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ABSTRACT

Visual tokenizers are pivotal in multimodal large models, acting as bridges between
continuous inputs and discrete token. Nevertheless, training high-compression-rate
VQ-VAEs remains computationally demanding, often necessitating thousands of
GPU hours. This work demonstrates that a pre-trained VAE can be efficiently
transformed into a VQ-VAE by controlling quantization noise within the VAE’s
tolerance threshold. We present Quantize-then-Rectify (ReVQ), a framework
leveraging pre-trained VAEs to enable rapid VQ-VAE training with minimal compu-
tational overhead. By integrating channel split quantization to enhance codebook
capacity and a post rectifier to mitigate quantization errors, ReVQ compresses
ImageNet images into at most 512 tokens while sustaining competitive reconstruc-
tion quality (rFID = 0.82). Significantly, ReVQ reduces training costs by over two
orders of magnitude relative to state-of-the-art approaches: ReVQ finishes full
training on a single NVIDIA 4090 in approximately 22 hours, whereas comparable
methods require 4.5 days on a 32 A100 GPUs. Experimental results show that
ReVQ achieves superior efficiency-reconstruction trade-offs.

1 INTRODUCTION
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Figure 1: ReVQ achieves the optimal trade-off between training efficiency (requiring only 1 day on
a single NVIDIA 4090) and compression ratio (≤ 512 tokens for 256× 256 images), maintaining
highly competitive reconstruction quality, as demonstrated by an rFID score of 0.82, when compared
to state-of-the-art VQ-VAEs like MaskBit (Weber et al., 2024) (4.5 day on 32 A100s).

Large language models (LLMs) (Brown, 2020) have revolutionized artificial intelligence by utiliz-
ing discrete token sequences for next-token prediction. For integrating vision with LLMs, visual
tokenizers play a critical role in bridging continuous image spaces and discrete input formats of
LLMs. Vector-quantized variational autoencoders (VQ-VAEs) (Van Den Oord et al., 2017) serve as
foundational components by discretizing image latent spaces, enabling alignment between visual and
linguistic modalities in vision-LLM architectures (Esser et al., 2021; Razavi et al., 2019).

Despite significant advancements in reconstruction quality (Yu et al., 2022; Chang et al., 2022),
modern VQ-VAEs still face a fundamental challenge: a trade-off between training efficiency and
compression ratio. Current approaches can be broadly categorized into two distinct categories
(Fig. 1). (1) high-compression but high-cost methods (e.g., MaskBit (Weber et al., 2024), ≤ 256
tokens) demand substantial computational resources, requiring over 3, 000 gpu hours on A100 clusters.
This high computational cost limits accessibility to well-resourced institutions. (2) efficient but
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low-compression methods (e.g., TokenBridge (Wang et al., 2025), 4096 tokens; CODA (Liu et al.,
2025), 2560 tokens) leverage pre-trained VAEs for rapid quantization but fail to achieve the short
token lengths necessary for downstream generative tasks (Rombach et al., 2022).

This work addresses the need for a VQ-VAE framework that achieves high compression ratios and
efficient training. We uncover an inherent relationship between VAEs and VQ-VAEs: under specific
conditions, a pre-trained VAE can be systematically transformed into a VQ-VAE with minimal
computational overhead. Unlike previous attempts such as TokenBridge (Wang et al., 2025) and
CODA (Liu et al., 2025), which compromise on token length, our Quantize-then-Rectify (ReVQ)
framework leverages pre-trained VAEs to facilitate fast VQ-VAE training while maintaining high
compression performance (Fig. 2). By integrating channel split quantization to enhance codebook
capacity and a post rectifier to alleviate quantization errors, ReVQ compresses ImageNet images
into at most 512 tokens while sustaining competitive reconstruction quality (rFID = 0.82). ReVQ
completes full training on a single NVIDIA 4090 in approximately 22 hours, in contrast to comparable
methods that require 4.5 days on a 32 A100 GPUs. The core contributions of this work are as follows:

• Connection between VAE and VQ-VAE: We formalize the boundary conditions for
converting a VAE into a VQ-VAE, establishing a linkage between these two model classes.

• Representative quantizer design: A post rectifier is introduced to alleviate quantization
errors, optimized for reduced gradient noise during training.

• Efficient ReVQ framework: ReVQ transforms a VAE into a VQ-VAE within one day on a
single NVIDIA 4090, trained solely with an l2 loss, achieving competitive reconstruction
quality while delivering a two-order-of-magnitude improvement in training speed.

• Extensive experimental analysis: Results on ImageNet demonstrate ReVQ achieves
superior balance between training efficiency and compression ratio, encoding images into
≤ 512 tokens with competitive rFID while drastically reducing computational demands.

2 RELATED WORK

VQ-VAEs (Van Den Oord et al., 2017) serve as a highly effective bridge between continuous
and discrete spaces, enabling the application of deep learning in diverse domains such as image
understanding (Bao et al., 2022; Ge et al., 2024; Jin et al., 2024) and generation (Esser et al., 2021;
Chang et al., 2022; Tian et al., 2024). Existing efforts to improve VQ-VAEs can be broadly categorized
into two main approaches: model structure and quantization strategy.

Model Structure. The original VQ-VAE (Van Den Oord et al., 2017) first introduced an effective
framework for discretizing continuous data. However, early VQ-VAEs often suffered from suboptimal
reconstruction quality. Subsequent research focused on refining model architectures to address this
limitation. First, diverse backbone networks were developed to enhance model capacity. VQ-
VAE2 (Razavi et al., 2019) employed a multi-scale quantization strategy to preserve high-frequency
details, while integrating Vision Transformers (Yu et al., 2022; 2024b; Cao et al., 2023) significantly
improved representational power. Second, the incorporation of generative adversarial networks
(GANs) (Goodfellow et al., 2014) brought substantial advancements. VQGAN (Esser et al., 2021)
improved the perceptual quality of reconstructed images by combining GANs with perceptual loss
functions (Larsen et al., 2016; Johnson et al., 2016). Third, semantic supervision emerged as an
effective approach. VAR (Tian et al., 2024) utilized DINO (Oquab et al., 2023) as a semantic prior to
enhance reconstruction fidelity, while ImageFolder (Li et al., 2025) introduced a semantic branch in
the quantization module supervised by contrastive loss.

Quantization Strategy. Conventional VQ-VAEs rely on nearest-neighbor search to map features
to codebook entries, a method that has been shown to have limitations in optimization stability and
codebook utilization. For improving optimization stability, various techniques have been proposed to
enhance training robustness: low-dimensional codebooks (Yu et al., 2022), shared affine transforma-
tions (Huh et al., 2023; Zhu et al., 2024), specialized initializations (Huh et al., 2023; Zhu et al., 2024),
and model distillation (Yu et al., 2024b). ViT-VQGAN (Yu et al., 2022) observed the sparsity in
high-dimensional feature spaces and demonstrated that reducing codebook dimensionality increases
feature-code proximity, thereby improving code utilization. Shared affine transformations (Huh et al.,
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Figure 2: Comparison of Vanilla VQ and ReVQ. (Top) Vanilla VQ trains encoder, decoder, and
quantizer from scratch, demanding substantial computational resources. (Bottom) ReVQ freezes
pre-trained VAE encoder/decoder parameters, training only a quantizer and lightweight rectifier
for high-performance VQ-VAE. To boost quantizer capacity, it uses channel split quantization and
ensures codebook utilization via non-activation reset.

2023; Zhu et al., 2024) highlighted the sparsity and slowness of conventional codebook updates,
proposing an affine layer to convert sparse updates into dense transformations for more efficient
adaptation. K-Means initialization (Huh et al., 2023; Zhu et al., 2024) was identified as a reliable
method to mitigate premature convergence from arbitrary initializations, while distillation from
pre-trained models like MaskGiT (Chang et al., 2022) further boosted performance (Yu et al., 2024b).
OptVQ (Zhang et al., 2024) applied optimal transport theory to model the global distributional
relationship between codes and features, enhancing matching accuracy. To expand codebook capacity,
strategies such as residual mechanisms (Lee et al., 2022), multi-head mechanisms (Zheng et al., 2022),
and multi-group quantization (Ma et al., 2025) have been proposed. Meanwhile, lookup-free ap-
proaches like FSQ (Mentzer et al., 2023) and LFQ (Yu et al., 2024a) aimed to enhance reconstruction
efficiency by avoiding explicit codebook lookups.

3 METHOD

Training a VQ-VAE from scratch is computationally expensive. MaskBit (Weber et al., 2024) reports
3456 GPU hours (4.5 days on a 32 A100 GPUs for 1.35M iterations) for ImageNet (Deng et al., 2009),
which is prohibitive for most researchers. This work addresses the high training cost by analyzing
bottlenecks in VQ-VAEs and exploring strategies to accelerate VQ-VAE training. In Section 3.1,
we dissect the core components of VQ-VAE and identify time-consuming modules. Section 3.2
discusses key adaptations for converting VAEs to VQ-VAEs, including channel split quantization
and non-activation reset. Finally, Section 3.3 introduces ReVQ, a quantize-then-rectify approach that
transforms pre-trained VAEs into VQ-VAEs with minimal computational overhead.

3.1 PRELIMINARY: TIME-CONSUMING VQ-VAE TRAINING

Compact latent space representation of high-dimensional data is fundamental. Autoencoders (Hin-
ton and Salakhutdinov, 2006) initiated the exploration of low-dimensional image encoding, while
VAEs (Kingma, 2013) advanced this by introducing prior distributions, enabling data generation via la-
tent space sampling. With the GPT era, discrete image representations became necessary to align with
discrete base LLMs. VQ-VAEs (Van Den Oord et al., 2017) replaced continuous priors with discrete
codebooks, gaining wide use in image generation (Esser et al., 2021; Chang et al., 2022; Rombach
et al., 2022) and large-scale pre-training (Bao et al., 2022; Bai et al., 2024). Let X = {xi}Ni=1 denote
the image dataset. A standard VQ-VAE consists of an encoder fe(·), a decoder fd(·), and a quantizer
q(·). The encoder maps input image x to a 3D latent feature Ze = f(x) ∈ RH×W×D. For each
vector ze ∈ RD in Ze, the quantizer finds the nearest code vector in codebook C = {c1, c2, . . . , cn}
via nearest-neighbor search, yielding the quantized vector zq = q(ze). These form the quantized
feature map Zq , from which the decoder reconstructs the image as x̂ = fd(Zq).

3
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Figure 3: Research Motivation. (a) Computational statistics reveal that shallow layers dominate com-
putations, enabling substantial savings via pre-trained VAE. (b) VAE noise tolerance is demonstrated,
showing conversion to VQ-VAE feasible when quantization error is below the threshold.

Training Pipeline. The quantizer is typically implemented via nearest neighbor search (Van
Den Oord et al., 2017; Esser et al., 2021) as:

zq = q(ze, C) = ck, where k = argmin
j
∥ze − cj∥, (1)

with ∥·∥ denoting a distance metric (e.g., Euclidean). Large codebooks incur significant computational
costs for distance matrix computation. Lookup-free quantizers (Mentzer et al., 2023; Yu et al., 2024a)
avoid this by directly rounding feature map elements to integers for codebook indices. However,
quantization operation may get trapped in local minima, causing ”index collapse” (Huh et al.,
2023). To address this, some replace nearest neighbor search with distribution matching (Zhang
et al., 2024) to ensure full codebook utilization. Existing works train VQ-VAEs end-to-end by
minimizing reconstruction loss Lrec = ∥x− x̂∥ (Van Den Oord et al., 2017). Since reconstruction
may overemphasize low-level details, perceptual and adversarial losses (Esser et al., 2021; Chang
et al., 2022; Yu et al., 2022; Cao et al., 2023) are often added to enhance visual quality. Adversarial
loss has the most significant aesthetic impact, followed by perceptual loss, l1-based, and l2-based
reconstruction losses. The non-differentiable nearest neighbor search requires gradient approximation
via the straight-through estimator (Bengio et al., 2013; Huh et al., 2023).

Computation Statistics. To understand why VQ-VAE training is time-consuming, we analyze
FLOPs and parameters of a typical model (Weber et al., 2024) (see Fig. 3a). High computational
burden concentrates in shallow layers due to large input resolution, while deep layers have more
parameters. This motivates training VQ-VAEs on pre-downscaled inputs using pre-trained VAEs
to compress images into latent spaces first. Recent works like TokenBridge (Wang et al., 2025)
(4096 tokens per image) and CODA (Liu et al., 2025) (2560 tokens per image via residual coding)
demonstrate fast VQ-VAE development with pre-trained VAEs, though achieving lower compression
ratios than conventional models (256 tokens per image). Our work explores whether fine-tuning
pre-trained VAEs can yield VQ-VAEs with comparable compression efficiency and fast training.

3.2 CONVERSION OF VAE INTO VQ-VAE

In this section, we observe strong noise tolerance in autoencoders and present techniques for convert-
ing a standard VAE to a VQ-VAE. We encode an ImageNet image using DC-AE (Chen et al., 2024)
into a 2048 dimensional latent vector, normalize it via dataset statistics, and add Gaussian noise with
varying variances before reconstruction (Fig. 3b). Results show that reconstructed images retain high
quality when noise variance ≤ 0.3 (green boxes), but degrade significantly beyond this threshold
(red boxes). This indicates that while Eq. (1)-based vector quantization introduces noise, acceptable
reconstruction is maintained if quantization noise stays within the VAE’s tolerance threshold. Critical
factors include codebook capacity and optimization stability to avoid local minima.

3.2.1 CODEBOOK CAPACITY: CHANNEL SPLIT QUANTIZATION

The effective codebook capacity is critical for low quantization error. Consider a sample encoded
with B tokens from a codebook of size N . The number of token combinations is M = NB , defining
the upper bound of samples the codebook can represent. In practice, VQ-VAE’s effective codebook

4
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Figure 4: (a) SNR of the encoder gradient norm (w/ and w/o quantization). (b) Shows feature correla-
tions under different spliting, with channel-based spliting yielding more independent distributions.

capacity M often far exceeds training data size. For instance, ImageNet has A = 1, 281, 167 ≈ 220.29

images, and a VQ-VAE with B = 256 tokens and N = 1024 yields M = 1024256 ≈ 22560, where
M ≫ A. This raises the question: why doesn’t such vast capacity improve VQ-VAE training? The
answer partially stems from conventional quantizers with spatial dimension spliting. To address this
issue, we propose a channel split strategy: define zi

e = [Z ′
e](i,·) and apply quantization. Detailed

explanations can be found in the supplementary material Appendix C.

3.2.2 OPTIMIZATION STABILITY: NON-ACTIVATION RESET

Extensive research has shown that optimizing VQ-VAE is a highly non-convex problem, extremely
prone to index collapse (Huh et al., 2023; Zhang et al., 2024; Zhu et al., 2024). Failing to address its
unstable optimization may render increased codebook capacity ineffective. Some studies suggest
that alternating K-means initialization can resolve the unstable optimization (Huh et al., 2023).
Nevertheless, in large-scale problems, the overhead of K-means initialization is relatively high.
OptVQ (Zhang et al., 2024) points out the fundamental reason why nearest-neighbor based quantizers
are prone to local optima. Once a code ci is not selected by any sample in an iteration, it is highly
likely to never be selected thereafter. Inspired by this, we identify that the key to solving this problem
lies in ”discovering non-activations and resetting them”, thus proposing the Non-Activation Reset
strategy. Specifically, during each training epoch, for the codebook C, we count the activation time ti
of each code ci. At the end of the epoch, we sort the indices of the N codes in ascending order of
their ti values, obtaining I = {i1, i2, · · · , iN}. When there are r unactivated codes (i.e., the first r
indices in I have ti = 0), we perform the following reset operation:

ciu ← ciN+1−u
+ ϵ, u = 1, · · · , r, (2)

where ϵ is a small random perturbation to avoid overlapping between codes after reset. This operation
intuitively resets unactivated points to the vicinity of highly activated codes, sharing the burden of
frequently activated codes and promoting a more uniform activation frequency across codes.

We find that methods balancing codebook activation frequencies effectively prevent codebook collapse.
This is also reflected in the entropy regularization proposed in LFQ (Yu et al., 2024a) and the optimal
transport search in OptVQ (Zhang et al., 2024). The distinction lies in that our reset strategy requires
no additional loss functions or computational steps during training. Only a single reset operation at
the end of each epoch, making it a plug-and-play module in code implementation. We briefly analyze
in the supplementary material (Appendix D) whether the reset strategy can reduce quantization errors.

3.3 REVQ: QUANTIZE-THEN-RECTIFY

We primarily focus on analyzing the essential components for converting a VAE into a VQ-VAE
purely from the quantizer perspective. However, as shown in Fig. 10, the VQ-VAE converted from
DC-AE (Chen et al., 2024) can at most compress images into 512 tokens to achieve a moderately
effective model if relying solely on the quantizer. Further increasing the compression ratio would
lead to an exponential explosion in the required number of codebook. To address this, we introduce
the Quantize-then-Rectify (ReVQ) framework in this section. The proposed method posits that for
the quantized features Zq from quantizer q, a rectifier g should be constructed. The reconstructed
quantized features via the ReVQ method are thus given by:

Z ′
e = g (q(Ze, C)) . (3)

5
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Table 1: Quantitative comparison with state-of-the-art methods on ImageNet.

Type Method Token Length #Codebook SSIM↑ PSNR↑ LPIPS↓ rFID↓

From
Scratch

ViT-VQGAN 1024 (16×16) 8,192 - - - 1.28
Mo-VQGAN 1024 (16×16×4) 1,024 0.673 22.420 0.113 1.12
ImageFolder 572 (286×2) 4,096 - - - 0.80
VQGAN 256 (16×16) 16,384 0.542 19.930 0.177 3.64
MaskGIT 256 (16×16) 1,024 - - - 2.28
RQ-VAE 256 (8×8×4) 16,384 - - - 3.20
MaskBit 256 (16×16) 4,096 - - - 1.61
COSMOS 256 (16×16) 64,000 0.518 20.490 - 2.52
VQGAN-LC 256 (16×16) 100,000 0.589 23.800 0.120 2.62
LlamaGen-L 256 (16×16) 16,384 0.675 20.790 - 2.19

Fine
Tuning

TiTok-S-128 128 4,096 - - - 1.71
CODA 2560 (256×10) 65,536 0.602 22.200 - 1.34

Frozen

TokenBridge 4096 64 - - - 1.11
ReVQ512T 512 16,384 0.692 23.923 0.093 0.82
ReVQ256T 256 65,536 0.624 21.773 0.131 2.56
ReVQ256T 256 262,144 0.640 22.267 0.122 1.92

Since the rectifier g is trained under relatively low-resolution cases, the comparisons in Table 2 show
that ReVQ can convert a VAE into a VQ-VAE extremely efficiently on a single RTX 4090 GPU. In
contrast, traditional VQ-VAE training may require 4.5 days on 32 A100 GPUs as reported in (Weber
et al., 2024). We now elaborate on the rectifier model design and training loss function.

Optimization-Friendly Rectifier Design. ReVQ adopts a decoder-only framework, mitigating the
optimization challenges of quantization noise. In contrast to VAE, quantization in VQ-VAE introduces
noise that affects the encoder’s gradient, hindering convergence. As shown in Fig. 4a, with identical
encoder-decoder structures and the same sample, quantization leads to an increase of at least 50% in
the encoder’s noise gradient, which impedes optimization. To address this, ReVQ employs a rectifier
model g, a decoder-only structure that prevents quantization’s impact on the encoder’s gradient. In
particular, we utilize the EfficientViT block (Cai et al., 2023) as the rectifier model, which avoids
upsampling/downsampling of latent variables and maintains consistent dimensions. This design
is inspired by DC-AE (Chen et al., 2024), which proposes a high-compression VAE architecture
capable of compressing images into 2048-dimensional vectors using a residual structure for image
reconstruction. Leveraging the EfficientViT block, ReVQ framework enhances the efficiency and
effectiveness of the rectifier model, optimizing training performance and compression efficiency.

Training Loss. Conventional VQ-VAE training typically combines loss functions like perceptual
loss (Johnson et al., 2016), Patch GAN loss (Isola et al., 2017), and l2/ l1 losses. In contrast, our
ReVQ framework simplifies the training process by treating the VAE as a black box and excluding the
need to compute its gradients, thereby reducing computational overhead. As a result, we exclusively
apply l2 loss in the latent space of Ze. The final optimization objective becomes:

min
θg,C

LReVQ = ∥Ze − g (q(Ze))∥22 , (4)

where θg denotes the parameters of the rectifier model and C represents the codebook parameters.
The detailed training algorithm for ReVQ is provided in Algorithm 1.

4 EXPERIMENT

In this section, we illustrate the reconstruction performance and training efficiency of ReVQ. We
first detail the experimental setup in Section 4.1, followed by presenting quantitative and qualitative
comparisons between ReVQ and other VQ-VAE methods in Section 4.2. Subsequently, ablation ex-
periments are conducted in Section 4.4 and Section 4.5 to validate the effectiveness of the quantization
module and the rectification module, respectively.

4.1 EXPERIMENTAL DETAIL

Model Setting. Our model consists of a quantizer and a decoder. Building upon the continuous
latent space of the VAE, we utilize and freeze both the encoder and decoder weights from the DC-
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Figure 5: Reconstruction results on ImageNet validation set (details marked in red boxes).

AE (Chen et al., 2024) without further modification. ImageNet (Deng et al., 2009) images are first
encoded via the VAE encoder, after which the resulting features are normalized using the global mean
and variance computed from the entire dataset. These normalized features are then provided as input
to our model and subsequently compressed into tokens of either 512 or 256 dimensions. The model is
optimized by minimizing the ℓ2 loss between the normalized latent features and their reconstructions.
The quantizer incorporates a channel split strategy in conjunction with a non-activation reset
strategy. The codebook size is 16384 for 512 token length, while it is set to 65536 or 262144
for 256 token length. Unless otherwise specified, we implement the rectifier using a three-layer
EfficientViT (Cai et al., 2023) block for 512 token length and a four-layer EfficientViT block for 256
token length. Both configurations maintain consistent input and output dimensions.

Optimizer Setting. All models are implemented using the PyTorch (Paszke et al., 2019) framework
and trained on a single NVIDIA 4090 GPU. AdamW (Loshchilov and Hutter, 2019) is used as the
optimizer. The batch size is determined dynamically based on the codebook size and GPU memory
constraints. Specifically, when the token length is configured as 512, a batch size of 128 is employed.
For a token length of 256, a batch size of 256 is applied with a codebook size of 65536, and reduced to
128 when the codebook size increases to 262144. The learning rate for all quantizers is initialized at
1.0×10−2, whereas the decoder’s learning rate is fixed at 5% of that of the quantizer. An exponential
learning rate scheduling policy is adopted. All models underwent training for 100 epochs.

4.2 PERFORMANCE COMPARISON

We conduct a comparative analysis of our ReVQ model against leading VQ-VAEs (Yu et al., 2022;
Zheng et al., 2022; Li et al., 2025; Esser et al., 2021; Chang et al., 2022; Lee et al., 2022; Weber
et al., 2024; Agarwal et al., 2025; Zhu et al., 2024; Sun et al., 2024; Yu et al., 2024b; Liu et al., 2025;
Wang et al., 2025) on the ImageNet (Deng et al., 2009) dataset, evaluating on the validation set using
four metrics: PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and rFID (Heusel et al.,
2017), as summarized in Table 1. Two salient observations emerge from our results. First, the model
with a token length of 512 demonstrates superior performance across all metrics, surpassing both
“Fine Tuning” and “Frozen” counterparts. Additionally, the configuration with a token length of 256
and a codebook size of 262144 achieves notable outcomes, surpassing all other 256 token length
models except MaskBit (Weber et al., 2024). Second, our model exhibits a significant advantage
in training efficiency. Compared with publicly available training durations of existing approaches,
ReVQ reduces the total GPU hours by 40× ∼ 150× in Table 2. Furthermore, Fig. 5 illustrates the
visual reconstruction quality. The red-boxed regions highlight ReVQ’s superior ability to preserve
fine-grained details, particularly in areas involving complex textures and facial features.
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Table 2: Training time across different methods.

Method #Code GPUs Training Time
MaskBit 4,096 32×A100 3456

TiTok-S-128 4,096 32×A100 1600

ReVQ512T 16,384 1×RTX 4090 22
ReVQ256T 65,536 1×RTX 4090 26
ReVQ512T 262,144 1×RTX 4090 40

Table 3: Spatial/channel split.

#Token #Code Type rFID

512 16,384
space 1.11

channel 0.82

256 65,536
space 2.91

channel 2.56

Figure 6: Generation samples on ImageNet using the ReVQ model with a diffusion model.

4.3 GENERATION EVALUATION

ReVQ leverages a rectifier model, serving as a decoder-only architecture, enabling seamless integra-
tion with the diffusion model employed in DC-AE (Chen et al., 2024). We first trained the ReVQ
quantizer using the configuration of the corresponding diffusion model in DC-AE. Then, the ReVQ
quantizer was integrated with the DC-AE decoder to evaluate its class-specific image generation
performance on ImageNet (Deng et al., 2009). The generator model used is USiT-H (Chen et al.,
2024), which denoises class-conditional noise in the latent space. The latent variables are then
mapped to images through the ReVQ quantizer and the DC-AE decoder. As shown in Fig. 7, while
ReVQ performs slightly worse than DC-AE in terms of generative performance, it still outperforms or
is comparable to most existing tokenizers. Additionally, Fig. 6 showcases some of ReVQ’s generation
results on ImageNet. The generated images exhibit high quality and demonstrate notable diversity.

4.4 ABLATION STUDY ON QUANTIZER DESIGN

Non-Activation Reset Strategy. Nearest-neighbor-based quantizers often face the challenge of
codebook collapse (Huh et al., 2023; Zhu et al., 2024; Zhang et al., 2024). To address this issue, we
propose the Non-Activation Reset strategy in this paper. We first visualize the dynamic process
of codebook changes under this strategy in Fig. 8. We randomly initialized several 2D data points,

Method Generator gFID
Open-Magvit2-B AR 3.08
LlamaGen-L AR 3.80
LDM-4 Diffusion 3.60
DC-AE Diffusion 1.88
ReVQ512T Diffusion 2.53

Figure 7: Quantitative comparison on ImageNet.

w
/o

R
es

et
w

/
R

es
et

Figure 8: The influence of the reset strategy.
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Table 4: Ablations on decoder types.

#Token #Code Decoder rFID LMSE

512 16,384
ViT 0.82 0.012

CNN 1.08 0.012
MLP 1.09 0.013

256 65,536
ViT 2.56 0.064

CNN 3.00 0.068
MLP 4.58 0.076

Table 5: Exploration of whether to add encoder.

#Token #Code with
Encoder? rFID LMSE

512 16,384
" 189.10 0.620
% 0.82 0.012

256 65,536
" 200.46 0.653
% 2.56 0.064

each represented by 1 token. Without the reset strategy, the codebook is heavily influenced by
the initialization, resulting in only a few codes being used (e.g., only 2 codes in this case) and a
quantization error of 2.8. With the Reset strategy, inactive codes are reset to data-dense regions
during training, as shown by the orange dashed arrows in the figure. This ensures all codes are
used, reducing the quantization error to 0.4. To more thoroughly demonstrate the effectiveness of
this strategy, we conducted quantitative experiments on 10% of the ImageNet dataset, as shown in
Fig. 9. The results show that without the reset strategy, codebook utilization decreases rapidly as the
codebook size increases, with only 65.3% of the codes utilized. In contrast, with the reset strategy,
codebook utilization remains above 97% without significant decline as the codebook size increases.

4.5 ABLATION STUDY ON RECTIFIER DESIGN

Effectiveness of Rectification. We initiate our analysis by evaluating the impact of the rectifier
module on model performance in Fig. 10. We conduct training on the ImageNet dataset using
different token lengths and their corresponding codebook sizes, with consistent training strategies
and an identical rectifier design. The use of the rectifier consistently reduces reconstruction loss
across all token lengths. Notably, the improvement is more pronounced when the baseline model is
weaker. Specifically, at a token length of 64, the rectifier yields a 23.3% decrease in reconstruction
loss, highlighting its effectiveness in improving representational fidelity under constrained settings.

Diverse Rectifier Architectures. We investigate the impact of different rectifier architectures (ViT,
CNN and MLP) on model performance. Experiments on the ImageNet dataset are conducted under
two settings: one with a token length of 512 and codebook size 16384, and another with token length
256 and codebook size 65536, keeping all other settings identical. Empirical results demonstrate that
the ViT rectifier outperforms CNN and MLP across both configurations. Conventional VQ-VAEs use
symmetrical architectures (Agarwal et al., 2025; Weber et al., 2024; Yu et al., 2024b). As mentioned
in Fig. 4a, a decoder-only structure is more conducive to optimization. Building on this, we explored
adding an encoder matching the rectifier architecture in Table 5, but this significantly increased
training difficulty and rFID. Therefore, we opted not to include an extra encoder before the quantizer.

5 DISCUSSION

This paper addresses the issue of time-consuming training in conventional VQ-VAEs. We discover
that a pre-trained continuous feature autoencoder (VAE) and a discrete feature VQ-VAE exhibit an
inherent connection. If the quantization error generated by the quantizer is smaller than the tolerance
threshold, the VAE model can be seamlessly converted into a VQ-VAE model. Specifically, we
propose a strategy named Quantize-then-Rectify. First, we freeze the parameters of the pre-trained
VAE and directly apply a channel split quantization strategy to transform continuous features into
discrete tokens. During training, we introduce a simple non-activation reset strategy to address
the commonly encountered “codebook collapse” problem. To further reduce quantization errors, a
learnable ViT model is employed as a rectifier after the quantizer to correct the quantized tokens.
Our experiments on the ImageNet dataset demonstrate that the proposed ReVQ method can achieve
a VQ-VAE with high compression ratio after approximately 1 day of training on a single 4090 GPU
server. In contrast, conventional VQ-VAE methods requiring comparable performance necessitate
4.5 days of training on a 32 A100 GPUs. However, as shown in Fig. 10, ReVQ currently cannot
match state-of-the-art approaches like TiTok in achieving extremely high compression ratios (e.g.,
compressing images into 32 tokens). We attribute this limitation to the architectural design of the
rectifier and plan to explore more reasonable model designs in future work to enhance the compression
capability of ReVQ. Beyond this, we will investigate the applicability of ReVQ across more data
modalities (such as video reconstruction) and downstream tasks (such as image generation), aiming
to broaden the methodological scope of ReVQ.
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A USAGE OF LARGE LANGUAGE MODELS IN PAPER WRITING

In the process of writing this paper, large language models (LLMs) were utilized in the following two
aspects:

Preliminary Literature Review: During the literature review phase, we used LLMs to quickly
familiarize ourselves with the background knowledge and recent advancements in the relevant field.
We first conducted a preliminary survey using the LLM, followed by further manual searches for
related papers on arXiv and Google Scholar to verify the information.

Assistance in Paper Writing: During the writing process, we employed LLMs to help check for
grammatical errors, refine sentences, and generate certain descriptive content. We ensured that all
generated content was thoroughly reviewed and revised to guarantee its accuracy and adherence to
academic standards.

We acknowledge the potential of LLMs in academic writing but also recognize their limitations. In
critical areas such as code implementation, experimental design, and result analysis, no LLMs were
used. All of these parts were completed independently by our team members.

The LLMs used in the above processes were OpenAI’s GPT-5. We strictly adhered to relevant
usage policies and ethical guidelines to ensure the originality and academic integrity of all generated
content.

B REPRODUCIBILITY STATEMENT

We provide the complete experimental code and details of the experimental process and settings in
the supplementary material to ensure the reproducibility of this method. For specifics, please refer to
the code files in the supplementary material.

C DETAILED ANALYSIS OF CHANNEL SPLIT QUANTIZATION

As mentioned earlier in Section 3.2.1, we employed a channel split quantization strategy to enhance the
expressive power of the codebook. Specifically, for an encoded feature map Ze ∈ RH×W×D, merging

12
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the first two spatial dimensions results in Z ′
e ∈ RS×D, where encoding length is B = S = H ×W .

Traditional VQ uses a single codebook C: each spatial location’s feature vector zi
e = [Z ′

e](·,i) is
quantized as zi

q = q(zi
e, C). This imposes strong symmetry inductive bias by assuming identical prior

distributions p(zi
e), limiting degrees of freedom to N and causing training challenges. To tackle this

issue, we introduce a channel split strategy: define zi
e = [Z ′

e](i,·) and perform quantization. When
token length B differs from feature dimension D, we perform secondary spatial spliting after initial
channel-wise division, resulting in feature vectors of dimension d = (H ×W ×D)/B. Additionally,
we provide a detailed comparison of the differences between channel split and space split quantization
strategies in Fig. 11 and Fig. 12. The channel split quantization method improves the codebook’s
expressive ability by leveraging the diversity in feature dimensions. Moreover, previous ablation
experiments, as shown in Table 3, have verified that the channel split quantization method outperforms
the space split quantization method, achieving better reconstruction results with the former.

In our experiments, no predefined downsampling strategy is applied. Instead, the 64 (spatial)×
32 (channel) tensor output by the DC-AE Encoder is directly used as input to our model. Specifically,
this tensor has a shape of (8 × 8) × 32, where 32 denotes the channel dimension, and 8 × 8
corresponds to the spatial dimensions (height and width). To accommodate varying token lengths, our
core operation involves “reshaping” the tensor. Let the token length be T and the channel dimension
be Dc = 32. We consider three scenarios:

• Case 1 (T = Dc): When the token length T equals the channel dimension Dc, we “split”
directly along the channel dimension, with each component quantized using an independent
codebook.

• Case 2 (T < Dc): When the token length T is smaller than the channel dimension Dc,
we “reshape” directly along the channel dimension, meaning some components along the
channel dimension are merged.

• Case 3 (T > Dc): When the token length T exceeds the channel dimension Dc, we also
“reshape” directly along the channel dimension; however, this implies that some components
along the spatial dimension are further split.

For instance, with a token length of 512, each token has a dimension of 4, while with a token length
of 256, each token has a dimension of 8.

Strategy Split Axis Feature Diversity
Space Split Space %

Channel Split Channel !

Figure 11: Comparison of different quantizers.
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Figure 12: Visualization of Differ-
ent Quantization Strategies.

D ON THE THEORETICAL ANALYSIS OF RESET STRATEGY

We briefly analyze whether this Reset strategy can effectively reduce quantization error. Consider a
code c1 activated by m feature vectors zi, i = 1, · · · ,m, with its quantization error given by:

LMSE(c1) =

m∑
i=1

∥zi − c1∥22. (5)

Let z̄(m) denote the mean of these m vectors. By the least squares method, the quantization error
reaches a lower bound L

(lower)
m ≤ LMSE(c1) when c1 = z̄(m). If an unactivated code c2 is reset near

c1, the m feature vectors are divided into two subsets {zi}m1
i=1 and {zj}m2

j=1 with m1 +m2 = m.
The updated quantization error becomes:

L′
MSE(c1, c2) =

m1∑
i=1

∥zi − c1∥22 +
m2∑
j=1

∥zj − c2∥22. (6)
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Similarly, the updated lower bound L
′(lower)
m1,m2 is achieved when c1 = z̄(m1) and c2 = z̄(m2), satisfying:

L′(lower)
m1,m2

=

m1∑
i=1

∥zi − z̄(m1)∥22 +
m2∑
j=1

∥zj − z̄(m2)∥22

≤
m1∑
i=1

∥zi − z̄(m)∥22 +
m2∑
j=1

∥zj − z̄(m)∥22 = L(lower)
m . (7)

This analysis demonstrates that the Reset operation can effectively reduce quantization error. A
2D experiment in Section 4.4 and the detailed in Fig. 8 illustrate how the Reset operation avoids
codebook collapse and thereby decreases quantization error.

E ALGORITHM OF REVQ METHOD

Below is the detailed algorithmic procedure for training one epoch using the ReVQ method.

Algorithm 1 One-epoch training algorithm for ReVQ.

Input: Set of latent feature maps Ze, quantizer q, rectifier g.
Output: Optimized quantizer q and rectifier g.

1: for each Ze ∈ Ze do
2: Quantize Ze to obtain Zq = q(Ze, C) via channel split strategy in Section 3.2.1.
3: Rectify Zq to produce Z ′

q = g(Zq) via the rectifier model defined in Section 3.3.
4: Calculate the loss function LReVQ as specified in Eq. (4).
5: Perform backpropagation to update the parameters of rectifier g and codebook C.
6: end for
7: Apply Non-activation Reset to codebook C as defined in Eq. (2).
8: return Quantizer q and rectifier g.

F IMPLEMENTATION DETAILS

F.1 DATASETS

This study was primarily conducted on the ImageNet dataset (Deng et al., 2009). The training set of
ImageNet comprises 1281167 images, while the validation set contains 50000 images, both divided
into 1000 classes. To enhance the training efficiency of the ReVQ model, we first employed the
DC-AE model to encode all training images into 2048-dimensional vectors. The website for the
ImageNet dataset is: http://www.image-net.org/.

F.2 CONFIGURATIONS

We did not employ any special data augmentation methods for the 2048-dimensional latent vectors.
Taking our configuration with 512 tokens and a codebook size of 16384 as an example, the detailed
settings for the model and the optimizer are as follows:

• Num Code: 16384.

• Num Group: 1.

• Tokens Per Data: 512.

• Decoder: dc ae.

• In Channels: 32.

• Latent Channels: 32.

• Attention Head Dim: 32.

• Block Type: EfficientViTBlock.

• Block Out Channels: 512.

• Layers Per Block: 3.
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• QKV Multiscales: [5].

• Norm Type: RMSNorm.

• Act Fn: SiLU.

• Upsample Block Type: interpolate.

• Optimizer: AdamW (Loshchilov and Hutter, 2019).

• Beta1: 0.9.

• Beta2: 0.999.

• Quantizer Weight Decay: 0.0.

• Decoder Weight Decay: 1e-4.

• Learning Rate: 1e-4.

• LR Scheduler: ExponentialLR.

• Base LR: 1e-2.

• Epoch: 100.

• BatchSize: 256.

• GPU: One NVIDIA GeForce RTX 4090.

G ADDITIONAL EXPERIMENTS

G.1 RELATIONSHIP BETWEEN TOKEN LENGTH AND NUMBER OF CODEBOOKS
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Figure 13: Relationship between the token length B and the number of codebooks M required to
keep the quantization error below 0.1.

We found that when the quantization error (MSE) of the latent vector is below 0.1, the visual results
of the reconstructed images are basically acceptable to the human eye. Since the dimension of the
latent variable is 2048, if the token length is B, the dimension of the codebook is 2048/B. Obviously,
a smaller token length B leads to a higher codebook dimension. To ensure the quantization error is
below 0.1, a larger number of codebooks is required. Therefore, we explored the relationship between
the token length B and the minimum number of codebooks M needed to keep the quantization error
below 0.1 in Fig. 13. Specifically, only the quantizer was used in this experiment without employing
the rectifier to further correct the quantization error. It can be observed that the minimum number of
codebooks M and the token length B exhibit an exponential relationship. When the token length is
less than 256, the minimum number of codebooks M increases rapidly, approaching the sample size
of ImageNet (1281167 images). We fitted this curve and obtained the approximate relationship:

M ≈ 10−3.6 log10 B+12.82. (8)

Based on this, we conclude that directly using the quantizer to quantize the latent vector of a trained
VAE model has obvious performance limitations. Only by introducing additional nonlinear modules
can the blue curve in Fig. 13 be shifted downward to achieve higher compression rates, which is a
goal we hope to further pursue at the conclusion of this work.
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G.2 DETAILED RESULTS DURING TRAINING

To further demonstrate the effectiveness of the proposed ReVQ model, we present the overall loss
curves recorded during training. As shown in Figs. 14a and 14b (where the reconstruction error of
quantizer features is abbreviated as “Qua Loss” and the reconstruction error of rectifier features is
termed “Dec Loss” in the figures), the quantizer loss remains nearly unchanged, which is expected
given that only the rectifier structure is varied while all other components are held constant. In contrast,
the decoder loss is significantly affected by the rectifier type, with the ViT counterpart achieving the
lowest loss. Figs. 14c and 14d further illustrate that the splitting strategy has a substantial impact on
both the quantizer and rectifier losses. Specifically, the channel split approach leads to consistently
lower losses, indicating better overall model performance. Figs. 14e to 14h provide additional
validation for the above observations. Moreover, they reveal that using 256 tokens results in higher
training loss compared to the 512-token configuration, suggesting that models with fewer tokens are
more challenging to train. This observation implies that, for a given VAE architecture, the achievable
compression ratio has an inherent upper bound.

(a) Quantizer loss with 512 tokens across different
rectifier types.

(b) Decoder loss with 512 tokens across different
rectifier types.

(c) Quantizer loss with 512 tokens across different
split types.

(d) Decoder loss with 512 tokens across different
split types.

(e) Quantizer loss with 256 tokens across different
rectifier types.

(f) Decoder loss with 256 tokens across different
rectifier types.

(g) Quantizer loss with 256 tokens across different
split types.

(h) Decoder loss with 256 tokens across different
split types.

Figure 14: Details training statistics.
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G.3 MORE GENERATION RESULTS ON IMAGENET

In this section, we provide additional image generation results on the ImageNet dataset, as illustrated
in Fig. 15.

Figure 15: Additional generation results on the ImageNet dataset.

G.4 MORE VISUALIZATIONS ON IMAGENET

In this section, we present additional reconstruction results, as shown in Fig. 16. These results further
demonstrate the superior performance of the proposed ReVQ model on ImageNet dataset.
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Figure 16: Additional reconstructed results on ImageNet dataset.
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