and space split quantization
strategies in Fig. 11 and Fig. 12. The channel split quantization method improves the codebook’s
expressive ability by leveraging the diversity in feature dimensions. Moreover, previous ablation
experiments, as shown in Table 3, have verified that the channel split quantization method outperforms
the space split quantization method, achieving better reconstruction results with the former.

In our experiments, no predefined downsampling strategy is applied. Instead, the 64 (spatial)×
32 (channel) tensor output by the DC-AE Encoder is directly used as input to our model. Specifically,
this tensor has a shape of (8 × 8) × 32, where 32 denotes the channel dimension, and 8 × 8
corresponds to the spatial dimensions (height and width). To accommodate varying token lengths, our
core operation involves “reshaping” the tensor. Let the token length be T and the channel dimension
be Dc = 32. We consider three scenarios:

• Case 1 (T = Dc): When the token length T equals the channel dimension Dc, we “split”
directly along the channel dimension, with each component quantized using an independent
codebook.

• Case 2 (T < Dc): When the token length T is smaller than the channel dimension Dc,
we “reshape” directly along the channel dimension, meaning some components along the
channel dimension are merged.

• Case 3 (T > Dc): When the token length T exceeds the channel dimension Dc, we also
“reshape” directly along the channel dimension; however, this implies that some components
along the spatial dimension are further split.

For instance, with a token length of 512, each token has a dimension of 4, while with a token length
of 256, each token has a dimension of 8.

Strategy Split Axis Feature Diversity
Space Split Space %

Channel Split Channel !

Figure 11: Comparison of different quantizers.

Channel Split GroupSpace Split Group
𝐶

(Channel)

𝐻
(Space)

𝑊 (Space)

𝐶
(Channel)

𝐻
(Space)

𝑊 (Space)

Figure 12: Visualization of Differ-
ent Quantization Strategies.

D ON THE THEORETICAL ANALYSIS OF RESET STRATEGY

We briefly analyze whether this Reset strategy can effectively reduce quantization error. Consider a
code c1 activated by m feature vectors zi, i = 1, · · · ,m, with its quantization error given by:

LMSE(c1) =

m∑
i=1

∥zi − c1∥22. (5)

Let z̄(m) denote the mean of these m vectors. By the least squares method, the quantization error
reaches a lower bound L

(lower)
m ≤ LMSE(c1) when c1 = z̄(m). If an unactivated code c2 is reset near

c1, the m feature vectors are divided into two subsets {zi}m1
i=1 and {zj}m2

j=1 with m1 +m2 = m.
The updated quantization error becomes:

L′
MSE(c1, c2) =

m1∑
i=1

∥zi − c1∥22 +
m2∑
j=1

∥zj − c2∥22. (6)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Similarly, the updated lower bound L
′(lower)
m1,m2 is achieved when c1 = z̄(m1) and c2 = z̄(m2), satisfying:

L′(lower)
m1,m2

=

m1∑
i=1

∥zi − z̄(m1)∥22 +
m2∑
j=1

∥zj − z̄(m2)∥22

≤
m1∑
i=1

∥zi − z̄(m)∥22 +
m2∑
j=1

∥zj − z̄(m)∥22 = L(lower)
m . (7)

This analysis demonstrates that the Reset operation can effectively reduce quantization error. A
2D experiment in Section 4.4 and the detailed in Fig. 8 illustrate how the Reset operation avoids
codebook collapse and thereby decreases quantization error.

E ALGORITHM OF REVQ METHOD

Below is the detailed algorithmic procedure for training one epoch using the ReVQ method.

Algorithm 1 One-epoch training algorithm for ReVQ.

Input: Set of latent feature maps Ze, quantizer q, rectifier g.
Output: Optimized quantizer q and rectifier g.

1: for each Ze ∈ Ze do
2: Quantize Ze to obtain Zq = q(Ze, C) via channel split strategy in Section 3.2.1.
3: Rectify Zq to produce Z ′

q = g(Zq) via the rectifier model defined in Section 3.3.
4: Calculate the loss function LReVQ as specified in Eq. (4).
5: Perform backpropagation to update the parameters of rectifier g and codebook C.
6: end for
7: Apply Non-activation Reset to codebook C as defined in Eq. (2).
8: return Quantizer q and rectifier g.

F IMPLEMENTATION DETAILS

F.1 DATASETS

This study was primarily conducted on the ImageNet dataset (Deng et al., 2009). The training set of
ImageNet comprises 1281167 images, while the validation set contains 50000 images, both divided
into 1000 classes. To enhance the training efficiency of the ReVQ model, we first employed the
DC-AE model to encode all training images into 2048-dimensional vectors. The website for the
ImageNet dataset is: http://www.image-net.org/.

F.2 CONFIGURATIONS

We did not employ any special data augmentation methods for the 2048-dimensional latent vectors.
Taking our configuration with 512 tokens and a codebook size of 16384 as an example, the detailed
settings for the model and the optimizer are as follows:

• Num Code: 16384.

• Num Group: 1.

• Tokens Per Data: 512.

• Decoder: dc ae.

• In Channels: 32.

• Latent Channels: 32.

• Attention Head Dim: 32.

• Block Type: EfficientViTBlock.

• Block Out Channels: 512.

• Layers Per Block: 3.

14

http://www.image-net.org/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• QKV Multiscales: [5].

• Norm Type: RMSNorm.

• Act Fn: SiLU.

• Upsample Block Type: interpolate.

• Optimizer: AdamW (Loshchilov and Hutter, 2019).

• Beta1: 0.9.

• Beta2: 0.999.

• Quantizer Weight Decay: 0.0.

• Decoder Weight Decay: 1e-4.

• Learning Rate: 1e-4.

• LR Scheduler: ExponentialLR.

• Base LR: 1e-2.

• Epoch: 100.

• BatchSize: 256.

• GPU: One NVIDIA GeForce RTX 4090.

G ADDITIONAL EXPERIMENTS

G.1 RELATIONSHIP BETWEEN TOKEN LENGTH AND NUMBER OF CODEBOOKS

20481024512256128
Token Length

16
64

256

16384

262144
1281167

C
od

eb
oo

k
Si

ze

y = 10 3.6log10(x) + 12.82

ImageNet has 1281167 images.

16
64

256

16384

262144

Figure 13: Relationship between the token length B and the number of codebooks M required to
keep the quantization error below 0.1.

We found that when the quantization error (MSE) of the latent vector is below 0.1, the visual results
of the reconstructed images are basically acceptable to the human eye. Since the dimension of the
latent variable is 2048, if the token length is B, the dimension of the codebook is 2048/B. Obviously,
a smaller token length B leads to a higher codebook dimension. To ensure the quantization error is
below 0.1, a larger number of codebooks is required. Therefore, we explored the relationship between
the token length B and the minimum number of codebooks M needed to keep the quantization error
below 0.1 in Fig. 13. Specifically, only the quantizer was used in this experiment without employing
the rectifier to further correct the quantization error. It can be observed that the minimum number of
codebooks M and the token length B exhibit an exponential relationship. When the token length is
less than 256, the minimum number of codebooks M increases rapidly, approaching the sample size
of ImageNet (1281167 images). We fitted this curve and obtained the approximate relationship:

M ≈ 10−3.6 log10 B+12.82. (8)

Based on this, we conclude that directly using the quantizer to quantize the latent vector of a trained
VAE model has obvious performance limitations. Only by introducing additional nonlinear modules
can the blue curve in Fig. 13 be shifted downward to achieve higher compression rates, which is a
goal we hope to further pursue at the conclusion of this work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

G.2 DETAILED RESULTS DURING TRAINING

To further demonstrate the effectiveness of the proposed ReVQ model, we present the overall loss
curves recorded during training. As shown in Figs. 14a and 14b (where the reconstruction error of
quantizer features is abbreviated as “Qua Loss” and the reconstruction error of rectifier features is
termed “Dec Loss” in the figures), the quantizer loss remains nearly unchanged, which is expected
given that only the rectifier structure is varied while all other components are held constant. In contrast,
the decoder loss is significantly affected by the rectifier type, with the ViT counterpart achieving the
lowest loss. Figs. 14c and 14d further illustrate that the splitting strategy has a substantial impact on
both the quantizer and rectifier losses. Specifically, the channel split approach leads to consistently
lower losses, indicating better overall model performance. Figs. 14e to 14h provide additional
validation for the above observations. Moreover, they reveal that using 256 tokens results in higher
training loss compared to the 512-token configuration, suggesting that models with fewer tokens are
more challenging to train. This observation implies that, for a given VAE architecture, the achievable
compression ratio has an inherent upper bound.

(a) Quantizer loss with 512 tokens across different
rectifier types.

(b) Decoder loss with 512 tokens across different
rectifier types.

(c) Quantizer loss with 512 tokens across different
split types.

(d) Decoder loss with 512 tokens across different
split types.

(e) Quantizer loss with 256 tokens across different
rectifier types.

(f) Decoder loss with 256 tokens across different
rectifier types.

(g) Quantizer loss with 256 tokens across different
split types.

(h) Decoder loss with 256 tokens across different
split types.

Figure 14: Details training statistics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.3 MORE GENERATION RESULTS ON IMAGENET

In this section, we provide additional image generation results on the ImageNet dataset, as illustrated
in Fig. 15.

Figure 15: Additional generation results on the ImageNet dataset.

G.4 MORE VISUALIZATIONS ON IMAGENET

In this section, we present additional reconstruction results, as shown in Fig. 16. These results further
demonstrate the superior performance of the proposed ReVQ model on ImageNet dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 16: Additional reconstructed results on ImageNet dataset.

18

	Introduction
	Related Work
	Method
	Preliminary: Time-Consuming VQ-VAE Training
	Conversion of VAE into VQ-VAE
	Codebook Capacity: Channel Split Quantization
	Optimization Stability: Non-Activation Reset

	ReVQ: Quantize-then-Rectify

	Experiment
	Experimental Detail
	Performance Comparison
	Generation Evaluation
	Ablation Study on Quantizer Design
	Ablation Study on Rectifier Design

	Discussion
	Usage of Large Language Models in Paper Writing
	Reproducibility Statement
	Detailed Analysis of Channel Split Quantization
	On the Theoretical Analysis of Reset Strategy
	Algorithm of ReVQ Method
	Implementation Details
	Datasets
	Configurations

	Additional Experiments
	Relationship between Token Length and Number of Codebooks
	Detailed Results during Training
	More Generation Results on ImageNet
	More Visualizations on ImageNet

