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Abstract
After the revelation that neural networks tend to
produce overconfident predictions, the problem
of calibration, which aims to align confidence
with accuracy to enhance the reliability of predic-
tions, has gained significant importance. Several
solutions based on calibration maps have been
proposed to address the problem of recalibrating
a trained classifier using additional datasets. In
this paper, we offer an algorithm that transforms
the weights of the last layer of the classifier, dis-
tinct from the calibration-map-based approach.
We concentrate on the geometry of the final linear
layer, specifically its angular aspect, and adjust
the weights of the corresponding layer. We name
the method Tilt and Average(TNA), and validate
the calibration effect empirically and theoretically.
Through this, we demonstrate that our approach,
in addition to the existing calibration-map-based
techniques, can yield improved calibration perfor-
mance. Code available : URL.

1. Introduction
As neural networks demonstrate their powerful performance
across various fields, their reliability has become a signif-
icant concern. The fact that neural networks are miscal-
ibrated(Guo et al., 2017) and are possible to assign high
confidence to wrong predictions, is a notable issue in di-
verse applications, especially in scenarios that are safety-
critical(medical usage(Litjens et al., 2017), autonomous-
driving(Yurtsever et al., 2020)), or high-stake and cost-
effective(satelite(Moskolaı̈ et al., 2021)). To resolve this
issue, model calibration is studied to reflect reliable confi-
dence estimates to quantify the uncertainty of the prediction.

We target the recalibration problem for a model trained on
a training set, using an additional dataset. Therefore, the
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primary focus is on improving the calibration performance
of the model while maintaining accuracy as learned during
the original training. The methods introduced in conven-
tional works for recalibration are more focused on fitting a
calibration map of the neural network. The calibration map
is an additionally designed function that takes the logit of
the predicted probability as the input, and outputs calibrated
results(Guo et al., 2017; Zhang et al., 2020; Tomani et al.,
2022).

In this paper, we adopt a slightly different perspective, opt-
ing to modify the weights of the final linear layer rather than
creating a new calibration map. Exploiting the neural net-
work as a feature extractor, the last linear layer transforms
high-dimensional deep features into class-specific scores
for probability estimation. In this process, we propose tech-
niques that leverage the geometry of the feature space where
this transformation occurs. As a result, the proposed al-
gorithm, when combined with traditional calibration-map
methods, exhibits superior calibration performance com-
pared to conventional approaches. In summary, we make
the following contributions to this work :

• We propose a recalibration algorithm leveraging the
geometry of the last linear layer, deviating from the pre-
viously suggested calibration-map approach. Due to
the orthogonality of this method, it can seamlessly in-
tegrate with existing techniques for recalibration prob-
lems, and achieve better calibration performance
than using the conventional approach alone.

• We provide theoretical or experimental background
based on the geometric interpretation of the feature
space and linear layer. We also verify data efficiency
and algorithmic integrity through ablation studies.

2. Background & Related Works
2.1. Background

Notation. We consider the classification task with the la-
beled dataset. Let the input data X ∈ X and the corre-
sponding label Y ∈ Y denote the data-label pair, with
C := |Y| classes. Let the model M = (f, h) trained on the
training split of the data, consists of the feature extractor
f : X → Rn, and the last classifier function h : Rn → RC .
Then the prediction Ŷ and the confidence P̂ of a single
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Figure 1. Overview of the proposed algorithm. We take the original weight W of the last linear layer(FC-layer), generate multiple
“TILT”ed weights W1,W2, · · ·Wne from the original weight with relaxed confidence, and “AVERAGE” the generated weights to
compensate possible accuracy loss. The detailed information can be found in Section 3.1.

input X can be written with Ŷ = argmaxi h(f(X)), and
P̂ = maxi σ(h(f(X))) for the class i ∈ [C], where the σ
is a softmax function.

Penultimate Feature, Last Linear Layer, and Confidence.
In common cases, the classifier function is a linear layer
(fully connected layer) (Kang et al., 2020). The linear layer
applies affine transform on the condensed feature vector
z = f(X) ∈ Rn from the feature extractor f , i.e., , h(z) =
W⊤z + b, where W = [w1...wC ] ∈ Rn×C denotes the
weight matrix and the bias vector b ∈ RC . We term the
vector z as the penultimate feature or pf, of which the vector
is the output of the penultimate layer of the network. We
also designate wi, the ith vector of the classifier weight
matrix W, as the ith class vector, and the weight matrix
original weight. Let the logit vector s = h(z), then the
element of the logit vector for each class can be computed
with the dot product representation,
si = wi ·z+bi = ∥wi∥∥z∥ cos∠(wi.z)+bi,∀i ∈ [C] (1)

Recall that P̂ = maxi σ(h(z)), the confidence P̂ of the
sample X with pf z can be written as,

P̂ = max
i

exp(∥wi∥∥z∥ cos∠(wi.z) + bi)

Σkexp(∥wk∥∥z∥ cos∠(wk.z) + bk)
, (2)

where ∠(u, v) denote the angle between two vectors u, v.
Despite the apparent simplicity of the geometric decomposi-
tion in Eq. 1, 2, significant insights can be derived from this

approach. Two properties: 1) the norm (magnitude) of the
class vector∥wi∥, and 2) the angle between the class vector
and the penultimate feature ∠(wi, z), are the important fac-
tors for determining the confidence. In this paper, we focus
on a method that involves adjusting the angular property.

2.2. Related Works

Calibration, Calibration Error. Confidence calibration is
a problem to correctly predict the probability estimate(i.e.
confidence) for a decision that a system has made. Not
only the neural network should make a correct decision, but
also it should provide a probability that reflects the ground
truth correctness likelihood to make the model interpretable
and reliable. As observed in (Guo et al., 2017), neural
networks exhibit poor calibration, typically displaying over-
confidence in their predictions(Ovadia et al., 2019; Ashukha
et al., 2020). Formally, the perfectly calibrated classifier
can be defined as the classifier that outputs (Ŷ , P̂ ) to be
P(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1]. Following the defini-
tion, we evaluate the misalignment, Calibration Error(CE),
CE = EP̂

[
|P(Ŷ = Y |P̂ = p)− p|

]
. The classifier with

low CE is considered to be more calibrated.

Recalibration, which is also known as post-hoc calibration,
supposes that the classifier trained on the training set is
given, and aims to adjust a proper scoring rule to the calcu-
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lated probability of the network with additional calibration
dataset. Most of the work seeks to fit an additional function
fcal : RC → RC called calibration map which transforms
the logit vector s to the calibrated probability vector to yield
calibrated confidence estimate P̂ ′. The calibration map fcal
is then trained with an additional set of data apart from the
training data. Popular approaches to design fcal includes
applying Platt scaling(Platt, 1999), temperature scaling(Guo
et al., 2017) and its variants (Zhang et al., 2020; Ding
et al., 2021; Tomani et al., 2022; Joy et al., 2023), Dirichlet
scaling(Kull et al., 2019), isotonic regression(Zadrozny &
Elkan, 2002), binning-based approaches(Naeini et al., 2015;
Kanil Patel, 2021), sample ranking (Rahimi et al., 2020;
Ma & Blaschko, 2021), non-parametric methods(Wenger
et al., 2020), and atypicality-aware map(Yuksekgonul et al.,
2023).

Orthogonal to the previous findings of designing an ad-
vanced calibration map, we take a different perspective and
present an algorithm that maps the original weight W to an
alternative weight W′. Treating the weight matrix as a set
of class vectors {wi}Ci=1 that determine each element of the
logit vector, we seek an alternative set of class vectors of
{w′

i}Ci=1 that may result in lower calibration error.

3. Method
We aim to design a transformation Q : Rn → Rn, that
maps the class vectors {wi}Ci=1 to alternative class vectors
{w′

i}Ci=1 that exhibit better calibrated confidence without
compromising accuracy. The proposed approach “Tilt and
Average”(TNA) consists of two-fold steps: 1) ”TILT-ing”
the class vectors using rotation transformation, and 2) AVER-
AGE-ing weights to supplement the compromised accuracy.

3.1. “TILT” the class vectors for angle adjustment.

Rotation transformation is a particular type of unitary lin-
ear transformation in n-dimensional Euclidean space. The
key characteristic of a rotation transformation is that the
transformed vector undergoes a change in direction without
altering its norm, or magnitude. Hence, one might infer
that applying a rotation transform to the class vector wi

could potentially allow for the adjustment of ∠(wi, z). Con-
sequently, we elaborate on the algorithm and theoretical
background for this purpose as described below.

In this step, we propose an algorithm that can perform rota-
tion transformation to a specified “intensity”. Here, the term
“intense” transform refers to a transformation that introduces
significant changes in the angle, while a rotation transform
with minimal changes in the angle is considered to have
weak intensity. For example, the identity transformation on
the class vectors can be regarded as having an intensity of
0, as it introduces no change in angle. Therefore, we first

define the concept of “mean Rotation over Classes” or mRC,
which can be considered as a metric for the intensity.

Definition 3.1. (mean Rotation over Classes) Given the
original weight W and a rotation matrix R, the mean Rota-
tion over Classes(mRC) is defined as,

mRC(W, R) =
1

C

C∑
i=1

arccos (
⟨wi, Rwi⟩
∥wi∥∥Rwi∥

) (3)

mRC is a metric quantifying, in the context of predetermined
weight matrices and rotation matrices, the typical degree to
which each class vector is rotated.

3.1.1. GENERATING n-DIMENSIONAL ROTATION
MATRIX WITH mRC

The main inspiration is from Euler’s rotation theorem
(Euler, 1776) in three-dimensional space that any rota-
tion matrix R can be generated via elementary rotations,
R = Rx(α)Ry(β)Rz(γ), where Rx(α) states the rotation
matrix that rotates of angle α around the X-axis, and vice-
versa. The elementary rotation in dimension n, is dubbed
Givens rotation (Givens, 1958).

We generate a rotation transformation in n-dimensional
space with a compound of elementary rotations as in Euler’s
theorem. Let nr denote the number of compound of ele-
mentary rotations. The elementary rotation matrix Rek(θtk)
(k ∈ [nr]) can be readily created by using a random an-
gle θtk = τ × θs, where τ ∼ Beta(α, β), and θs is a
pre-established angle given as a hyperparameter. We ran-
domly select 2 indexes k1, k2 ∈ [n] from an n-dimensional
identity matrix. Then we flip the elements of columns and
rows k1, k2 to 2-dimensional rotation matrix, with rk1k1 =
cos θti , rk1k2 = − sin θti , rk2k1 = sin θti , rk2k2 = cos θti .
We repeat this process nr times as Eq. 4,

R = Re1(θt1)R
e
2(θt2)...R

e
nr
(θtnr

), (4)

which we term the new weight matrix WTILT = RW as
tilted weight.

The results of measuring mRC, derived from the rota-
tion matrix R generated by the provided algorithm and
the original weight W, are represented in Fig. 2. For the
experiment, we take three benchmark datasets CIFAR10,
CIFAR100 (Krizhevsky et al., 2010), ImageNet(Deng
et al., 2009), with trained weights on the architecture of
WideResNet28x10(Zagoruyko & Komodakis, 2016), Mo-
bileNetV2(Sandler et al., 2018), and ResNet50(He et al.,
2016a) respectively. We generate 2,000 tilted weights for
each dataset. The proposed algorithm can produce a rotation
matrix with a specific mRC, demonstrating variations by
adjusting the number of rotations nr across datasets and
models. Consequently, we design the algorithm as in Alg. 1-
TILT. Additionally from the plot, it can be observed that
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Figure 2. Plots of mRC corresponding to the number of
rotations(nr) with different values of θs. Each point corre-
sponds to a single tilted weight. When the number of ro-
tations increases, mRC increases as well. Each row states
for different dataset-model pair: CIFAR10-WRN28x10(upper),
CIFAR100-MobileNetV2(middle), ImageNet-ResNet50(lower).
Across datasets and models, the proposed algorithm can generate
a rotation matrix with certain mRC, by changing the number of
rotations nr .

as nr increases, mRC increases and eventually converges
to around 90°. Applying a transformation with high in-
tensity leads to a decreasing correlation with the original
vector, aligning with the near-orthogonal theorem (Blum
et al., 2020), which states that, with high probability, high-
dimensional arbitrary vectors become orthogonal. (Also see
Section 5)

3.1.2. VALIDATING TILT.

In this section, we theoretically demonstrate that the tilted
weight generated by the algorithm presented above allows
for the adjustment of angles between class vectors and penul-
timate features. Additionally, we illustrate the statistical
properties associated with this adjustment. With some ad-
ditional assumptions, we theoretically show the relaxing
effect on confidence. Finally, we experimentally confirm
that the tilted weight transformed by the algorithm TILT,
indeed has an effect on adjusting angles.

With rotation matrix R, we first define the difference after
rotation ∆z,i := ∠(Rwi, z) − ∠(wi, z), where z denote
the pf.

Theorem 3.2. (Class-wise Effect of TILT.) Let there be
an original weight W, and rotation matrix R. Also, let ψi
to be ∠(wi, z). Suppose the rotation matrix R rotates the
i-th class vector with θ, ∠(wi, Rwi) = θ. We further
assume that inequality 0°< θ < ψi < 90°holds for penul-
timate feature z. Lastly, we assume equal probability on
the possible rotations of R. That is, let V be the set of

vectors rotated from a vector u by all possible rotation ma-
trices R, that rotates with angle θ, then for ∀v1, v2 ∈ V ,
P(Ru = v1) = P(Ru = v2). Let M be the mode of ∆z,i.
Then the equation below holds,

M[∆z,i] = arccos(cosψi cos θ)− ψi. (5)

We provide the proof of Thm. 3.2 in the appendix, Sec. C.
Building upon the insights derived from the given Thm 3.2,
with additional assumptions, one can observe a confidence
relaxation effect akin to the proposition as Prop. 3.3.

Proposition 3.3. (Confidence Relaxation.) For an input
sample X and the corresponding penultimate feature z, we
assume that the equalities below hold across all the classes
in addition to the assumptions made in Thm. 3.2, ∀i ∈
[C],∠(wi, Rwi) = θ and ∆z,i = arccos(cosψi cos θ) −
ψi, and element of bias vector be bk1 = bk2 ,∀k1, k2 ∈ [C].
Then the tilted weight W′ = RW has a smaller confidence
estimate for sample x.

Proof. Let P̂ be the confidence estimate of sample X from
original weight W, and P̂ ′ be the confidence estimate of
sample x on the tilted weight W′. When applying the
assumed conditions to Eq. 2, then P̂ and P̂ ′ can be written
as,

P̂X = max
i

exp(∥wi∥∥z∥ cosψi))
Σkexp(∥wk∥∥z∥ cosψk)

, (6)

P̂ ′
X = max

i

exp(∥w′
i∥∥z∥ cosψi cos θ)

Σkexp(∥w′
k∥∥z∥ cosψk cos θ)

, (7)

Recall the fact that rotation transformation does not change
the vector norm and the norm of vectors are non-negative,
P̂X − P̂ ′

X > 0 when 0°< θ < 90°.

The actual distribution of the data when the rotation transfor-
mation is applied is illustrated in Fig. 3. This figure depicts
the distribution of ∠(wi, zx). Formally, we denote data
pair as (x, y) ∈ X × Y , penultimate feature as zx, original
weight as W, tilted weight W1 = R1W = [w1

1w
1
2...w

1
C ]

where mRC(W, R1) = 30°, tilted weight of mRC=45°as
W2 = R2W = [w2

1w
2
2...w

2
C ] where mRC(W, R2) =

45°. For distribution depicted Orig. we plot ∠(wy, zx) for
the samples. For the 30°, and 45°, we plot ∠(w1

y, zx) and
∠(w2

y, zx) respectively. For the “False” plot, we randomly
choose a class y′ ̸= y, and compute the ∠(wy′ , zx). We
randomly sampled 4,000 data from the test dataset. We con-
ducted this experiment on three benchmark datasets, namely
CIFAR10, CIFAR100, and ImageNet. For each dataset, we
respectively plotted the distribution for WideResNet28x10,
PreResNet110, and ViT-H/14 architectures. Experimentally,
we demonstrate the capability to modify angles using the
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Figure 3. Distribution plot of the data samples with angle between
class vector and pf, ∠(wi, zx), with the corresponding predicted
class row vector of the original weight (Orig.) and the tilted
weights by depicted angle of mRC, 30°, 45°. “False” denotes
the angle of pf with the class vector does not correspond to the
respective class. As the mRC increases, the angles shift towards
90 °. The distributions of various dataset-architectures can be
observed in the appendix, specifically in Fig. 7 and 8. The visuals
are enhanced with colors.

algorithm depicted in this distribution plot across various
datasets and models. Specifically, as mRC increases, it
can be observed that the angle distribution gradually shifts
towards 90 degrees.

3.2. ”AVERAGE” tilted weights for Accuracy
Compensation.

As evident from Fig. 3, adjusting angles through the pro-
posed algorithm can lead to overlap with the distribution of
the false class, eventually resulting in a lack of separability
for the classifier. This, in turn, may lead to a deterioration
in the overall performance of the classifier. Therefore, we
propose to tune the network by weight averaging to address
this issue. We simply apply weight averaging on the multi-
ple tilted weights W1, ...,Wne generated on mRC = θ as
in Eq. 8, where ne denotes the number of the tilted weights.

WTNA =
1

ne
(W1 +W2 + · · ·+Wne), (8)

In practice, we generate multiple rotation matrices
R1, ..., Rne

with the same number of nr, and average to
get the final transformation matrix R for computational sim-
plicity as in Alg. 1-AVERAGE.

Vector Averaging on equally tilted weights. Weight Aver-
aging averages the tilted class vectors generated by equal
mRC. This relieves the probability of collapsing in accu-
racy because weight averaging works as a arithmetic mean
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Figure 4. Plots of the accuracy of the ensembled outputs corre-
spond to the number of ensemble members, on the ImageNet
dataset. The accuracy is well compensated at most of the angles
(upper) and as the ne increases (lower). The red line indicates the
performance of the original weight. The performance is averaged
over 10 runs. Extended experiments at appendix Fig. 6

over si = wi · z, and geometric mean over the esi , which
are the softmax members if ignoring the bias. If the rota-
tion happens to the unwanted direction, averaging weight
acts as a geometric mean on the softmax member, and may
compensate for the final score through statistical effects.

We illustrate the plot for the interpolated accuracy results
through weight averaging in Figure 4. This experiment was
conducted on the ImageNet dataset using the ResNet50 ar-
chitecture. Initially, tilted weights withmRC = θ were gen-
erated, and for each of the generated tilted weights (totaling
ne), weight averaging was applied, and the corresponding
accuracy was recorded. Each point in the plot represents
the performance of the classifier when the averaged weight
is applied. The upper plot presents the results of experi-
ments conducted for different mRCs by varying ne from 1
to 20, while the lower plot records the averaged accuracy
for a fixed mRC of 30 degrees over a specified ne for 1
to 100. Through this, we observe that as the intensity of
the rotation transformation increases, there is a decline in
accuracy, but this degradation can be interpolated through
weight averaging. In other words, the proposed algorithm
effectively interpolates accuracy under varying levels of
rotation transformation intensity.
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Algorithm 1 TILT AND AVERAGE (TNA)
Input: mRC θ∗, original weight W
Parameter: ne, nt, α, β, θs
Output: alternative weight W′

(1. (TILT) Rotation Transform of mRC θ∗ Generation)
R1 ← Identity Matrix In, nr ← 0
while mRC(W , R1) ≤ θ∗ do
Rt ← Identity Matrix In
τ ∼ Beta(α, β) , θt = θs × τ , k1, k2 ∈ [n]
Rtk1k1 = cos θt, Rtk1k2 = − sin θt
Rtk2k1 = sin θt, Rtk2k2 = cos θt
R1 ← R1R

t

nr ← nr + nt
end while
(2. (AVERAGE) Compensate Accuracy)
Repeat Procedure (1) ne times and get R1, R2, ..., Rne

R← 1
ne

(R1 +R2 + ...+Rne
)

W′ ← RW
return W′

4. Experiments
4.1. Evaluation Metrics

We report the Accuracy, ECE, and AdaECE in % in table1.
In practice, the Calibration Error is intractable since the joint
distribution P(X,Y ) is unknown. To evaluate the calibra-
tion performance of the classifiers, we estimate Calibration
Error(noted in Section 2.2) by 2 different schemes, ECE
and AdaECE. We also display the accuracy as well, to
demonstrate the accuracy change after applying TNA.

Expected Calibration Error, or ECE, estimates Calibra-
tion Error by equal-interval-binning scheme. Suppose
there exists B bins of |D| data samples, where each bin
Bj , j ∈ {0, 1, ..., B − 1} consists of the samples with con-
fidence corresponding to the interval Ij =

(
j
B ,

j+1
B

]
. Then,

ECE = Σj
|Bj |
|D| |acc(Bj) − conf(Bj)|, where acc(Bj) is

the accuracy of the samples from Bj , and conf(Bj) is the
average confidence of the samples from Bj (Naeini et al.,
2015).

Adaptive Expected Calibration Error, or AdaECE, esti-
mates Calibration Error by uniform-mass-binning scheme,
with identical number of samples for each bin(Mukhoti et al.,
2020). In other words, AdaECE = Σj

|Bj |
|D| |acc(Bj) −

conf(Bj)| where each bin Bj is set to include |D|
B samples

with the ascending order of the confidence value.

4.2. Experimental Details

Datasets. We report the results of the proposed method
on 4 different image classification datasets. The number
at the end represents the number of samples used for train-
ing/calibration/test split. The number of splits for each data

partition adheres to the methodology outlined in the work
of Ashukha et al. (2020).

• CIFAR10, CIFAR100 (Krizhevsky et al., 2010): Tiny
images from web. 10 and 100 classes respectively.
50,000/5,000/5,000

• ImageNet-1k (Deng et al., 2009) : Image of natural
objects, 1000 classes, 1.2M/12,500/37,500

• SVHN (Netzer et al., 2011): Street View House Num-
bers, 10 classes of digits, 73,257/5,000/19,032. Results
in the appendix, Tab. 2.

Models. We compare a total of four model architectures
for each dataset. For datasets SVHN and CIFARs, we
take the models of WideResNet28x10(Zagoruyko & Ko-
modakis, 2016), MobileNetV2(Sandler et al., 2018), Pre-
ResNet110(He et al., 2016b), and GoogleNet(Szegedy et al.,
2015). For ImageNet, we take 2 CNNs, ResNet-50(He
et al., 2016a), and 2 visual transformers ViT-L/16, ViT-
H/14(Dosovitskiy et al., 2021). For the ImageNet trained
networks, the models are borrowed from torchvision (Mar-
cel & Rodriguez, 2010) and timm(Wightman, 2019). For the
other datasets, we follow the training details from (Ashukha
et al., 2020), which are listed in the appendix.

Methods. For each dataset-model combination, we evaluate
five baselines, including the uncalibrated model, and addi-
tionally assess nine methods with the proposed technique
TNA, presented in this paper. The optimization is done by
the calibration split, and the evaluation is done on the test
split. The code will be available, URL.

• Baseline Method : We apply the proposed method on
the original weight, in combination with the calibration-
map-based methods of IROvA(Zadrozny & Elkan,
2001), Temperature Scaling(TS)(Guo et al., 2017), En-
semble Temperature Scaling(ETS) (Zhang et al., 2020),
and Atypicality-Aware Recalibration(AAR) (Yuksek-
gonul et al., 2023).

• TNA, TNA(Sparse) : TNA, TNA(Sparse) reveals out-
comes achieved by optimizing each of the two steps
independently: first, the alternative weight W′, and
subsequently, the calibration map fcal. In the quest
for the optimal alternative weight W′, the initial step
involves searching for the best angle mRC within the
range [0°, 90°] using the calibration set. As indicated in
Proposition 3.3, an increase in mRC results in relaxed
confidence, rendering the ECE plot unimodal with mild
assumptions into account. This can also be confirmed
experimentally. Refer to Fig. 9 for detailed plots of the
optimization curves on CIFAR10, CIFAR100, and Im-
ageNet. Computationally, this process takes less than

6

https://github.com/GYYYYYUUUUU/TNA_Angular_Scaling


Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration

Table 1. Main results displaying changes after TNA, in accuracy and calibration performance. The experiments were conducted on
CIFAR10, CIFAR100, and ImageNet datasets, evaluating four different model architectures for each dataset. In addition to applying five
recalibration techniques, including the uncalibrated model as a baseline, we evaluate TNA(sparse) and TNA(comp.), which involve two
stages of optimization and explore the entire search space, respectively. The results are displayed as averages over five runs. In a specific
dataset-model combination, indicate the technique that achieved the best results among all methods in bold. Lower ECE, AdaECE, the
better.

CIFAR10-WideResNet28x10 CIFAR10-MobileNetV2 CIFAR10-PreResNet110 CIFAR10-GoogleNet

Methods Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓)
None 96.37.15 1.66.1 1.49.09 92.51.26 3.49.16 3.33.24 95.28.15 2.67.13 2.62.14 95.16.22 2.82.19 2.75.21
+TNA 96.37.16 0.66.14 0.59.1 92.55.25 0.78.17 0.65.24 95.28.11 0.76.03 0.4.04 95.17.21 1.57.18 1.59.21

IROvA 96.29.19 0.83.29 0.56.11 92.39.24 1.24.15 0.92.29 95.16.09 0.88.12 0.73.11 95.11.18 1.01.25 0.96.08
+TNA(sparse) 96.32.16 0.83.23 0.55.24 92.39.29 1.22.13 0.87.32 95.31.04 0.74.08 0.4.19 95.07.16 0.96.26 0.85.09
+TNA(comp.) 96.32.13 0.8.2 0.62.18 92.5.19 1.18.22 0.89.2 95.31.04 0.74.08 0.4.19 95.07.16 0.96.26 0.85.09

TS 96.37.15 0.84.05 0.71.22 92.51.26 1.06.19 0.88.27 95.28.15 0.73.09 0.65.12 95.16.22 2.14.13 1.63.3
+TNA(sparse) 96.37.16 0.78.13 0.75.2 92.55.25 0.81.12 0.72.25 95.28.11 0.68.09 0.41.03 95.17.21 2.09.16 1.64.31
+TNA(comp.) 96.39.12 0.71.14 0.53.06 92.54.19 0.79.09 0.76.19 95.13.18 0.65.11 0.45.11 95.08.16 1.96.1 1.58.13

ETS 96.37.15 0.84.06 0.79.19 92.51.26 0.85.19 0.67.24 95.28.15 0.67.1 0.5.12 95.16.22 2.14.13 1.63.3
+TNA(sparse) 96.37.16 0.78.14 0.72.17 92.55.25 0.83.09 0.71.26 95.28.11 0.69.08 0.42.0 95.17.21 2.09.16 1.64.31
+TNA(comp.) 96.39.12 0.71.14 0.53.06 92.56.2 0.79.1 0.82.25 94.66.18 0.65.11 0.45.11 95.08.16 1.96.1 1.58.13

AAR 96.33.2 0.75.08 0.45.09 92.38.32 0.91.07 e0.67.1 95.17.08 0.59.1 0.45.05 95.14.24 1.04.12 0.95.19
+TNA(sparse) 96.35.19 0.72.05 0.45.08 92.37.33 0.83.14 0.64.12 95.3.13 0.59.18 0.34.13 95.12.26 0.98.17 0.95.22
+TNA(comp.) 96.41.18 0.72.23 0.44.19 92.37.33 0.83.14 0.64.12 94.99.1 0.56.13 0.34.08 95.12.22 0.9.01 0.95.2

CIFAR100-WideResNet28x10 CIFAR100-MobileNetV2 CIFAR100-PreResNet110 CIFAR100-GoogleNet

Methods Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓)
None 80.42.47 5.91.3 5.77.4 72.79.14 10.03.19 9.97.18 77.69.35 10.62.33 10.58.34 79.42.26 6.45.2 6.3.19
+TNA 80.17.53 4.11.19 3.92.15 72.71.13 1.54.09 1.52.19 77.15.34 2.97.25 2.84.29 79.36.25 3.86.2 3.86.16

IROvA 80.69.36 4.71.14 4.27.15 72.15.22 4.81.28 4.79.19 76.95.25 3.7.17 4.7.49 78.92.27 3.73.35 4.68.17
+TNA(sparse) 80.4.43 4.15.26 3.36.35 72.01.26 4.72.29 4.17.25 76.51.22 3.91.2 3.65.61 78.88.35 3.66.35 3.23.17
+TNA(comp.) 81.11.3 3.89.11 3.35.14 72.45.36 4.32.14 3.91.38 76.93.3 3.66.49 3.6.47 78.88.35 3.66.35 3.23.17

TS 80.42.47 4.69.22 4.55.26 72.79.14 1.82.33 1.78.11 77.69.35 3.21.17 3.13.17 79.42.26 4.27.12 4.28.15
+TNA(sparse) 80.17.23 4.55.24 4.28.14 72.71.13 1.41.15 1.34.11 77.15.34 3.16.26 3.03.35 79.36.25 4.23.14 4.13.18
+TNA(comp.) 80.17.53 4.55.24 4.28.14 73.13.2 1.41.33 1.24.33 75.64.64 3.01.15 2.97.14 79.36.25 4.23.14 4.13.18

ETS 80.42.47 3.47.28 3.88.21 72.79.14 1.63.39 1.56.12 77.97.44 2.38.37 2.6.33 79.42.26 3.25.19 3.4.22
+TNA(sparse) 80.17.53 3.35.26 3.89.22 72.71.13 1.22.18 1.32.03 77.15.34 2.19.28 2.49.35 79.36.25 2.86.2 3.35.26
+TNA(comp.) 80.76.27 3.06.16 3.52.17 73.13.2 1.27.32 1.18.29 75.74.72 2.13.27 2.4.37 79.36.25 2.86.2 3.35.26

AAR 81.06.14 3.4.38 3.19.33 72.53.17 2.06.4 1.82.44 77.37.37 3.27.12 3.23.21 79.28.3 4.46.31 4.28.3
+TNA(sparse) 80.98.22 3.33.4 3.15.33 72.39.26 1.95.39 1.85.33 77.15.47 3.36.22 3.07.18 79.38.29 4.45.23 4.34.28
+TNA(comp.) 80.98.22 3.33.4 3.15.33 73.09.26 1.52.17 1.47.27 76.83.42 3.15.41 2.87.43 78.91.18 4.45.05 4.27.25

ImageNet-ResNet50 ImageNet-DenseNet169 ImageNet-ViT-L/16 ImageNet-ViT-H/14

Methods Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓)
None 76.17.05 3.83.09 3.73.1 75.63.11 5.43.08 5.43.08 84.35.06 1.81.07 1.8.09 85.59.05 1.87.07 1.77.07
+TNA 76.11.06 1.73.06 1.76.08 75.46.11 1.63.14 1.66.14 84.34.07 1.11.05 1.11.05 85.5.03 1.05.01 1.06.03

IROvA 74.96.07 6.23.37 5.63.29 74.82.13 6.19.77 5.72.54 83.5.1 5.35.29 4.27.14 84.75.03 5.3.16 4.31.3
+TNA(sparse) 74.87.05 6.24.19 4.58.33 74.49.23 6.1.72 4.71.67 83.41.11 5.32.29 4.05.12 84.54.0 5.24.2 4.0.24
+TNA(comp.) 74.98.03 6.03.11 4.55.21 74.41.13 6.05.61 4.7.56 83.72.08 5.16.11 4.05.01 84.43.13 5.17.11 3.9.16

TS 76.17.05 2.09.3 2.02.23 75.63.11 1.85.1 1.83.07 84.35.06 1.35.08 1.35.08 85.59.05 1.33.18 1.32.19
+TNA(sparse) 76.11.06 2.02.27 2.0.25 75.46.11 1.78.05 1.77.05 84.34.07 1.31.12 1.31.08 85.5.03 1.34.16 1.28.18
+TNA(comp.) 76.08.26 1.93.11 1.89.04 75.45.16 1.78.13 1.78.07 84.48.13 1.25.04 1.3.16 85.48.15 1.31.11 1.23.01

ETS 76.17.05 1.1.03 1.26.1 75.63.11 0.88.11 1.06.19 84.35.06 0.95.06 1.14.06 85.59.05 0.63.13 0.91.13
+TNA(sparse) 76.11.06 1.06.05 1.22.06 75.46.11 0.79.13 1.02.12 84.34.07 0.9.05 1.09.06 85.5.03 0.6.14 0.85.14
+TNA(comp.) 76.04.11 1.01.15 1.19.03 75.45.23 0.78.11 1.01.14 84.5.11 0.9.17 1.1.11 85.43.12 0.6.05 0.84.07

AAR 75.55.05 2.53.17 2.5.17 75.37.09 2.2.22 2.2.28 83.93.08 2.43.15 2.4.14 84.96.13 2.36.28 2.2.37
+TNA(sparse) 75.48.04 2.52.2 2.49.2 75.23.15 2.33.2 2.22.21 83.93.07 2.41.15 2.38.14 84.9.14 2.3.34 2.25.3
+TNA(comp.) 75.36.23 2.40.21 2.39.11 75.17.18 2.28.11 2.25.07 84.2.07 2.38.04 2.38.11 84.81.12 2.32.03 2.28.05
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Figure 5. The data efficiency plot comparing 3 datasets(CIFAR10, CIFAR100, ImageNet). The architectures of WideResNet28x10,
MobileNetv2, and ResNet50 are used respectively, when TNA is applied to the original weight. We demonstrate that TNA is efficient in
data, requiring less additional calibration set.

5 minutes on a single GPU of RTX3080. (CIFAR10,
and CIFAR100 take seconds.)

• TNA(Comp.) : For the complete search, we aim
to search for the best combination of the alterna-
tive weights and the selected calibration-map-based
method. Using the calibration dataset, we perform a
grid search for all possible (W′, fcal) pairs. Compu-
tationally, this process takes less than 30 minutes on a
single GPU of RTX3080. (CIFAR10, CIFAR100 takes
a few minutes.)

Hyperparameters. As proposed in the algorithm, we search
over θ ∈ [0, 90]. Over datasets and models, ne is set to 10,
α = 5, β = 1. The search interval of rotation number nt is
set to 50. Unless noted, the maximum rotated angle θs is
set to 0.9rad. The displayed value reflects an average of 5
repeated experiments, with the standard deviation depicted
as a subscripted value. The number of bins B is set to 15.

4.3. Results

The classifier weights newly derived through TNA do induce
a very slight change in accuracy, albeit very marginal (less
than 0.3%). In terms of calibration performance, the applica-
tion of weights by TNA surpasses the performance of using
the original weight. Also in most cases, applying TNA in
addition to the method improves performance than the case
of applying the calibration-map-based method alone. The
results indicate that, in addition to the conventional method
of finding fcal, it offers a broader solution space.

One interesting observation is that the combination of
None+TNA, which only applies to adjust to the angle, out-
performs Temperature Scaling. As highlighted in Section 5,
temperature scaling can be seen as adjusting for magnitude,
and it is evident that adjusting for angles is particularly
effective in cases where it matters.

Note that the TS and ETS do not affect the accuracy, while

IROvA and AAR slightly have different values. This is
because TS and ETS preserve the order of the class-wise
element of the logit vector. On the contrary, the approaches
of IROvA and AAR may exhibit a slight variation in accu-
racy, as the final probability is adjusted due to factors that
can alter the order.

4.4. Ablation Study

Data Efficiency. Assessing data efficiency is also an impor-
tant aspect (Zhang et al., 2020) to make the calibration pro-
cess utilizable since recalibration requires an additional ’cal-
ibration set’ other than a ’training set’ to tune the probability.
According to Fig. 5, note that TS(Guo et al., 2017) and the
TNA show similar data efficiency to reach the optimal ECE
while exhibiting better efficiency than IROvA(Zadrozny
& Elkan, 2002). One explanation for the observed phe-
nomenon is that for TNA, we optimize a single parameter
θ(mRC), similar to that of TS, in which we also optimize a
single parameter T (temperature).

Assumptions. In our study, various assumptions were made
to demonstrate that the algorithm has confidence calibration
effects. We reiterate some of the assumptions and provide
deeper explanations. In detail, we elucidate the assumptions
of 1) ∠(wi, Rwi) is equal across classes i ∈ [C], and 2) the
feature space is high-dimensional with experimental results
in the Appendix B.

5. Discussion & More Related Works
Scaling Angles. From a geometrical standpoint, we provide
a technique that directly controls the angles. The role of the
angle as a similarity/distance measure has been discussed
in previous research (Kansizoglou et al., 2022; Chen et al.,
2020; Kang et al., 2020; Peng et al., 2022). However, to our
knowledge, our paper is the first to introduce a geometric
transformation that alters the angle between the class vector
and the penultimate feature to adjust the confidence.

8



Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration

Recalibration Approaches with Magnitude. The magni-
tude of the class vector also influences the confidence factor
(Eq. 2). Upon closer examination, this approach shares
common ground with previously studied methods such as
temperature scaling(Guo et al., 2017). As a straightforward
proposition, temperature scaling applies scalar division on
the logit vector s to obtain confidence. Substituting the
wi as wi/T , finding the optimal temperature has the ef-
fect of confidence relaxation by adjusting the magnitude.
ETS(Zhang et al., 2020) and AAR(Yuksekgonul et al., 2023)
extend the concept of temperature scaling by seeking the
optimal temperature sample-wise, considering the diversity
of samples.

Blessings of the dimensionality. Our approach is founded
upon a modicum of randomness as it pursues a rotation trans-
formation. Due to the blessings of the dimensionality (n of
few hundred or thousands), we have a very low probability
to rotate to the unwanted direction, where other class vectors
might gain their score significantly and the overconfident
vector loses it. From the high dimensional geometry (Blum
et al., 2020), it is known that most of the volume is concen-
trated on the equator and the surface, and thus two arbitrary
vectors are likely to be orthogonal. For example, in 2000-
dimensional unit-ball, the volume near the equator of height
1
2 is near 1− 2

10
√
5
e−

1
2∗(10

√
5
2
) ≃ (100− 3.4 ∗ 10−105)%

of the whole volume. So the single row vector wi from the
perspective of the z which has angle ∠(wi, z) near 60 with a
perturbation of some angle is more likely to lean toward the
equator, not the direction toward the z. Note that ResNet-50,
the dimension of the z space is 2048, cos 60 = 1

2 .

6. Conclusion
We introduce a fresh perspective on tackling the longstand-
ing issue of recalibration by geometrically modifying the
weights of the last layer instead of proposing a new calibra-
tion map for better calibration performance. We propose a
new algorithm from this perspective, establish its theoretical
background, and experimentally validate it. The presented
technique outperforms existing methods.

7. Broader Impact
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Table 2. (Extended Experiment on Tab. 1) Main results displaying changes after TNA, in accuracy and calibration performance. The
experiments were conducted SVHN dataset expanded on the main result in Tab. 1, evaluating four different model architectures for each
dataset. In addition to applying five recalibration techniques, including the uncalibrated model as a baseline, we evaluate TNA(sparse)
and TNA(comp.), which involve two stages of optimization and explore the entire search space, respectively. In a specific dataset-model
combination, indicate the technique that achieved the best results among all methods in bold, and underline the technique that achieved
the best results without using proposed method. The results are displayed as averages over five runs.

SVHN-WideResNet28x10 SVHN-MobileNetV2 SVHN-PreResNet110 SVHN-GoogleNet

Methods Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓) Acc. (↑) ECE (↓) AdaECE (↓)
None 97.02.06 1.86.04 1.82.04 95.74.03 0.54.02 0.52.02 96.61.03 1.58.03 1.58.03 96.3.06 2.31.04 2.3.04
+TNA 97.0.06 0.45.01 0.49.02 95.75.03 0.43.02 0.45.03 96.56.03 0.53.07 0.74.04 96.29.06 0.59.03 0.99.04

IROvA 96.97.06 0.65.18 0.44.03 95.77.06 0.87.17 0.5.14 96.64.08 0.76.15 0.53.12 96.25.1 0.66.18 0.74.1
+TNA(sparse) 96.96.07 0.55.22 0.42.06 95.77.06 0.84.19 0.46.1 96.59.08 0.72.16 0.51.14 96.26.08 0.64.18 0.67.11
+TNA(comp.) 96.99.04 0.49.15 0.42.11 95.81.05 0.77.17 0.44.1 96.58.06 0.71.22 0.54.09 96.28.03 0.55.01 0.63.04

TS 97.02.06 0.67.08 0.55.04 95.74.03 0.33.05 0.28.06 96.61.03 0.76.19 0.87.12 96.3.06 1.01.14 1.07.06
+TNA(sparse) 97.0.06 0.61.1 0.5.04 95.75.03 0.32.05 0.25.04 96.56.03 0.64.15 0.83.11 96.29.06 0.97.12 1.01.05
+TNA(comp.) 97.01.03 0.44.07 0.44.06 95.75.03 0.32.05 0.25.04 96.5.03 0.53.12 0.68.1 96.29.06 0.97.12 1.01.05

ETS 97.02.06 0.67.08 0.55.04 95.74.03 0.34.05 0.28.05 96.61.03 0.76.19 0.87.12 96.3.06 1.01.14 1.07.06
+TNA(sparse) 97.0.06 0.61.1 0.5.04 95.75.03 0.33.05 0.25.04 96.56.03 0.65.14 0.84.11 96.29.06 0.97.12 1.01.05
+TNA(comp.) 97.01.03 0.44.07 0.44.06 95.79.05 0.32.07 0.25.01 96.49.05 0.52.12 0.68.1 96.29.06 0.97.12 1.01.05

AAR 97.04.05 0.32.12 0.29.11 95.83.03 0.35.06 0.3.06 96.66.06 0.51.1 0.48.16 96.32.07 0.43.08 0.43.09
+TNA(sparse) 97.03.06 0.3.13 0.28.11 95.84.03 0.34.06 0.3.06 96.65.06 0.49.11 0.47.13 96.31.06 0.4.1 0.42.09
+TNA(comp.) 97.0.04 0.3.1 0.29.08 95.88.04 0.27.1 0.29.07 96.62.06 0.41.11 0.38.05 96.31.06 0.4.1 0.42.09

A. Extended Experiments
A.1. (Extended Experiment on Tab. 1) Main Results on SVHN dataset.

The table reports the results for the SVHN dataset in Tab. 2. Similar trends to those shown in Tab. 1 are observed in this
dataset as well.

A.2. (Extended Experiment on Fig. 4) Accuracy Compensation as increase of ne across datasets and models.

In this section, to illustrate the ability to interpolate accuracy across different models, we conduct additional accuracy
compensation experiments for two datasets, CIFAR10 (left column) and CIFAR100 (right column), considering three model
architectures: WideResNet28x10 (upper), MobileNetV2 (middle), and PreResNet110 (lower). We increase the number
ne and observe the interpolation of accuracy. To assess how accuracy is interpolated on average, we utilize boxplots and
statistically plot accuracy interpolation by repeating the presentation algorithm 10 times. The red dashed line represents the
performance of the original weights, and the numerical values on the left indicate the quantification of accuracy changes.
Negative values indicate a degradation in accuracy, and as observed in the Fig. 6, increasing ne leads to better accuracy
interpolation.

A.3. (Extended Experiment on Fig. 5) The shifting effect of angles across dataset and models.

To demonstrate that the proposed angle-shifting effect exists across all datasets and models, additional figures are presented
as follows. Firstly, in Fig. 7, plots for combinations not included in the main paper are provided for wideResNet28x10,
MobileNetV2, PreResNet110, and GoogleNet on CIFAR10 and CIFAR100 datasets. The plots showcase the shifting effect
of angles across models and datasets.

B. Further Analysis, Ablation Studies
TNA : The optimization curve. We report the results of TNA after weight averaging is done when using 10 ensembles,
ne = 10 in Fig. 9. We utilize the calibration set to optimize the process and determine the best trained weights. It is
important to note that the curve is unimodal a, and thus it is quite straight-forward to find the optimal angle of mRC, when
TNA is applied.

Assumptions. In our study, various assumptions were made to demonstrate that the algorithm has confidence calibration
effects. We reiterate some of the assumptions and provide deeper explanations. In detail, we elucidate the assumptions of 1)
∠(wi, Rwi) is equal across classes i ∈ [C], and 2) the dimension n is high-dimensional in the appendix, Appendix B.
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Figure 6. Extended experiment on Fig. 4 on CIFARs. Plots of the accuracy of the ensembled outputs correspond to the number of
ensemble members, on CIFAR10(left column) and CIFAR100(right column) dataset. The first row states the results on WideResNet28x10,
middle row states the results on MobileNetV2, and the third row states the results on PreResNet110. The accuracy is well compensated as
the ne increases.

1) ∠(wi, Rwi) is equal across classes i ∈ [C] : ∠(wi, Rwi) might vary across classes. This situation arises when the
rotation transform generated from the proposed algorithm TILT adjusts angles differently for each class. This violates
the assumption in Prop. 3.3 which assumes ∀i ∈ [C],∠(wi, z) = θ. Experimentally, as shown in Fig. 2, the left column
describes the mean of rotation over classes, while the right column describes the standard deviation of rotation over classes.
One observation is that in all cases, the standard deviation is not large, but it can occur when the number of classes C is
small (i.e. CIFAR10, C = 10), number of rotations nr is small, or θs is small. To address this issue and create a rotation
corresponding to a specific mRC(W,R) = θ, using a small value for θs and increasing the value of nr can be effective.

2) The penultimate feature space is high-dimensional : The assumption ∆z,i = arccos (cosψi cos θ) − ψi is associated
with the high-dimensionality assumption. As mentioned in the ”Blessings of the dimensionality” section in Section 5, the
essence of our approach is to apply a transformation to the class vector based on intensity, adjusting the correlation with
the penultimate feature. When a high-intensity transform is applied, the correlation between the penultimate feature and
the class vector decreases, approaching 90 degrees, as indicated by the near orthogonal theorem. If the dimensionality
decreases, the effectiveness of the algorithm may diminish. To verify this, we present additional ablation studies in Tab.3
and Fig.10. First, in Tab.3, we varied the dimension n of the last linear layer while training WideResNet28x10(Zagoruyko
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& Komodakis, 2016), MobileNetV2(Sandler et al., 2018), and EfficientNetB0(Li & Vasconcelos, 2019) on CIFAR10 and
CIFAR100 datasets. The additional linear layer is added in between the feature extractor and the final linear layer for the
experiment. We measured the ECE, and it is evident that the effectiveness of the algorithm decreases as n decreases for both
datasets. Next, in Fig.10, we measured the utility of the TILT algorithm as n decreases. The left figure, similar to Fig. 2,
measures mRC by increasing nr, and it shows that the narrower the n, the wider the range of mRC generated by a specific
nr. Therefore, it indicates the need for delicate adjustment of mRC for optimal performance of the proposed algorithm.
The middle and right figures measure the decrease in accuracy for different mRCs in situations with a single tilted weight
(middle) and TNA weight ne = 10 (right). Again, it confirms that as n decreases, accuracy performance degradation occurs
at smaller angles.

Table 3. Expected Calibration Error in percentage(%) for two datasets with respect to change in the number of dimension(n) in the
penultimate feature(pf)., CIFAR100 (left) and CIFAR10(right). None stands for unscaled, TNA (Tilt and Average), TS(Temperature
Scaling), and TS+TNA. The number aside to the architecture, with the parentheses denote the original dimension. Bold for the best
calibrated, underline for the second best. Lower the better.

CIFAR100 CIFAR10
Model n None TNA TS +TNA None TNA TS +TNA

WRN28x10(640)

10 11.05 11.04 1.41 1.40 1.73 1.48 0.7 0.48
40 7.24 2.21 3.10 2.18 1.78 0.55 0.58 0.54
160 7.25 2.66 2.84 2.05 2.20 0.60 0.83 0.54
640 5.91 4.11 4.69 4.55 1.66 0.66 0.84 0.78

MNV2(1280)

20 10.23 10.23 1.85 1.80 3.44 2.78 0.79 0.65
80 10.92 1.74 1.48 1.31 3.09 0.58 0.69 0.53
320 11.51 1.26 1.52 1.19 3.51 0.66 0.68 0.54

1280 10.03 1.54 1.82 1.41 3.49 0.78 1.06 0.81

EffB0(320)

40 10.9 1.63 1.59 1.37 2.74 1.15 0.96 0.86
80 10.7 1.52 1.32 1.32 3.67 0.85 0.95 0.71
160 10.23 1.24 1.29 1.01 3.24 0.73 0.81 0.66
320 14.8 1.56 1.77 1.34 4.65 0.82 1.12 0.95

C. Proof of Theorem 3.2
Proof. For the purpose of descriptive convenience, let u be the direction vector of class vectorwi be u, and direction vector
of penultimate vector z be v and ψi be ψ. Without loss of generality, let u be a unit vector pointing at the north pole of the first
dimension. u = [1, 0, ..., 0], and v = [v1, v2, ..., vn] Then the vector v lies in the space where ∠(u, v) = arccos(u · v) = ψ.
That is,

u · v = v1 = cosψ, v22 + · · · v2n = 1− cos2 ψ = sin2 ψ. (9)

Without loss of generality, we can also suppose that the plane u, v lies in the subspace spanned by two basis vectors
[1, 0, · · · , 0] and [0, 1, 0, · · · , 0], which means v1 = cosψ, v2 = sinψ, v3 = v4 = · · · = 0.

The rotated vector of v, Rθ(v) = [t1, t2, · · · , tn] will lie in the trace of the intersection of the surface of the n-dimension
hypersphere where t21 + t22 + · · · + t2n = 1 and v · Rθ(v) = cos θ. t1 cosψ + t2 sinψ = cos θ. As a function of t1,
{t2, t3, · · · tn} has the trace of,

t2 =
cos θ − t1 cosψ

sinψ
,

t23 + t24 + · · ·+ t2n = 1− t21 − t22

= 1− t12 −
(
cos θ − t1 cosψ

sinψ

)2

,

(10)

that is when t1 is fixed, {t3, · · · , tn} will lie in the surface of the n − 2 dimensional hypersphere of radius√
1− t12 −

(
cos θ−t1 cosψ

sinψ

)2

.

14



Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration

1− t12 −
(
cos θ − t1 cosψ

sinψ

)2

= 1− t21 −
cos2 θ − 2t1 cosψ cos θ + t21 cos

2 ψ

sin2 ψ

= − 1

sin2 ψ
t21 +

2 cosψ cos θ

sin2 ψ
t1 −

cos2 θ

sin2 ψ
+ 1

= − 1

sin2 ψ

(
t21 − 2 cosψ cos θ + cos2 ψ cos2 θ

)
+

cos2 ψ cos2 θ

sin2 ψ
− cos2 θ

sin2 ψ
+

sin2 ψ

sin2 ψ

= − 1

sin2 ψ
(t1 − cosψ cos θ)

2
+ sin2 θ,

(11)

and yields its maximum value when t1 = cosψ cos θ. Also

t23 + t24+ · · ·+ t2n = 1− t12 − t22

= − 1

sin2 ψ
(t1 − cosψ cos θ)

2
+ sin2 θ ≥ 0

(12)

gives the fact that cos(ψ + θ) ≤ t1 ≤ cos(ψ − θ), because the quadratic function is unimodal. The angle ∠(u,Rθ(v)) =
arccosu · v = arccos t1 is a strictly decreasing function, to find the mode it is sufficient to find the t1,

M[∆] = arccos

argmax
t1

√
1− t12 −

(
cos θ − t1 cosψ

sinψ

)2
− ψ, (13)

which is proved to yield its maximum value when t1 = cosψ cos θ.

Additionally,
∂

∂ψ
(arccos (cosψ cos θ)− ψ)

= − 1√
1− (cosψ cos θ)2

· (−sinψ) · (cos θ)− 1

=
sinψ cos θ√

1− cos2 ψ cos2 θ
− 1

<
sinψ√

1− cos2 ψ
− 1 =

sinψ

sinψ
− 1 = 0,

(14)

and the M[∆z,i] = arccos(cosψ cos θ)− ψ is the strictly decreasing function of ψ.

D. Real-life Implications
(Pneumonia Diagnosis Case.) First, consider a binary classification problem, specifically diagnosing pneumonia using only
chest images (Kermany, 2018)((a), (b), (c)). In case (a), where the individual is diagnosed with pneumonia, the confidence
in pneumonia infection exceeds 0.9, indicating a high confidence level in the correct prediction. However, in case (b), a
high confidence of 0.98 was assigned to the prediction of not having pneumonia. After calibration, the confidence level
decreases to 0.62. This lower confidence level in binary classification may serve as a signal of uncertainty in the decision.
False negatives and false positives can be life-threatening in the medical domain.

(Egg Classification Case.) Consider the task of discerning fresh eggs (Hub, 2022)(d),(e),(f). This task involves classifying
eggs based on their photos into different categories such as Normal, Cracked Egg, Deformed Egg, and Dirty Egg. We may
utilize the confidence of the calibrated model as an indicator of uncertainty (e.g., using a threshold of 0.5). In case (d), an
egg with a crack is correctly classified as a cracked egg after calibration with high confidence. In case (e), where a saleable
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egg is misclassified as a Deformed Egg with miscalibrated high confidence, and can be discarded. In case (f), a cracked egg
can be misclassified as a dirty egg, where some of the dirty eggs can be sold after washing, but eggs with cracks cannot be
sold after washing . This could lead to significant losses for the farm.

E. Experimental Details

lrinit epochs wd batch size
WideResNet28x10 0.1 300 5e-4 128
GoogleNet 0.1 300 5e-4 128
MobileNetV2 0.1 250 3e-4 128
PreResNet110 0.1 300 5e-4 128

Table 4. Training Details of trained weights for SVHN.

lrinit epochs wd batch size
WideResNet28x10 0.1 300 5e-4 128
GoogleNet 0.1 300 3e-4 128
MobileNetV2 0.01 250 3e-4 128
PreResNet110 0.1 300 3e-4 128

Table 5. Training Details of trained weights for CIFAR10 and CIFAR100.

We list the detailed information to conduct the experiments that are included in the main paper.

Model Family. The alternative weights are generated on WideResNet28x10(Zagoruyko & Komodakis, 2016),
GoogleNet(Szegedy et al., 2015), PreResNet110(He et al., 2016a), and MobileNetV2(Sandler et al., 2018) for CIFARs, and
ResNet-50(He et al., 2016a), and DenseNet169(Huang et al., 2017), ViT-L/16, and ViT-H/14(Dosovitskiy et al., 2021) . To
train the model for the CIFAR10, and CIFAR100, we followed the standard training scheme and evaluation code borrowed
from the pioneering work of (Ashukha et al., 2020), with the training information written in Tab. 4, 5 , and 6. For the
ImageNet-1k dataset, the trained weights are borrowed from Timm(Wightman, 2019) and Torchvision (Marcel & Rodriguez,
2010). We fix the number of ensembles ne = 10 for all the models.

Training Details. Most of the settings to train SVHN/CIFAR10/CIFAR100 networks are taken from (Ashukha et al., 2020).
Specifically, we used Momentum-SGD with batch size of 128, momentum 0.9. The batch size is fixed to 256. The learning
rate scheduler follows the work of (Garipov et al., 2018) and is specified as,

lr(i) ≡


lrinit

i
epochs ∈ [0, 0.5]

lrinit(1.0− 0.99(
i

epochs−0.5

0.4 )) i
epochs ∈ [0.5, 0.9]

lrinit × 0.01 otherwise

(15)

The information of the trained models is listed in Table. 7.

Acc. (SVHN) Acc. (CF10) Acc. (CF100) Image Size Interpolation Mean Std
WideResNet28x10 97.03 96.42 81.25 32 padding=4 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
GoogleNet 96.32 95.24 79.41 32 padding=4 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
MobileNetV2 95.64 92.58 73.41 32 padding=4 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
PreResNet110 96.565 94.71 77.74 32 padding=4 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]

Table 6. The information of the trained models for CIFAR10 and CIFAR100 datasets. We list the top-1, top-5 accuracy, and train / test
transformations for the images.

Hyperparameters. Generally we set the number of ensembles ne = 10 for all the results, and α = 5, β = 1 for the
hyperparameters for beta distribution. θs is set to 0.9rad if not stated. The search interval of rotation number nt is set to
50. We set three different θs for all the models, of 0.5, 1.0, 1.5 . The value of θs for Fig. 2 is specified in the figure. n, the
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Top-1 Top-5 Image Size Crop Percentage Interpolation Mean Std
ResNet-50 76.11 92.862 224 0.875 bicubic [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
DenseNet-169 75.6 92.806 224 0.875 bicubic [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ViT-L/16 84.24 97.818 224 0.9 bicubic [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ViT-H/14 85.708 97.73 224 0.875 bicubic [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

Table 7. The information of the trained models for ImageNet datasets. We list the top-1, top-5 accuracy, and train / test transformations for
the images.

dimension of the penultimate feature(pf ), is a pre-determined value from the model, with values corresponding to each
model.
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Figure 7. Extended experiment on Fig. 3 on CIFARs. Distribution plot of the data samples with angle between class vector and pf,
∠(wi, zx), with the corresponding predicted class row vector of the original weight (Orig.) and the tilted weights by depicted angle
of mRC (30°, 45°). “False” denotes the angle of pf with the class vector does not correspond to the respective class. As the mRC
increases, the angles shift towards 90 °. Best seen with colors.
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Figure 8. Extended experiment on Fig. 3 on ImageNet dataset. Distribution plot of the data samples with angle between class vector
and pf, ∠(wi, zx), with the corresponding predicted class row vector of the original weight (Orig.) and the tilted weights by depicted
angle of mRC (30°, 45°). “False” denotes the angle of pf with the class vector does not correspond to the respective class. As the mRC
increases, the angles shift towards 90 °. Best seen with colors.

Figure 9. The optimization curve when TNA is done with number of ensembles ne = 10. We leverage the calibration set to optimize
and find the optimal trained weights, applying grid search with the calibration dataset’s information allowed (‘Validation ECE’). The
‘Test ECE’, ECE on the test dataset, exhibits similar trend with the ‘Validation ECE’. Note that the curve is unimodal, making it able to
optimize.

19



Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration

Figure 10. Ablation study of when the dimension of penultimate feature n decrease. The experiment is done on CIFAR-10 dataset, with
WideResNet28x10. Here when n is set to lower values, the mRC tend to have larger deviation for a certain nr , making it harder for the
user to generate for a certain mRC. Thus the accuracy interpolation performance degrades after TNA.

Figure 11. Real-life examples of confidence calibration.
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