Under review as a conference paper at ICLR 2025

EIGENLORA: RECYCLE TRAINED ADAPTERS FOR
RESOURCE EFFICIENT ADAPTATION AND INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adapters (LoRA) are lightweight components that have made fine-
tuning large models on domain-specific tasks inexpensive. This has resulted in an
abundance of adapters in a growing open-source public community. We ask the
question: can these adapters be used to inform and further streamline adaptation to
new tasks? We introduce EigenLoRA, a parameter-efficient fine-tuning method
that uses trained adapters to perform fast adaptation on new domains with orders
of magnitude fewer parameters than LoRA. Our method finds a principal subspace
that aligns with the domain of the trained adapters. This allows for efficient and
fast adaptation to new tasks in this domain by simply learning coefficients on the
principal components of this subspace. Furthermore, EigenLoRA makes inference
time task-switching memory efficient. Instead of saving and loading whole LoRAs,
EigenLoRA can simply load lightweight coefficients. EigenLoRA|'| works across a
variety of domains and tasks and is a viable solution for edge-based and efficient
personalization applications.

1 INTRODUCTION

Rapid progress in the fields of natural language processing (Touvron et al. [2023)) and computer
vision (Rombach et al., |2021) has fueled the development of ever-growing large-scale models where
training billions of parameters has become commonplace. The size and complexity of these models
have made it infeasible for the average researcher to train or finetune them on downstream tasks and
datasets. In order to overcome these challenges, there has been an increased interest in parameter-
efficient fine-tuning (PEFT) methods like adapters (Houlsby et al., 2019} |Chen et al., 2022} Luo et al.|
2023)), low rank adaptation (LoRA) methods (Hu et al., 2021} [Kopiczko et al., 2023} [Liu et al.| [2024),
prompt-based methods (Lester et al., | 2021; |Razdaibiedina et al., 2023} [Fischer et al., 2024), etc.

In particular, LoORA and related follow-up works (Meng et al.| 2024} [Liu et al.,|2024) have garnered
significant interest due to their simplicity and effectiveness. This simplicity of usage has led to a
proliferation of low-rank adapters within an expanding open-source community. These adapters
contain compressed information from their training data, which may or may not be publicly available,
inspiring an examination of whether adapter weights can be used to inform and enhance the efficiency
of adaptation to new tasks. Recent work has shown that weight updates to deep neural networks
occurs in low-dimensional invariant subspaces (Kwon et al.,[2024)). This raises a possible hypothesis
that these LoRA adapters may also share such a principal subspace that could be reused without
having to search for it from scratch during the training of new adapters. We introduce EigenLoRA,
a PEFT method that extracts a set of information-dense principal components defining a subspace,
by decomposing the weights of a given set of trained adapters. This allows us to reduce the number
of learnable parameters (extending up to 100x less than LoRA) and achieve faster optimization
(upto 2x) of new adapters. Moreover, EigenLoRA allows for more memory-efficient inference
using multiple task adapters, especially benefiting edge devices (Liu et al.| 2022). We also present a
theoretical analysis of our method providing an approximation bound on reconstruction error when
projecting to principal subspaces; and our experiments across a wide range of vision and language
related tasks demonstrate its wide applicability.

shows an overview of how our method works. In summary, we propose EigenLoRA — a
method to recycle trained adapters by identifying a task-invariant weight subspace that is shared by

'We will release code compatible with HuggingFace PEFT and Diffusers library for EigenLoRA.

Under review as a conference paper at ICLR 2025

EigenLoRA oy € RVK
task1 Principal [&~ = task1
Components
oy € RE
W, € R task 2 EcRCT | | o, = - task2
e Extract
W, € R™™ LoRA rxK
0€ ioht t K<N a3 R
. weights € task3 — = — | = - task3
Pretrained (learnable) Principal
weights (fixed) ey . Components (Learnable)
Task Specific
Coefficients
(Fixed) ay € R7K
task N Task Invariant ——@— _ task N
Subspace

Figure 1: LoRA uses low rank matrices (r < n) for task adaptation. We observe that domain-specific
tasks may share a subspace even in the smaller LoORA weight space. This allows us to extract task-
invariant principal components defining this subspace. Using these fixed components, each LoRA
can be represented using an even smaller number of task-specific coefficients (K < n), making
adapter training fast, and more parameter efficient; and inference more memory efficient.

all tasks in the adapter domain. We hypothesize (and validate through experiments) that weights for
different tasks in a domain are restricted to this subspace. This restriction allows for more efficient
training of new adapters as they can be learned faster with fewer fask-specific parameters; and
multiple adapters can be served with lower memory footprint, improving inference efficiency. Our
key contributions are as follows:

* (Training): EigenLoRA uses significantly fewer number of parameters (up to 100x) to
train than LoRA, and converges faster (up to 2 x) than comparable methods, while reaching
similar or better performance.

* (Inference): EigenLoRA improves the memory efficiency of inference (=~ 18x) on
multiple tasks, by reducing the number of switchable parameters between tasks.

* (Applicability): We empirically demonstrate the effectiveness of EigenLoRA on a range of
aligned and diverse domains across different modalities of data (text/image). This validates
the existence of shared principal subspaces in modalities across the board.

2 RELATED WORKS

Low-Rank Adaptation refers to modeling neural network weight updates as a function of low-rank
matrices instead of training the entire weight matrix. This is a well-established line of research
starting from Burer-Monteiro factorization (Burer & Monteiro, 2003), with a recent resurgence by |[Hu
et al.[(2021)) (LoRA), who used it as a technique to finetune LL.Ms; and other related variants (Ma
et al.,|2024; Chi et al., 2019} [Kwon et al.| 2024). However, with rapid growth in the scale of models,
Low-Rank Adaptation has also become relatively expensive; for example, LoRA with a rank of
16 on GPT-3 Brown et al.|(2020) requires 75.5 million parameters. Consequently, more efficient
low-rank fine-tuning methods are being developed. Mixture of experts models (Huang et al., [2023};
Wu et al., [2024; Diao et al., 2023} [Zhong et al.| 2024} Zhou et al., 2018) have been proposed as a
method to adapt to new domains using a mixture of low-rank modules. But these approaches typically
require a substantial number of high-quality adapters to work efficiently (Ku et al., 2024), which can
significantly increase the model memory requirements (Zhou et al.| 2022). Furthermore, complex
gating or weighting mechanisms utilized with these models can exhibit training instability (Zoph
et al., [2022).

Recent methods have aimed to learn better subspaces for low-rank optimization, primarily by decom-
posing model weights into singular vectors for improved training. Meng et al.|(2024)) demonstrate
that initializing LoRA with singular vectors is superior to random initialization, while [Sharma
et al.| (2023) find that removing minor singular components enhances robustness. Using randomly
initialized principal components (Kopiczko et al.,|2023)) or weight matrices (Koohpayegani et al.|
2024) has also been explored to reduce the number of trainable parameters. However, as shown

Under review as a conference paper at ICLR 2025

in Section] random initialized subspaces may not be very useful. This is intuitive as the random
subspace may not have an overlap with domain-specific principal subspaces. On the other hand,
EigenLoRA uses trained adapters to extract a principal subspace suitable for a given domain of tasks
resulting in a better subspace initialization than and parameter efficiency. Given our focus on resource
and computation efficiency in this work, we focus primarily on LoRA (Hu et al.,|2021)) as our main
baseline, but EigenL.oRA can be used with any PEFT method like |Liu et al.| (2024)); Zhang et al.
(2023) where task-specific weights can be analyzed together.

3 METHOD

In this section, we describe the theoretical motivation and the algorithm of our method, with a
discussion on the hyper-parameters and quantification of practical benefits.

3.1 THEORETICAL MOTIVATION

Let W € R™*"™ be a linear transformation matrix from vector space R to R™. If W is a full-rank
(with rank min(n, m)) transformation matrix, then it represents all possible linear mappings between
the two spaces. In contrast, LORA adapters are defined as two matrices B € R”*" and A € R™*"
such that B A has the same size as W but rank » < min(n, m). These matrices combine to yield a
linear transformation between the same spaces R™ to R", but cannot span the entire space of such
mappings. Hence, LoRA adapters provide a parameter-efficient (typically, m - r+17-n < m - n)
way to adapt large models by learning only “important” directional updates confined to a subspace.

Moreover, many downstream adapters have been found to reuse the same “important” directions
(Meng et al 2024; Liu et al.l 2024). We hypothesize that LoRA adapters may reuse principal
subspaces that are fundamental for different domains of tasks. Once identified, task-specific weights
can be found in these smaller subspaces rather than the whole weight space. To illustrate this idea
clearly, we first define a space of tasks that are expressible using linear transformation matrices.

Definition 1 (Linear Transformation Tasks). Let 7 = {t : x € R™ — y € R"} denote a set of linear
tasks where: Nt € T, AW, € R™" such that y = Wyx + €; ,V x,y. Here, €; denotes the noise.

A LoRA weight matrix at any layer does the same transformation. Without loss of generality, assume
r < n and let the transformation matrix W; € R"*"™ be interpreted as r n-dimensional vectors:
w;,...,w; € R". Finding LoRA weights is equivalent to finding sets of these r vectors in R™. Next,
we define a subspace in R".

Definition 2 (Subspace). Let S*" = {ay,...,ax} (k < n) be a set of linearly independent vectors
€ R™. Denote S = span(Sk") = {Zle a;a; Vi, o; € R} as the subspace elicited by S*".

Vectors in a subspace S*7 lie in R” but are constrained to a smaller region. Similar to Tripuraneni
et al.[(2021), we use the following metric to measure distances between subspaces and vectors.
Definition 3 (Distance between subspace and a vector). Denote distance between a vector v and

subspace Sk gs sin 0(v, Sk’”), the sine of the principal angle 6 between them. The principal angle
is the smallest possible angle between a vector in the subspace and v.

Next, we introduce the idea of domain-specific subspaces.

Definition 4 (Principal Subspace). A subset of tasks Ty C T constitutes a domain if, 3 Sg’"’, v
t € Ty, such that sin 0(w?, 35”) =0Vicl,..,r. Denote 5’5’" as the principal subspace of T

Here, sin 6(w?, 35") = 0 implies that all the vectors constituting the weight matrix W; for all tasks

t, lie inside the subspace spanned by 85 """, The existence of principal subspaces (PS) is trivially
guaranteed for all domains d, e.g., when k = n. But, domains whose principal subspaces exist for
k < n would be practically useful. Even an Approximate Principal Subspace (APS), where the
distance is small, i.e., sin 9(w§, 55") < ¢ for some § ~ 0, would be useful, as we illustrate in
Sectiond] First, we present a theorem bounding the approximation error for recovering weights of
new linear transformation tasks using a given APS characterized by J.

Under review as a conference paper at ICLR 2025

Theorem 1. Given an APS (3(’;”7 8), VW, e R™*™ of tasks t € Tq, AW/ € 5’5” such that,

IWe = W{llp < 8||Willp = tan(sin™" 6)[W{||r M

Proof. Let the weight matrix for task ¢, W, € R"*™ be composed of vectors {wi}’_,. By definition
of APS, Vi,sin G(W,’;,S(];’") < 6. This implies that there exists a vector wi € Sf’" such that
sin f(wi, wi') < &, where w! is the projection of wi on S5 with an angle 6(w?, w!'), or simply 6

between them. Here, sin() = W < 4, and tan(0) = W < tan(sin™!).
t t

Then,

T T

IWe = Wille = | D (Iwi = wi'll2)? < || > Olwill2)2 = 8|Wellr or,
i=1 1=1

< (| D _(tan(sin™" 8)[|wi'||2)? = tan(sin ™" 6)|[W/||

=1

O

Theorem [Tl shows that for all task transformations that lie within the
principal subspace of a domain, i.e. § = 0, we can recover them
exactly using a linear combination of its principal components. For
transformations outside this domain, i.e. § # 0, we can still find a
transformation with bounded approximation error. In the worst case,
when the transformation needs a component which is orthogonal to
the principal subspace, i.e. § = 1, the approximation error can be
unbounded (see Figure [2). Next, we present an algorithm to find
principal subspaces using trained adapters and our experiments in

Section] show that in most practical cases, the above approximation ~Figure 2: Projection on the prin-
error is small. cipal subspace may incur an ap-
proximation error described by 4.

sin~1§

N
&
g

&

%

“;
L,

S,

3.2 ALGORITHM

Assume that we have N LoRA adapters (sets of A, B matrix pairs for each adapted layer), trained on
various tasks in some domain 7, for some base pre-trained model M. We present Algorithm I]to
calculate a list of principal components (eigenvectors that we call EigenLoRA PCs) which defines
an approximate principal subspace (APS) for this domain. The algorithm stacks LoRA matrices
(with variable ranks) at a particular layer to be analyzed for overlap. By treating each matrix as a
list of vectors and decomposing this stack of vectors from across tasks, we find the most important
components that can be linearly combined to approximate original weight matrices. We illustrate our
algorithm using generic weight matrices (W;). In practice, we apply the algorithm to all LoRA layer
A/ B matrices.

Algorithm 1 EigenLoRA PCs extraction

Input: LoRA matrices {W; € R™*"}¥ number of Principal (Eigen) Components (K)

Output: EigenLoRA PCs set £ f ' Mean M for translation.

W = sTacK({W;},, dim = 0) € REx" > Stack all matrices. Here R =), 7.
M=W-M > Zero-center them. Here M = MEAN(W, dim = 0)
U,S, VT = SVD(M) > Perform Singular Value Decomposition.
55(’" =VT[: K] > Choose top K Eigen components.

P
return ;" , M

Under review as a conference paper at ICLR 2025

Learning new adapters Given a set of EigenLoRA PCs &£ f " = {Fy € R“"}szl (denoted
simply by & € RE*" from here), an approximation W/ to any task matrix W; can be found by
optimizing:

min|| W, — W[l

where o € RE*" is a coefficient matrix that linearly combines the K EigenLoRA PCs in r different
ways producing W/ = STACK({SUM(«; E, dim = 0) + M};Zl, dim = 0) € R"*™. In fact, we can
analytically compute o’ = (W, — M)ET for any weights W, to find the least distant projection W/
(which minimizes the above objective) on the subspace spanned by £. However, we do not know the
weights W; for new tasks in advance. In LoRA, both A and B which have 7 - n number of parameters
need to be learned. But using Eigenl.oRA PCs, we can learn « instead. This replaces the original
LoRA computation

h=Wox + BA(z) with h=Wyx +|a5Epali€a(z)|.

Here, W) are the pre-trained weights and £p, £4 are EigenLoRA PCs that remain fixed during
training. The corresponding o and o are learned. This reduces the number of learnable parameters
from O(rn) to O(rK), by a factor of 7+ (assuming rank r to be fixed, which could also be changed).
This provides a trade-off between subspace coverage (higher /') and parameter efficiency (increases
learnable parameters).

Singular Values of top 128 PCs

How to choose K? The number of EigenLoRA PCs to be ex-
tracted is a hyperparameter chosen on the basis of diversity of tasks.
The more aligned the weight matrices of a domain are, the fewer
EigenLoRA PCs we need to achieve a low approximation error.
However, this also restricts the space of weight matrices this set
of EigenLoRA PCs could represent. More diverse weight matrices
would need a higher number of EigenLoRA PCs to represent them,
with the advantage of being able to represent a bigger space of tasks.
A practical way to quantify the diversity of tasks is to look at the .
singular values of the EigenLoRA PCs. In we show a O o ot 112128
case where most of the information is contained in a handful of top Figure 3: The top 16 compo-
EigenLoRA PCs. The percentage of cumulative singular values can enis are most information dense
be used as a threshold to decide K. More empirically, performance (A matrices from layer 1, Lo-
of reconstructed weight matrices on a validation set of tasks can be RAHub, see Section B22).

used to decide a suitable K.

N w EN

Singular Value

-

Memory-efficient Inference In an application where multiple adapters are used (for example,
image generation in multiple styles like photorealistic, sketch, etc.) frequently swapping between
LoRA adapters adapters can be expensive. Either all adapters need to be loaded in GPU memory
together (requiring larger memory) or they need to be loaded from CPU memory/disk (slow). With
EigenLoRA, the EigenLoRA PCs are task-invariant while task-specific coefficients are lighter weight,
allowing for more efficiency. For N LoRAs, the memory footprint is O(Nrn). For EigenLoRAs, it is
O(Kn+NrK). Asr, K < n, EigenLoRA becomes times more memory efficient asymptotically.
For example, serving N = 8 LoORAHub adapters (Section[d.2.2)) would require ~ 5x less adapter
memory than LoRA. This would be especially beneficial for mobile devices with small memory.

Extreme Parameter Efficiency Instead of stacking LoRA weight matrices, we can flatten them
and treat them as vectors. In this case, the EigenLoRA (we call it EigenLoRA) PCs are r - n
dimensional (instead of n) and « is a K dimensional vector that linearly combines these EigenLoRA
PCs to produce an approximation of our weight matrix. This results in an additional reduction factor
r (the rank of each adapter needs to be fixed) in the number of parameters to learn but comes at
an expense of some more model memory. This is analogous to a mixture-of-experts setting (where
experts are EigenLoRA™™ PCs). More details are deferred to Appendix

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS AND ANALYSIS

In this section, we demonstrate the efficacy and versatility of EigenLoRA in a wide range of task
complexities, modalities, and model architectures. We evaluated EigenLoRA on a simpler aligned
domain setting with image classification tasks (Section[4.1)); and a difficult diverse domain setting
with NLP tasks (Section[4.2). We show that EigenLoRA requires substantially fewer parameters to
achieve parity with or even exceed the performance of LoRA (Tables[T} 2] [3). Furthermore, it achieves
loss convergence at a similar or faster rate (Figure[d)), serving as a cost-effective alternative to random
initialization (LoRA) and other existing initialization methods (Meng et al., 2024). Finally, we
illustrate its memory-efficient inference capabilities with a text-to-image generation Stable Diffusion
model (Rombach et al.,[2021) (Section .

4.1 ALIGNED DOMAIN — IMAGE CLASSIFICATION

In this experiment, we test EigenLoRA with a pre-trained Vision Transformer (ViT) (Dosovitskiy
et al.,[2021) which is adapted for image classification on 3 data sets. The datasets are randomly
divided into 5-6 sub-datasets with no overlap in categories, similar to continual learning (Kaushik
et al., 2021) and federated learning (Shenaj et al., |2023) setups. Since the sub-datasets originate
from a common dataset, their tasks are more aligned corresponding to the case where § is small (see
Section @]) For adaptation, we used LoRA (Hu et al., 2021) and VeRA (Kopiczko et al.,[2023) to
compare with our EigenLoRA. For completeness, we evaluated each method under multiple settings
and report the mean performance across all sub-datasets.

Setup We used the Huggingface PEFT library Mangrulkar et al|(2022)) for the implementations for
LoRA and VeRA, and followed their respective hyperparameter recommendations to train adapters
for each sub-dataset from scratch. For EigenLoRA, we use all but one LoRA trained on individual
sub-datasets to calculate EigenLoRA PCs (Algorithm (leave-one-out). We then learn the coefficient
matrix « for the left-out task using the method described in Section[3.2] Each method is finetuned for
10 epochs. Other experimental details are available in Appendix[A.I]

Parameter Efficiency summarizes the results of our experiment. Note that all models
require training of the last linear layer (with ~15K parameters) since the pre-trained ViT has a
different number of categories. For the Base Model, no other parameter is trained. For other models,
some additional parameters are trained. EigenLLoRA is capable of adapting to new sub-datasets
using only two principal components (or 96 additional trainable parameters). In fact, this small
number of additional parameters for Eigen.oRA help it match or outperform both LoRA and VeRA
(both with considerably higher number of parameters). Lastly, we tested zero-shot EigenLoRA
weights initialized randomly within the principal subspace and trained only the last layer (like the
base model). The performance of this model exceeds that of the base model with no additional
parameters, highlighting the effectiveness of extracting the principal subspaces. The list of trainable
parameters and more details are available in appendix [A.T]

Table 1: Aligned domain image classification with Vision Transformer. ZS refers to zero-shot.
EigenLoRA matches or increases performance with drastically fewer number of parameters.

Trainable

Parameters CIFAR100 Food101 Flowers102 RESISC45
Full Training 86M 97 96.64 98.82 -
Base Model 15K 90.07 90.8 80.71 92.62
LoRA7(r = 4) +147K 93.79 95.73 95.03 95.79
LoRA(r=1) +36K 92.45 91.07 90.14 -
VeRA 21 +18K 90.87 91.75 91.25 92.81
EigenLoRA (K = 2) +96 94.8 95.14 98.44 95.40
EigenLoRAZS +0 91.4 92.48 95.7 -

Under review as a conference paper at ICLR 2025

4.2 DIVERSE DOMAIN — NATURAL LANGUAGE UNDERSTANDING
4.2.1 GLUE BENCHMARK

Next, we evaluate EigenLoRA on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al. [2019) datasets using the RoBERTa;,s. model (Liu et al., [2019). We use 6
different tasks: MRPC, SST-2, CoLA, QNLI, RTE and STS-B. Following the setup of VeRA, we
omit time-intensive MNLI and QQP tasks, thus avoiding the use of MNLI initialization for MRPC,
RTE, and STS-B tasks. In this setting, LoRAs are trained not on sub-datasets but on these different
datasets representing the diverse domain setting, where 6 may be larger than in the aligned domain
setting. We follow the previous leave-one-out evaluation setup, where EigenLoRA PCs are calculated
using LoRAs of all but one task, and « is learnt for the left-out task. Refer to Appendix [A.2.T]for all
hyperparameters and implementation details.

Faster Convergence Our findings in[Table 2)indicate that similar to the aligned domain experiments,
EigenLoRA (K = 32) is able to match LoRA performance with 100x fewer trainable parameters,
while outperforming VeRA. EigenLoRA can effectively extract a useful principal subspace even
from diverse domains and robustly adapt to new domains. In this setup, we also evaluate the weight
initialization speed-up capability of EigenLoRA. This was recently studied by |Meng et al.|(2024)
(PiSSA) who initialize their LORA matrices with the principal directions of the pre-trained weight
matrix (Wp). In contrast, we randomly initialize weights in our extracted principal subspace and
compare its training convergence with other methods. The training loss graphs in Figure[d] demonstrate
that EigenLLoRA achieves faster convergence than PiSSA and VeRA and is slightly faster than
LoRA, underscoring the importance of our extracted principal subspace. The reason for VeRA’s poor
performance as well as convergence maybe due to random initialization. It can be hard to optimize
these random yet fixed weight components that may not align with task-critical principal components.

Method igzl‘ﬁg: MRPC SST-2 CoLA QNLI RTE STS-B Ave.
Full Training T35M 8897 0128 35981 9229 79.78 9089 83.84
PISSA [34] 12M 8652 9415 6132 9215 71.84 9025 82.70
EigenLoRAiM! 12M 8971 9335 61.58 922 7473 89.56 83.52
LoRA (r = 32) [2M 8676 9472 59056 9253 7761 90.81 83.67
VeRA (r = 256) 25K 7598 9323 5414 8921 6678 87.03 77.72
EigenLoRA 12K 87 9415 5981 9273 77.62 9058 83.65

Table 2: GLUE benchmark results. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the remaining tasks. In all cases, higher values indicate better performance.

Training Loss
08 v
0.6
0.4 Tttt A b b
02
TRAINING STEP W
0 100 200 300 400 500 6000 s0 100 150

FULL TRAINING = EIGENLORAINIT — EIGENLORA = PISSA =— VERA (r=256) =— LORA

Figure 4: Fast Covergence and Better Initialization EigenLoRA demonstrates fast convergence
compared to LoRA and VeRA. EigenLoRA achieves a speedup of up to 1.5x against LoRA and up to
2x compared to PISSA. This experiment was carried out on the CoLA task of the GLUE benchmark.

Under review as a conference paper at ICLR 2025

4.2.2 LORAHUB

Finally, we also tested our method in settings where the adapters may be trained on significantly
diverse domains. LoORAHub (Huang et al., 2023) is a collection of 196 adapters of the FLAN T5
Large model (Chung et al.,|2024), trained on a variety of task domains like Reading Comprehension
(Adversarial QA (Bartolo et al.,[2020), DuoRC (Saha et al.| 2018)), etc.), Text Classification (BoolQ
(Clark et al., [2019), etc.), Math (Hendrycks et al.} [2021), Text Generation (Maas et al.,[2011)), etc.
LoRAHub represents the realistic setting where we directly use publicly available trained adapters,
which may present significant diversity in terms of quality and task domain.

Setup Not all publicly available adapters are useful. After filtering out bad adapters (see Ap-
pendix[A.2.2), we were left with 68 adapters, where the performance of the LORA model exceeded
base model substantially. As running leave-one-out experiments are expensive, we split the 68
adapters randomly into two sets (53, 15). EigenLoRA PCs were calculated using the larger “training”
set and evaluations were done on the smaller “test” set. We evaluated EigenLoRA under different
settings: EigenLoRA! (Section for extreme parameter efficiency, zero-shot (ZS) (randomly
selecting weights from the principal subspace) and Analytical reconstruction (AL) (calculated using
the already available adapter weights, no training). The performance on two individual datasets along
with the average across the 15 test domains is reported in Table[3] Some other results are defered to

Appendix[A.2.7]

EigenLoRA outperforms LoRA with 32x fewer parameters. In fact, the smallest possible LoRA
with r = 1 still uses 2x more parameters than EigenLoRA while gaining no performance over
the base model. Zero-shot results highlight the significance of identifying the principal subspace.
Even randomly selected weights within that subspace achieve better performance than base model.
Although EigenLoRAM™! is memory-extensive when training, it uses even fewer number of parameters
and achieves similar performance. Finally, the analytically calculated EigenLoRA weights represent
the projection of original LoRA weights on the identified principal subspace. Our trained Eigenl.oRAs
reach close to or even surpass the performance of these weights showing that « can be easily
optimized.

Table 3: Evaluation of our methods on LoRAHub (Diverse domain).

Trainable Amazon Wiki Average

Parameters Review Polarity ~ Generate Subject (15 tasks)
Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4. ™ 96.18 39.97 63.10
LoRA (r =1) 295K ({ 16x) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K ({ 32x) 96.18 40.97 63.50
EigenLoRAM (K =8) 2K ({ 2400x) 96.18 11.37 60.52
EigenLoRA?S 0 39.59 9.03 51.29
EigenLoRAZS-flat 0 69.16 9.03 53.50
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04

4.3 MEMORY-EFFICIENT INFERENCE — TEXT-TO-IMAGE MODELS

As adapters become more common, we see a new challenge in efficiently hosting multiple adapters
at the same time for different tasks. An example application domain is image generation, where
multiple adapters correspond to different generation styles. If we want to quickly change between
styles, we would need to swap an active adapter with another, potentially from CPU memory or disk.
This can significantly slow down inference and can be performance critical in edge devices. We
know that EigenLoRA can reduce the number of in-memory parameters by extracting and reusing
a task-invariant subspace. Instead of using EigenLoRA to train new adapters, we can also use it to
perform memory-efficient inference.

Analytical Reconstruction To show EigenLoRA’s efficacy, we extracted K = 14 EigenLoRA
PCs from N = 20 Stable Diffusion-XL (Podell et al., 2023) LoRA adapters (rank r = 32) taken

Under review as a conference paper at ICLR 2025

EigenLoRA (analytical)

Surreal landscape, giant skull waterfall, forest growing on City with skyscrapers and neon signs Toy face of red head man with beard and blue eyes A colossal street mural with vividly colored

skull,vibrant colors, red sun, teal sky, birds, ilustrative style, chameleon, blending seamlessly into a riot of urban
fantasy ar, flowing water, rock formations, lush vegetation patterns and textures, with a touch of whimsy

Figure 5: Analytical reconstruction of LoRAs using EigenLoRA can result in substantial reduction in memory
usage without much degradation in visual quality. See Appendix@for more examples.

from HuggingFace diffusers library von Platen et al.[(2022). We use r € {16,32} in o € R™*¥ to
analytically calculate the projected weights of original LoRAs on the extracted principal subspace.
The number of denoising steps during image generation was set to 30 and the seed was set to 0.
Images from these EigenLoRAs and their corresponding original LoRAs can be seen in Figureﬂ
This reconstruction reduces the number of parameters to store all adapters from 4.6GB to 261 MB.
This results in approximately 18 x reduction in number of low-rank parameters needed to
be stored in memory. This is significant, especially if the LoRA size and number is large . With
EigenLoRA, a large number of adapters can be stored at once in GPU memory and easily swapped.

EigenLoRA (trained)

Figure 6: Comparison of images generated by LoRA and EigenLoRA trained on Torino Aqua anime style
images. For EigenLoRA, we utilized 12 components with only trainable coefficients to finetune the base model.

Trained EigenLoRAs Lastly, we also show the results of trainable EigenLoRAs in this domain.
In this setup, we use a version of Stable-Diffusion-XL[1lmodel as our base model and use publicly
available LoRA adapters from the HuggingFace diffusers (von Platen et al.,[2022) repository which

Under review as a conference paper at ICLR 2025

EigenLoRA (K=17)

P .
EigenLoRA (K=12) EigenLoRA (K=15)

Figure 7: Failure Case: EigenLoRA may struggle if a task-critical principal component is not present in the
extracted principal subspace. In this case, the model loses the important “mosaic” property in the generated
image for the prompt: “mosiac picture of a dog”.

have been trained on different anime styles to extract the EigenLoRA PCs.. We train coefficients
for K = 12 EigenLoRA PCs to adapt the model to a new domain using publicly available digital
anime art data by a digital artist, Torino Aqua, whose work is defined by a unique blend of colorful
palettes, intricate linework, and expressive character designs. The objective is to generate images in
the similar artistic style. We show the results in Figure[6] We compare the results of a LoRA and our
EigenLoRA (K=12) trained on similar data on the same base model[Il and observe that EigenLoRAs
are able to get visual quality similar to LoRA at a fraction of the compute cost.

5 CONCLUSION, LIMITATIONS AND OPPORTUNITIES

We introduce EigenLoRA, a PEFT method that recycles trained adapters by finding a task-invariant
principal subspace. This allows for more efficient training of new adapters and inference with multiple
adapters. Through experiments, we showed that EigenLoRA works and provides practical benefits in
a wide range of scenarios. Our method has the potential to mitigate the perpetually widening compute
resource gap (Ahmed & Wahed, 2020} Besiroglu et al.| 2024) and reduce the environmental cost of
training and using Al models [2021; |Ligozat et al.,|2021). It also holds promise for training
personalized models on low-resource devices, in privacy-critical use-cases.

However, there are some potential limitations of our method. Figure[7|presents a failure case, where it
fails to achieve a key property of the desired image. As mentioned in Section[3.1} the approximation
error in a subspace projection depends on components orthogonal to that subspace, even if all tasks
may share a principal subspace. If these orthogonal components are critical for a task, performance
will suffer. This is because EigenLoRA does not search for weights outside of the principal subspace.
However, a simple extension of EigenLoRA which frees a small number of rank-1 weights to be
trainable outside of the principal subspace, can avoid this problem. This would change the EigenLoRA
computation from h = Woz + a5Epa’i€a(z) to say, h = Woz + (g HTEST iy HTE T () +
By A (), where 51, ! represent top K — 1 fixed EigenLoRA PCs, a5, o’y * their respective
learnable coefficients and Bj, A; represent rank-1 free learnable weights. Moreover, our experiments
do not include empirical optimizations at each layer or individual weight matrix level. Although
we experimented with different values of K, it was fixed for all layers and both A, B matrices in
each experiment. This can be further optimized empirically as discussed in Section[3.2] Lastly,
EigenLoRA" has potential to be used as a mixture-of-experts model. We defer these extensions and
optimization for future work.

REFERENCES

cagliostrolab/animagine-x1-3.1 - Hugging Face — huggingface.co. https://huggingface,
co/cagliostrolab/animagine—-x1-3.1, 2024.

Nuri Mahmoud Ahmed and Muntasir Wahed. The de-democratization of ai: Deep learning and the
compute divide in artificial intelligence research. ArXiv, abs/2010.15581, 2020. URL https:
//api.semanticscholar.org/CorpusID:225102971.

10

https://huggingface.co/cagliostrolab/animagine-xl-3.1
https://huggingface.co/cagliostrolab/animagine-xl-3.1
https://api.semanticscholar.org/CorpusID:225102971
https://api.semanticscholar.org/CorpusID:225102971

Under review as a conference paper at ICLR 2025

Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp. Beat the
ai: Investigating adversarial human annotation for reading comprehension. Transactions of the
Association for Computational Linguistics, 8:662-678, 2020.

Tamay Besiroglu, Sage Andrus Bergerson, Amelia Michael, Lennart Heim, Xueyun Luo, and Neil
Thompson. The compute divide in machine learning: A threat to academic contribution and
scrutiny? ArXiv, abs/2401.02452, 2024. URL https://api.semanticscholar.org/
CorpusID:266818226.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS 20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization. Mathematical Programming, 95:329-357, 2003. URL
https://api.semanticscholar.org/CorpusID:7691228.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. ArXiv, abs/2205.13535,
2022. URL https://api.semanticscholar.org/CorpusID:249097890.

Yuejie Chi, Yue M. Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization:
An overview. IEEE Transactions on Signal Processing, 67(20):5239-5269, 2019. doi: 10.1109/
TSP.2019.2937282.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-Domain-Adapters:
Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories. June
2023. doi: 10.48550/arXiv.2306.05406.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview,
net/forum?id=YicbFdNTTy.

Marc Fischer, Alexander Bartler, and Bin Yang. Prompt tuning for parameter-efficient medical image
segmentation. Medical Image Analysis, 91:103024, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790-2799. PMLR, 09-15 Jun 2019. URL https://proceedings.mlrl
press/v97/houlsbyl9a.htmll

11

https://api.semanticscholar.org/CorpusID:266818226
https://api.semanticscholar.org/CorpusID:266818226
https://api.semanticscholar.org/CorpusID:7691228
https://api.semanticscholar.org/CorpusID:249097890
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Prakhar Kaushik, Alex Gain, Adam Kortylewski, and Alan Yuille. Understanding catastrophic
forgetting and remembering in continual learning with optimal relevance mapping, 2021. URL
https://arxiv.org/abs/2102.11343\

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing loRA using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?1id=TjfXcDgvzk.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix
Adaptation. October 2023. URL https://openreview.net/forum?id=NjNfLdxr3A.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.). Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand,
August 2024. Association for Computational Linguistics. URL https://aclanthologyl
org/2024.acl-1long.Q0.

Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. Efficient compression
of overparameterized deep models through low-dimensional learning dynamics, 2024. URL
https://arxiv.org/abs/2311.05061.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045-3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243\

Anne-Laure Ligozat, Julien Lefevre, Aurélie Bugeau, and Jacques Combaz. Unraveling the hidden
environmental impacts of ai solutions for environment. ArXiv, abs/2110.11822, 2021. URL
https://api.semanticscholar.org/CorpusID:239616423.

Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. Bringing ai to edge:
From deep learning’s perspective. Neurocomput., 485(C):297-320, May 2022. ISSN 0925-
2312. doi: 10.1016/j.neucom.2021.04.141. URL https://doi.org/10.1016/7j.neucom.
2021.04.141.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692, 2019. URL https://api.semanticscholar.org/CorpusID:
198953378.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guangnan Jiang, Zhiyu Wang, and Ron-
grong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

12

https://arxiv.org/abs/2102.11343
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=NjNfLdxr3A
http://www.cs.toronto.edu/~kriz/cifar.html
https://aclanthology.org/2024.acl-long.0
https://aclanthology.org/2024.acl-long.0
https://arxiv.org/abs/2311.05061
https://aclanthology.org/2021.emnlp-main.243
https://api.semanticscholar.org/CorpusID:239616423
https://doi.org/10.1016/j.neucom.2021.04.141
https://doi.org/10.1016/j.neucom.2021.04.141
https://arxiv.org/abs/2402.09353
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378

Under review as a conference paper at ICLR 2025

Cong Ma, Xingyu Xu, Tian Tong, and Yuejie Chi. Provably Accelerating Il1l-Conditioned Low-Rank
Estimation via Scaled Gradient Descent, Even with Overparameterization, pp. 133-165. Springer
Nature Switzerland, Cham, 2024. ISBN 978-3-031-66497-7. doi: 10.1007/978-3-031-66497-7_7.
URL https://doi.org/10.1007/978-3-031-66497-7_7.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142—150, 2011.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft) 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models, May 2024. URL http://arxiv.org/abs/
2404.02948L arXiv:2404.02948 [cs].

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952,

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and
Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparame-
terization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 6740-6757, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.421. URL
https://aclanthology.org/2023.findings—acl.421.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674—-10685, 2021. URL https:
//api.semanticscholar.orqg/CorpusID:245335280.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and Karthik Sankaranarayanan. Duorc: To-
wards complex language understanding with paraphrased reading comprehension. arXiv preprint
arXiv:1804.07927, 2018.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
in Language Models with Layer-Selective Rank Reduction, December 2023. URL http://
arxiv.org/abs/2312.13558, arXiv:2312.13558 [cs].

Donald Shenaj, Marco Toldo, Alberto Rigon, and Pietro Zanuttigh. Asynchronous federated
continual learning. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 5055-5063, 2023. URL https://api.semanticscholar,
org/CorpusID:258041245.

Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democra-
tizing large language models via personalized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.org/
CorpusID:257219404.

Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear representations. In
International Conference on Machine Learning, pp. 10434-10443. PMLR, 2021.

13

https://doi.org/10.1007/978-3-031-66497-7_7
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2404.02948
http://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2307.01952
https://aclanthology.org/2023.findings-acl.421
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
http://arxiv.org/abs/2312.13558
http://arxiv.org/abs/2312.13558
https://api.semanticscholar.org/CorpusID:258041245
https://api.semanticscholar.org/CorpusID:258041245
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

Under review as a conference paper at ICLR 2025

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/
diffusers, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
https://arxiv.org/abs/1804.07461.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael K. Gschwind, Anurag Gupta,
Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Kumar Jain, Michael G.
Rabbat, and Kim M. Hazelwood. Sustainable ai: Environmental implications, challenges and
opportunities. ArXiv, abs/2111.00364, 2021. URL https://api.semanticscholar.
org/CorpusID:240354766.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning, 2023. URL https://arxiv.org/abs/2303.10512,

Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. arXiv preprint
arXiv:2402.16843, 2024.

Qihao Zhou, Kan Zheng, Lu Hou, Jinyu Xing, and Rongtao Xu. X-lora: An open source lpwa
network. arXiv preprint arXiv:1812.09012, 2018.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=jdJolHIVinI.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

A APPENDIX

A.1 EXPERIMENTS

For VeRA, LoRA and PiSSA, we experimented with a range of learning rates, from higher to lower,
along with three different scheduling approaches: ReduceL.RonPlateau, Linear, and Cosine. The
hyperparameters that yielded the best average performance were selected for further experimentation.
The observed discrepancies with EigenLoRA hyperparameters are attributable to these methodological
choices. Comprehensive hyperparameter tuning for EigenLoRA was not pursued extensively, as the
initially selected hyperparameters, notably a high learning rate paired with ReduceLRonPlateau or
Linear, demonstrated satisfactory performance, thereby conserving computational resources.

A.1.1 IMAGE CLASSIFICATION

Trainable parameters for EigenLoRA The base model is vit-base-patch16-224. The following
are the trainable parameters in ViT (Dosovitskiy et al.,[2021)) that are trained for EigenLoRA. We
ignore the last linear layer for simplicity since it is trained for all models and baselines and is
constant. The loading parameter has the shape of [number of EigenLoRA PC, 1] (we only have
2 in each EigenLoRA PC for this experiment). Therefore, the total number of trainable pa-
rameters (for the number of components= 2) is 12 (layers) x 4 (set of parameters per layers) x
2 (number of trainable parameter per coefficient) = 96 trainable parameters.

14

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://arxiv.org/abs/1804.07461
https://api.semanticscholar.org/CorpusID:240354766
https://api.semanticscholar.org/CorpusID:240354766
https://arxiv.org/abs/2303.10512
https://openreview.net/forum?id=jdJo1HIVinI
https://openreview.net/forum?id=jdJo1HIVinI
https://arxiv.org/abs/2202.08906

Under review as a conference paper at ICLR 2025

model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.
model.encoder.layer.

.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
.attention.attention.value.eigenlora_A.loadings
.attention.attention.value.eigenlora_B.loadings
.attention.attention.query.eigenlora_A.loadings
.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.9.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.l0.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.l0.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.l0.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.l0.attention.attention.value.eigenlora_B.loadings
model.encoder.layer.ll.attention.attention.query.eigenlora_A.loadings
model.encoder.layer.ll.attention.attention.query.eigenlora_B.loadings
model.encoder.layer.ll.attention.attention.value.eigenlora_A.loadings
model.encoder.layer.ll.attention.attention.value.eigenlora_B.loadings

O WWOWOOWOWOOWJIJIJIJooooO U UUUdDdDdDDWWWWNDNNMMNMNNRERRERREREOOOO

NeJ

Hyperparameters LoRA (Hu et al.,[2021) and VeRA (Kopiczko et al.,[2023)) implementations are
taken from the HuggingFace PEFT (Mangrulkar et al.| 2022) library with hyperparameters of the

default method. For Food101 (Bossard et al.| | 2014) experiment, we randomly remove 1 class for ease
of compute. Experimental hyperparameters are reported in [Table 4] and [Table 3}

Experimental Results The experiments were conducted 5 times utilizing randomly generated
dataset splits. The mean accuracy values are reported in Empirical analysis indicates that
without control and annealing of learning rates, the loss for both LoORA and VeRA may diverge or
plateau, particularly with high learning rates. Even with the lower learning rate, Full training or LoORA
can overfit to the training data without proper regularization. In contrast, no such instability was
observed during EigenLLoRA training, where a relatively higher learning rate proved advantageous
for rapid convergence.

15

Under review as a conference paper at ICLR 2025

CIFAR100 Flowers102 Food101 RESISC45

Learning Rate le—4 le—4 le—4 le—3
Weight Decay 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06
Epochs 10 10 10 10
Number of Subsets 5 6 5 5
Categories/Subset 20 17 20 9
Seed 42 42 42 42
Batch Size 128 64 128 128

Table 4: Hyperparameters for LoRA (Hu et al., [2021) and VeRA (Kopiczko et al., [2023)) for the
Image Classification Experiment

CIFAR100 Flowers102 Food101 RESISC45

Learning Rate le—2 le—2 le—2 le—3
Weight Decay 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06
Epochs 10 10 10 10
Number of Subsets 5 6 5 5
Categories/Subset 20 17 20 9
Seed 42 42 42 42
Batch Size 128 64 128 128

Table 5: Hyperparameters for EigenLoRA for the Image Classification Experiment

Trainable
Model Params subsetl subset2 subset3 subsetd subset5 Avg.
FT 86389248 98.8 97.95 95.55 96.05 96.3 96.93
LoRA (r =1) 36864 97.6 93.95 93.75 91.75 85.2 92.45
LoRA (r =4) 147456 98.15 95.2 93.5 92.85 89.25 93.79
VeRA (r = 2) 18480 93.65 89.7 89.5 89.95 91.55 90.87
EigenLoRA (K =2) 96 97.25 95.05 94.55 93 94.15 94.8

Table 6: Image Classification Accuracy results on CIFAR100 (Krizhevsky et al., 2009)

Trainable
Model Params subsetl subset2 subset3 subset4 subsetS Avg.
FT 86389248 98.64 97 97.36 94.28 95.92 96.64
LoRA (r=1) 36864 93.36 88.44 94.28 89.4 89.9 91.076
LoRA (r =4) 147456 98.2 96.96 96.08 92.88 94.52 95.728
VeRA (r = 2) 18480 91.22 88.42 94.42 91.88 92.82 91.752
EigenLoRA (K =2) 96 97.24 95.96 96 91.88 94.6 95.136

Table 7: Image Classification Accuracy results on Food101 (Bossard et al.,|2014)

Model subsetl subset2 subset3 subsetd subset5 subset6 Avg.
FT 99.7 99.3 98.01 98.22 99.7 98.01 98.82
LoRA (r =1) 85.9 88.47 92.69 91.02 91.7 91.01 90.13
LoRA (r =4) 96.23 92.76 97.22 95.01 98.24 90.73 95.03
VeRA (r =2) 99.2 95.4 97.7 94.7 90.9 95 95.48

EigenLoRA (K =2) 99.686 97.905 97.689 98291 99.344 97.718 98.43

Table 8: Image Classification Accuracy results on Flowers102 (Nilsback & Zisserman, [2008))

16

Under review as a conference paper at ICLR 2025

A.2 NATURAL LANGUAGE PROCESSING

A.2.1 NLU - GLUE BENCHMARK

Hyperparameters LoRA (Hu et al.;,|2021)), VeRA (Kopiczko et al.l 2023) and PISSA (Meng et al.
2024) implementations are taken from the HuggingFace PEFT (Mangrulkar et al., [2022) library.
Refer to[Table 9| and [Table 10| for hyperparameter details. For LoRA (Hu et al., 2021)), we use the
ranks € {8,16}. For VeRA (Kopiczko et al.,[2023)), we use rank= 256, and for EigenLoRA, we
use K € {16,32} and r = 8. Here, r refers to the dimensionality of the trainable coefficients and
not the rank. For both PISSA (Meng et al., 2024)) and LoRA, all the parameters of the low rank
matrix are trainable. For the EigenLoRA initialization experiment, we train both the components and
coefficients for a fair comparison with PISSA. In practice, however, we do not need to do so - we
can tune only the sparse coefficients and after the loss converges, finetune the components for a few
training steps.

CoLA MRPC QNLI RTE SST-2 STSB
Learning Rate 4e—4 4e—4 4e—4 be—4 He—4 4de—4

Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06
Epochs 80 80 25 80 60 40
Scheduler Linear Linear Linear Linear Linear Linear
Seed 0 0 0 0 0 0
Batch Size 64 64 64 64 64 64

Table 9: Hyperparameters for LoORA (Hu et al.,[2021), VeRA (Kopiczko et al.,|2023) and PiSSA (Meng
et al.,[2024)) for the GLUE benchmark. (Wang et al., 2019)

CoLA MRPC QNLI RTE SST-2 STSB

Learning Rate 4e—3 4e—3 4e—3 5e—3 He—3 4e—3
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06 0.06 0.06

Epochs 80 80 25 80 60 40
Scheduler RLrP RLrP RLrP RLrP RLrP RLrP
Seed 0 0 0 0 0 0

Batch Size 64 64 64 64 64 64

Table 10: Hyperparameters for EigenLoRA for the GLUE benchmark. (Wang et al.| 2019)
(RLrP - ReduceLLRonPlateau)

A.2.2 LORAHUB

For filtering LoORAHub adapters, we used a criterion of at least 2% improvement in performance on
adapter training data compared to base model. It is surprising that 128 of the 196 adapters did not
qualify under this criteria. It is important to filter out such adapters because if some weights do not
add anything meaningful to the base model, they might be noisy and in turn affect the extraction of
good EigenLLoRA PCs.

We conducted more experiments with variations of K in both EigenLoRA (K = 16, 32, 64, 128, 256)
and EigenLoRAM™ (K = 4,8,12, 16). We found that EigenLoRA™ increased in performance with
increasing K but it is difficult to train these models due to excessive memory requirements. We also
found that EigenLoRA performance peaked at K = 32 and remained similar for higher K, indicating
the potential existence of noisy components that are not useful for adaptation. We present some of
these extra results here in Table [[T1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Evaluation of our methods on LoORAHub (Diverse task domain).

Trainable Amazon Wiki Average

Parameters Review Polarity ~ Generate Subject (15 tasks)
Base Model 0 34.02 9.03 50.83
LoRA (r = 16) 4.7 96.18 39.97 63.10
LoRA™ (r = 16) 4. ™ 96.34 39.80 63.24
LoRAMtfat (. — 16) 4™ 95.87 40.31 63.19
LoRA (r =1) 295K (4 16x) 34.02 9.03 50.83
EigenLoRA (K = 32) 147K ({ 32x) 96.18 40.97 63.50
EigenLoRAZS 0 39.59 9.03 51.29
EigenLoRAM (K = 8) 2K (J 2400x) 96.18 11.37 60.52
EigenLoRAZS-flat 0 90.94 9.03 58.45
EigenLoRAAL (K = 32) 0 96.66 38.63 64.04
EigenLoRAAL 2 (K = 8) 0 96.34 2391 62.80

A.3 TEXT-TO-IMAGE GENERATION (STABLE DIFFUSION MODELS)

=
K]
2
)
K]
c
S
£
<
[+
]
=
c
[
2
[}

Figure 8: (Part 1) A single EigenLLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL [Podell et al.| (2023) model. A comparison

between our results and those obtained from multiple LoRAs does not show a noticeable degradation

in visual quality.

18

Under review as a conference paper at ICLR 2025

<
oc
=]
-
c
(7]
o
i

Figure 9: (Part 2) A single EigenLoRA (identical components, varying loadings) was employed to
produce these images utilizing the Stable Diffusion-XL |Podell et al.|(2023)) model. A comparison
between our results and those obtained from multiple LoRAs demonstrates no noticeable degradation
in visual quality.

B METHOD ANALYSIS AND ABLATION

Through a rigorous comparative analysis of EigenLoRAs and their target LoORAs, we identified that
the most pronounced reconstruction discrepancies manifest in the initial and terminal layers of the
neural network, as depicted in[Figure T0] Allowing the EigenLoRA PCs in these layers to undergo
fine-tuning alongwith the coefficients can alleviate failure scenarios, thereby alleviating the need for
comprehensive model fine-tuning.

0.0006 4 N Train
N Test
0.0005 -

0.0004 4

0.0003 4

Loss

0.0002 4

0.0001 4

0.0000 L

Figure 10: Average reconstruction error between EigenLoRA and a set of LoRAs for all UNet layers in a stable
diffusion model.

B.1 How 1O CHOOSE K PRINCIPAL COMPONENTS AND 7 FOR EIGENLORA

We perform an ablation study on the selection of EigenLoRA principal components (K). Our analysis
concentrates on one experiment as shown in specifically pertaining to the MRPC task
within the GLUE (Wang et al.| 2019) benchmark. The analysis in[Figure T1ashows the training loss

19

Under review as a conference paper at ICLR 2025

in relation to increasing number of EigenLoRA principal components K, as well as the explained
variance of the LoRAs used to initialize the EigenLoRA in[Figure T1b] We find, empirically, that
choosing EigenLoRA PCs for explained variance of 50 — 80% of the LoRAs used to initialize the
EigenLoRA is sufficient for a robust initialization. This is shown in fig. [TTb] where we choose K = 8
which roughly corresponds to the explained variance of 55 — 60%. We further ablate this choice
in fig. [TTal where although substantial improvements are evident up to KX = 8, an increase in the
number of K thereafter yields only marginal gains, demonstrating diminishing returns as the number
of components increases. The parameter r in EigenLoRA does not equate the rank parameter in
LoRA and its variants. It reflects the dimensionality of the EigenLoRA coefficients. Although r =1
works well, we observe slight performance improvements as we increase this value as shown in
fig.[I2] Increasing this value corresponds to a small amount of parameter increase. We observe no
finetuning instability by changing this value and recommend that it can be set to anywhere between 1
and the rank of the LoRAs used to initialize EigenLoRA.

Training Loss

0 20 40 60 80 100
— K=32 = K=28 = K=24 — K=20 = K=16 = K=12 = K=8 =— K=4 — K=1

(a) Training Loss Convergence for different numbers of EigenLoRA PCs

Cumulative Variance Plot

90% variance

80% variance

o
®

60% variance

o
o

Cumulative Proportion of Variance Explained
o
'S

o
N)

0 10 20 30 40 50
Number of Components

(b) Explained Variance for increasing number of PCs

Figure 11: Ablation of Number of EigenLoRA Principal Components

20

Under review as a conference paper at ICLR 2025

- —_—
Q = - __’,,\‘/.—.;f"w
S =
< "~
0.7 /
0.6
0.5
Ste
0.4 P
20 40 60 80 100

r=8 == r=7 = r=6 r=5 r=4 = r=3 r=2

Figure 12: Ablation for the EigenLoRA’s r hyperparameter. This experiment was done for the MRPC
task in the GLUE benchmark.

B.2 FAILURE CASES

Figure 7|illustrates a potential failure case of EigenLLoRA, where the incorrect number of principal
components (PCs) was selected. In this instance, the “mosaic style” information was excluded from
the principal subspace identified by EigenLoRA due to an insufficient number of PCs. However,
this issue can be resolved by selecting a larger number of PCs, as the extended principal subspace
contains the necessary information for the task.

Another hypothetical failure scenario arises if the domain gap between the low-rank adapters used to
initialize EigenLoRA and the downstream task is significantly large. Although we do not observe such
a case in our experiments, it is plausible that under such conditions, EigenLoRA might underperform.
This issue could potentially be mitigated by allowing only a subset of PCs to remain trainable,
enabling the model to adapt more effectively to the target domain.

A further observed limitation of EigenLoRA occurs in complex tasks like Text-to-Image generation,
which may extend to other tasks as well. If the majority of LoRAs used to initialize EigenLoRA
encode biases (e.g., related to gender, race, or context), these biases tend to propagate into EigenLoRA
outputs. While such biases are a common issue in deep learning models trained using stochastic gra-
dient descent or similar methods, addressing them remains a critical area of future work. We consider
this an important avenue for improvement and discuss the broader implications in appendix [C}

C BROADER IMPACT AND IMPLICATIONS

This work presents a novel parameter-efficient method for deep learning methods utilizing open source,
pretrained Low-Rank Adaptation (LoRA) models. By substantially reducing the computational
and memory demands of training and inference, our approach creates a more sustainable and
environmentally friendly deep learning paradigm. Our method democratizes accessibility to larger
models, making them accessible to researchers and practitioners with limited resources. Furthermore,
by harnessing pretrained models, our method can accelerate development and diminish the need
for extensive data collection. However, we recognize the inherent risks associated with the use of
pretrained models. These include potential biases (racial, gender, etc.), explicit content, since there is
no guarantee of the data or method used in training the model, and the potential presence of malicious
code. Appropriate caution is advised when using unverified, open-source models.

21

	Introduction
	Related Works
	Method
	Theoretical Motivation
	Algorithm

	Experiments and Analysis
	Aligned Domain – Image Classification
	Diverse Domain – Natural Language Understanding
	GLUE Benchmark
	LoRAHub

	Memory-efficient Inference – Text-to-Image Models

	Conclusion, Limitations and Opportunities
	Appendix
	Experiments
	Image Classification

	Natural Language Processing
	NLU - GLUE benchmark
	LoraHub

	Text-to-Image Generation (Stable Diffusion Models)

	Method Analysis and Ablation
	How to Choose K Principal Components and r for EigenLoRA
	Failure Cases

	Broader Impact and Implications

