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Abstract
Neural tangent kernels (NTKs) provide a theo-
retical regime to analyze the learning and gen-
eralization behavior of over-parametrized neural
networks. For a supervised learning task, the as-
sociation between the eigenvectors of the NTK
and given data (a concept referred to as alignment
in this paper) can govern the rate of convergence
of gradient descent, as well as generalization to
unseen data. Building upon this concept and lever-
aging the structure of NTKs for graph neural net-
works (GNNs), we theoretically investigate NTKs
and alignment, where our analysis reveals that op-
timizing the alignment translates to optimizing the
graph representation or the graph shift operator
(GSO) in a GNN. Our results further establish the-
oretical guarantees on the optimality of the align-
ment for a two-layer GNN and these guarantees
are characterized by the graph shift operator being
a function of the cross-covariance between the in-
put and the output data. The theoretical insights
drawn from the analysis of NTKs are validated
by our experiments focused on a multi-variate
time series prediction task for a publicly avail-
able dataset. Specifically, they demonstrate that
GNN-based learning models that operate on the
cross-covariance matrix indeed outperform those
that operate on the covariance matrix estimated
from only the input data.

1. Introduction
The remarkable success of deep learning frameworks for
numerous inference tasks is well established (LeCun et al.,
2015). Motivated by the practical implications of the gaps
between the empirical observations and theoretical founda-
tions of deep learning, many recent works have explored
various approaches to rigorously understand the theory of
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deep learning models. Multi-layer neural networks have
been analyzed extensively in the mean-field regime (Mei
et al., 2018; 2019; Sirignano & Spiliopoulos, 2020). The
random features model has also been studied to capture the
effects of the regime of parameterization and study phe-
nomenon such as generalization, and “double descent” (see
e.g., (Mei & Montanari, 2022; Lin & Dobriban, 2021; Ad-
lam & Pennington, 2020)). Among such approaches, the
NTK, first introduced in (Jacot et al., 2018), has commonly
been used to study the behavior of over-parameterized neu-
ral networks (Cao et al., 2021); (Bietti & Mairal, 2019); and
is informally defined next.

Neural Tangent Kernel. For any given predictor f(x;w) :
Rn×1×Rp → R the NTK is the kernel matrix Θ defined by
the gradient of the predictor output, f(x;w), with respect
to its learnable parameters, w, as

Θ(xi,xj)(w) := ⟨∇wf(xi;w),∇wf(xj ;w)⟩ , (1)

where f(x;w) represents the predictor output for input data
point x ∈ Rn×1 with the learnable parameters represented
by w ∈ Rp. The typical setting to study NTKs is that of
neural networks in the asymptote of infinite width, where
the NTK is constant with respect to the learnable parameters
during training, in contrast to the finite-width scenario (Ja-
cot et al., 2018). This constancy of the NTK is a result of
certain neural networks transitioning to linearity as their
width goes to infinity (Liu et al., 2020). NTKs have been
leveraged to gain theoretical insights on the behavior of neu-
ral networks such as over-parameterized neural networks
achieving zero training loss over a non-convex loss land-
scape (Du et al., 2018), the spectral bias of neural networks
(Cao et al., 2021) and the inductive biases of different neural
network architectures (Bietti & Mairal, 2019).

In particular, the eigenspectrum of the NTK kernel has been
linked with the convergence rate of gradient descent for an
over-parameterized deep learning model (Liu et al., 2022;
Arora et al., 2019; Wang et al., 2022a). For instance, gradi-
ent descent can achieve faster convergence for a supervised
learning problem if the vector of output labels, y, aligns
well with the dominant eigenvectors of the NTK matrix Θ
(Arora et al., 2019; Wang et al., 2022a). For the regression
problem pertaining to predicting y from x, our analysis in

1



Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks

Section 2 demonstrates that

Convergence of gradient descent ∝ yTΘy (2)

By leveraging the observation above as a motivation, we
define yTΘy as Alignment A.

Structure in NTKs. Given that the NTK Θ depends on
input data x (see (1)), the alignment A inherently captures
some version of covariance between output y and input x.
Thus, if the NTK Θ is ‘structured’ for a given predictor
f , the alignment A could be leveraged to provide further
insights into the design of the predictor f . GNNs are an
example of a class of predictors for which the NTK is a func-
tion of the graph structure and input data x (Krishnagopal
& Ruiz, 2023). GNNs operating on covariance matrices
derived from the input data have been studied previously
in (Sihag et al., 2022), albeit without any consideration of
the insights that could be drawn from the NTKs regarding
the choice of graph structure derived from the data for a su-
pervised learning problem. Many of the existing works that
analyze NTKs for GNNs focus on explaining empirically
observed trends for GNNs (see Appendix A for expanded
literature review).

In this paper, we leverage GNNs as learning models in
NTKs in our theoretical analyses to motivate neural network
learning architecture that depends explicitly on the cross-
covariance between the input and the output for an inference
task. We associate a matrix representation S ∈ Rn×n with
the graph structure which we shall call the graph shift opera-
tor or GSO (common choices for the GSO in GNNs include
adjacency matrix and Laplacian matrix). Then, if the NTK
Θ for a GNN is considered to be a function of the form
Θ(S,x) for a GSO S, the alignment can be represented as
A(S,x,y), i.e., as a function of the input data x, output data
y and S. It is then apparent that optimizing the alignment
A for a GNN can inform the choice of the GSO S for a
given dataset. A key observation made in this paper is that
the alignment A is characterized by the cross-covariance
between the input and the output and as a result, the optimal
choice of GSO for statistical inference is closely related to
the cross-covariance.

Contributions. In this paper, we consider the setting where
the predictor f is a GNN with graph filter as the convolution
operator (Gama et al., 2020). Our theoretical contributions
in this context are summarized next.

• Our analysis of alignment A with graph filter as the
predictor motivates a learning model that leverages the
cross-covariance between the input and output data as
the graph. More precisely, we pose an optimization
problem with alignment A as the objective function
and demonstrate that using the cross-covariance as the
GSO maximizes a lower bound on this objective.

• We further extend the results from the graph filter
to the scenario of a two-layer GNN as the predictor.
Our results show that under certain assumptions, the
cross-covariance between the input and the output op-
timizes a lower bound on the alignment for the GNN
that has tanh activation function. Thus, our analysis
motivates a learning model that explicitly depends on
cross-covariance based graphs.

We validated the insights drawn from our theoretical re-
sults via experiments on the publicly available resting state
functional magnetic resonance imaging (rfMRI) data from
the Human Connectome Project-Young Adult (HCP-YA)
dataset (Van Essen et al., 2012). In particular, we consid-
ered the task of time series prediction and observed that the
GNNs that operated on the cross-covariance between the
input and output data achieved better convergence and gen-
eralization than those that used the covariance matrix only
from the input data. Further, by leveraging the transferability
property of GNNs (Ruiz et al., 2023), our experiments also
demonstrated that learning models with cross-covariance
graphs outperformed those with covariance graphs even
when the GNNs were transferred from a low-dimensional
fMRI dataset to a higher-dimensional dataset for the same
population.

2. Alignment and Convergence of Gradient
Descent

In this section, we formalize the concept of alignment A and
demonstrate its relationship with the convergence of gradi-
ent descent for a regression problem. Consider a dataset
{(xi,yi)}Mi=1, where xi ∈ Rn×1, yi ∈ Rn×1. We aim to
leverage the inputs xi to estimate the outputs yi using a pre-
dictor denoted by f : Rn×1 × Rp → Rn. We use the nota-
tion h ∈ Rp to denote the vector of all learnable parameters
of the predictor. To emphasize the dependence of the predic-
tor f on the parameters h, we use the notation fxi(h) for
f(xi,h) subsequently. Also, the parameters are initialized
randomly from a Gaussian distribution h(0) ∼ N (0, κ2I),
where the constant κ controls the magnitude of the initial-
ized parameters. The objective is to minimize the mean
squared error (MSE) loss function, defined as

Φ(h) ≜ min
h∈Rp

1

2

M∑
i=1

||yi − fxi
(h)||22 . (3)

For this purpose, we consider a gradient descent based op-
timization framework with a learning rate η > 0. The
evolution of the predictor output for a single input xi is
given by

fxi
(h(t+1)) = fxi

(
h(t) − η · ∇Φ(h(t))

)
(4)

where t denotes the t-th step or epoch of gradient descent.
To characterize the evolution of the predictor output over
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the entire dataset, we provide the following definitions

f̃x(h) ≜
[
[fx1

(h)]
T
, [fx2

(h)]
T
, · · · , [fxM

(h)]
T
]T

,

(5)
x̃ ≜

[
xT
1 , x

T
2 , · · · , xT

M

]T
, ỹ ≜

[
yT
1 , y

T
2 , · · · , yT

M

]T
(6)

where f̃x(h), x̃, and ỹ are vectors of length nM . We also
define the NTK matrix Θ̃(h) ∈ RnM×nM , which consists
of M2 number of n×n blocks, such that, the (i, j)-th block
is the matrix Θ(xi,xj) ∈ Rn×n and is given by

Θ(xi,xj) ≜ Jfxi
(h(t))

(
Jfxj

(h(t))
)T

. (7)

In (7), Jfxi
(h) denotes the Jacobian matrix with its (a, b)-

th entry being (Jfxi
(h))ab =

∂(fxi
(h))a

∂hb
. If the step size η

from (4) is sufficiently small, the function fxi

(
h(t)) can

be linearized at each step. In this scenario, the linearized
version of the evolution of the predictor output in (4) is

f̃x(h
(t+1)) = f̃x(h

(t))−η ·Θ̃(h(t))·(f̃x(h
(t))−ỹ) . (8)

A typical setting of interest in the existing literature is that
of the NTK Θ̃(h(t)) being a constant with respect to h(t).
This is because the NTK converges to a constant for many
neural networks in the infinite width limit (Liu et al., 2020).
Theorem 2.1 characterizes the convergence of gradient de-
scent for the considered multivariate regression problem
in this setting (also see (Arora et al., 2019), (Wang et al.,
2022a)). The NTK that is constant with respect to h(t) is
denoted by Θ̃.

Theorem 2.1. In the multivariate regression setting, as
described in the beginning of Section 2, if the NTK Θ̃(h(t))

is constant during training and κ = O(ε
√

δ
nM ), then with

probability at least 1− δ, the training error after t steps of
gradient descent is bounded as

ỹT
(
I − 2tη · Θ̃

)
ỹ ±O(ε) ≤ ||f̃x(h

(t))− ỹ||22

≤ ỹT
(
I − η · Θ̃

)
ỹ ±O(ε)

, (9)

Remark 2.2. In this paper, we primarily consider two classes
of predictors. The first class is that of a linear predictor,
for which the NTK is a constant given the definition in
(7). The second class of predictors is that of infinitely wide
neural networks (GNNs in particular). We refer the reader to
Appendix D and (Liu et al., 2020) for a detailed discussion
of when and why the NTK is constant for neural networks.

Since the term ỹTΘ̃ỹ characterizes the upper and lower
bounds, the loss ||f̃x(h

(t)) − ỹ||22 is proportional to this
term. Based on Theorem 2.1, we formalize the alignment in
Definition 2.3. A similar definition can be found in (Wang
et al., 2022a) in the context of active learning.

Definition 2.3 (Alignment). The alignment between the
output ỹ and NTK Θ̃ is defined as

A ≜ ỹTΘ̃ỹ

The alignment A can be perceived as a metric of correlation
between output data and the NTK, and is a characteristic
of learning with gradient descent. Using Definition 2.3,
Theorem 2.1 can be restated as

ỹTỹ−2tη·A±O(ε)≤||f̃x(h
(t))−ỹ||22≤ ỹTỹ−η·A±O(ε)

(10)
Equation 10 shows that the convergence of gradient descent
is positively correlated with A.

Recall that the NTK Θ̃ is a function of the input data x̃ and
the learning model f , even when constant with respect to
h(t). Therefore, maximizing A is contingent on maximizing
some kind of cross-covariance between the output data ỹ
and a function of the input data x̃, where the function de-
pends on the learning model f . This observation motivates
us to study the setting where the predictor f is a GNN, as a
GNN architecture can provide appropriate structure to an-
alyze the connection between alignment, cross-covariance
and the structure of the network.

3. Optimizing Alignment motivates
Cross-Covariance

To gain further insight into alignment A, we consider GNNs
as the predictor fx. The convolution operation for GNNs
considered in this paper is modeled by the graph filter. A
graph filter is characterized by a linear-shift-and-sum op-
eration on the input data and is representative of a large
family of convolution operations in GNNs (see the section
‘implementation of GCNNs’ from (Gama et al., 2020)). We
begin with the setting where fx(h) is a graph filter.

3.1. NTK and Alignment for Graph Filter

We formally define a graph filter in Definition 3.1.

Definition 3.1 (Graph Filter, (Gama et al., 2020)). Con-
sider a symmetric GSO S ∈ Rn×n. A graph filter processes
an input x ∈ Rn via a linear-shift-and-sum operation char-
acterized by S, such that, its output is

fx(h) =

K−1∑
k=0

hkS
kx = H(S)x ,

where H(S) ≜
K−1∑
k=0

hkS
k , (11)

and h = {h0, h1, · · · , hK−1} is the set of scalars, also
referred to as the filter taps or coefficients.
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Recall from (7) that Θ̃(h(t)) is a function of the Jacobian
matrix Jfxi

(h(t)), which for a graph filter model is given by

Jfxi
(h(t)) =

[
xi|Sxi|S2xi| · · · |SK−1xi

]
. (12)

Using (12), for any pair of input vectors (xi,xj), the (i, j)-
the block of the NTK Θ̃(h(t)) for a graph filter is given by
Θ(xi,xj)(h

(t)) =
∑K−1

k=0 Skxi(S
kxj)

T. Since the graph
filter is a linear model, Θ(xi,xj)(h

(t)) is independent of
h(t). Consequently, the NTK Θ(xi,xj)(h

(t)) for a graph
filter is a constant with respect to h(t).
Proposition 3.2 (NTK for a graph filter). The NTK for a
graph filter is given by

Θ̃filt(h
(t)) =

K−1∑
k=0

S̃kx̃x̃TS̃k . (13)

where S̃ ∈ RnM×nM is a block diagonal matrix consisting
of M repeated blocks equal to matrix S on the diagonal and
zeros everywhere else.

Given (13), we further investigate the impact of shift opera-
tor S on the alignment A. Also, we define the data matrices
X,Y where X is the input data matrix where the i-th col-
umn is equal to xi and similarly for Y . From (13), note that
the NTK is independent of the filter coefficients h. As a
consequence, A for a graph filter (denoted by Afilt) depends
on the shift operator S and dataset (X,Y ) as follows

Afilt(S,X, Y ) = ỹT
(∑K−1

k=0 S̃kx̃x̃TS̃k
)
ỹ

=
∑K−1

k=0

(
ỹTS̃kx̃

)2
=

∑K−1
k=0

(
tr(Y TSkX)

)2
(14)

The equivalence between different terms in (14) follows
from the symmetry of S̃ and the fact that ỹTS̃kx̃ is
a scalar. Since a larger Afilt is correlated with faster
convergence of gradient descent (see (10)), we further
investigate whether the alignment Afilt can be optimized
by appropriate selection of shift operator matrix S. The
objective to optimize Afilt can be stated as follows.

S∗ = argmax
S

K−1∑
k=0

(
ỹTS̃kx̃

)2
s.t. η · ||Θ̃filt||op < α .

(15)
The constraint ||η · Θ̃filt||op < α, for some α > 0, in (15)
is necessary to ensure the convergence of gradient descent.
This constraint also eliminates trivial solutions (such as mul-
tiplying a given S with an arbitrarily large positive constant
to inflate A in isolation). The optimization problem in (15),
while meaningful, can be analytically intractable due to com-
plications arising from the polynomial functions of S and
the objective function and the constraint being non-convex.
In order to provide an analytically tractable solution to S,
we consider a lower bound on A next.

Lemma 3.3. [Lower bound on Afilt.] The alignment Afilt

satisfies Afilt(S,X, Y )≥AL(S,X, Y ), where

AL(S,X, Y ) ≜
( 1√

K
tr
((K−1∑

k=0

Sk
)
CXY

))2
, (16)

and CXY ≜
1

2
(XY T + Y XT) . (17)

Henceforth, we focus on characterizing S that maximizes
AL(S,X, Y ). Our experiments in Section 4 also demon-
strate that the insights drawn from optimizing AL are practi-
cally meaningful. Next, we provide a constraint that depends
on the choice of GSO and not on the input data.

Lemma 3.4. If the degree K polynomial in the shift opera-
tor S has a bounded Frobenius norm, the operator norm of
the NTK matrix is also bounded as follows:

||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) ⇒ η · ||

K−1∑
k=0

S̃kx̃x̃TS̃k||op≤α

(18)

The constraint on the left in (18) is more straightforward to
work with in the analysis since it only depends on S, while
also ensuring that the constraint in (15) is satisfied. Putting
together AL(S,X, Y ) and the revised constraint, we get the
following optimization problem.

S∗ = argmax
S

AL(S,X, Y )

such that ||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) . (19)

In the following theorem, we characterize the solution to
the optimization problem in (19).

Theorem 3.5 (GSO in graph filter.). A GSO S∗ that satisfies

K−1∑
k=0

(S∗)k = µ·CXY , where µ =

√
α/(ηM)

||CXY ||F
. (20)

is the solution to the optimization problem in (19).

Theorem 3.5 clearly demonstrates the association between
the optimal GSO that optimizes AL(S,X, Y ) and CXY ,
which is a measure of cross-covariance. For instance, if
K = 2, then it can be concluded from (20) that

I + S∗ = µ · CXY ⇒ S∗ = µ · CXY − I (21)

The observation in (21) motivates the potential choice of
a normalized cross-covariance matrix as a GSO when the
predictor fx(h) is a graph filter. Next, we discuss how this
observation extends to the setting where fx(h) is a GNN.
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3.2. NTK and Alignment for GNNs

To start with, we formalize the GNN architecture that is
the focus of our analysis. The ability to learn non-linear
mappings by GNNs is fundamentally based on concate-
nating an element-wise non-linearity with a graph filter to
form a graph perceptron, which is realized via a point-wise
non-linearity σ(·) as σ(H(S)x). In the remainder of this
paper, we will focus on a two-layer GNN that admits a
single input feature x ∈ Rn and the GNN output is a vector
of length n, as dictated by the problem definition in Section
2. The general definition for a GNN, along with additional
experimental results for GNNs that are deeper than two
layers have been provided in Appendix F.

Two-Layer GNN Architecture (see Fig. 8). In the
first layer, the input vector x ∈ Rn, is processed by F graph
perceptrons to output F n-dimensional outputs given by
qf
(1),∀f ∈ {1, · · · , F}, as follows

uf
(1) = Hf

(1)(S)x =

K−1∑
k=0

hf
(1),kS

kx, ∀f ∈ {1, . . . , F};

(22)
qf
(1) = σ

(
uf
(1)

)
(23)

In the second layer, each of the outputs of the previous layer,
qf
(1) are processed by a graph filter as

uf
(2)=Hf

(2)(S)q
f
(1)=

K−1∑
k=0

hf
(2),kS

kqf
(1),∀f ∈ {1, . . . , F} .

(24)
Finally, the terms uf

(2) are aggregated to get the output at
the second layer (also the GNN output) as

fx(h) =
1√
F

F∑
f=1

uf
(2) (25)

The absence of a non-linearity in the final layer (25) is
consistent with the NTK literature and necessary for having
a constant NTK in the infinite width limit (Liu et al., 2020).

Proposition 3.6 (NTK for a two-layer GNN). The NTK for
the two-layer GNN is given by

Θ̃GNN (h) =
1

F

F∑
f=1

K−1∑
k=0

(
c
(1)
f,k

)(
c
(1)
f,k

)T
+

1

F

F∑
f=1

K−1∑
k=0

(
c
(2)
f,k

)(
c
(2)
f,k

)T (26)

where

c
(1)
f,k ≜ Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃),

c
(2)
f,k ≜ S̃kσ

(
Gf (S̃)x̃

)
.

(27)

In (27), c(ℓ)f,k ∈ RnM×1 is the vector determined by picking
out the column that pertains to the derivative of the network
output with regards to the parameter indexed by (f, k, ℓ),
namely, the k-th coefficient of the f -th filter in layer ℓ, from
every Jacobian matrices Jfxi

,∀i ∈ {1, · · ·M} and stacking
all these vectors together.

The NTK in (26) is an aggregation of two terms, where the
first term is associated with the first layer and the second
term with the second layer. It follows from Definition 2.3
and (26) that the alignment for a two-layer GNN is also
composed of two terms that represent the two layers. Hence-
forth, we focus on the results pertaining to the second term
in (26) for brevity. This corresponds to a two-layer GNN
where only the parameters of the second layer are trained
and the parameters of the first layer are fixed. However,
this does not impact the generality of our results, since the
analysis of the setting when we train both layers is similar
(see Appendix E).

In the subsequent discussions, the notation Θ̃GNN denotes
the second term in (26) when the width of the hidden layer
approaches infinity, i.e., F → ∞. Thus, Θ̃GNN is given by

lim
F→∞

1

F

F∑
f=1

K−1∑
k=0

(
S̃kσ

(
Gf (S̃)x̃

))(
S̃kσ

(
Gf (S̃)x̃

))T
(28)

=

K−1∑
k=0

S̃k E
g∼N (0,I)

[
σ
(
G(S̃)x̃

)(
σ
(
G(S̃)x̃

))T]
S̃k

(29)

=

K−1∑
k=0

S̃kES̃k = Θ̃GNN (30)

We define the expectation matrix E that is in-
strumental for the analysis of the alignment as

E ≜ E
g∼N (0,I)

[
σ
(
G(S̃)x̃

)(
σ
(
G(S̃)x̃

))T]
.

Before proceeding, we provide the following remark perti-
nent to the analysis.
Remark 3.7. As a byproduct of the output layer being linear,
the NTK Θ̃GNN in (28) does not depend on the parameters
of the second layer, i.e., hf ,∀f ∈ {1, · · · , F}. Hence,
the NTK in (28) could be considered a constant if only
the second layer of GNN is trained. For completeness,
our discussion in Appendix D demonstrates further that
as F → ∞, the NTK in (26) also approaches a constant
behavior.

From (28), the alignment can be written in terms of E as

A = ỹTΘ̃GNN ỹ = ỹT
(K−1∑

k=0

S̃kES̃k
)
ỹ = tr(QE) ,

(31)
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where we have defined the matrix Q ≜
∑K−1

k=0 S̃kỹỹTS̃k.
Above, we used the cyclic property of the trace and the fact
that ỹTΘ̃GNN ỹ is a scalar.

In order to evaluate E, we define the vectors

z(ℓ) ≜
[
x̃ℓ, (S̃x̃)ℓ, · · · , (S̃K−1x̃)ℓ

]T
∈ RK×1 where

ℓ ∈ {1, · · · , nM} and (S̃kx̃)ℓ denotes the ℓ-th entry of the
vector S̃kx̃ . Using this definition, the (a, b)-th entry of the
expectation matrix E can be written as

Eab = E
g∼N (0,I)

[
σ
(
⟨g, z(a)⟩

)
· σ
(
⟨g, z(b)⟩

)]
. (32)

Linear GNNs. We next discuss the scenario when the
function σ(·) is an identity function, i.e., σ(z) = z. The
results drawn from this setting will be leveraged later in the
setting when σ(·) is a non-linear activation function. When
σ(z) = z, (32) reduces to

Eab = E
g∼N (0,I)

[
⟨g, z(a)⟩ · ⟨g, z(b)⟩

]
= ⟨z(a), z(b)⟩

(33)
We denote the matrix E in this linear setting by Blin, which
is given by

(Blin)ab ≜ ⟨z(a), z(b)⟩ ⇒ Blin =

K−1∑
k=0

S̃kx̃x̃TS̃k (34)

Thus, the alignment in this linear setting is given by

Alin ≜ tr(QBlin) =

K−1∑
k=0

ỹT S̃kBS̃kỹ

=

K−1∑
k=0

K−1∑
k′=0

ỹT S̃k+k′
x̃x̃T S̃k+k′

ỹ

(35)

The analysis of alignment Alin in (35) using similar argu-
ments as that for a graph filter in Section 3.1 yields a similar
condition on the GSO S as in Theorem 3.5. The corol-
laries provided next formalize this observation. First, the
following corollary provides a lower bound on Alin.
Corollary 3.8. [Lower bound on Alin] The linear Alignment
Alin = tr(QBlin) satisfies Alin ≥ AL′(S,X, Y ), where the
lower bound AL′(S,X, Y ) is defined as

AL′(S,X, Y ) ≜
( 1√

K
tr
((K−1∑

k=0

K−1∑
k′=0

(S∗)k+k′
)
CXY

))2
,

(36)

Next, we present an optimization problem similar to the one
for the graph filter in (19) next.

S∗ = argmax
S

AL′(S,X, Y ) (37)

s.t. ||
K−1∑
k=0

K−1∑
k′=0

Sk+k′
||F ≤

√
α/(ηM) (38)

The solution to the optimization problem in (37) is presented
next.

Corollary 3.9. [Extension of Theorem 1 to linear GNN]
The GSO S∗ that solves the optimization problem in (37)
must satisfy

K−1∑
k=0

K−1∑
k=0

(S∗)k+k′
= µ · CXY , where µ=

√
α/(ηM)

||CXY ||F
.

(39)

Corollary 3.9 establishes that the cross-covariance CXY

is instrumental to optimizing AL′ for the considered two-
layer GNN architecture when σ(·) is an identity function.
In general, this observation holds for linear GNNs of any
arbitrary depth.

GNNs with non-linear activation function. Next, we
investigate the conditions under which the observation in
Corollary 3.9 extends to a more general setting, in which
σ(·) is not the identity function. We will focus our the-
oretical analysis on the case where, σ(z) = tanh(z) and
from here on A will denote the alignment for this case. The
experimental results (see Appendix F) suggest that in prac-
tice, similar results hold for other commonly used activation
functions like ReLU. First, we evaluate the expectation in
(29). By leveraging the theory of Hermite polynomials 1,
the Hermite expansions of σ

(
⟨g, z(a)⟩

)
and σ

(
⟨g, z(b)⟩

)
enables the expansion of E and subsequently A. These
expansions are formalized next.

Lemma 3.10 (Expansion of E and A). The Hermite ex-
pansion of E can be written as E = B + ∆B, where
B ∈ RnM×nM represents the first non-zero term in the ex-
pansion and ∆B ∈ RnM×nM includes all the subsequent
terms. For the (a, b)-th element of B and ∆B, we have

Bab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
,

(∆B)ab =

∞∑
i=3,5,···

αiβi ·
( ⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)i
.

(40)
Hence, the alignment A in (31) admits the expansion

A = tr(QE) = tr(QB) + tr(Q∆B) . (41)

The scalar coefficients αi, βi in (40) depend on ||z(a)||2 and
||z(b)||2, respectively and the choice of σ(·).

Expanding the alignment into the two terms in (41) is useful
because the first term is closely related to the linear align-
ment Alin and the second term is relatively small. Therefore,
the expansion lets us relate alignment in the non-linear case,

1See the proof of Lemma 3.10 for an overview of the Hermite
polynomials and how we utilized the Hermite expansion.
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A, to the linear alignment Alin. The following lemmas and
Theorem formalize this.

Lemma 3.11. Given a family of matrices S ∈ Sn×n that
have a bounded norm, ||S||op ≤ ν, we have

ρminAlin ≤ tr(QB) ≤ ρmaxAlin, (42)

where ρmin, ρmax > 0 are constants that depend on ν and
the choice of non-linearity σ(·).

We remark that the condition ||S||op ≤ ν is necessary since
to compare different shift operators both in practice and in
our theorems, we need to normalize the choices of GSO
to have the same Frobenius norm. The second term in
the expansion, i.e. tr(Q∆B), is harder to directly analyze,
therefore we relate it to the first term to make analysis more
tractable in the following lemma.

Lemma 3.12. Each element of ∆B has the same sign as the
corresponding element in B. Also, the following element-
wise inequality holds between the two matrices:

|∆B| ≤ β · |B| (43)

where β is a constant that depends on our choice of non-
linearity and is determined from the proof.

While Lemma 3.12 suggests that the contribution of the
second term is smaller than the first, in order to make this
rigorous, we will need the following assumption:

Alin ≥ ξ||Q||F ||Blin||F

for some constant 0 < ξ ≤ 1. We will shortly discuss what
this assumption implies, but by leveraging it, we derive
a lower bound in Theorem 3.13 for the alignment in the
non-linear setting.

Theorem 3.13. Given a family of matrices S ∈ Sn×n that
have a bounded norm, ||S||op ≤ ν and that satisfy Alin =
tr (QBlin) ≥ ξ·||Q||F ||Blin||F for some constant 0 < ξ ≤ 1,
Alin lower bounds the alignment for the two-layer GNN with
tanh non-linearity, A, up to a constant as follows(

c− d

ξ

)
Alin ≤ A , (44)

for positive constants c ≜ ρmin

(
1 + β

2

)
and d ≜ βρmax

2 .

We now provide an intuitive explanation for the conditions
that enable Theorem 3.13 to be practically relevant.
If the linear alignment is not negligible, i.e. when
Alin ≥ ξ · ∥Q∥ ||Blin|| with ξ > d

c , then Theorem 3.13
guarantees a non-trivial lower bound on the alignment in the
non-linear setting. Specifically, Theorem 3.13 establishes
that when the linear alignment is not negligible, the
alignment in the non-linear case is also not negligible and

is at least a factor of Alin. Thus, optimizing Alin provides
a condition for the optimality for A that can translate to
improved performance.

If the assumption in Theorem 3.13 does not hold
with sufficiently large ξ, then the linear alignment Alin is
too small, which means that the linear model (characterized
by only graph filters) is not a good fit for the regression
task at hand. In such a scenario, we cannot make any
guarantees for alignment in the non-linear case or, specifi-
cally, guarantee a good performance with the addition of
non-linear activation functions to the model. We note that
the constants can be evaluated numerically to check the
validity of the lower bound. Clearly, for the bound to be
non-vacuous, c− d

ξ should be positive, which happens only
when ξ > d

c . As an example, using tanh and normalizing
S to have norm ||S||op ≤ ν = 0.5 we get d

c ≃ 0.7.

These observations, together with Corollary 3.9, mo-
tivate using the cross-covariance matrix CXY as a GSO for
the two-layer GNN.

Alignment, The NTK and Generalization. Thus far, we
have provided the theoretical results motivated by the fact
that larger alignment can imply faster convergence of gradi-
ent descent during training. However, alignment and NTK
are also closely related to generalization. Specifically, the
analyses pertaining to generalization from (Arora et al.,
2019), (Wang et al., 2022a) can be extended to the case of
graph filters, which leads to the conclusion that larger align-
ment could also lead to smaller generalization error. Hence,
the results on improved training and generalization together
motivate models with larger alignment in practice. The
generalization analysis has been provided in Appendix C.

4. Experiments
In this section, we provide the experiments that validate
the theoretical insights pertaining to the cross-covariance
being an optimal graph to use as a GSO for GNN training
and generalization as opposed to graphs derived only from
the input data (such as correlation or covariance graphs) for
a regression task. The dataset and inference task for this
purpose are described below.

Data. The HCP-YA dataset is a publicly available brain
imaging dataset collected over a population of 1003 healthy
adults in the age range of 22–35 years (Van Essen et al.,
2012; 2013). In our experiments, we leveraged the rfMRI
data for each subject made available by HCP. This data
consisted of a multi-variate time series of 100 features, with
each time series consisting of 4500 time points.

Inference task. Noting that the 100 features could be con-
sidered as 100 nodes of a graph, our objective was to use

7
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the data at all nodes at the current time step for an in-
dividual to predict the data at all nodes at a future time
step. Specifically, given the signal value at time step t as
z(t) ∈ R100 for an individual, our goal was to predict the
signal value after ∆t time steps, i.e., z(t+∆t) ∈ R100. For
every ∆t ∈ {1, 2, 3, 4, 5}, a separate training/test set of size
Ntrain = 1000, Ntest = 100 was created, such that, for
the signal at a time point t, i.e., z(t) as the input, the signal
after ∆t time steps z(t+∆t) was the output to be predicted.
For additional implementation details, see Appendix F.

Performance evaluation. We trained two sets of GNNs
and two sets of graph filters using the time series data of
each individual for a given ∆t, where one set comprised
of predictors with CXY as the GSO and the other with
CXX as the GSO. The GNNs with CXX as GSO have been
studied before as VNNs in (Sihag et al., 2022) and provide
an appropriate baseline for comparison as it is representative
of GNNs with GSOs extracted only from the input data
(see Appendix F.7). Figure 1 illustrates faster convergence
of training loss during gradient descent for predictors with
CXY as compared to those with CXX for one representative
individual when ∆t = 1. This observation was consistent
for graph filters and GNNs. For each individual, the training
process for every architecture was repeated 10 times. The
average of these runs is shown in Fig.1.

Further, we checked whether these observations were consis-
tent across the dataset and for different ∆t. Fig.2 illustrates
the gap between the test error for predictors with CXY and
CXX and different values of ∆t, averaged across all indi-
viduals. Even as the prediction accuracy diminished with
increasing ∆t, we observed a consistent gain in test perfor-
mance when using CXY as compared to CXX . Similarly,
Fig.3 shows that predictors with CXY achieved smaller
training error relative to those with CXX at each epoch of
gradient descent, averaged across the dataset. Thus, Figs.1-3
validate the theoretical insights from the analysis that argued
for CXY as an appropriate GSO for GNNs that can achieve
smaller training error and better generalization.

We note that in our presented results the covariance graph,
CXX , is representative of a broader class of graph con-
structions using the input such as graphs based on Pearson
correlation or Euclidean distance with Gaussian kernel. See
Appendix F.7 for details.

Transferability. The convolution operation for GNNs in
(11) has a scale-free characteristic, as the learnable param-
eters are independent of the dimensionality of the dataset.
Thus, in general, a GNN can be transferred across graphs
of arbitrary sizes by replacing the GSO in (11). This
property of GNN architecture allows us to investigate the
transference of GNN from the training dataset to a target
dataset with any arbitrary number of features. Success-
ful transference of GNN-based architectures across multi-

Figure 1. Training loss for one individual in HCP-YA dataset.

Figure 2. Generalization. The gap between the final test error for
CXY and CXX for different predictors averaged over the complete
dataset of individuals.

resolution datasets has previously been demonstrated in (Si-
hag et al., 2023). In the HCP-YA dataset, we have mul-
tivariate time series of different dimensionalities, namely
n = 15, 25, 50, 100, 200, 300, for each individual. We fur-
ther expanded the scope of our experiments by deploying
GNNs trained on a lower dimensional time series dataset to
a higher dimensional dataset to investigate whether cross-
covariance graphs outperformed covariance graphs even
after transferring the GNN models. Fig.4 demonstrates
the gap between the final test loss of predictors using CXY

and CXX in two scenarios: (i) GNN trained on data with
100 features for an individual and tested on unseen 100-
dimensional data for the same individual; and (ii) GNN
trained on data with 50 features for an individual and tested
on data with 100 features for the same individual. Thus,
the first setting acts as a baseline to evaluate the quality of
transference in the second setting. We note that the relative
decrease in loss of the models using CXY as opposed to
CXX in both scenarios is similar. Thus, we conclude that
using CXY is just as beneficial in the transfer scenario. We
also remark that the additional loss incurred by transferring
the model is very small for both the graph filter and GNN
models regardless of the choice of shift operator (See Fig
14 in Appendix F) which shows the GNNs transfer success-
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Figure 3. Convergence. Improvement in training error at different
epochs of gradient descent averaged over the complete dataset of
individuals.

fully from 50-feature dataset to 100-feature dataset. This
transferability setting provides the unique perspective to
the optimality of cross-covariance graphs relative to covari-
ance graphs for inference, which would be infeasible to
investigate for learning models with number of learnable
parameters dependent on the dimensionality of the dataset
(e.g., fully connected neural networks). A brief summary
of additional experimental details and results found in Ap-
pendix F is provided next.

Additional Experiments. In Section F.1, we demonstrate
results on time series prediction for two other datasets. In
Section F.2, we provide additional details on the inference
task described in the main text. In Section F.3, we de-
fine multi-layer GNNs and show empirically that the ben-
efit of using cross-covariance based networks extends to
GNNs deeper than two layers. In Sections F.4 and F.5, we
empirically analyse the effects of changing the non-linear
activation function and the number of filter taps, K, to vali-
date that the merit of our approach is independent of these
architectural details. In Section F.6, we consider a more
practically relevant inference task of time series prediction
using more than just one previous time step and we extend
our approach to that framework. In Section F.7, we compare
the results of using a cross-covariance graph to methods of
constructing a graph from input data commonly found in the
literature to emphasize the benefit of also using the output
data in constructing a graph.

5. Conclusions
In this paper, we have demonstrated that the analysis of
NTKs in the context of GNNs motivates the use of cross-
covariance graphs. Specifically, we have shown that for a
two-layer GNN, choosing the cross-covariance matrix be-
tween the input and output data as the Graph Shift Operator
maximized lower bounds on the alignment (a measure of cor-
relation between the NTK and the available dataset) and this

Figure 4. Transferability. The gap between final test loss of pre-
dictors using CXY and CXX in two scenarios: (i) Model trained
and tested on dataset with n = 100 features; (ii) Model trained on
data with n = 50 and tested on data with n = 100.

alignment, in turn, governed the convergence rate and gener-
alization properties of the predictor. We have validated that
GNNs with cross-covariance graphs indeed outperformed
GNNs with covariance graphs (which are representative of
GNNs with graphs obtained only using the input data) in a
time-series prediction task on three different datasets. The
cross-covariance based GNNs exhibited faster convergence
and smaller training and test errors, and these empirical
observations even extended to GNNs with the number of
layers larger than two.

A main limitation of this work is the restricted focus on a
dataset with input and output vectors of the same dimension-
alities. Such a setting lends itself well to the use of GNN
architectures and makes their theoretical analysis tractable.
However, in general, the inputs and outputs for multi-variate
regression problems can have different dimensionalities. De-
riving similar results for such cases is a potential avenue for
future work. Another limitation of our theoretical contribu-
tions is the lack of thorough analysis of the tightness of the
lower bounds analyzed.

Other graph-based ML models, such as Graph Attention
Networks (Veličković et al., 2018), could also potentially
benefit from our novel theoretical approach of alignment op-
timization. Additionally, there are many existing works that
combine GNNs and transformers for improved prediction
accuracy in the time-series prediction task. Investigating
whether our results can provide further insights or improve-
ments in such models is a future direction of interest.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Additional Literature Review
Analysis of GNNs with NTKs. (Du et al., 2019) prove that the NTK for GNNs can learn a broad class of functions on
graphs. (Sabanayagam et al., 2021) use the GNTK as a hyperparameter-free surrogate for GNNs to empirically analyze the
effect of increasing depth and using skip connections on the performance of GNNs. They also show that the GNTK captures
the performance trend of the corresponding finite-width GNNs. (Krishnagopal & Ruiz, 2023) analyze how the graph size
affects the GNTK and shows that as the graph gets larger the GNTK converges to the graphon NTK. (Sabanayagam et al.,
2022) use the GNTK to theoretically (and empirically) explain the effects of different architecture choices such as symmetric
vs row normalization and increasing depth on GNN performance.

Empirical implications of theoretical insights derived using NTKs. Existing studies have used the theoretical insights
drawn from NTKs to understand practical observations and inform practical applications. The studies in (Chen et al., 2021)
and (Zhu et al., 2022) leverage NTKs to study theory-inspired neural architecture search protocols. Insights into convergence
and generalization properties of neural networks derived using NTKs are well known (Jacot et al., 2018). The training
dynamics of physics inspired neural networks were studied using NTKs in (Wang et al., 2022b) and an NTK-inspired
gradient descent algorithm was proposed. (Huang et al., 2022) utilize insights gained from NTK-based analysis of the
optimization of GNNs to explain the degrading performance of GNNs as the number of layers increases. They further
suggest a potential solution to this problem through randomly dropping a certain percentage of the edges of the graph during
training. Our work is similar in spirit to such studies, where we draw upon the theoretical insights derived from NTKs in the
context of GNNs to motivate the choice of GSO for an inference task.

Relation to other statistical methods. Cross-covariance graphs in GNNs for regression models could be tied in principle
with the traditional statistical approaches for multi-variate regression approaches, such as partial least squares (PLS)
regression (Höskuldsson, 1988). Specifically, PLS regression relies on finding a hyperplane that maximizes the cross-
covariance between the latent spaces of input and output data for a regression problem. While our work does not rely on any
artificial dimensionality reduction, equivalence between information processing using GNNs over covariance matrices and
underlying principal components have been demonstrated previously (Sihag et al., 2022). In this context, establishing the
foundational analyses of GNNs that operate on cross-covariance graphs is of immediate interest.

B. Proofs
B.1. Proof of Theorem 2.1

Proof. Gradient descent is deployed to minimize the following cost

Φ(h) ≜ min
h∈Rp

1

2

M∑
i=1

||yi − fxi
(h)||22 . (45)

The change in predictor output at the t-th step of gradient descent can be written as

fxi(h
(t+1)) = fxi

(
h(t) − η · ∇Φ(h(t))

)
(46)

Assuming η to be sufficiently small we can linearize fxi near the point h(t):

fxi

(
h(t) − η · ∇Φ(h(t))

)
= fxi

(
h(t)

)
− η · Jfxi

(h(t)) · ∇Φ(h(t)) , (47)

where Jfxi
(h(t)) is the Jacobian matrix of the vector-valued function fxi

, evaluated at point h(t). We can also write the
gradient of the loss function Φ(h) in terms of the Jacobians Jfxj

as follows:

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

(h(t))
)T · (fxj

(h(t))− yj) (48)

12
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Putting (46) and (47) and (48) together we get:

fxi
(h(t+1)) = fxi

(h(t))− η ·
M∑
j=1

Jfxi
(h(t))

(
Jfxj

(h(t))
)T · (fxj

(h(t))− yj)

= fxi
(h(t))− η ·

M∑
j=1

Θ(xi,xj) · (fxj
(h(t))− yj)

, (49)

where the n×n matrix Θ(xi,xj) is defined as the product of two Jacobian matrices (which corresponds to the inner product
of two gradient vectors that appears in the scalar output case; (see (1)):

Θ(xi,xj) = Jfxi
(h(t))

(
Jfxj

(h(t))
)T

(50)

Further, (49) can be re-written in the vectorized form as follows

f̃X(h(t+1)) = f̃X(h(t))− η · Θ̃(h(t)) · (f̃X(h(t))− ỹ) (51)

If the NTK matrix Θ̃(h(t)) is constant or non-evolving with respect to epoch t, we can use (51) to analyze the evolution of
gradient descent as follows:

f̃X(h(t+1))− ỹ = f̃X(h(t))− ỹ − η · Θ̃ · (f̃X(h(t))− ỹ)

= (I − η · Θ̃)(f̃X(h(t))− ỹ)

= (I − η · Θ̃)t+1(f̃X(h(0))− ỹ)

= −(I − η · Θ̃)t+1ỹ + (I − η · Θ̃)t+1f̃X(h(0))

, (52)

where we have used the notation Θ̃ to denote an NTK matrix with constant behavior. By choosing the initialization to
be small i.e., choosing a small κ, we can ensure that f̃X(h(0)) is sufficiently close to 0. Recall that the parameters are
initialized randomly as

h(0) ∼ N (0, κ2I). (53)

We can thus say that the output at initialization is 0 in expectation and that the variance of each entry of the output vector is
also proportional to κ2:

E
[
f̃X(h(0))

]
= 0, E

[(
f̃X(h(0))

)2
ℓ

]
= O(κ2) (54)

where
(
f̃X(h(0))

)
ℓ

denotes the ℓ-th entry of the vector f̃X(h(0)). Since f̃X(h(0)) is a vector of nM independently

initialized entries we have E
[
||f̃X(h(0))||22

]
= O(nMκ2). Therefore, using Markov’s inequality, we obtain

P
(
||f̃X(h(0))||22 ≥ nMκ2

δ

)
≤ δ (55)

If we choose κ = O(ε
√

δ
nM ) we have with probability at least 1− δ that ||f̃X(h(0))||2 < ε which leads to the following:

||(I − η · Θ̃)t+1f̃X(h(0))||2 ≤ ||(I − η · Θ̃)t+1||op||f̃X(h(0))||2 ≤ (1− ηλmin)
t+1︸ ︷︷ ︸

O(1)

||f̃X(h(0))||2︸ ︷︷ ︸
O(ε)

(56)

Therefore ∥(I − η · Θ̃)t+1f̃X(h(0))∥2 has O(ε) behavior. Then from (52) we can write:

||f̃X(h(t+1))− ỹ||2 = ||(I − η · Θ̃)t+1ỹ||2 ±O(ε) (57)

13
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Since ε can be chosen to be arbitrarily small, we subsequently focus only on the term (I − η · Θ̃)t+1ỹ. From (52) we have

f̃X(h(t))− ỹ = −(I − η · Θ̃)t · ỹ ±O

(
ε

√
δ

nM

)
(58)

Because Θ̃ is symmetric with real valued entries, its eigen-decomposition, when rank(Θ̃) = r, is given by

Θ̃ =

r∑
ℓ=1

λℓvℓv
T
ℓ (59)

(59) implies the following eigen-decomposition for (I − η · Θ̃):

I − η · Θ̃ =

r∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ (60)

Using (60) we rewrite (58) as

f̃X(h(t))− ỹ = −
( r∑

ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ

)t

ỹ ±O

(
ε

√
δ

nM

)

= −
r∑

ℓ=1

((1− ηλℓ)
TvT

ℓ ỹ) vℓ −
nM∑

ℓ=r+1

(vT
ℓ ỹ) vℓ ±O

(
ε

√
δ

nM

) (61)

Using the fact that the eigenvectors form an orthonormal basis we can write the training loss after t steps of Gradient Descent
as

||f̃X(h(t))− ỹ||22 =

r∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 +

nM∑
ℓ=r+1

(vT
ℓ ỹ)

2 ±O(ε) (62)

In (62) we can see how the non-zero eigenvalues of the NTK and the corresponding eigenvectors characterize the training
process:

1. Of the two sums in (62),
∑nM

ℓ=r+1(v
T
ℓ ỹ)

2 remains constant during training. Therefore it is the hard limit for the
minimum achievable training error and cannot be optimized.

2. Each summand in
∑r

ℓ=1(1 − ηλℓ)
2t(vT

ℓ ỹ)
2, converges linearly to zero. The rate of convergence is determined by

(1− ηλℓ)
2 i.e., the larger λℓ is, the faster the convergence.

3. From the previous two points we can surmise that if ỹ is well-aligned with the eigenvectors of the NTK that correspond
to its larger eigenvalues i.e., (vT

ℓ ỹ)
2 is large whenever λℓ is large, we’ll have faster convergence.

4. We know that since the eigenvectors form a basis,
∑nM

ℓ=1(v
T
ℓ ỹ)

2 = ||ỹ||22 which is constant. Therefore the more of ỹ
that is aligned with the eigenvectors of the NTK with non-zero eigenvalues, the smaller the final training error ( after a
large enough number of steps) will be.

Next, we combine the above insights to derive the result in Theorem 1. First, for simplicity, we write (62) as

||f̃X(h(t))− ỹ||22 =

nM∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 ±O(ε) (63)

considering that that only the first r eigenvalues are non-zero. Then we have:

∑nM
ℓ=1(1− ηλℓ)

2t(vT
ℓ ỹ)

2 ≤
nM∑
ℓ=1

(1− ηλℓ)(v
T
ℓ ỹ)

2

= ỹT

(
nM∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ

)
ỹ

= ỹT
(
I − η · Θ̃

)
ỹ

(64)

14



Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks

(64) gives the desired upper bound. Now we move on to the lower bound for (63). Using Bernoulli’s inequality which states
(1 + x)m ≥ 1 +mx for every integer m ≥ 1 and real number x > −1 we can write:

∑nM
ℓ=1(1− ηλℓ)

2t(vT
ℓ ỹ)

2 ≥
nM∑
ℓ=1

(1− 2tηλℓ)(v
T
ℓ ỹ)

2

= ỹT

(
nM∑
ℓ=1

(1− 2tηλℓ)vℓv
T
ℓ

)
ỹ

= ỹT
(
I − 2tη · Θ̃

)
ỹ

(65)

Note that in order for gradient descent to converge, η must be small enough so that for all ℓ, ηλℓ ≤ 1. This leads to the
condition for Bernoulli’s inequality to also be satisfied i.e., −ηλℓ ≥ −1. Putting together the upper bound from (64) and the
lower bound from (65) we can bound the quantity in (63) from both sides:

ỹT
(
I − 2tη · Θ̃

)
ỹ ±O(ε) ≤

nM∑
ℓ=1

(1− ηλℓ)
2t(vT

ℓ ỹ)
2 ≤ ỹT

(
I − η · Θ̃

)
ỹ ±O(ε) (66)

which concludes the proof.

B.2. Proof of Lemma 3.3

Proof.

Afilt(S,X, Y ) =

K−1∑
k=0

(
ỹTS̃kx̃

)2
=

K−1∑
k=0

(
M∑
i=1

yT
i S

kxi

)2

=

K−1∑
k=0

(
tr(Y TSkX)

)2
(67)

Using the cyclic property of the trace (and symmetry of Sk) we can write:

tr(Y TSkX) = tr(SkXY T) = tr(XY TSk) = tr(SkY XT) (68)

Using the above and (67), we have:

Afilt(S,X, Y ) =

K−1∑
k=0

(
1

2

(
tr(SkXY T) + tr(SkY XT)

))2

(69)

=

K−1∑
k=0

(
tr(Sk · 1

2
(XY T + Y XT))

)2

(70)

=

K−1∑
k=0

(
tr(SkCXY )

)2 ≥

(
1√
K

K−1∑
k=0

∣∣tr(SkCXY )
∣∣)2

(71)

≥

(
1√
K

∣∣∣∣∣
K−1∑
k=0

tr(SkCXY )

∣∣∣∣∣
)2

=

(
1√
K

tr

((
K−1∑
k=0

Sk

)
CXY

))2

︸ ︷︷ ︸
AL

(72)

Above in (71) we used the triangle inequality and in (71) we used the fact that for any vector z ∈ Rd: ||z||2 ≥ 1√
d
||z||1.2

2A relevant question: When are these inequalities tight? whenever the terms tr(SkCXY ) are close to each other for different values of
k, the inequalities are tighter. If tr(SkCXY ) is the same for every value of k, equality holds for both inequalities
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B.3. Proof of Lemma 3.4

Proof. Starting with the original constraint: ||
∑K−1

k=0 S̃kx̃x̃TS̃k||op < α. , we will use upper bounds to get rid of the
dependence on the data and to have a constraint that only depends on S:

||
K−1∑
k=0

S̃kx̃x̃TS̃k||op ≤
K−1∑
k=0

||S̃kx̃x̃TS̃k||op =
K−1∑
k=0

||S̃kx̃||22 (73)

Above, we used the fact that S̃kx̃x̃TS̃k is a rank one matrix with its only non-zero eigenvalue being ||S̃kx̃||22.

K−1∑
k=0

||S̃kx̃||22 =

K−1∑
k=0

M∑
i=1

||Skxi||22 =

K−1∑
k=0

M∑
i=1

xT
i S

2kxi (74)

The eigen-decomposition of S is given by

S =

n∑
ℓ=1

γℓvℓv
T
ℓ . (75)

Inserting (75) into (74) leads to
K−1∑
k=0

M∑
i=1

xT
i S

2kxi =

K−1∑
k=0

M∑
i=1

n∑
ℓ=1

γ2k
ℓ (vT

ℓ xi)
2 (76)

Using the notation x̂i to denote vT
ℓ , we have

K−1∑
k=0

M∑
i=1

n∑
ℓ=1

γ2k
ℓ (vT

ℓ xi)
2 =

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ (77)

By the linearity of the inner product and Holder’s inequality (noting that every element of both vectors is non-negative),

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ = ⟨

K−1∑
k=0

γ⊙2k,

M∑
i=1

x̂⊙2
i ⟩ ≤ ||

K−1∑
k=0

γ⊙2k||1 · ||
M∑
i=1

x̂⊙2
i ||∞ (78)

Since x̂i consists of the coefficients of xi projected onto the eigenspace of S, and recall that the input dataset is normalized,
i.e., ||x̂i||2 = ||xi||2 = 1, the term ||

∑M
i=1 x̂

⊙2
i ||∞ in (78) can be upper bounded as

||
M∑
i=1

x̂⊙2
i ||∞ ≤

M∑
i=1

||x̂⊙2
i ||∞ ≤

M∑
i=1

||x̂⊙2
i ||1 =

M∑
i=1

||x̂i||22 ≤ M (79)

Using the upper bound from (79) we can further upper bound the quantity from (78):

K−1∑
k=0

M∑
i=1

⟨γ⊙2k, x̂⊙2
i ⟩ ≤ M · ||

K−1∑
k=0

γ⊙2k||1

= M · ||
K−1∑
k=0

γ⊙k||22

= M · ||
K−1∑
k=0

Sk||2F

(80)

Putting together equations (73) - (80) we get:

||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) ⇒ η · ||

K−1∑
k=0

S̃kx̃x̃TS̃k||op ≤ α (81)

which concludes the proof.
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B.4. Proof of Theorem 3.5

Proof. We restate the optimization problem to be considered for the result in this theorem.

S∗ = argmax
S

(
1√
K

tr

((
K−1∑
k=0

Sk

)
CXY

))2

s.t. ||
K−1∑
k=0

Sk||F ≤
√
α/(ηM) (82)

The vectorized form of (82) is given by

vec(S∗) = argmax
vec(S)

(
1√
K

⟨vec(
K−1∑
k=0

Sk), vec(CXY )⟩

)2

s.t. ||vec(
K−1∑
k=0

Sk)||2 ≤
√
α/(ηM) (83)

Thus, (83) is equivalent to maximizing the projection of the vector vec(
∑K−1

k=0 Sk) along the direction of vec(CXY ) on an
ℓ2-norm ball of radius

√
α/(ηM), which has the following solution

K−1∑
k=0

(S∗)k = µ · CXY (84)

where µ =

√
α/(ηM)

||CXY ||F is a normalizing constant to ensure the Frobenius norm of
∑K−1

k=0 (S∗)k satisfies our constraint. Note
that while a solution S∗ satisfying (84) might not exist for some values of K, When designing the architecture we could
choose K in a way that (84) has a solution. For example with K = 2 there is always a solution as given by (21).

B.5. Proof of Lemma 3.10

Proof. From (32), we can write:

Eab = E
g∼N (0,I)

[
σ
(
⟨g, z(a)⟩

)
· σ
(
⟨g, z(b)⟩

)]
= E

g∼N (0,I)

[
σ

(
||z(a)||2 · ⟨g,

z(a)

||z(a)||2
⟩
)
· σ
(
||z(b)||2 · ⟨g,

z(b)

||z(b)||2
⟩
)] (85)

In order to analyze (85), we define two random variables u ≜ ⟨g, z(a)

||z(a)||2
⟩ an u′ ≜ ⟨g, z(b)

||z(b)||2
⟩. It is evident that the

random variables u, u′ are correlated, mean-zero Gaussian random variables with their joint distribution given by

u, u′ ∼ N

[0
0

]
,Λ =

 1 ⟨z(a),z(b)⟩
||z(a)||2·||z(b)||2

⟨z(a),z(b)⟩
||z(a)||2·||z(b)||2

1

 (86)

Therefore from (85) we can write

Eab = E
u,u′∼N (0,Λ)

[
σ
(
||z(a)||2 · u

)
· σ
(
||z(b)||2 · u′

)]
(87)

In order to analyze Eab, we leverage Hermite polynomials, which are discussed next.

Hermite Polynomials. Hermite polynomials are a collection of functions (pj)j∈N which form an orthonormal basis for the
space of square-integrable functions. The first few of these polynomials can be seen below:

p0(z) = 1, p1(z) = z, p2(z) =
z2 − 1√

2
, p3(z) =

z3 − 3z√
6

, . . . (88)

We can define the inner product between two square-integrable functions f and g as

⟨f, g⟩ =
∫ ∞

−∞
f(z) · g(z) · e−z2/2dz (89)
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By noting that the Hermite polynomials are orthonormal with respect to the inner product defined in (89), we can expand
any function f(z) for which ⟨f, f⟩ is bounded, in terms of these polynomials:

f(z) =

∞∑
ℓ=0

αℓ · pℓ(z) (90)

where we have

αℓ = ⟨f, pl⟩ =
∫ ∞

−∞
f(z) · pℓ(z) · e−z2/2dz (91)

In our analysis, we also leverage another property of these polynomials (section 11.2 of O’Donnell (2014)), which is given
by

E
(z,z′)

ρ-correlated

[pj(z)pk (z
′)] =

{
ρj if j = k,

0 if j ̸= k
(92)

Essentially, (92) establishes orthogonality of the polynomials pj(z) and pk (z
′) when (z, z′) are a pair of ρ-correlated

standard Gaussian random variables. It is straightforward to see that setting ρ = 1 in (92) recovers the orthonormality of the
Hermite polynomials. Based on (91) can now write the Hermite expansion of the two functions in (87) as:

σ
(
||z(a)||2 · u

)
=

∞∑
ℓ=0

αℓ · pℓ(u), σ
(
||z(b)||2 · u′

)
=

∞∑
ℓ′=0

βℓ′ · pℓ′(u′) (93)

Inserting these into (87) we get

Eab = E
u,u′∼N (0,Λ)

[ ∞∑
ℓ=0

αℓ · pℓ(u)
∞∑

ℓ′=0

βℓ′ · pℓ′(u′)

]
(94)

=

∞∑
ℓ=0

∞∑
ℓ′=0

αℓβℓ′ E
u,u′∼N (0,Λ)

[pℓ(u)pℓ′(u
′)] (95)

=

∞∑
ℓ=0

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ (96)

where to get from (95) to (96) we used the orthogonality property of Hermite polynomials from (92). Here, we remark
that the coefficients αℓ, βℓ depend on the choice of non-linear activation function and the magnitudes ||z(a)||2 and ||z(b)||2
respectively.

For the subsequent analysis, we consider the setting where the non-linear activation function is the hyperbolic tangent
function, i.e., σ(y) = tanh(y). Note that tanh is an odd function. Since the Hermite polynomial pℓ(z) is odd for odd ℓ and
even for even ℓ, for even ℓ we have

αℓ =

∫ ∞

−∞
σ(||za||2u) · pℓ(u) · e−u2/2du = 0 (97)

and similarly we have βℓ = 0. This leaves us with only the odd terms in the sum from (96), therefore we can write Eab as

Eab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2︸ ︷︷ ︸
Bab

+

∞∑
ℓ=3,5,···

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ︸ ︷︷ ︸

∆Bab

(98)

For conciseness moving forward, we define the matrices B ∈ RnM×nM which represents the first non-zero term in the
expansion and ∆B ∈ RnM×nM which includes all the subsequent terms. Now, recalling (31) and replacing E with the
expansion given in (98), the alignment A is given by

A = tr(QE) = tr(QB) + tr(Q∆B) . (99)

Hence, we conclude the proof.
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B.6. Proof of Lemma 3.11

Proof. We begin with the analysis of the (a, b)-th entry of matrix B, i.e.,

Bab = α1β1 ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
(100)

For this purpose, we define the nonlinear function σ̂(·) as

σ̂(||za||22) ≜
α1

||za||2
(101)

=

∫∞
−∞ σ(||za||2u) · p1(u) · e−u2/2du

||za||2
(102)

By noting that (Blin)aa = ⟨za, za⟩ = ||za||22, we can write:

Bab = σ̂((Blin)aa) · σ̂((Blin)bb) · (Blin)ab (103)

The element-wise equation in (103) implies the following:

B = σ̂(diag(Blin))Blinσ̂(diag(Blin)) (104)

where diag(Blin) is a square nM × nM matrix equal to Blin on the diagonal and zero everywhere else. Next, we focus on
the first term in the expansion of the alignment given in (41).

tr(QB) = tr

((
K−1∑
k=0

S̃kỹỹTS̃k

)
B

)
=

K−1∑
k=0

tr(QkB) (105)

where Qk ≜ S̃kỹỹTS̃k. Using (104) we can write:

tr (QkB) = tr (Qk · σ̂(diag(Blin))Blinσ̂(diag(Blin))) (106)

We note that Qk is a rank one matrix. Therefore QkB also has rank at most one. Noting that σ̂(diag(Blin)) is a diagonal
matrix (with non-negative entries) and, therefore, its eigenvalues are the elements on its diagonal, calling the largest of these
λmax(σ̂(diag(Blin))) or λmax for short and the smallest one λmin, we can write:

λmintr (QkBlin) ≤ tr
(
QkBlin · σ̂(diag(B))

)
≤ λmaxtr (QkBlin)

⇒ λmintr (QkBlin) ≤ tr
(
Blin · σ̂(diag(Blin))Qk

)
⇒ λ2

mintr (QkBlin) ≤ tr
(
σ̂(diag(Blin))Blin · σ̂(diag(Blin))Qk

)
= tr (QkB)

(107)

We recall from (35) that

Alin = tr(QBlin) =

K−1∑
k=0

tr(QkBlin) (108)

Using (107) and (108) we get

λ2
minAlin ≤

K−1∑
k=0

tr (QkB) = tr(QB) (109)

An upper bound can be attained similarly:
tr(QB) ≤ λ2

maxAlin (110)
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Figure 5. The function σ̂(·) in the case where σ(x) = tanh(x)

We can further find a lower bound for λmin. Note that

λmin = min
a

σ̂(||z(a)||22) = min
a

σ̂(

K−1∑
k=0

(S̃kx̃)2a) = σ̂(max
a

K−1∑
k=0

(S̃kx̃)2a) , (111)

where we have used the fact that σ̂(.) is a non-increasing function (see Figure 5) to establish (111).

Further, because σ̂(.) is a non-increasing function, an upper bound on
∑K−1

k=0 (S̃kx̃)2a will give us a corresponding lower
bound on λmin. To find an upper bound on

∑K−1
k=0 (S̃kx̃)2a, we provide the following analyses

max
a

K−1∑
k=0

(S̃kx̃)2a ≤ max
a′,i

K−1∑
k=0

(Skxi)
2
a′ (112)

≤ max
i

K−1∑
k=0

||Skxi||22 ≤ max
i

K−1∑
k=0

||Sk||2op||xi||22 (113)

≤
K−1∑
k=0

||Sk||2op =
K−1∑
k=0

||S||2kop (114)

where in the last inequality we used the fact that for every sample xi in the dataset we have ||xi||2 ≤ 1. Therefore, we can
write

λ2
min =

(
σ̂(max

a

K−1∑
k=0

(S̃kx̃)2a)

)2

≥

(
σ̂

(
K−1∑
k=0

||S||2kop

))2

(115)

Considering that, in practice, bounding the norm of the GSO S through normalization, (see Appendix F) ensures that the
constraint ||η · Θ̃||op < α of our optimization problem is satisfied, we next consider the mild assumption that ||S|| is upper
bounded. Formally, this assumption is given by

||S||op ≤ ν (116)

Using (116) and (115), we reach

λ2
min ≥ ρmin (117)

where ρmin ≜

(
σ̂

(
K−1∑
k=0

ν2k

))2

(118)
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Similarly for λmax we can use the fact that σ̂(.) is a non-increasing function to write:

λ2
max =

(
σ̂(min

a

K−1∑
k=0

(S̃kx̃)2a)

)2

≤ (σ̂ (0))
2 (119)

where we can define ρmax ≜ (σ̂ (0))
2. Thus, we can put (109) and (110) together to write the following:

ρminAlin ≤ tr(QB) ≤ ρmaxAlin (120)

which concludes the proof.

B.7. Proof of Lemma 3.12

Proof. We start by defining the Hermite transform of the tanh functioon as gℓ for clarity in subsequent analysis and to
emphasize that the ℓ-th coefficient αℓ is a function of ||z(a)||2.

gℓ(||z(a)||2) ≜
∫ ∞

−∞
tanh(||z(a)||2u) · pℓ(u) · e−u2/2du = αi (121)

From (40), we recall that

∆Bab =

∞∑
i=1

α2i+1β2i+1 · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

=

∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

(122)

It can readily be verified numerically that for a given index ℓ, we either have gℓ(y) ≥ 0, ∀y ≥ 0 or gℓ(y) ≤ 0, ∀y ≥ 0.3

Consequently, we have g2i+1(||z(a)||2) · g2i+1(||z(b)||2) ≥ 0. We can further conclude that ∆Bab and Bab have the same
sign, which is given by sign(⟨z(a), z(b)⟩) since recall that:

Bab = g1(||z(a)||2)g1(||z(b)||2) ·
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
(123)

Next, in the scenario ⟨z(a), z(b)⟩ ≥ 0, we have
∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)2i+1

≤
∞∑
i=1

g2i+1(||z(a)||2) · g2i+1(||z(b)||2) · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
) (124)

=

(∑∞
i=1 g2i+1(||z(a)||2) · g2i+1(||z(b)||2)

)
g1(||z(a)||2) · g1(||z(b)||2)

·Bab (125)

We established previously that g2i+1(||z(a)||2) and g2i+1(||z(b)||2) have the same sign for any i ≥ 0. Further,

| g2i+1(||z(a)||2)
g1(||z(a)||2)

| is a non-decreasing function in ||z(a)||2 for any i ≥ 0 4. Hence, we can continue from (125), such
that, we have(∑∞

i=1 g2i+1(||z(a)||2) · g2i+1(||z(b)||2)
)

g1(||z(a)||2) · g1(||z(b)||2)
·Bab ≤ lim

y→∞

(
∑∞

i=1 g2i+1(y) · g2i+1(y))

g1(y) · g1(y)
·Bab

=

(
lim
y→∞

∑∞
i=1(g2i+1(y))

2

(g1(y))2

)
Bab

, (126)

3A simple Python script can be found in https://github.com/shervinkhal/Cross Covariance NTK that plots gℓ(y) against y for any
given index ℓ. See the file ”numerical verification 1.py”

4A simple Python script can be found in https://github.com/shervinkhal/Cross Covariance NTK that plots | g2i+1(y)

g1(y)
| against y for any

given index i. See the file ”numerical verification 2.py”
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which implies that

∆Bab ≤ β ·Bab (127)

where

β ≜ lim
y→∞

∑∞
i=1(g2i+1(y))

2

(g1(y))2

=

∑∞
i=1

(∫∞
−∞(limy→∞ tanh(y · u)) · pℓ(u) · e−u2/2du

)2

(∫∞
−∞(limy→∞ tanh(y · u)) · p1(u) · e−u2/2du

)2 =
π − 2

2
≃ 0.57

(128)

Noting that all of the inequalities from (124) and (126) hold in the opposite direction when Bab < 0, the proof is
concluded.

B.8. Proof of Theorem 3.13

Proof. From Lemma 3.12, we know that the first term in the expansion of the alignment i.e., tr(QB) is lower bounded by
Alin multiplied by a constant. Hence, it remains to analyze how the second term, tr (Q∆B), can affect alignment. To begin
with, we make the following assumption that the alignment in the linear case is sufficiently large, i.e.,

Alin = tr (QBlin) ≥ ξ · ||Q||F ||Blin||F (129)

where 0 ≤ ξ ≤ 1, is some constant that quantifies how large the alignment is in the linear case. We define the matrix
W ∈ RnM×nM , such that, for any (a, b)-th entry of the matrices B,∆B, and W , the following holds

(∆B)ab = BabWab (130)

Recall from Lemma 3.12 that for the (a, b)-th entries of B and ∆B, we have

|(∆B)ab| ≤ βBab and (∆B)abBab ≥ 0 (131)

Therefore, the entries of W must satisfy 0 ≤ Wab ≤ β.

Analysis of term tr (Q∆B). Based on the discussion above, we now analyze the term tr (Q∆B) in the alignment.

tr (Q∆B) =
∑
a,b

Qab(∆B)ab

=
∑
a,b

QabBabWab

=
∑

QabBab≥0

QabBabWab +
∑

QabBab<0

QabBabWab

≥ β ·
∑

QabBab<0

QabBab

(132)

To achieve the last inequality, we consider the worst case scenario, i.e., the most negative value possible for tr (Q · (∆B)).
The worst case scenario corresponds to the setting when Wab = 0 for all non-negative terms in the sum

∑
a,b QabBabWab,

and Wab = β for all the negative terms. For conciseness, we introduce the following notation:

tr (QB)+ =
∑

QabBab≥0

QabBab, and tr (QB)− =
∑

QabBab<0

QabBab (133)

Thus, we can write
tr (Q∆B) ≥ −β

∣∣tr (QB)−
∣∣ (134)

Next, we aim to provide an upper bound on
∣∣tr (QB)−

∣∣. Recall from (104) that

B = σ̂(diag(Blin)) ·Blin · σ̂(diag(Blin))
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Hence, since σ̂(diag(Blin)) is a diagonal matrix, it readily follows that

λ2
min||Blin||F ≤ ||B||F ≤ λ2

max||Blin||F (135)

where λmax = maxi(σ̂(diag(Blin)))ii is the largest element on the diagonal of σ̂(diag(Blin)) and therefore, also its largest
eigenvalue. Similarly, λmin = mini(σ̂(diag(Blin)))ii is the smallest element on the diagonal of σ̂(diag(Blin)) and its
smallest eigenvalue. Note that all elements on the diagonal of Blin are non-negative. From (107), we have

tr (QB) ≥ λ2
mintr (QBlin)

≥ ξλ2
min||Q||F ||Blin||F

≥ ξ
λ2
min

λ2
max

||Q||F ||B||F

⇒ tr (QB) =
∣∣tr (Q ·B)+

∣∣− ∣∣tr (Q ·B)−
∣∣

≥ ξ
λ2
min

λ2
max

||Q||F ||B||F

(136)

Since changing the signs of individual elements of a matrix does not change the Frobenius norm of said matrix, we can write∣∣tr (Q ·B)+
∣∣+ ∣∣tr (Q ·B)−

∣∣ ≤ ||Q||F ||B||F (137)

From (136) and (137), we have the following

∣∣tr (Q ·B)−
∣∣ ≤ 1/2(1− ξ

λ2
min

λ2
max

)||Q||F ||B||F (138)

Next, recalling (134) and using (138), we have

tr (Q · (∆B)) ≥ −β/2(1− ξ
λ2
min

λ2
max

)||Q||F ||B||F

≥ −β/2(
λ2
max

ξλ2
min

− 1)tr (QB)

(139)

Using (139), we can lower bound A as follows

A = tr (QB) + tr (Q · (∆B))

≥
(
1− β/2(

λ2
max

ξλ2
min

− 1)

)
tr (QB)

≥ λ2
min

(
1− β/2(

λ2
max

ξλ2
min

− 1)

)
Alin

(140)

Now recall from the proof of Lemma 3.11 (Equations (111) to (117)):

λ2
min =

(
σ̂(max

a

K−1∑
k=0

(S̃kx̃)2a)

)2

≥

(
σ̂

(
K−1∑
k=0

ν2k

))2

= ρmin (141)

Similarly for λmax:
λ2
max ≤ (σ̂(0))2 = ρmax (142)

Using (141) and (142), from (140) we can continue to write:

A ≥
(
ρmin

(
1 +

β

2

)
− βρmax

2ξ

)
Alin (143)
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Further, using the following definitions

c ≜ ρmin

(
1 +

β

2

)
, and d ≜

βρmax

2
, (144)

we can rewrite (140) as

A ≥ (c− d

ξ
)Alin (145)

Thus, the proof is concluded.

B.9. Proof of Lemma C.2

Proof. Our approach is to upper bound the Rademacher complexity term in (198) for the class of hypotheses H̃filt(B)

where the vector of filter coefficients are close to some initialization. Recall the definition of H̃filt(B) from (200):

H̃filt(B) ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK , ||h− h(0)||2 ≤ B

}

We can write the complexity term from (198) as:

R(ℓ ◦ H̃filt ◦ S) =
1

M
E

σ∼{±1}M

[
sup

h∈H̃filt

M∑
i=1

σi · ℓ(f(xi),yi)

]
(146)

=
1

M
E

σ∼{±1}M

[
sup

||h−h(0)||2≤B

M∑
i=1

σi · ||
K−1∑
k=0

hkS
kxi − yi||22

]
(147)

Next, we provide the following lemma (an application of Lemma 26.9 from ((Shalev-Shwartz & Ben-David, 2014))).

Lemma B.1 (Contraction lemma). Let ϕ : R → R be a ρ-Lipschitz function, i.e., we have |ϕ(α)− ϕ(β)| ≤ ρ|α−β|,∀α, β ∈
R. For a ∈ Rm, let ϕ(a) denote the vector [ϕ1 (a1) , . . . , ϕm (ym)] and let ϕ ◦A = {ϕ(a) : a ∈ A}. Then, we have

R(ϕ ◦ ℓ ◦ H ◦ S) ≤ ρR(ℓ ◦ H ◦ S).

We recall the assumption that ||
∑K−1

k=0 hkS
kxi−yi||2 ≤ ρ. Also note that the function ϕ(z) = z2 is ρ-Lipschitz continuous

over the domain |z| ≤ ρ, therefore using Lemma B.1 and (147) we can write:

R(ℓ ◦ H̃filt ◦ S) ≤ ρ · 1

M
E

σ∼{±1}M

[
sup

||h−h(0)||2≤B

M∑
i=1

σi · ||
K−1∑
k=0

hkS
kxi − yi||2

]
(148)

Next, we re-state Corollary 4 from (Maurer, 2016) that enables us to bound the Rademacher complexity for our setting when
the hypothesis functions are vector valued.

Lemma B.2. For a given set X = (x1, . . . , xn) ∈ Xn, a class of fucntions F , such that, f : X → ℓ2 and an L-Lispschitz
function gi : ℓ2 → R, we have

E

[
sup
f∈F

∑
i

σigi (f (xi))

]
≤

√
2LE

sup
f∈F

∑
i,j

σijfj (xi)

 ,

where σij is an independent doubly indexed Rademacher sequence and fj (xi) is the j-th component of f (xi).

The above lemma still holds if instead of f : X → ℓ2 we have f : X → Bn(ρ) ⊂ Rn where Bn(ρ) is an ℓ2 norm ball in Rn

of radius ρ centered at the origin.

24



Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks

In our case, we can take X = R × R. Note that {(xi,yi)}Mi=1 ∈ XM = (R × R)M and also g(z) = ||z||2 which is
L-Lipschitz with L = 1. Now we can apply Lemma B.2 to upper bound (148):

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2E

 sup
||h−h(0)||2≤B

M∑
i=1

n∑
j=1

σij · (
K−1∑
k=0

hkS
kxi − yi)

 (149)

=
√
2 E
σi∼{±1}n

[
sup

||h−h(0)||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

hkS
kxi − yi⟩

]
(150)

Writing h = h(0) +∆h, we have

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

(h
(0)
k +∆hk)S

kxi − yi⟩

]
(151)

≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]

+
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩

]
(152)

In (152), the first term does not depend on ∆h and hence, we can remove the supremum, i.e.,

E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]
= E

σi∼{±1}n

[
M∑
i=1

⟨σi,

K−1∑
k=0

h
(0)
k Skxi − yi⟩

]
(153)

Further, using the linearity of expectations and inner products, we have

M∑
i=1

K−1∑
k=0

E
σi∼{±1}n

[
⟨σi, h

(0)
k Skxi − yi⟩

]
=

M∑
i=1

K−1∑
k=0

n∑
j=1

(h
(0)
k Skxi − yi)j E

σi∼{±1}n
[(σi)j ] = 0 (154)

Thus, we can restate (152) as

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2 E
σi∼{±1}n

[
sup

||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩

]
(155)

Focusing on the supremum in (155), we have

sup
||∆h||2≤B

M∑
i=1

⟨σi,

K−1∑
k=0

∆hkS
kxi⟩ = sup

||∆h||2≤B

M∑
i=1

K−1∑
k=0

⟨σi,∆hkS
kxi⟩ (156)

= sup
||∆h||2≤B

K−1∑
k=0

∆hk

(
M∑
i=1

⟨σi, S
kxi⟩

)
(157)

We introduce the notation ak ≜
∑M

i=1⟨σi, S
kxi⟩. Note that ak doesn’t depend on ∆h. Hence,

sup
||∆h||2≤B

K−1∑
k=0

∆hk

(
M∑
i=1

⟨σi, S
kxi⟩

)
= sup

||∆h||2≤B

K−1∑
k=0

∆hkak = sup
||∆h||2≤B

⟨∆h,a⟩ = B · ||a||2 (158)

Inserting (158) into (155), we have

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2 E
σi∼{±1}n

[B · ||a||2] =
√
2B E

σi∼{±1}n


√√√√K−1∑

k=0

(
M∑
i=1

⟨σi, Skxi⟩

)2
 (159)
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Further, using Jensen’s inequality in (159), we get

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2B

√√√√√K−1∑
k=0

E
σi∼{±1}n

( M∑
i=1

⟨σi, Skxi⟩

)2
 (160)

=
√
2B

√√√√√√K−1∑
k=0

E
σi∼{±1}n


 M∑

i=1

n∑
j=1

(σi)j(Skxi)j

2
 (161)

=
√
2B

√√√√√K−1∑
k=0

E
σi∼{±1}n

 M∑
i=1

n∑
j=1

((σi)j)
2
((Skxi)j)

2

 (162)

=
√
2B

√√√√K−1∑
k=0

M∑
i=1

n∑
j=1

((Skxi)j)
2 (163)

=
√
2B

√√√√ M∑
i=1

K−1∑
k=0

||Skxi||22 (164)

In the above set of equations from (162) to (163), we have used the fact that (σi)j are independent and therefore:

E [(σi)j(σk)ℓ] =

{
1 if i = k, j = l

0 o.w.
(165)

Finally, we provide an upper bound on the Rademacher complexity that is proportional to 1/
√
M . From 164:

M/ρ ·R(ℓ ◦ H̃filt ◦ S) ≤
√
2B

√√√√ M∑
i=1

K−1∑
k=0

||Skxi||22 ≤
√
2B
√

MKmax
k,i

||Skxi||22 (166)

⇒ R(ℓ ◦ H̃filt ◦ S) ≤ Bρ

√
2Kmaxk,i ||Skxi||22

M
(167)

We thus conclude the proof.

B.10. Proof of Lemma C.3

Proof. Our focus is on the setting where the NTK does not change during training. In such a case, the “movement” of the
parameters (i.e., how much the vector of parameters changes) during gradient descent is directly related to the NTK.

Recall that the NTK matrix Θ̃(h) ∈ RnM×nM consists of M2 blocks, each of which is an n × n matrix Θ(xi,xj) =

Jfxi
(h(t))

(
Jfxj

(h(t))
)T

(see (7)). Hence, assuming that the NTK does not change during training is equivalent to assuming

that the Jacobian matrices Jfxi
(h(t)) are constant. Also, for ease of notation, we define the big Jacobian matrix J̃ ∈ RnM×p

that consists of all the Jacobian matrices Jfxi
stacked on top of one another. Therefore, we have

Θ̃(h) = (J̃(h))(J̃(h))T (168)

Again, we note that in general both J̃ (and consequently, Θ̃) can depend on the parameters h but we are considering cases
where they do not.5

Similar to Section 2, we denote the vector of all parameters of the predictor as h ∈ Rp. For the t-th step of gradient descent
we can write:

h(t+1) = h(t) − η · ∇Φ(h(t)) (169)

5This is the case for any linear predictor like the graph filter as we saw in Section 3 and it is also the case for some neural networks
with infinite width in every layer. See Appendix D and (Liu et al., 2020) for details.
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Also, we can write the gradient in terms of the Jacobian evaluated at different input points as follows

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

)T · (fxj
(h(t))− yj) (170)

Further, using the linearization of fxj
around the initialization h(0), we have

fxj
(h(t))− yj = fxj

(h(0)) + Jfxj
· (h(t) − h(0))− yj (171)

Since Jfxj
is assumed to be constant, we can further replace fxj (h

(0)) with a linearization around h = 0, such that, we have

fxj
(h(0)) = fxj

(0) + Jfxj
h(0) = Jfxj

h(0) (172)

In (172), we used the fact that the output of the predictor is zero when all its parameters are set to zero. By inserting (172)
into (171), we get

fxj
(h(t))− yj = Jfxj

h(t) − yj (173)

And inserting (173) into (170), we have

∇Φ(h(t)) =

M∑
j=1

(
Jfxj

)T · (Jfxj
h(t) − yj) (174)

Replacing the gradient of the loss ∇Φ(h(t)) in (169) by (174) leads to

h(t+1) = h(t) − η ·
M∑
j=1

(
Jfxj

)T · (Jfxj
h(t) − yj) , (175)

which implies

Jfxi
h(t+1) = Jfxi

h(t) − η ·
M∑
j=1

Jfxi

(
Jfxj

)T · (Jfxj
h(t) − yj) (176)

Introducing the notation r
(t)
i to denote Jfxi

h(t), we can rewrite (176) as

r
(t+1)
i = r

(t)
i − η ·

M∑
j=1

Θ(xi,xj) · (r(t)j − yj) (177)

Similar to the procedure in (5), we can stack all the vectors r(t)i together in one tall vector r̃(t) ∈ RnM×1 and rewrite (177)
in the vectorized form as follows

r̃(t+ 1) = r̃(t)− η · Θ̃(r̃(t)− ỹ) (178)

⇒ r̃(t+ 1)− ỹ = r̃(t)− ỹ − η · Θ̃(r̃(t)− ỹ) (179)

⇒ r̃(t)− ỹ = (I − η · Θ̃)t(r̃(0)− ỹ) (180)

Now, writing (175) in terms of the big Jacobian matrix J̃

h(t+1) = h(t) − η · J̃
T
(r̃(t)− ỹ) (181)

and replacing (r̃(t)− ỹ) by the quantity from (180) we get

⇒ h(t+1) = h(t) + η · J̃
T
(I − η · Θ̃)tỹ − η · J̃

T
(I − η · Θ̃)tr̃(0) (182)

⇒ h(∞) − h(0) = η

∞∑
t=0

J̃
T
(I − η · Θ̃)tỹ − η

∞∑
t=0

J̃
T
(I − η · Θ̃)tr̃(0) (183)
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We write the eigen-decomposition of Θ̃ (assuming it has rank r) as

Θ̃ =

r∑
ℓ=1

λℓvℓv
T
ℓ

which implies the following eigen-decomposition for (I − η · Θ̃).

I − η · Θ̃ =

r∑
ℓ=1

(1− ηλℓ)vℓv
T
ℓ +

nM∑
ℓ=r+1

1 · vℓv
T
ℓ (184)

Noting that λℓ = 0 for ℓ > r, we use the eigen-decomposition in (184) to write

⇒ h(∞) − h(0) = η

∞∑
t=0

nM∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ ỹ − η

∞∑
t=0

nM∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ r̃(0) (185)

Note that

for j > r, Θ̃vj =

r∑
ℓ=1

λℓvℓv
T
ℓ vj = 0 . (186)

Hence, from (168) and (186), we have for j > r:

J̃ · J̃
T
vj = 0 (187)

Assuming that J̃ ∈ RnM×p is full-column rank, (187) implies that

for j > r, J̃
T
vj = 0 (188)

Hence, we can write (185) as

h(∞) − h(0) = η

∞∑
t=0

r∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ ỹ − η

∞∑
t=0

r∑
ℓ=1

J̃
T
(1− ηλℓ)

tvℓv
T
ℓ r̃(0) (189)

= η

r∑
ℓ=1

J̃
T 1

ηλℓ
vℓv

T
ℓ ỹ − η

r∑
ℓ=1

J̃
T 1

ηλℓ
vℓv

T
ℓ r̃(0) (190)

= J̃
T
Θ̃†ỹ − J̃

T
Θ̃†r̃(0) (191)

Now, similar to what we saw in the proof of Theorem 2.1 ((53) - (56)), if we choose the parameter controlling the

magnitude of initialization to be κ = O(ε
√

δ
nM ), then with probability at least 1− δ we have r̃(0) = O

(
ε
√

δ
nM

)
and

||r̃(0)||2 = O(ε).

||h(∞) − h(0)||2 =

√
ỹTΘ̃†J̃ · J̃

T
Θ̃†ỹ ±O(ε) (192)

=

√
ỹTΘ̃†Θ̃Θ̃†ỹ ±O(ε) (193)

Finally, since Θ̃† acts as a weak inverse, we get

∥h(∞) − h(0)∥2 =

√
ỹTΘ̃†ỹ ±O(ε) (194)

Thus, we’ve concluded the proof by showing that the “movement” of the parameters, ||h(∞) − h(0)||2, is directly related to
the NTK. (More precisely, the pseudo-inverse of the NTK Θ̃†)
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C. Alignment, The NTK and Generalization
In this section, we will briefly go over how alignment relates to generalization. We start by providing a few definitions from
(Shalev-Shwartz & Ben-David, 2014). Consider a function class F and a function f ∈ F and a distribution D from which
we sample data points z. Also consider a set S = {z1, z2, · · · , zM} of M samples, sampled i.i.d from D. The population
average LD(f) and sample average LS(f) of the function f are then defined as follows:

LD(f) ≜ Ez∼D[f(z)], LS(f) ≜
1

M

M∑
i=1

f(zi) (195)

Also, the Rademacher complexity of class F with respect to S is defined as:

R(F ◦ S) ≜ 1

M
E

σ∼{±1}M

[
sup
f∈F

M∑
i=1

σif (zi)

]
(196)

where each element of the random vector σ is either 1 or -1 with equal probability.

Now consider class of functions (called hypotheses here) H and some loss function ℓ(h, z). In an empirical risk minimization
problem, our goal is to find the function h∗ ∈ H that minimizes the sample loss LS(ℓ(h)):

h∗ = ERMH(S) = argmin
h∈H

LS(ℓ(h)) = argmin
h∈H

1

M

M∑
i=1

ℓ(h, zi) (197)

But minimizing the sample loss does not necessarily lead to a small population loss LD(ℓ(h)) = Ez∼D[ℓ(z, h)]. The
gap between these two losses is called the generalization error. We present the following lemma which upper bounds the
generalization error for a class of functions H based on the Rademacher complexity of the class:

Lemma C.1 (Theorem 26.5 from (Shalev-Shwartz & Ben-David, 2014)). Assume that for all z and h ∈ H we have that
|ℓ(h, z)| ≤ c. Then with probability of at least 1− δ, for all h ∈ H,

LD(ℓ(h))− LS(ℓ(h)) ≤ 2R(ℓ ◦ H ◦ S) + 4c

√
2 ln(4/δ)

M
(198)

where ℓ(h, z) is some loss function. In particular, this holds for h = ERMH(S) which is the solution of the empirical risk
minimization problem.

In the case of the multivariate regression problem that we consider in this paper, each point z is an input output pair of
vectors (xi,yi) and the loss function is quadratic. Also the set H in our case corresponds to the set of all possible predictors
or the set of possible parameter vectors h ∈ Rp and the set S is our training set.

From Lemma C.1, we can surmise that if the complexity of the function class ℓ ◦ H is sufficiently small, our
trained model generalizes to unseen input output pairs sampled from the same distribution as the training set. Henceforth in
this section we will only be considering the hypothesis class of graph filters with K filter taps:

Hfilt ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK

}
(199)

First, in the next lemma, we will be considering the subset H̃filt ⊂ Hfilt, for which the vector of filter coefficients is close
to some initialization h(0). Formally:

H̃filt(B) ≜

{
fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣ h ∈ RK , ||h− h(0)||2 ≤ B

}
(200)

The following lemma gives us an upper bound for the complexity of H̃filt:
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Lemma C.2. Consider the class of hypotheses H̃filt(B) defined in (200). Assuming that ||
∑K−1

k=0 hkS
kxi − yi||2 ≤

ρ, ∀(xi,yi) ∈ S,h ∈ H̃filt, the Rademacher complexity of H̃filt can be upper bounded as follows:

R(ℓ ◦ H̃filt ◦ S) ≤ Bρ

√
2Kmaxk,i ||Skxi||22

M
(201)

where the loss function is quadratic ℓ(h, z = (xi,yi)) = ||
∑K−1

k=0 hkS
kxi − yi||22.

For proof of Lemma C.2 see Section B.9. In order to meaningfully utilize Lemma C.2, we next bound the movement of the
vector of parameters (in this case the filter coefficients) from initialization using a straightforward extension of a result from
(Arora et al., 2019).

Lemma C.3. Consider the prediction task defined in Section 2. If the NTK Θ̃(h(t)) is constant during training and

κ = O(ε
√

δ1
nM ), then with probability at least 1− δ1, The change in the vector of parameters, h, after infinitely many steps

of gradient descent is related to the NTK matrix, Θ̃, as follows:

||h(∞) − h(0)||22 =

√
ỹTΘ̃†ỹ ±O(ε) 6 (202)

For proof of Lemma C.3 see Section B.10. Motivated by the above lemma we define the class of functions Htrained

which includes the family of graph filters where the coefficients have been initialized randomly to some vector h(0) and
subsequently updated using an arbitrary number of gradient descent steps:

Htrained ≜

fx(h) =

K−1∑
k=0

hkS
kx

∣∣∣∣∣ h ∈ RK initialized to h(0) with κ = O

(
ε

√
δ1
nM

)
,

then updated using Gradient Descent

 (203)

Finally, putting the previous Lemmas C.1, C.2 and C.3 together we get the result that relates generalization to the NTK:

Theorem C.4. Consider the prediction task defined in Section 2 and the hypothesis class Htrained of graph filters trained
using Gradient Descent. Under the assumption that |ℓ(h, z)| = ||

∑K−1
k=0 hkS

kxi − yi||22 ≤ ρ2, ∀(xi,yi) ∈ S,h ∈
Htrained, with probability of at least 1− δ, for all h ∈ Htrained, we have

LD(ℓ(h))− LS(ℓ(h)) ≤ 2ρ

√
2K · (maxk,i ||Skxi||22) · (ỹTΘ̃†ỹ)

M
+ 4ρ2

√
2 ln(4/δ2)

M
(204)

where δ = δ1 + δ2. In particular, (204) holds for h = ERMH(S) which is the solution of the empirical risk minimization
problem.

Theorem C.4 reveals that the upper bound on generalization error is proportional to the term
√
ỹTΘ̃†ỹ. While maximizing

the alignment i.e., A = ỹTΘ̃ỹ and minimizing the term ỹTΘ̃†ỹ are clearly not identical objectives, there is a close
relationship between the two as formalized in the following result (Theorem 2 from (Wang et al., 2022a)):

ỹTỹ

A(X,Y, S)
≤ ỹTΘ̃†ỹ ≤ λmax(Θ̃)

λmin(Θ̃)

ỹTỹ

A(X,Y, S)
(205)

7 (205) tells us that for a class of predictors where the ratio of the largest and smallest eigenvalues of the NTK i.e. λmax(Θ̃)

λmin(Θ̃)
is

more or less constant between different predictors, the generalization error bound given in Theorem C.4 is governed by
1/A(X,Y, S). This means within such a class, predictors with larger alignment are likely to have a smaller generalization
error. The question remains that for the classes of predictors discussed within the paper, namely Graph filters and two-layer
GNNs, how much does λmax(Θ̃)

λmin(Θ̃)
vary between predictors. This is an avenue for potential future work.

6If Θ̃ is full rank then this becomes
√

ỹTΘ̃−1ỹ
7Since in our case Θ̃ isn’t full-rank, by λmin(Θ̃) we mean the smallest eigenvalue of Θ̃ that is greater than 0.
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D. Why the NTK is constant for a two-layer GNN with infinite width
We start this section with the following proposition from (Liu et al., 2020):

Proposition D.1 ((Small Hessian norm implies small change in tangent kernel)). Given a point w0 ∈ Rp and a ball
B (w0, R) := {w ∈ Rp : ∥w −w0∥ ≤ R} with fixed radius R > 0, if the Hessian matrix satisfies ∥H(w)∥ < ϵ, where
ϵ > 0, for all w ∈ B (w0, R), then the tangent kernel K(w) of the model, as a function of w, satisfies∣∣K(x,z)(w)−K(x,z) (w0)

∣∣ = O(ϵR), ∀w ∈ B (w0, R) ,∀x, z ∈ Rd

Remark D.2. It will now suffice to show that the norm of the Hessian matrix ||H|| is sufficiently small if we choose our
network width F large enough. This means if F is chosen to be large enough, the NTK will be almost constant within a ball
of arbitrary fixed radius R around initialization.

Note that the above proposition is given for the case where the network output f is a scalar and an element of the NTK
is defined as K(xi,xj)(w) := ∇fxi

(w)T∇fxj
(w). Since for a GNN the output is a vector fx(h), we will consider the

Hessian of a network with a scalar output equal to the first element of this vector which we’ll call f1(h). Also for illustration
purposes, we will consider a GNN where each filter only has a single coefficient (e.g. the i-th filter in the first layer:
Gi(S) = giS and the j-th filter in the second layer: Hj(S) = hjS). Similar end results hold for GNNs with filters that
have K > 1 coefficients. We now derive the different elements of the Hessian.

∂2f1
∂gi∂gj

=

{
1√
F
(hiSdiag (diag (σ′′ (giSx))Sx)Sx)1 , if i = j

0, otherwise
(206)

∂2f1
∂hi∂hj

= 0 (207)

∂2f1
∂gi∂hj

=

{
1√
F
(Sdiag (σ′ (giSx)Sx))1 , if i = j

0, otherwise
(208)

The Hessian can be written as follows:

H =

[
Hgg Hgh

(Hgh)
T Hhh

]
(209)

where each of the sub-matrices Hgg, Hgh are diagonal F × F matrices and Hhh = 0.

||H|| = ||
[

Hgg 0
0 0

]
+

[
0 Hgh

(Hgh)
T 0

]
|| ≤ ||

[
Hgg 0
0 0

]
||+ ||

[
0 Hgh

(Hgh)
T 0

]
|| (210)

= max
i

|(Hgg)ii|+max
i

|(Hgh)ii| = max
i

|
(
∂2f1
∂2gi

)
|+max

i
|
(

∂2f1
∂gi∂hi

)
| (211)

⇒ ||H|| ≤ max
i

|
(
∂2f1
∂2gi

)
|+max

i
|
(

∂2f1
∂gi∂hi

)
| (212)

We will assume the following. The function σ(.) is twice differentiable and the magnitude of its second derivative is at most
Bσ (e.g. tanh or Sigmoid). We also recall that our input data has been normalized such that ||x||2 ≤ 1. We will also assume
||S||op ≤ ν.

max
i

|
(
∂2f1
∂2gi

)
| = max

i
| 1√

F
(hiSdiag (diag (σ′′ (giSx))Sx)Sx)1 | (213)

≤ max
i

|| 1√
F
hiSdiag (diag (σ′′ (giSx))Sx)Sx||∞ (214)
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≤ max
i

1√
F
hi||Sdiag (diag (σ′′ (giSx))Sx)S||op||x||2 (215)

≤ max
i

1√
F
hi||S||2op||diag (diag (σ′′ (giSx))Sx) ||op (216)

For the rightmost term in (216) we can write:

||diag (diag (σ′′ (giSx))Sx) ||op ≤ ||diag (σ′′ (giSx))Sx||∞ ≤ Bσ||S||op||x||2 (217)

using (216) and (217) we get:

max
i

|
(
∂2f1
∂2gi

)
| ≤ (max

i
hi)

1√
F
Bσ||S||3op = O(

1√
F
) (218)

We can similarly show that maxi |
(

∂2f1
∂gi∂hi

)
| = O( 1√

F
). using these and (212) we conclude:

||H|| = O(
1√
F
) (219)

The important take away is the order of ||H|| in terms of F . note that even if we set aside the simplifying assumption that
each filter has only a single coefficient, it still won’t be too difficult to show that ||H|| = O( 1√

F
) since H will be similarly

sparse with O(K) number of non zero diagonals, and aside from the factor of 1√
F

, none of its elements depend on F . Going
back to proposition D.1 we conclude that for the two-layer GNN discussed in this paper, as F → ∞ the NTK converges to a
constant matrix.

E. Training the First Layer
The NTK, and subsequently the alignment, for the case where we train the filter coefficients of both layers is equal to the
sum of the cases where we train only the first layer and only the second layer respectively. We analyzed alignment when
training the second layer in Section 3. For completeness, here we analyze the alignment when only training the first layer to
show that similar results hold.

The NTK for the two-layer GNN where we randomly initialize all filter coefficients by sampling i.i.d from a Gaussian
distribution and then only train the filter coefficients in the first layer, is the first term of the NTK in Proposition 3.6. It is
re-stated here as follows.

Θ̃
(1)
GNN (h) =

1

F

F∑
f=1

K−1∑
k=0

(
c
(1)
f,k

)(
c
(1)
f,k

)T
(220)

where we recall from (26) that:
c
(1)
f,k = Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃) (221)

In the asymptote of the width of the hidden layer, i.e., F → ∞, we have

Θ̃
(1)
GNN (h) = lim

F→∞

1

F

F∑
f=1

K−1∑
k=0

(
Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃

kx̃)
)(

Hf (S̃) · diag(σ′(Gf (S̃)x̃)S̃
kx̃)
)T

(222)

= E
g∼N (0,I), h∼N (0,I)

[
K−1∑
k=0

(
H(S̃) · diag(σ′(G(S̃)x̃)S̃kx̃)

)(
H(S̃) · diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(223)

We begin by focusing on the expectation over h, such that,

Θ̃
(1)
GNN (h) =

K−1∑
k=0

E
g∼N (0,I)

[
E

h∼N (0,I)

[(
K−1∑
k′=0

hk′ S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)

×

(
K−1∑
k′′=0

hk′′ S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T
 (224)
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We first evaluate the inner expected value from (224) with respect to h:

E
h∼N (0,I)

(K−1∑
k′=0

hk′ S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
K−1∑
k′′=0

hk′′ S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T
 (225)

=

K−1∑
k′=0

K−1∑
k′′=0

E
h∼N (0,I)

[
hk′hk′′

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(226)

=

K−1∑
k′=0

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T
(227)

Above, in (227) we used the fact that E
h∼N (0,I)

[hkhk′ ] = δkk′ . Now we can replace the inner expectation with respect to h

in (224) with the quantity from (227) to get

Θ̃
(1)
GNN (h) =

K−1∑
k=0

E
g∼N (0,I)

[
K−1∑
k′=0

(
S̃k′

diag(σ′(G(S̃)x̃)S̃kx̃)
)(

S̃k′
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(228)

=

K−1∑
k′=0

S̃k′
E

g∼N (0,I)

[
K−1∑
k=0

(
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
S̃k′

(229)

Now we turn our attention to the expectation in (229) which we shall call E(1) ∈ RnM×nM 8.

E(1) = E
g∼N (0,I)

[
K−1∑
k=0

(
diag(σ′(G(S̃)x̃)S̃kx̃)

)(
diag(σ′(G(S̃)x̃)S̃kx̃)

)T]
(230)

⇒ (E(1))ab = E
g∼N (0,I)

[
σ′
(
⟨g, z(a)⟩

)
· σ′
(
⟨g, z(b)⟩

)]
·
K−1∑
k=0

(S̃kx̃)a(S̃
kx̃)b (231)

= E
g∼N (0,I)

[
σ′
(
⟨g, z(a)⟩

)
· σ′
(
⟨g, z(b)⟩

)]
· ⟨z(a), z(b)⟩ (232)

Similar to our analysis in Section 3.2, we begin by considering the case where the non-linearity is an identity function, i.e.,
σ(z) = z which implies that σ′(z) = 1:

σ′
(
⟨g, z(a)⟩

)
= σ′

(
⟨g, z(b)⟩

)
= 1 (233)

For this linear case, we shall name the expectation from (230), B(1)
lin ∈ RnM×nM . Using (232) and (233) we can write the

elements of B(1)
lin as

(B
(1)
lin )ab = ⟨z(a), z(b)⟩ (234)

Thus, our analysis in this context renders (234), which is the same conclusion as that for the alignment when we only train
the second layer (see (34)).

Next, we analyze the expectation matrix E(1) when σ(·) is non-linear. In this non-linear case, for each element of E(1) we
have from (232):

(E(1))ab = E
u,u′∼N (0,Λ)

[
σ′
(
||z(a)||2 · u

)
· σ′
(
||z(b)||2 · u′

)]
· ⟨z(a), z(b)⟩ (235)

The Hermite expansion of the two functions in (235) is given by

σ′
(
||z(a)||2 · u

)
=

∞∑
ℓ=0

αℓ · pℓ(u), and σ′
(
||z(b)||2 · u′

)
=

∞∑
ℓ′=0

βℓ′ · pℓ′(u′) (236)

8The superscript (1) denotes that these matrices are defined for the analysis of the NTK for the first layer in contrast to those defined
in the main body of the paper
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Inserting (236) into (235), we get

(E(1))ab =

∞∑
ℓ=0

∞∑
ℓ′=0

αℓβℓ′ E
u,u′∼N (0,Λ)

[pℓ(u)pℓ′(u
′)] · ⟨z(a), z(b)⟩ (237)

=

∞∑
ℓ=0

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)l · ⟨z(a), z(b)⟩ (238)

We recall that for simpler analysis, we have analyzed the case where the non-linearity is the tanh function and hence,
the derivative of the activation i.e., σ′(z) = 1

cosh2(z)
, is an even function. This observation further leads to the Hermite

expansion coefficients αℓ, βℓ being zero whenever ℓ is odd. With these considerations, we divide the expansion from (238)
into the two following parts and name them B(1) and ∆B(1) respectively:

(E(1))ab = α0β0 · ⟨z(a), z(b)⟩︸ ︷︷ ︸
(B(1))ab

+

∞∑
ℓ=2,4,···

αℓβℓ · (
⟨z(a), z(b)⟩

||z(a)||2 · ||z(b)||2
)ℓ · ⟨z(a), z(b)⟩︸ ︷︷ ︸

(∆B(1))ab

(239)

Now, recalling (31) the alignment, which we will call A(1) here to emphasize that we are only training the first layer,
becomes:

A(1) = tr(QE(1)) = tr(QB(1)) + tr(Q∆B(1)) (240)

Focusing on the first term in (240), we define the family of hermite transforms of the function 1
cosh2(||z(a)||2u)

as τl(·) for
l = 0, 1, 2, · · · :

τℓ(||z(a)||22) ≜
∫ ∞

−∞

1

cosh2(||z(a)||2u)
· pℓ(u) · e−u2/2du = αℓ (241)

Note that τ0(·) is similar in functionality to the function σ̂(·) defined in (101). Now, using the fact that (Blin)aa =
⟨z(a), z(a)⟩ = ||z(a)||22, we have

(B(1))ab = τ0((Blin)aa) · τ0((Blin)bb) · (Blin)ab (242)

⇒ B(1) = τ0(diag(Blin)) ·Blin · τ0(diag(Blin)) (243)

Therefore, similar to (109) from the proof of Lemma 3.11, we have

λ2
minAlin ≤ tr(QB(1)) (244)

where λmin ≜ mina τ0(||z(a)||22). From equations (111)-(115) and with the assumption from (116) i.e. ||S||op ≤ ν we have:

λ2
min ≥ ρ(1) (245)

where ρ(1) ≜

(
τ0

(
K−1∑
k=0

ν2k

))2

(246)

which together with (244) gives us the following similar to Lemma 3.11:

tr(QB(1)) ≥ ρ(1)Alin (247)

Next, we aim to show that a result similar to Lemma 3.12 holds for this scenario, as this allows us to conclude that Theorem
3.13 also holds for the case when alignment is optimized based on the first layer. We will now check to see whether the
element-wise inequality from Lemma 3.12 also holds here.

From (239) and using the definition from (241), we have

(∆B(1))ab = ⟨z(a), z(b)⟩
∞∑
i=1

α2iβ2i ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

(248)

= ⟨z(a), z(b)⟩
∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

(249)
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Similar to the family of functions gℓ, it can readily be verified numerically that for a given ℓ, we either have τℓ(y) ≥ 0, ∀y ≥ 0
or τℓ(y) ≤ 0, ∀y ≥ 0.9 Hence, τ2i(||z(a)||22) · τ2i(||z(b)||22) ≥ 0 and we can conclude that (∆B(1))ab and (B(1))ab have
the same sign, which is the sign of ⟨z(a), z(b)⟩. Now, for the case where ⟨z(a), z(b)⟩ ≥ 0, we have:

∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) ·
(

⟨z(a), z(b)⟩
||z(a)||2 · ||z(b)||2

)2i

· ⟨z(a), z(b)⟩

≤
∞∑
i=1

τ2i(||z(a)||22) · τ2i(||z(b)||22) · ⟨z(a), z(b)⟩ (250)

=

(∑∞
i=1 τ2i(||z(a)||22) · τ2i(||z(b)||22)

)
τ0(||z(a)||22) · τ0(||z(b)||22)

· (B(1))ab (251)

It is straightforward to check numerically that
∣∣∣ τ2i(||z(a)||22)
τ0(||z(a)||22)

∣∣∣ is increasing in ||z(a)||2, ∀i ≥ 1.10 Hence, we can continue
from (248) and (251) to have

(∆B(1))ab ≤
(∑∞

i=1 τ2i(||z(a)||22) · τ2i(||z(b)||22)
)

τ1(||z(a)||22) · τ1(||z(b)||22)
·Bab (252)

≤
(∑∞

i=1(τ2i((||z||22)max))
2

(τ0((||z||22)max))2

)
(B(1))ab (253)

= β(1) · (B(1))ab (254)

where

β(1) ≜

(∑∞
i=1(τ2i((||z||22)max))

2

(τ0((||z||22)max))2

)
(255)

and (||z||22)max = maxa′(||za′ ||22). In the proof of Lemma 3.12, we made no further assumptions and considered the worst
case upper bound on ∆Bab when (||z||22)max is infinitely large. But a similar approach cannot be adopted here since the
limit of the sum limy→∞

∑∞
ℓ=1(τ2i(y))

2 is unbounded. However, given the assumptions on the data and the shift operator
S so far and with some additional mild assumptions, it is possible to upper bound (||z||22)max and thus, derive a meaningful
expression for constant β. Recall the definition of zℓ ∈ RK :

zℓ ≜
[
x̃ℓ, (S̃x̃)ℓ, · · · , (S̃K−1x̃)ℓ

]T
(256)

For the k-th element of zℓ we can write:

(S̃kx̃)ℓ ≤ max
i

||Skxi||∞ ≤ max
i

||Skxi||2 ≤ max
i

||Sk||op||xi||2 ≤ ||Sk||op (257)

⇒ ||zℓ||22 ≤
K−1∑
k=0

||Sk||2op (258)

In order to give an upper bound on the maximum possible value for ||zℓ||22, we need an upper bound on ||S||op. To
see why such an upper bound makes sense, recall the constraint from Lemma 3.4: ||

∑K−1
k=0 Sk||F ≤

√
α/(ηM). One

straightforward way to make sure that this constraint is satisfied, is to normalize the shift operator S, such that its Frobenius
norm is bounded (which is indeed the method used in the experiments for this paper. See Appendix E). Assuming that
||S||F ≤ 1

K

√
α/(ηM) ≤ 1, we have

||
K−1∑
k=0

Sk||F ≤
K−1∑
k=0

||Sk||F ≤
K−1∑
k=0

||S||kF ≤ K||S||F ≤
√
α/(ηM) (259)

9A simple Python script can be found in https://github.com/shervinkhal/Cross Covariance NTK that plots τℓ(y) against y for any
given index ℓ. See the file ”numerical verification 3.py”

10A simple Python script can be found in https://github.com/shervinkhal/Cross Covariance NTK that plots | τ2i(y)
τ0(y)

| against y for any
given index i. See the file ”numerical verification 4.py”
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Since in practice we don’t know precisely what the constant α should be, we opt to simply normalize S so that ||S||F = 1.
Therefore:

||S||op ≤ ||S||F = 1 ⇒ ||zℓ||22 ≤
K−1∑
k=0

||Sk||2op ≤ K ⇒ (||z||2)max ≤
√
K (260)

Going back to (255), with the assumption in (260) we have

β(1) =

(∑∞
i=1(τ2i(K))2

(τ0(K))2

)
(261)

The above constant can be numerically evaluated for different values of K. For example, for K = 3, we have β(1) = 0.7320
which is close to the constant we had when training only the second layer (β = 0.57, see (128)). Now that we’ve shown
similar results to Lemma 3.11 and Lemma 3.12 (see (247) and (255) respectively) for this case where we train only the first
layer, we can conclude with a result similar to Theorem 3.13 which we shall present as the following corollary:

Corollary E.1. Under the assumption Alin = tr (QBlin) ≥ ξ · ||Q||F ||Blin||F , Alin lower bounds the alignment for the
two-layer GNN with tanh non-linearity where we only train the first layer, A(1), up to a constant as follows

A(1) ≥
(
b− s

ξ

)
Alin , (262)

for some constants positive constants b and s and 0 ≤ ξ ≤ 1.

F. Additional Experimental Details and Results
F.1. Other Datasets

We use a similar setup as described in Appendix F.2 to conduct some preliminary experiments on two other public datasets.
These two datasets have been previously investigated in (Cao et al., 2020), although for a different variation of forecasting
task.

Traffic Flow Dataset. We utilize the PEMS07 traffic flow dataset (Chen et al., 2001) for traffic flow prediction. The data
collected is from the California Department of Transportation network. It is an n = 228-dimensional time-series with
N = 12671 time steps. The time interval between each consecutive point in the time series is 5 minutes.

Temperature dataset The dataset contains high temporal resolution (hourly measurements) data of various weather
attributes, such as temperature, humidity, air pressure, etc gathered from the OpenWeatherMap website over a 5 year period
during 2012-2017. We used the temperature data available for 30 US and Canadian Cities as our time series dataset11.

For each dataset, we created Ntrain = 1000 and Ntest = 100 training and test samples respectively by randomly sampling
pairs of vectors z(t), z(t+∆t) from the respective time series. Next, the normalized sample covariance and sample cross
covariance matrices were constructed using only the training data. Note that for both of these datasets, for small values of
∆t, the signals z(t) and z(t+∆t) tend to be very similar, which led to very similar covariance and cross-covariance matrices.
Therefore, although the cross-covariance based models achieved better performance for all tested values of ∆t, we showcase
our results for a relatively large value of ∆t (∆t = 7 days for the weather dataset and ∆t = 20 for the PEMS07 dataset)
such that, the performance improvements are observable. As seen in Figure 7, for both datasets, the cross-covariance based
models converge faster and to a smaller final test error, which is consistent with our observations on the HCP-YA dataset
and has been predicted by our theoretical results.

F.2. Convergence of Training Error.

We recall that there was a time series associated with each of the 100 features in the rfMRI time series data for an individual.
For each individual, these 100 time series were utilized in the experiments. For a given individual, we denote the time series
across 100 nodes at time step t as the vector z(t) ∈ R100×1.

11The dataset can be found on https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
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(a) Training loss for time series prediction task on PEMS07
dataset.

(b) Test loss for time series prediction task on the PEMS07 traffic
dataset.

Figure 6. Experimental results for the PEMS07 dataset

For each individual, we created Ntrain = 1000 and Ntest = 100 training and test samples respectively by randomly
sampling (without replacement) pairs of vectors z(t), z(t+1) from the time series of length N = 4500. Next, the normalized
sample covariance and sample cross covariance matrices were constructed using only the training data:

Cnormalized
XX =

XtrainX
T
train

||XtrainXT
train||

, Cnormalized
XY =

XtrainY
T
train

||XtrainY T
train||

(263)

Afterwards, batch stochastic gradient descent with the Adam optimizer (Kingma & Ba, 2014) and the Pytorch library (Paszke
et al., 2019) were used to train the following four models:

• Two-layer GNN with K = 2, F = 50 and GSO S = Cnormalized
XY

• Two-layer GNN with K = 2, F = 50 and GSO S = Cnormalized
XX

• Single graph filter with K = 2 and GSO S = Cnormalized
XY

• Single graph filter with K = 2 and GSO S = Cnormalized
XX

Regarding the choices of the parameters, K = 2 was chosen as (21) directly motivates using CXY as the GSO for the
K = 2 case. Note that using CXY − I and CXY is essentially the same since in the graph filter polynomial

∑K−1
k=0 hkS

kx
we always have the term h0I regardless of the choice of GSO. Furthermore, in Section F.4 and Fig. 10, we observed that
changing K does not have a noticeable impact on the model performance. Therefore, K = 2 is a reasonable choice for
the experiments here. For choosing the number of features in the hidden layer, F , and the learning rate η for training the
GNN models, the Optuna hyperparameter optimization framework was leveraged (Akiba et al., 2019). The learning rate
η1 = 0.0125 was chosen for training the GNN models and η2 = 50 · η1 for training the graph filters. For each individual,
the training process was run 10 times with different permutations of the training and test sets, and the average over these
was computed for all of the individual training and test error plots.

We also acknowledge that the GNN and Graph filter architectures were implemented using the Graph Neural Network
library for Python based on the work of (Gama et al., 2019).

F.3. Going Deeper Than Two Layers.

Here, we provide the experimental results for the setting when the GNNs may have more than two layers. Before that, we
formalize a multi-layer GNN architecture with a graph filter as the building block and that has multiple-input-multiple-output
(MIMO) information processing functionality.
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(a) Training loss for time series prediction task on the weather
dataset.

(b) Test loss for the time series prediction task on the weather
dataset.

Figure 7. Experimental results for the weather dataset

Multi-layer GNN. We recall that the ability to learn non-linear mappings by GNNs are fundamentally based on addition of
an element-wise non-linearity to a graph filter to form a graph perceptron, which is realized via a point-wise non-linearity
σ(·) as σ(H(S)x). We can further build upon the expressivity (and therefore, representational power) of a graph perceptron
by concatenating multiple graph perceptrons to form a multi-layer GNN architecture. In this scenario, the relationship
between the input q(l−1) and the output q(ℓ) of the ℓ-th layer of the GNN is given by q(ℓ) = σ(H(ℓ)(S)q(ℓ−1)). Based
on the definitions of a graph perceptron and a multi-layer GNN, we next formalize the GNN architecture with MIMO
functionality.

Definition F.1 (Multiple-Input-Multiple-Output Graph Neural Network). (Gama et al., 2020) We can substantially increase
the representation power of GNNs by incorporating multiple parallel features per layer. These features are the result
of processing multiple input features with a parallel bank of graph filters. Let us consider Fℓ−1 n-dimensional inputs
q1
(ℓ−1), . . . ,q

Fl−1

(ℓ−1) at layer ℓ. Each input, qg
(ℓ−1) for g ∈ {1, . . . , Fℓ−1} is processed in parallel by Fℓ different graph filters

to output the Fℓ n-dimensional outputs denoted by ufg
(ℓ) with the following relationships

ufg
(ℓ) = Hfg

(ℓ)(S)q
g
(ℓ−1) =

K∑
k=0

hfg
(ℓ),kS

kqg
(ℓ−1), f ∈ {1, . . . , Fℓ}.

The outputs ufg
(ℓ) are subsequently summarized along the input index g to yield the aggregated outputs

uf
(ℓ) =

Fl−1∑
g=1

Hfg
(ℓ)(S)q

g
(ℓ−1), f ∈ {1, . . . , Fℓ}.

The aggregated outputs uf
(ℓ) are finally passed through a non-linearity σ(·) to compute the ℓ-th layer output as follows

qf
(ℓ) = σ

(
uf
(ℓ)

)
, f ∈ {1, . . . , Fℓ}.

A GNN in its complete form is a concatenation of L such layers, in which each layer computes the above operations.

In the main paper, we theoretically analyzed a two-layer GNN without non-linearity in the final layer, with F0 = F2 = 1
(since we only have one input and one output feature vector in each sample), and F number of features in the hidden layer
i.e., F1 = F (see Fig. 8).

Experiment results. To assess the effect of increasing the depth of the GNN in the experiments, we present results for
two-layer, three-layer and four-layer GNNs that had been trained for one individual in the HCP-YA dataset. The training
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Figure 8. The two layer GNN architecture defined in Section 3.2

and test loss for the gradient descent for these models is illustrated in Fig. 9. It can be seen that regardless of the depth of the
GNNs, the training loss and test loss for the GNN with S = CXY converged faster as compared to those with S = CXX

and to a smaller final value.
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(a) Training loss during GD for two layer GNN;
F0 = 1, F1 = 50, F2 = 1

(b) Test loss during GD for two layer GNN;
F0 = 1, F1 = 50, F2 = 1

(c) Training loss during GD for three layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 1

(d) Test loss during GD for three layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 1

(e) Training loss during GD for four layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 50, F4 = 1

(f) Test loss during GD for four layer GNN;
F0 = 1, F1 = 50, F2 = 50, F3 = 50, F4 = 1

Figure 9. The effect of increasing depth of the GNN
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F.4. The effect of changing the number of graph filter taps K

We recall our motivation for using the cross-covariance graph as the GSO from Theorem 3.5 where we concluded that the
optimal GSO S∗ should satisfy

∑K−1
k=0 (S∗)k = µ · CXY . For the case K = 2, this leads to S∗ being proportional to CXY

(see (21)). However, for K > 2, while the optimal GSO is still clearly a function of the cross-covariance CXY , solving (20)
to find a closed form expression for S∗ is not trivial. In this context, we investigated empirically whether S = CXY was a
better choice than S = CXX when K > 2. The plots in Fig. 10 illustrate the training error for GNN and graph filter models
with different values of K for one individual in the HCP-YA dataset. Clearly, GNNs with S = CXY outperformed those
with S = CXX as GSO. These experiments indicate that the cross-covariance matrix is still a better choice as a GSO for
GNNs when K > 2.

(a) Training loss during GD for Models with K = 2 (b) Training loss during GD for Models with K = 4

(c) Training loss during GD for Models with K = 6 (d) Training loss during GD for Models with K = 8

Figure 10. The effect of changing the number of filter taps K
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F.5. The effect of changing the non-linear activation function σ(·).

Our theoretical results hold for tanh function as the non-linearity σ(·). In this section, we investigated empirically whether
the cross-covariance matrix was a better choice as a GSO than the covariance matrix for different choices of σ(·). The plots
in Fig. 11 demonstrate the results from training for GNN and graph filter models with different activation functions, for a
single individual. Aside from the setting where the activation function was the ReLU function (for which the convergence
depends highly on the initialization thus the variance in the training process between different runs is too high to conclude
anything meaningful), the experiments for other activation functions showed that the GNNs with S = CXY converged faster
and to a smaller final value as compared to GNNs with S = CXX . This observation suggests that the theoretical insights
drawn from the scenario of σ = tanh extends empirically to settings with the choice of other activation functions.

(a) Training loss during GD for Models with the Leaky ReLU
activation function

(b) Training loss during GD for Models with the tanh activation
function

(c) Training loss during GD for Models with the Sigmoid activa-
tion function

(d) Training loss during GD for Models with the ReLU activation
function

Figure 11. The effect of changing the non-linear activation function σ(·) on GNN performance. (Graph filter curves are only plotted for
comparison)
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F.6. Time-series prediction using more than just the previous time step

In the experiments in the main paper, we considered a prediction task where we use the value of the signal at just the previous
time step to predict the current signal. However, in practice, the time series forecasting algorithms typically use information
from a longer history, i.e., more than just the previous time step. Here, we investigate a time-series prediction model that
uses the model in Section 4 as the building block to form predictions from an arbitrary set of time steps in the past.

In this design, we used D separate graph filters to process the signal values at the previous D time steps and aggregated the
outputs of the filters to form the final prediction:

f(z(t−1), z(t−2), · · · , z(t−D)) =

K−1∑
k=0

hk,1S
k
1z

(t−1) + · · ·+
K−1∑
k=0

hk,DSk
Dz(t−D) (264)

This methodology can be extended to the two-layer GNN architecture by replacing each graph filter in the GNN with
multiple graph filters as per (264). Note that we are not restricted to use the same graph shift operator in these filters. For
example, for processing the signal value from d time steps ago, we could utilize the cross-covariance between signal values
with a distance of d time steps i.e.

Sd = E
[
z(t)(z(t−d))T

]
(265)

To gauge the usefulness of this setting, we consider the multiple filter model in (264) for D = 1, 2, 3, 4, 5. The result can be
seen in Figures 12a, 12b. It can be observed that there is a significant gain in increasing from D = 1 to D = 2. However
increasing D further does not seem to yield better test performance, at least for this dataset. Note that the cross-covariance
graph shift operator was used for all the models in Figure 12.

Next we set D = 2 to compare the cross-covariance and covariance graph constructions in this setting. The results can be
seen in Figures 12c, 12d. It can be observed that in this setting as well, models with cross-covariance graph shift operator
outperform those with covariance graphs. This holds for both the graph filter models and the two-layer GNNs. Also note
that increasing D to 2, results in better performance for the two-layer GNN in addition to the Graph filter models However
similar to the results observed for the graph filter, increasing D further for the GNNs did not result in any observable gains.

F.7. Other Graphs constructed based on the input data

In our experiments in the main paper, we have considered the cross-covariance matrix as the graph shift operator to be
representative of the class of graphs constructed from only the input data. In order to further emphasize on the advantages
offered by cross-covariance graphs, we also consider the two following additional methods of constructing a graph from the
input data (See (Qiao et al., 2018) for a detailed review of different methods of graph construction used in the literature).
The first method is based on Euclidean distance between values of the signals on each node of the graph and using the
nonlinear Gaussian kernel, the weight between node i and j of the graph is quantified as follows:

Sij = e
−

||xi−xj ||
2
2

2ϱ2 , (266)

where ϱ = 1 in our experiments.

The second method for graph construction set the weights of the adjacency matrix proportional to the Pearson’s correlation
coefficient between two nodes. In this case, the weight between node i and j of the graph is

Sij =
(xi − x̄i)

T (xj − x̄j)

||xi − x̄i||2||xj − x̄j ||2
(267)

where in both (266) and (267), xi, xj ∈ RNtrain×1 are the i-th and j-th columns of the input data matrix Xtrain ∈ Rn×Ntrain

respectively.

The results corresponding to these two choices of graph construction for one individual have been illustrated in Fig. 13.
It is observed that while the performance of the models with different input-based graph constructions vary, they are all
consistently outperformed by the models with the cross-covariance based graph. This trend is consistent across different
individuals in the dataset.

As an additional baseline, we have also included the result for a Fully connected two layer neural network (FCNN) for
comparison. The FCNN and the two layer GNN with cross-covariance graph exhibit comparable performance in terms of
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(a) Training loss during GD for Time-series prediction using
D previous time steps.

(b) Test loss during GD for Time-series prediction using D
previous time steps.

(c) Training loss during GD for Time-series prediction using
D = 2 previous time steps.

(d) Test loss during GD for Time-series prediction using D =
2 previous time steps.

Figure 12. Time-series prediction using D previous time steps

final test error, while the GNN converges faster than FCNN. In general, for the complete HCP-YA dataset, the FCNN often
has slightly smaller final test error, which is achieved at the expense of complexity as it has almost 100 times the number of
trainable parameters than the GNN models.
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(a) Training loss during GD when using different constructions for
the graph shift operator

(b) Test loss during GD when using different constructions for the
graph shift operator

Figure 13. Comparison between GNN models with cross-covariance graphs and GNN models with graphs constructed according to
different construction methods. The models compared here are two-layer GNNs.

Figure 14. The relative transfer loss from N = 50 to N = 100 for different models. The transfer loss is defined as the difference between
the test loss in the following two scenarios: (i) Model trained and tested on dataset with n = 100 features; (ii) Model trained on dataset
with n = 50 and tested on dataset with n = 100.
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