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Abstract

Extracting knowledge from large, unstruc-
tured text corpora presents a challenge. Re-
cently, authors have utilized unsupervised,
static word embeddings to uncover "latent
knowledge" contained within domain-specific
scientific corpora. Here semantic-similarity
measures between representations of concepts,
objects or entities were used to predict re-
lationships, which were later verified using
physical methods. Static language models
have recently been surpassed at most down-
stream tasks by massively pre-trained, contex-
tual language models like BERT. Some have
postulated that contextualized embeddings po-
tentially yield word representations superior
to static ones for knowledge-discovery pur-
poses. In an effort to address this ques-
tion, two biomedically-trained BERT models
(BioBERT, SciBERT) were used to encode
n = 500, 1000 or 5000 sentences containing
words of interest extracted from a biomedical
corpus (Coronavirus Open Research Dataset).
The n representations for the words of inter-
est were subsequently extracted and then ag-
gregated to yield static-equivalent word rep-
resentations. These words belonged to the
vocabularies of intrinsic benchmarking tools
for the biomedical domain (Bio-SimVerb and
Bio-SimLex), which assess quality of word
representations using semantic-similarity and
relatedness measures. Using intrinsic bench-
marking tasks, feasibility of using contextual-
ized word representations for knowledge dis-
covery tasks can be assessed: Word represen-
tations that better encode described reality are
expected to perform better (i.e. closer to do-
main experts). As postulated, BERT embed-
dings outperform static counterparts at both
verb and noun benchmarks, however perfor-
mance varies by model and neither model out-
performs static models at both tasks. More-
over, unique performance characteristics are il-
lustrated when task vocabulary is split between
BERT-native words and words requiring sub-
word decomposition.

1 Introduction

A vast amount of biomedical knowledge exists as
unstructured text within journals, books and ab-
stracts. The ‘knowledge’ exists as relationships
and connections between described concepts, ob-
jects and events within the text. Information extrac-
tion from such corpora using supervised methods
requires large, manually-labelled datasets. Conse-
quently, these methods do not readily scale.

Tshitoyan et al. (2019) demonstrated that known
and novel relationships between entities described
within a materials science corpus could be discov-
ered using unsupervised, high-dimensional word
embeddings (Bengio et al., 2003; Collobert and
Weston, 2008; Collobert et al., 2011): When
200-dimensional Word2Vec skip-gram (Mikolov
et al., 2013) representations for material names (e.g.
‘BipTes’) were ranked by their cosine similarity to
the representation of ‘thermoelectric,” several novel
thermoelectric conductors were identified and sub-
sequently verified. Despite the material name never
having appeared alongside, or within a document
containing the word ‘thermoelectric,” the direct re-
lationship between the novel material’s word repre-
sentation and ‘thermoelectric’ was permitted due to
indirect relationships between the material’s name
and related words/phrases such as ‘chalcogenide’
(chalcogenides are good thermoelectrics) and ‘band
gap’ (which determines thermoelectric properties)
within the vector space (Tshitoyan et al., 2019).
Venkatakrishnan et al. (2020) subsequently applied
the same technique to a corpus of biomedical doc-
uments, discovering and validating novel tissue-
reservoirs of the ACE2 receptor used by SARS-
CoV-2 to invade a host.

Both Tshitoyan et al. (2019) and Venkatakrish-
nan et al. (2020) postulated that context-aware
embeddings, such as those from the bidirectional
encoder representation from transformers (BERT)
model (Devlin et al., 2018) could outperform those



from static models. Nevertheless, a method to
adapt models like BERT for this purpose is lack-
ing. Bommasani et al. (2020) described a method
for reducing contextualized word representations
to static-equivalents by aggregating them over a
number of different contexts. These aggregated
contextual embeddings outperformed static ones
at general domain intrinsic benchmarking tasks
(e.g. SimLex-999 (Hill et al., 2015), SimVerb-3500
(Gerz et al., 2016)), suggesting more realistic cap-
ture of word syntactic and semantic properties.

BERT-derived embeddings can be used as de-
scribed by Tshitoyan et al. (2019) for knowledge
discovery, by ranking geometric similarity between
represented concepts, objects or processes (Figure
1, Figure 2). Nevertheless, as this ‘latent knowl-
edge’ requires validation, the quality of suggested
relationships cannot easily be assessed. For exam-
ple, Tshitoyan et al. (2019) tested thermoelectric
predictions using a mathematical formula, while
Venkatakrishnan et al. (2020) utilized a custom-
built molecular inference platform to validate pos-
tulations. Domain-specific intrinsic benchmarks
which assess semantic similarity and relatedness
between word representation pairs by comparing
them to human-user ratings may be utilized as an
appropriate surrogate: Higher-fidelity word repre-
sentations are expected to better approximate hu-
man assessments of word relatedness (and there-
fore meaning).

This study tests the hypothesis of both Tshitoyan
et al. (2019) and Venkatakrishnan et al. (2020) that
contextual (BERT) models yield word representa-
tions that are superior to those produced by static
model, and thus suitable for use in biomedical
knowledge discovery. Using a biomedical corpus
of 500,000 abstracts, pre-prints and full-text arti-
cles (Wang et al., 2020), embeddings produced by a
series of static models are tested against aggregated
contextual representations sampled from the corpus
and processed by two biomedical BERT variants.
The contributions of this paper can be summarized
as follows:

* A method of utilizing BERT for biomedical
knowledge discovery is described and vali-
dated. It involves encoding n contextual ex-
amples (i.e. sentences) containing vocabu-
lary words, extracting and aggregating their
representations. Aggregated representations
can then be utilized for knowledge discovery
tasks based upon their geometric relationship

to other word-representations within the vec-
tor space.

* Using domain-specific intrinsic benchmark-
ing tools (Bio-SimVerb/Bio-SimLex), unique,
layer-wise performance differences are shown
for verbs and nouns. Moreover, performance
for nouns and verbs varies depending upon
BERT model used, and layer of the model
that representations are extracted from.

* In general, verbs native to BERT’s vocabu-
lary drastically outperform those requiring
sub-word decomposition. Noun performance
benefits from sub-word decomposition.

* Generally, the number of aggregated contexts
per word has little effect upon performance.
Subsequently, computationally efficient ap-
proaches for obtaining and applying these
representations in knowledge discovery tasks
may be devised.

2 Related Work

2.1 Knowledge Discovery via Semantic
Relatedness Measures

Aside from the work of Tshitoyan et al. (2019) and
Venkatakrishnan et al. (2020), Voytek and Voytek
(2012) described a technique that utilized a co-
occurrence algorithm to quantify the relationship
and associations between neuroscientific terms and
synonyms contained within 3.5 million papers in-
dexed in PubMed. Importantly, the latter authors
highlighted that the literature contained "a hidden
network of connected facts that, by definition, re-
capitulate known neuroscientific relationships," al-
most a decade before the work of Tshitoyan et
al. which expounded upon utilization of computa-
tional language models to uncover ‘latent knowl-
edge’ within domain-specific text corpora. More-
over, the work of Venkatakrishnan et al. (2020)
successfully demonstrates the scaling-up of this
technique, and potential for clinically-meaningful
discoveries using a non-trivial portion of the entire
digitized biomedical knowledge base (see Figures
1,2).

2.2 Converting Contextual Word
Representations to Static-Equivalents

Bommasani et al. (2020) introduced a technique
of converting contextualized word embeddings
to static-equivalents for inferential purposes, in
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Figure 1: A dimensionality-reduced (T-SNE) plot
demonstrating the 30 word-representations closest to
‘hydroxychloroquine,” using data derived from the
CORD-19 corpus. Apparent are clusters of drugs by
type, e.g. antivirals (lower-left quadrant) vs. antipar-
asitics/antibacterials (middle; lower-right quadrants)
which can be subsequently subjected to cluster-analysis
using suitable unsupervised techniques. Interestingly
the word ‘gautret’ appears close to the keyword ‘hy-
droxycholoroquine,” as the first clinical trial of this
controversial drug’s use in treating COVID-19 was au-
thored by Gautret et al. in 2020, indicating the high
degree of association between terms in the corpus.

an effort to better understand contextualized lan-
guage models like BERT. Importantly, the static-
equivalent embeddings produced by this technique
can be utilized in identical ways as those from older
Word2Vec or GloVe models, and also outperform
static embeddings at various intrinsic benchmark-
ing tasks (Bommasani et al., 2020). Subsequently,
novel methods of creating static-equivalents have
been described, using continuous bag-of-word ap-
proaches (Gupta and Jaggi, 2021), phrases (Wang
etal., 2021) and by combining contextual and static
embeddings (Hammerl et al., 2022), for example.

3 Methods

3.1 Dataset and Text Preprocessing

In response to the COVID-19 pandemic, the Coro-
navirus Open Research Dataset (CORD-19) was
released by governmental and academic institu-
tions. It consists of over 500,000 scholarly articles
(with over 200,000 full text articles and preprints)
and abstracts pertaining to COVID-19 (Wang et al.,
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Figure 2: The 15 closest word representations to
‘psychiatric,” ‘coronavirus,” and ‘symptoms,” keywords
(green nodes) as derived from models trained on the
CORD-19 corpus. Words like ‘anxiety,” and ‘depres-
sion, among others, appear in the rankings. Pale-
blue nodes represent weaker relations to the keywords,
while darker-blue nodes represent geometrically-closer
(i.e. stronger) relations to the keywords.

2020)!. Corpus metadata was removed and articles
aggregated into a single file. All numbers were
replaced with a special token (‘<NuM>") and se-
lective lowercasing was performed to preserve ab-
breviations. For the Word2Vec and GloVe models,
common terms and punctuation were removed.

3.2 Overview of Study Approach

The BERT approach was informed by results of an
initial pilot study (see Appendix A for preliminary
data). The pilot involved comparing contextual
representations extracted from either long or short
sentence sequences. Long sequences consisted of
corpus text split into sentences. Short sequences
further decomposed sentences into phrases, by
splitting on commas. Due to slightly worse per-
formance of long sequences, and the issue of
sequence length often exceeding 512 (the maxi-
mum allowable sequence length for BERT), only
short sequences were utilized. Two scientifically-
specialized BERT models utilized for contextual
embedding generation: BioBERT (Lee et al., 2020)
and SciBERT (Beltagy et al., 2019). Embeddings
extracted and aggregated from these models were
compared against those extracted from several

"https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge
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static models.

3.3 BERT Approach

BioBERT is a variation of BERT which is further
pre-trained on PubMed abstracts and PubMed Cen-
tral full-text articles. It outperforms general models
at various downstream biomedical NLP tasks (Lee
et al., 2020). The open source HuggingFace (Wolf
et al., 2020)?> implementation of BioBERT v1.1
was utilized without any further pre-training or fine-
tuning based upon results of the preliminary study
(see also Appendix B). SciBERT is another BERT-
variant pre-trained on approximately 1.14 million
random scientific articles from Semantic Scholar.
Approximately 18% of these articles are from the
computer science domain, with the remainder from
the biomedical domain. It also demonstrates supe-
rior performance at downstream biomedical NLP
tasks relative to BERT (Beltagy et al., 2019).

n = 500, 1000 or 5000 sentences containing a
single instance of the word of interest were sampled
and tokenized using either the wordpiece or senten-
cepiece tokenizer (Kudo and Richardson, 2018) for
BioBERT and SciBERT, respectively. Sequences
were discarded if their pre- or post-tokenized length
exceeded 512. Here, for each word w in context c,
BERT’s tokenizer will either yield a single token
or decompose w into k sub-word tokens, where
{wl, ..,wFl — w.. Tokenized sequences were
then fed into the model and the sequence represen-
tations were extracted from all 13 model layers. For
words represented by a single 1x768 representation,
this was extracted without further operations. For
decomposed words, the arithmetic mean of all w¥
was taken to yield a single 1xX768 representation
from & sub-word representations, per context:

1 k)

W, = mean(w,, ..., Wy

The arithmetic mean of the n contextual exam-
ples of each word w, w1, ..., W., was then taken. If
n examples meeting the inclusion criteria were not
available, then the maximum number were taken:

{mean(wcl, veey Wen)
W =

mean(Wei, ..

Decision to take the arithmetic mean of both
sub-word representations and n mimicked Bom-
masani et al. (2020)’s approach, where they found

https://huggingface.co/

n = 500, 1000, 5000
o Wemax(ny)) 7 < 500, 1000, 5000

mean-pooling outperformed other possible oper-
ations (e.g. max., min., last) for both sub-word
pooling and context aggregation (see also Acs et al.
(2021)). If n did not meet the threshold, the max-
imum number of word representations available
was aggregated. This approach differed from Bom-
masani et al. (2020) who instead took the represen-
tation produced by the word in isolation?.

3.4 Static Models

The aggregated embeddings obtained from 3.3
were compared against several static baseline mod-
els including 200 and 300-dimensional Word2Vec
skip-gram models, and a 300-dimensional GloVe
model all trained from scratch on only CORD-
19. Hyperparameters for Word2Vec were a con-
text window of 8, initial learning rate of 0.01,
high frequency word downsampling threshold of
0.0001, negative sampling parameter of 15, and
ignoring any word with a corpus occurrence fre-
quency of less than 10. All Word2Vec models were
trained for 10 epochs. Additionally, pre-trained
200-dimensional embeddings from BioWordVec
(Zhang et al., 2019)* were also obtained and used
for benchmarking. Briefly, BioWordVec is an open
set of static biomedical word vectors trained on a
corpus of over 27 million articles, that additionally
combine sub-word information from unlabelled
biomedical text together with a biomedical con-
trolled vocabulary.

3.5 Benchmarking

Bio-SimVerb and Bio-SimLex (Chiu et al., 2018)
are benchmarking resources for the biomedical do-
main that offer 988 and 1000 test verb and noun
pairs, respectively. These word-pairs have been
extracted from 14 open biomedical ontologies and
over 14,000 biomedical journals covering over 120
areas of biomedicine and the general domain. In
these tasks, the cosine similarity of word repre-
sentations from language models are compared
to human domain-expert ratings, and subjected to
Spearman rank-correlation testing. Bio-SimVerb
and Bio-SimLex address shortcomings of previous
biomedical benchmarks such as MayoSRS (Pakho-
mov et al., 2011) and UMNSRS (Pakhomov et al.,

* A single word (rather than a sequence) is an ‘unnatural’
input for BERT, yielding a poorly-performing ‘decontextual-
ized’ word representation (see (Bommasani et al., 2020) for
more detail).

*https://github.com/ncbi-nlp/
BioWordVec
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2010) which only test nouns, and fail to distinguish
between semantic relatedness and similarity (Chiu
et al., 2018). These tools were used as a surro-
gate to validate contextualized embeddings use for
knowledge discovery: Higher performance of a
particular model’s word embeddings at noun and
verb benchmarks indicates a higher-fidelity mathe-
matical representation of described reality. Conse-
quently, prior to their actual validation, knowledge
predictions (i.e. relationships between concepts,
objects, entities) can be made with a greater degree
of confidence.

4 Results

4.1 Verb Benchmarks

The left sub-plot of Figure 3 and left column of
Table 1 demonstrates layer-wise performance of
n = 500, 1000 and 5000 aggregated verb repre-
sentations from BioBERT and SciBERT models.
Performance is preserved regardless of sequence
lengths/number of aggregated contexts, however it
varies by model. SciBERT representations gener-
ally underperform compared to both Word2Vec 200
and 300-dimensional embeddings, and compared
to BioBERT embeddings taken from the latter 8
layers. BioBERT verb embeddings from the 6th
layer onwards outperform both SciBERT and static
embeddings. BioBERT and SciBERT performance
also differs across layers, as illustrated by curve
morphology. Performance for both models reaches
a maximum towards the latter layers.

4.2 Noun Benchmarks

The right sub-plot of Figure 3 and right column of
Table 1 demonstrates layer-wise performance of n
=500, 1000 and 5000 aggregated contextualized
noun representations from BioBERT and SciBERT
models. Similar to verbs, n has negligible effect on
performance. In contrast, SciBERT noun represen-
tations outperform BioBERT and static model rep-
resentations. Performance for both models gener-
ally peaks towards the earlier layers. Again, curve
morphology varies for BioBERT and SciBERT.

4.3 Effect of Sub-Word Pooling

To further explain model performance, test word-
pairs from Bio-SimVerb and Bio-SimLex were
separated into two groups based upon whether
both words in a respective test pair existed in
BioBERT/SciBERT’s native vocabulary or not.
This yielded test word pairs where both had a single

Model Bio-SimVerb | Bio-SimLex
BioBERT 500 | 0.5516 (8) 0.7105 (6)
BioBERT 1000 | 0.5526 (8) 0.7103 (6)
BioBERT 5000 | 0.5513 (8) 0.7114 (6)
SciBERT 500 0.5142 (11) 0.7514 (3)
SciBERT 1000 | 0.5149 (11) 0.7509 (3)
SciBERT 5000 | 0.5144 (11) 0.7513 (3)
w2v 300 0.5260 0.7341

w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWYV 200 0.4923 0.7213

Table 1: Top performing (Spearman’s p) distilled

BERT embeddings and static embeddings. Perfor-
mance of BERT model followed by number of aggre-
gated contexts is given in first 6 rows. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.

representation, or where at least one of the words in
the pair required sub-word pooling before aggrega-
tion. Representations were then subjected to Spear-
man’s rank testing as per Bio-Simverb methodol-
ogy (Chiu et al., 2018).

When split using this criteria, model-native
verb pairs from BioBERT and SciBERT outper-
form those requiring subword pooling at all layers,
though performance declines from layer 0-12. Em-
beddings for verbs requiring sub-word decompo-
sition perform better at latter layers, though still
underperform. Only model-native BioBERT verb-
pairs outperformed the best static embeddings (300-
dimensional Word2Vec). Neither model-native,
nor multi-token SciBERT verb embeddings out-
performed top-performing static embeddings.

In contrast, for both BioBERT and SciBERT,
noun embeddings benefitted from subword decom-
position, with performance increasing until layer 6
before declining. For both models, native-noun rep-
resentations performed best when extracted from
the early model layers. Subword-decomposed
nouns from SciBERT outperformed both model-
native noun representations and those from the best-
performing static model. Neither native, nor de-
composed BioBERT-derived noun representations
outperformed 300-dimensional Word2Vec embed-
dings (see Figure 4 and Table 2).
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Bio-SimLex atively imprecise criteria of k& > 1 for test-pairs

where at least one word was non-native to BERT.
Moreover, though Bommasani et al. (2020) demon-
strated that taking the arithmetic mean of &k sub-
words was the best performing method on their
general-domain intrinsic benchmarking, a later
study by Acs et al. (2021) showed that sub-word

pooling approach mattered depending on desired
downstream NLP tasks. Consequently, further ex-
ploration into both k and n parameters should be
conducted.

Another explanation for performance differences

Method Bio-SimVerb

BioBERT 500 (S) 0.6691 (1) 0.7255 (1)
BioBERT 1000 (S) | 0.6685 (1) 0.7255 (1)
BioBERT 5000 (S) | 0.6688 (1) 0.7256 (1)
BioBERT 500 M) | 0.4603 (8) 0.7417 (6)
BioBERT 1000 (M) | 0.4629 (8) 0.7420 (6)
BioBERT 5000 (M) | 0.4621 (8) 0.7418 (6)
SciBERT 500 (S) 0.6609 (1) 0.7309 (1)
SciBERT 1000 (S) | 0.6604 (1) 0.7310 (1)
SciBERT 5000 (S) | 0.6603 (1) 0.7312 (1)
SciBERT 500 (M) 0.4155 (9) 0.7743 (3)
SciBERT 1000 (M) | 0.4175 (9) 0.7732 (3)
SciBERT 5000 (M) | 0.4167 (9) 0.7737 (3)
w2v 300 (S) 0.5255 0.6959
w2v 300 (M) 0.4545 0.7341

between BioBERT and SciBERT could be their
vocabularies: BioBERT utilizes the unmodified

Table 2: Performance of BERT embeddings aggre-
gated from short contextual examples and with n =
500, 1000, 5000. S or M in brackets indicate whether
representations were for words native to BERT i.e. us-
ing a single token to represent or those requiring sub-
word pooling, respectively. Static representations were
from a 300-dimensional Word2Vec model. Bold entries
indicate best overall performance.

5 Discussion

Here, the feasibility of BERT-derived word rep-
resentations for knowledge discovery purposes is
illustrated. Static embeddings are outperformed by
BERT models, however SciBERT and BioBERT
illustrated opposite performance metrics relative to
each other depending on whether verbs or nouns
are being tested. As n has little bearing on perfor-
mance, relatively few samples are required to yield
embeddings capable of use in knowledge discovery
tasks. Postulations of context-aware embeddings
being superior to static ones for knowledge dis-
covery may be correct, however a possible caveat
is that the correct BERT variant must be chosen
depending on word types of interest. Key to this
approach is leveraging SciBERT’s pre-training on
massive and diverse corpora both related and un-
related to the domain of interest (e.g. computer
science articles). Here, as few as 500 contextual
word representations from a corpus of interest are
required to yield aggregated word representations
capable of outperforming static ones derived from
models which requires training on an entire corpus.

Nevertheless, more work is required to quantify

the effect of multiple subwords on performance,
as the split vocabulary in this study utilized a rel-

BERT vocabulary, while SciBERT utilizes an ex-
panded vocabulary with more scientific terms. A
further consideration is that more pre-training steps
are necessary to improve sub-word performance
(Liu et al., 2019), which could be important for non-
general domains. Moreover, as the benchmarking
vocabularies incorporate both general-domain and
biomedical-domain word pairs (Chiu et al., 2018),
it may also be that the general domain test pairs
are contributing disproportionately to performance
boosts, and SciBERT benefits from having been
pre-trained on non-biomedical literature. Another
area for exploration is the comparatively differ-
ent layer-wise performance for BERT-native words
versus extra-vocabulary words, with similar charac-
teristics observed for both BioBERT and SciBERT.

A working knowledge-discovery framework uti-
lizing BERT might consist of first extracting the
vocabulary of the corpus upon which knowledge
discovery will be conducted and removing any ir-
relevant words (e.g. stop words). Then, n samples
for each word in the vocabulary may be taken from
the corpus and tokenized. As BERT’s attention
is quadratic to the sequence (Devlin et al., 2018),
and representations extracted from short sequences
perform better, shorter sample sequences are desir-
able. Tokenized sequences can then be encoded,
and representations extracted, with sub-word pool-
ing performed if necessary. The n contextual ex-
amples of each word representation can then be
averaged to yield a 1x768 dimensional represen-
tation for each word in the corpus vocabulary. It
is this collection of vocabulary embeddings that
can be subsequently used for discovery as per Tshi-
toyan et al. (2019), Venkatakrishnan et al. (2020)
and Voytek and Voytek (2012).



6 Conclusions

This study has successfully demonstrated feasibil-
ity of aggregated contextual word representations
derived from BERT for biomedical knowledge dis-
covery tasks. It has also uncovered several tech-
nical and performance-related idiosyncrasies of
BERT and BioBERT that require further investiga-
tion.

7 Limitations

This approach was only tested on a limited-
morphology language like English and it is not
known if the same results would be seen using cor-
pora consisting of other languages. Moreover, due
to resource limitations a maximum number of 5000
contexts were aggregated for the test vocabulary
of 4000 words, the process of which took approx-
imately 5 days using a single RTX3080ti, though
CPU-based approaches were also trialled which
completed the aggregation process for 5000 con-
texts in approximately the same amount of time
using 8 processes.
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Figure 5: Distributions of log sentence lengths for long
and short contextual sequences.

A Corpus Sampling Characteristics

Figure 3 demonstrates the distribution of log se-
quence lengths for long and short sequences, re-
spectively. Figure 4 demonstrates the distribution
of log number of sequences for long and short se-
quences, respectively. The sampling criteria was
that sequences had a single instance of the word and
was <512 words in length. There are fewer long
sequence samples per word compared to short se-
quence examples. The mean long sequence length
was 46.8 words (o = 29.5) while the mean short
sequence length was 26.3 words (o = 16.7). For
long sequences, the mean number of contextual
examples per word was 2330.2 (o =2194.8). For
short sequences, the mean number of contextual ex-
amples per word was 3632.2 (o = 1948.7) (Figure
3).

B Effect of Further Pre-Training on
Word Representation Quality

The pilot study involved pre-training BioBERT us-
ing the entire CORD-19 corpus. This approach
used only long corpus sequences and the base
BioBERT vocabulary (which itself is identical to
BERT vocabulary). Pre-training was achieved us-
ing the scripts supplied with the TensorFlow im-
plementation of the model (https://github.
com/dmis—lab/biobert) and involved creat-
ing pre-training data using sentence examples from
the corpus, before running further pre-training for
100,000 epochs. Default hyperparameters were
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Figure 6: Distributions of log number of aggregated
contexts for long and short sequence lengths. There
are substantially more examples meeting n = 5000 for
short sentences

used. For this pilot study, n = 10, 50, 100, 500
and 1000. The n selected examples were then all
tokenized and passed through either the further-
pretrained BioBERT model or the base Bio-BERT
model. For either approach, representations corre-
sponding to the word of interest were then extracted
wholly (i.e. as a single 1x768 word representa-
tion, or k individual sub-word representations) and
added to the list of n (explained further in 3.3).
Benchmarking was performed as described in 3.5.

For the Bio-SimVerb benchmarks (Left side of
Figure 4), there is a clear increase in performance
by increasing n from 10 to 1000 contexts. Also
apparent is that the representations extracted from
the further pre-trained model underperform relative
to those extracted from the base model for the same
n. Biggest increases in performance are seen going
from n = 10 to n = 100. Increasing n beyond
this begins to demonstrate smaller performance
boosts. Interestingly, best performing verb embed-
dings from the further pre-trained model were taken
from layer 12 (see 3) while for the base model, per-
formance peaked at embeddings extracted from
layer 8. In some cases, embeddings taken from
layer 12 of the further pre-trained model almost
reached peak performance from embeddings taken
from layer 8 of the base model.

For the Bio-SimLex benchmarks (Right side of
Figure 4), though there was a general performance
increase between representations extracted from
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Figure 7: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Pretrained n/Base n refer to either the further-pretrained model or the base model,
respectively, followed by the n aggregated contexts. Horizontal dashed lines correspond to performance of static

models.

the further-pretrained model and the base BioBERT
model, it was less pronounced as it was for the verb
benchmarks, with performance for the first 6 lay-
ers approximately equal before diverging thereafter.
Moreover, a substantial boost is seen going from
n = 10 to n = 50, becoming less pronounced as
n increases. Again, performance for the represen-
tations extracted from a further pre-trained model
demonstrate a trough following their maximum
performance at layer 8, but increase substantially
thereafter going from layer 11 to 12, though with-
out reaching their layer 6 peak. This characteristic
was not observed with the base model represen-
tations. Finally, representations from either the
further-pretrained or base models did not outper-
form either Word2Vec 200 or 300 dimensional rep-
resentations, or the BioWordVec representations.
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Method Bio-SimVerb | Bio-SimLex
Pre-Trained 10 0.5169 (12) 0.6770 (1)
Pre-Trained 50 0.5351 (12) 0.6991 (6)
Pre-Trained 500 | 0.5440 (12) 0.7004 (6)
Pre-Trained 1000 | 0.5487 (12) 0.7008 (6)
Base 10 0.5229 (8) 0.6744 (5)
Base 50 0.5415 (8) 0.7054 (6)
Base 500 0.5494 (8) 0.7072 (6)
Base 1000 0.5504 (8) 0.7078 (6)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWY 200 0.4923 0.7213

Table 3: Top performing (Spearman’s p) distilled
BERT embeddings and static embeddings from pilot
study. ‘Pre-Trained/Base n’ indicates embeddings ex-
tracted from n examples taken from the distilled pre-
trained or base model, respectively. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.
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