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Abstract

Extracting knowledge from large, unstruc-001
tured text corpora presents a challenge. Re-002
cently, authors have utilized unsupervised,003
static word embeddings to uncover "latent004
knowledge" contained within domain-specific005
scientific corpora. Here semantic-similarity006
measures between representations of concepts,007
objects or entities were used to predict re-008
lationships, which were later verified using009
physical methods. Static language models010
have recently been surpassed at most down-011
stream tasks by massively pre-trained, contex-012
tual language models like BERT. Some have013
postulated that contextualized embeddings po-014
tentially yield word representations superior015
to static ones for knowledge-discovery pur-016
poses. In an effort to address this ques-017
tion, two biomedically-trained BERT models018
(BioBERT, SciBERT) were used to encode019
n = 500, 1000 or 5000 sentences containing020
words of interest extracted from a biomedical021
corpus (Coronavirus Open Research Dataset).022
The n representations for the words of inter-023
est were subsequently extracted and then ag-024
gregated to yield static-equivalent word rep-025
resentations. These words belonged to the026
vocabularies of intrinsic benchmarking tools027
for the biomedical domain (Bio-SimVerb and028
Bio-SimLex), which assess quality of word029
representations using semantic-similarity and030
relatedness measures. Using intrinsic bench-031
marking tasks, feasibility of using contextual-032
ized word representations for knowledge dis-033
covery tasks can be assessed: Word represen-034
tations that better encode described reality are035
expected to perform better (i.e. closer to do-036
main experts). As postulated, BERT embed-037
dings outperform static counterparts at both038
verb and noun benchmarks, however perfor-039
mance varies by model and neither model out-040
performs static models at both tasks. More-041
over, unique performance characteristics are il-042
lustrated when task vocabulary is split between043
BERT-native words and words requiring sub-044
word decomposition.045

1 Introduction 046

A vast amount of biomedical knowledge exists as 047

unstructured text within journals, books and ab- 048

stracts. The ‘knowledge’ exists as relationships 049

and connections between described concepts, ob- 050

jects and events within the text. Information extrac- 051

tion from such corpora using supervised methods 052

requires large, manually-labelled datasets. Conse- 053

quently, these methods do not readily scale. 054

Tshitoyan et al. (2019) demonstrated that known 055

and novel relationships between entities described 056

within a materials science corpus could be discov- 057

ered using unsupervised, high-dimensional word 058

embeddings (Bengio et al., 2003; Collobert and 059

Weston, 2008; Collobert et al., 2011): When 060

200-dimensional Word2Vec skip-gram (Mikolov 061

et al., 2013) representations for material names (e.g. 062

‘Bi2Te3’) were ranked by their cosine similarity to 063

the representation of ‘thermoelectric,’ several novel 064

thermoelectric conductors were identified and sub- 065

sequently verified. Despite the material name never 066

having appeared alongside, or within a document 067

containing the word ‘thermoelectric,’ the direct re- 068

lationship between the novel material’s word repre- 069

sentation and ‘thermoelectric’ was permitted due to 070

indirect relationships between the material’s name 071

and related words/phrases such as ‘chalcogenide’ 072

(chalcogenides are good thermoelectrics) and ‘band 073

gap’ (which determines thermoelectric properties) 074

within the vector space (Tshitoyan et al., 2019). 075

Venkatakrishnan et al. (2020) subsequently applied 076

the same technique to a corpus of biomedical doc- 077

uments, discovering and validating novel tissue- 078

reservoirs of the ACE2 receptor used by SARS- 079

CoV-2 to invade a host. 080

Both Tshitoyan et al. (2019) and Venkatakrish- 081

nan et al. (2020) postulated that context-aware 082

embeddings, such as those from the bidirectional 083

encoder representation from transformers (BERT) 084

model (Devlin et al., 2018) could outperform those 085
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from static models. Nevertheless, a method to086

adapt models like BERT for this purpose is lack-087

ing. Bommasani et al. (2020) described a method088

for reducing contextualized word representations089

to static-equivalents by aggregating them over a090

number of different contexts. These aggregated091

contextual embeddings outperformed static ones092

at general domain intrinsic benchmarking tasks093

(e.g. SimLex-999 (Hill et al., 2015), SimVerb-3500094

(Gerz et al., 2016)), suggesting more realistic cap-095

ture of word syntactic and semantic properties.096

BERT-derived embeddings can be used as de-097

scribed by Tshitoyan et al. (2019) for knowledge098

discovery, by ranking geometric similarity between099

represented concepts, objects or processes (Figure100

1, Figure 2). Nevertheless, as this ‘latent knowl-101

edge’ requires validation, the quality of suggested102

relationships cannot easily be assessed. For exam-103

ple, Tshitoyan et al. (2019) tested thermoelectric104

predictions using a mathematical formula, while105

Venkatakrishnan et al. (2020) utilized a custom-106

built molecular inference platform to validate pos-107

tulations. Domain-specific intrinsic benchmarks108

which assess semantic similarity and relatedness109

between word representation pairs by comparing110

them to human-user ratings may be utilized as an111

appropriate surrogate: Higher-fidelity word repre-112

sentations are expected to better approximate hu-113

man assessments of word relatedness (and there-114

fore meaning).115

This study tests the hypothesis of both Tshitoyan116

et al. (2019) and Venkatakrishnan et al. (2020) that117

contextual (BERT) models yield word representa-118

tions that are superior to those produced by static119

model, and thus suitable for use in biomedical120

knowledge discovery. Using a biomedical corpus121

of 500,000 abstracts, pre-prints and full-text arti-122

cles (Wang et al., 2020), embeddings produced by a123

series of static models are tested against aggregated124

contextual representations sampled from the corpus125

and processed by two biomedical BERT variants.126

The contributions of this paper can be summarized127

as follows:128

• A method of utilizing BERT for biomedical129

knowledge discovery is described and vali-130

dated. It involves encoding n contextual ex-131

amples (i.e. sentences) containing vocabu-132

lary words, extracting and aggregating their133

representations. Aggregated representations134

can then be utilized for knowledge discovery135

tasks based upon their geometric relationship136

to other word-representations within the vec- 137

tor space. 138

• Using domain-specific intrinsic benchmark- 139

ing tools (Bio-SimVerb/Bio-SimLex), unique, 140

layer-wise performance differences are shown 141

for verbs and nouns. Moreover, performance 142

for nouns and verbs varies depending upon 143

BERT model used, and layer of the model 144

that representations are extracted from. 145

• In general, verbs native to BERT’s vocabu- 146

lary drastically outperform those requiring 147

sub-word decomposition. Noun performance 148

benefits from sub-word decomposition. 149

• Generally, the number of aggregated contexts 150

per word has little effect upon performance. 151

Subsequently, computationally efficient ap- 152

proaches for obtaining and applying these 153

representations in knowledge discovery tasks 154

may be devised. 155

2 Related Work 156

2.1 Knowledge Discovery via Semantic 157

Relatedness Measures 158

Aside from the work of Tshitoyan et al. (2019) and 159

Venkatakrishnan et al. (2020), Voytek and Voytek 160

(2012) described a technique that utilized a co- 161

occurrence algorithm to quantify the relationship 162

and associations between neuroscientific terms and 163

synonyms contained within 3.5 million papers in- 164

dexed in PubMed. Importantly, the latter authors 165

highlighted that the literature contained "a hidden 166

network of connected facts that, by definition, re- 167

capitulate known neuroscientific relationships," al- 168

most a decade before the work of Tshitoyan et 169

al. which expounded upon utilization of computa- 170

tional language models to uncover ‘latent knowl- 171

edge’ within domain-specific text corpora. More- 172

over, the work of Venkatakrishnan et al. (2020) 173

successfully demonstrates the scaling-up of this 174

technique, and potential for clinically-meaningful 175

discoveries using a non-trivial portion of the entire 176

digitized biomedical knowledge base (see Figures 177

1, 2). 178

2.2 Converting Contextual Word 179

Representations to Static-Equivalents 180

Bommasani et al. (2020) introduced a technique 181

of converting contextualized word embeddings 182

to static-equivalents for inferential purposes, in 183
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Figure 1: A dimensionality-reduced (T-SNE) plot
demonstrating the 30 word-representations closest to
‘hydroxychloroquine,’ using data derived from the
CORD-19 corpus. Apparent are clusters of drugs by
type, e.g. antivirals (lower-left quadrant) vs. antipar-
asitics/antibacterials (middle; lower-right quadrants)
which can be subsequently subjected to cluster-analysis
using suitable unsupervised techniques. Interestingly
the word ‘gautret’ appears close to the keyword ‘hy-
droxycholoroquine,’ as the first clinical trial of this
controversial drug’s use in treating COVID-19 was au-
thored by Gautret et al. in 2020, indicating the high
degree of association between terms in the corpus.

an effort to better understand contextualized lan-184

guage models like BERT. Importantly, the static-185

equivalent embeddings produced by this technique186

can be utilized in identical ways as those from older187

Word2Vec or GloVe models, and also outperform188

static embeddings at various intrinsic benchmark-189

ing tasks (Bommasani et al., 2020). Subsequently,190

novel methods of creating static-equivalents have191

been described, using continuous bag-of-word ap-192

proaches (Gupta and Jaggi, 2021), phrases (Wang193

et al., 2021) and by combining contextual and static194

embeddings (Hämmerl et al., 2022), for example.195

3 Methods196

3.1 Dataset and Text Preprocessing197

In response to the COVID-19 pandemic, the Coro-198

navirus Open Research Dataset (CORD-19) was199

released by governmental and academic institu-200

tions. It consists of over 500,000 scholarly articles201

(with over 200,000 full text articles and preprints)202

and abstracts pertaining to COVID-19 (Wang et al.,203

Figure 2: The 15 closest word representations to
‘psychiatric,’ ‘coronavirus,’ and ‘symptoms,’ keywords
(green nodes) as derived from models trained on the
CORD-19 corpus. Words like ‘anxiety,’ and ‘depres-
sion,’ among others, appear in the rankings. Pale-
blue nodes represent weaker relations to the keywords,
while darker-blue nodes represent geometrically-closer
(i.e. stronger) relations to the keywords.

2020)1. Corpus metadata was removed and articles 204

aggregated into a single file. All numbers were 205

replaced with a special token (‘<NuM>’) and se- 206

lective lowercasing was performed to preserve ab- 207

breviations. For the Word2Vec and GloVe models, 208

common terms and punctuation were removed. 209

3.2 Overview of Study Approach 210

The BERT approach was informed by results of an 211

initial pilot study (see Appendix A for preliminary 212

data). The pilot involved comparing contextual 213

representations extracted from either long or short 214

sentence sequences. Long sequences consisted of 215

corpus text split into sentences. Short sequences 216

further decomposed sentences into phrases, by 217

splitting on commas. Due to slightly worse per- 218

formance of long sequences, and the issue of 219

sequence length often exceeding 512 (the maxi- 220

mum allowable sequence length for BERT), only 221

short sequences were utilized. Two scientifically- 222

specialized BERT models utilized for contextual 223

embedding generation: BioBERT (Lee et al., 2020) 224

and SciBERT (Beltagy et al., 2019). Embeddings 225

extracted and aggregated from these models were 226

compared against those extracted from several 227

1https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge
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static models.228

3.3 BERT Approach229

BioBERT is a variation of BERT which is further230

pre-trained on PubMed abstracts and PubMed Cen-231

tral full-text articles. It outperforms general models232

at various downstream biomedical NLP tasks (Lee233

et al., 2020). The open source HuggingFace (Wolf234

et al., 2020)2 implementation of BioBERT v1.1235

was utilized without any further pre-training or fine-236

tuning based upon results of the preliminary study237

(see also Appendix B). SciBERT is another BERT-238

variant pre-trained on approximately 1.14 million239

random scientific articles from Semantic Scholar.240

Approximately 18% of these articles are from the241

computer science domain, with the remainder from242

the biomedical domain. It also demonstrates supe-243

rior performance at downstream biomedical NLP244

tasks relative to BERT (Beltagy et al., 2019).245

n = 500, 1000 or 5000 sentences containing a246

single instance of the word of interest were sampled247

and tokenized using either the wordpiece or senten-248

cepiece tokenizer (Kudo and Richardson, 2018) for249

BioBERT and SciBERT, respectively. Sequences250

were discarded if their pre- or post-tokenized length251

exceeded 512. Here, for each word w in context c,252

BERT’s tokenizer will either yield a single token253

or decompose w into k sub-word tokens, where254

{w1
c , ...,wk

c} 7−→ wc. Tokenized sequences were255

then fed into the model and the sequence represen-256

tations were extracted from all 13 model layers. For257

words represented by a single 1x768 representation,258

this was extracted without further operations. For259

decomposed words, the arithmetic mean of all wk
c260

was taken to yield a single 1x768 representation261

from k sub-word representations, per context:262

wc = mean(w1
c , ...,w

k
c )263

The arithmetic mean of the n contextual exam-264

ples of each wordw, wc1, ...,wcn was then taken. If265

n examples meeting the inclusion criteria were not266

available, then the maximum number were taken:267

w =

{
mean(wc1, ...,wcn) n = 500, 1000, 5000

mean(wc1, ...,wcmax(n)) n < 500, 1000, 5000
268

Decision to take the arithmetic mean of both269

sub-word representations and n mimicked Bom-270

masani et al. (2020)’s approach, where they found271

2https://huggingface.co/

mean-pooling outperformed other possible oper- 272

ations (e.g. max., min., last) for both sub-word 273

pooling and context aggregation (see also Ács et al. 274

(2021)). If n did not meet the threshold, the max- 275

imum number of word representations available 276

was aggregated. This approach differed from Bom- 277

masani et al. (2020) who instead took the represen- 278

tation produced by the word in isolation3. 279

3.4 Static Models 280

The aggregated embeddings obtained from 3.3 281

were compared against several static baseline mod- 282

els including 200 and 300-dimensional Word2Vec 283

skip-gram models, and a 300-dimensional GloVe 284

model all trained from scratch on only CORD- 285

19. Hyperparameters for Word2Vec were a con- 286

text window of 8, initial learning rate of 0.01, 287

high frequency word downsampling threshold of 288

0.0001, negative sampling parameter of 15, and 289

ignoring any word with a corpus occurrence fre- 290

quency of less than 10. All Word2Vec models were 291

trained for 10 epochs. Additionally, pre-trained 292

200-dimensional embeddings from BioWordVec 293

(Zhang et al., 2019)4 were also obtained and used 294

for benchmarking. Briefly, BioWordVec is an open 295

set of static biomedical word vectors trained on a 296

corpus of over 27 million articles, that additionally 297

combine sub-word information from unlabelled 298

biomedical text together with a biomedical con- 299

trolled vocabulary. 300

3.5 Benchmarking 301

Bio-SimVerb and Bio-SimLex (Chiu et al., 2018) 302

are benchmarking resources for the biomedical do- 303

main that offer 988 and 1000 test verb and noun 304

pairs, respectively. These word-pairs have been 305

extracted from 14 open biomedical ontologies and 306

over 14,000 biomedical journals covering over 120 307

areas of biomedicine and the general domain. In 308

these tasks, the cosine similarity of word repre- 309

sentations from language models are compared 310

to human domain-expert ratings, and subjected to 311

Spearman rank-correlation testing. Bio-SimVerb 312

and Bio-SimLex address shortcomings of previous 313

biomedical benchmarks such as MayoSRS (Pakho- 314

mov et al., 2011) and UMNSRS (Pakhomov et al., 315

3A single word (rather than a sequence) is an ‘unnatural’
input for BERT, yielding a poorly-performing ‘decontextual-
ized’ word representation (see (Bommasani et al., 2020) for
more detail).

4https://github.com/ncbi-nlp/
BioWordVec
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2010) which only test nouns, and fail to distinguish316

between semantic relatedness and similarity (Chiu317

et al., 2018). These tools were used as a surro-318

gate to validate contextualized embeddings use for319

knowledge discovery: Higher performance of a320

particular model’s word embeddings at noun and321

verb benchmarks indicates a higher-fidelity mathe-322

matical representation of described reality. Conse-323

quently, prior to their actual validation, knowledge324

predictions (i.e. relationships between concepts,325

objects, entities) can be made with a greater degree326

of confidence.327

4 Results328

4.1 Verb Benchmarks329

The left sub-plot of Figure 3 and left column of330

Table 1 demonstrates layer-wise performance of331

n = 500, 1000 and 5000 aggregated verb repre-332

sentations from BioBERT and SciBERT models.333

Performance is preserved regardless of sequence334

lengths/number of aggregated contexts, however it335

varies by model. SciBERT representations gener-336

ally underperform compared to both Word2Vec 200337

and 300-dimensional embeddings, and compared338

to BioBERT embeddings taken from the latter 8339

layers. BioBERT verb embeddings from the 6th340

layer onwards outperform both SciBERT and static341

embeddings. BioBERT and SciBERT performance342

also differs across layers, as illustrated by curve343

morphology. Performance for both models reaches344

a maximum towards the latter layers.345

4.2 Noun Benchmarks346

The right sub-plot of Figure 3 and right column of347

Table 1 demonstrates layer-wise performance of n348

= 500, 1000 and 5000 aggregated contextualized349

noun representations from BioBERT and SciBERT350

models. Similar to verbs, n has negligible effect on351

performance. In contrast, SciBERT noun represen-352

tations outperform BioBERT and static model rep-353

resentations. Performance for both models gener-354

ally peaks towards the earlier layers. Again, curve355

morphology varies for BioBERT and SciBERT.356

4.3 Effect of Sub-Word Pooling357

To further explain model performance, test word-358

pairs from Bio-SimVerb and Bio-SimLex were359

separated into two groups based upon whether360

both words in a respective test pair existed in361

BioBERT/SciBERT’s native vocabulary or not.362

This yielded test word pairs where both had a single363

Model Bio-SimVerb Bio-SimLex
BioBERT 500 0.5516 (8) 0.7105 (6)
BioBERT 1000 0.5526 (8) 0.7103 (6)
BioBERT 5000 0.5513 (8) 0.7114 (6)
SciBERT 500 0.5142 (11) 0.7514 (3)
SciBERT 1000 0.5149 (11) 0.7509 (3)
SciBERT 5000 0.5144 (11) 0.7513 (3)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWV 200 0.4923 0.7213

Table 1: Top performing (Spearman’s ρ) distilled
BERT embeddings and static embeddings. Perfor-
mance of BERT model followed by number of aggre-
gated contexts is given in first 6 rows. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.

representation, or where at least one of the words in 364

the pair required sub-word pooling before aggrega- 365

tion. Representations were then subjected to Spear- 366

man’s rank testing as per Bio-Simverb methodol- 367

ogy (Chiu et al., 2018). 368

When split using this criteria, model-native 369

verb pairs from BioBERT and SciBERT outper- 370

form those requiring subword pooling at all layers, 371

though performance declines from layer 0-12. Em- 372

beddings for verbs requiring sub-word decompo- 373

sition perform better at latter layers, though still 374

underperform. Only model-native BioBERT verb- 375

pairs outperformed the best static embeddings (300- 376

dimensional Word2Vec). Neither model-native, 377

nor multi-token SciBERT verb embeddings out- 378

performed top-performing static embeddings. 379

In contrast, for both BioBERT and SciBERT, 380

noun embeddings benefitted from subword decom- 381

position, with performance increasing until layer 6 382

before declining. For both models, native-noun rep- 383

resentations performed best when extracted from 384

the early model layers. Subword-decomposed 385

nouns from SciBERT outperformed both model- 386

native noun representations and those from the best- 387

performing static model. Neither native, nor de- 388

composed BioBERT-derived noun representations 389

outperformed 300-dimensional Word2Vec embed- 390

dings (see Figure 4 and Table 2). 391
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Figure 3: Layer-wise performance of BioBERT and SciBERT embeddings (0 corresponds to input layer) at both
Bio-SimVerb and Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static embed-
dings.

Figure 4: Layer-wise performance of BioBERT and SciBERT embeddings (0 corresponds to input layer) at both
Bio-SimVerb and Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static models.
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Method Bio-SimVerb Bio-SimLex
BioBERT 500 (S) 0.6691 (1) 0.7255 (1)
BioBERT 1000 (S) 0.6685 (1) 0.7255 (1)
BioBERT 5000 (S) 0.6688 (1) 0.7256 (1)
BioBERT 500 (M) 0.4603 (8) 0.7417 (6)
BioBERT 1000 (M) 0.4629 (8) 0.7420 (6)
BioBERT 5000 (M) 0.4621 (8) 0.7418 (6)
SciBERT 500 (S) 0.6609 (1) 0.7309 (1)
SciBERT 1000 (S) 0.6604 (1) 0.7310 (1)
SciBERT 5000 (S) 0.6603 (1) 0.7312 (1)
SciBERT 500 (M) 0.4155 (9) 0.7743 (3)
SciBERT 1000 (M) 0.4175 (9) 0.7732 (3)
SciBERT 5000 (M) 0.4167 (9) 0.7737 (3)
w2v 300 (S) 0.5255 0.6959
w2v 300 (M) 0.4545 0.7341

Table 2: Performance of BERT embeddings aggre-
gated from short contextual examples and with n =
500, 1000, 5000. S or M in brackets indicate whether
representations were for words native to BERT i.e. us-
ing a single token to represent or those requiring sub-
word pooling, respectively. Static representations were
from a 300-dimensional Word2Vec model. Bold entries
indicate best overall performance.

5 Discussion392

Here, the feasibility of BERT-derived word rep-393

resentations for knowledge discovery purposes is394

illustrated. Static embeddings are outperformed by395

BERT models, however SciBERT and BioBERT396

illustrated opposite performance metrics relative to397

each other depending on whether verbs or nouns398

are being tested. As n has little bearing on perfor-399

mance, relatively few samples are required to yield400

embeddings capable of use in knowledge discovery401

tasks. Postulations of context-aware embeddings402

being superior to static ones for knowledge dis-403

covery may be correct, however a possible caveat404

is that the correct BERT variant must be chosen405

depending on word types of interest. Key to this406

approach is leveraging SciBERT’s pre-training on407

massive and diverse corpora both related and un-408

related to the domain of interest (e.g. computer409

science articles). Here, as few as 500 contextual410

word representations from a corpus of interest are411

required to yield aggregated word representations412

capable of outperforming static ones derived from413

models which requires training on an entire corpus.414

Nevertheless, more work is required to quantify415

the effect of multiple subwords on performance,416

as the split vocabulary in this study utilized a rel-417

atively imprecise criteria of k > 1 for test-pairs 418

where at least one word was non-native to BERT. 419

Moreover, though Bommasani et al. (2020) demon- 420

strated that taking the arithmetic mean of k sub- 421

words was the best performing method on their 422

general-domain intrinsic benchmarking, a later 423

study by Ács et al. (2021) showed that sub-word 424

pooling approach mattered depending on desired 425

downstream NLP tasks. Consequently, further ex- 426

ploration into both k and n parameters should be 427

conducted. 428

Another explanation for performance differences 429

between BioBERT and SciBERT could be their 430

vocabularies: BioBERT utilizes the unmodified 431

BERT vocabulary, while SciBERT utilizes an ex- 432

panded vocabulary with more scientific terms. A 433

further consideration is that more pre-training steps 434

are necessary to improve sub-word performance 435

(Liu et al., 2019), which could be important for non- 436

general domains. Moreover, as the benchmarking 437

vocabularies incorporate both general-domain and 438

biomedical-domain word pairs (Chiu et al., 2018), 439

it may also be that the general domain test pairs 440

are contributing disproportionately to performance 441

boosts, and SciBERT benefits from having been 442

pre-trained on non-biomedical literature. Another 443

area for exploration is the comparatively differ- 444

ent layer-wise performance for BERT-native words 445

versus extra-vocabulary words, with similar charac- 446

teristics observed for both BioBERT and SciBERT. 447

A working knowledge-discovery framework uti- 448

lizing BERT might consist of first extracting the 449

vocabulary of the corpus upon which knowledge 450

discovery will be conducted and removing any ir- 451

relevant words (e.g. stop words). Then, n samples 452

for each word in the vocabulary may be taken from 453

the corpus and tokenized. As BERT’s attention 454

is quadratic to the sequence (Devlin et al., 2018), 455

and representations extracted from short sequences 456

perform better, shorter sample sequences are desir- 457

able. Tokenized sequences can then be encoded, 458

and representations extracted, with sub-word pool- 459

ing performed if necessary. The n contextual ex- 460

amples of each word representation can then be 461

averaged to yield a 1x768 dimensional represen- 462

tation for each word in the corpus vocabulary. It 463

is this collection of vocabulary embeddings that 464

can be subsequently used for discovery as per Tshi- 465

toyan et al. (2019), Venkatakrishnan et al. (2020) 466

and Voytek and Voytek (2012). 467
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6 Conclusions468

This study has successfully demonstrated feasibil-469

ity of aggregated contextual word representations470

derived from BERT for biomedical knowledge dis-471

covery tasks. It has also uncovered several tech-472

nical and performance-related idiosyncrasies of473

BERT and BioBERT that require further investiga-474

tion.475

7 Limitations476

This approach was only tested on a limited-477

morphology language like English and it is not478

known if the same results would be seen using cor-479

pora consisting of other languages. Moreover, due480

to resource limitations a maximum number of 5000481

contexts were aggregated for the test vocabulary482

of 4000 words, the process of which took approx-483

imately 5 days using a single RTX3080ti, though484

CPU-based approaches were also trialled which485

completed the aggregation process for 5000 con-486

texts in approximately the same amount of time487

using 8 processes.488
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der Fraser. 2022. Combining static and contex- 539
tualised multilingual embeddings. arXiv preprint 540
arXiv:2203.09326 . 541

Felix Hill, Roi Reichart, and Anna Korhonen. 2015. 542
Simlex-999: Evaluating semantic models with (gen- 543
uine) similarity estimation. Computational Linguis- 544
tics 41(4):665–695. 545

Taku Kudo and John Richardson. 2018. Sentence- 546
Piece: A simple and language independent subword 547
tokenizer and detokenizer for neural text process- 548
ing. In Proceedings of the 2018 Conference on Em- 549
pirical Methods in Natural Language Processing: 550
System Demonstrations. Association for Computa- 551
tional Linguistics, Brussels, Belgium, pages 66–71. 552
https://doi.org/10.18653/v1/D18-2012. 553

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, 554
Donghyeon Kim, Sunkyu Kim, Chan Ho So, 555
and Jaewoo Kang. 2020. Biobert: a pre-trained 556
biomedical language representation model for 557
biomedical text mining. Bioinformatics 36(4):1234– 558
1240. 559

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 560
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 561
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 562
Roberta: A robustly optimized bert pretraining ap- 563
proach. arXiv preprint arXiv:1907.11692 . 564

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef- 565
frey Dean. 2013. Efficient estimation of word 566
representations in vector space. arXiv preprint 567
arXiv:1301.3781 . 568

Serguei Pakhomov, Bridget McInnes, Terrence Adam, 569
Ying Liu, Ted Pedersen, and Genevieve B Melton. 570
2010. Semantic similarity and relatedness between 571

8

https://doi.org/10.18653/v1/2021.eacl-main.194
https://doi.org/10.18653/v1/2021.eacl-main.194
https://doi.org/10.48550/ARXIV.1903.10676
https://doi.org/10.48550/ARXIV.1903.10676
https://doi.org/10.48550/ARXIV.1903.10676
https://doi.org/10.48550/ARXIV.1903.10676
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


clinical terms: an experimental study. In AMIA an-572
nual symposium proceedings. American Medical In-573
formatics Association, volume 2010, page 572.574

Serguei VS Pakhomov, Ted Pedersen, Bridget McInnes,575
Genevieve B Melton, Alexander Ruggieri, and576
Christopher G Chute. 2011. Towards a framework577
for developing semantic relatedness reference stan-578
dards. Journal of biomedical informatics 44(2):251–579
265.580

Vahe Tshitoyan, John Dagdelen, Leigh Weston,581
Alexander Dunn, Ziqin Rong, Olga Kononova,582
Kristin A Persson, Gerbrand Ceder, and Anubhav583
Jain. 2019. Unsupervised word embeddings capture584
latent knowledge from materials science literature.585
Nature 571(7763):95–98.586

AJ Venkatakrishnan, Arjun Puranik, Akash Anand,587
David Zemmour, Xiang Yao, Xiaoying Wu, Ra-588
makrishna Chilaka, Dariusz K Murakowski, Kristo-589
pher Standish, Bharathwaj Raghunathan, et al. 2020.590
Knowledge synthesis of 100 million biomedical doc-591
uments augments the deep expression profiling of592
coronavirus receptors. Elife 9:e58040.593

Jessica B Voytek and Bradley Voytek. 2012. Auto-594
mated cognome construction and semi-automated595
hypothesis generation. Journal of neuroscience596
methods 208(1):92–100.597

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,598
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn599
Funk, Rodney Kinney, Ziyang Liu, William Merrill,600
et al. 2020. Cord-19: The covid-19 open research601
dataset. ArXiv .602

Shufan Wang, Laure Thompson, and Mohit Iyyer. 2021.603
Phrase-bert: Improved phrase embeddings from bert604
with an application to corpus exploration. arXiv605
preprint arXiv:2109.06304 .606

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien607
Chaumond, Clement Delangue, Anthony Moi, Pier-608
ric Cistac, Tim Rault, Remi Louf, Morgan Fun-609
towicz, Joe Davison, Sam Shleifer, Patrick von610
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-611
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama612
Drame, Quentin Lhoest, and Alexander Rush. 2020.613
Transformers: State-of-the-art natural language pro-614
cessing. In Proceedings of the 2020 Conference615
on Empirical Methods in Natural Language Pro-616
cessing: System Demonstrations. Association for617
Computational Linguistics, Online, pages 38–45.618
https://doi.org/10.18653/v1/2020.emnlp-demos.6.619

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,620
and Zhiyong Lu. 2019. Biowordvec, improving621
biomedical word embeddings with subword infor-622
mation and mesh. Scientific data 6(1):1–9.623

9

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Figure 5: Distributions of log sentence lengths for long
and short contextual sequences.

A Corpus Sampling Characteristics624

Figure 3 demonstrates the distribution of log se-625

quence lengths for long and short sequences, re-626

spectively. Figure 4 demonstrates the distribution627

of log number of sequences for long and short se-628

quences, respectively. The sampling criteria was629

that sequences had a single instance of the word and630

was <512 words in length. There are fewer long631

sequence samples per word compared to short se-632

quence examples. The mean long sequence length633

was 46.8 words (σ = 29.5) while the mean short634

sequence length was 26.3 words (σ = 16.7). For635

long sequences, the mean number of contextual636

examples per word was 2330.2 (σ = 2194.8). For637

short sequences, the mean number of contextual ex-638

amples per word was 3632.2 (σ = 1948.7) (Figure639

3).640

B Effect of Further Pre-Training on641

Word Representation Quality642

The pilot study involved pre-training BioBERT us-643

ing the entire CORD-19 corpus. This approach644

used only long corpus sequences and the base645

BioBERT vocabulary (which itself is identical to646

BERT vocabulary). Pre-training was achieved us-647

ing the scripts supplied with the TensorFlow im-648

plementation of the model (https://github.649

com/dmis-lab/biobert) and involved creat-650

ing pre-training data using sentence examples from651

the corpus, before running further pre-training for652

100,000 epochs. Default hyperparameters were653

Figure 6: Distributions of log number of aggregated
contexts for long and short sequence lengths. There
are substantially more examples meeting n = 5000 for
short sentences

used. For this pilot study, n = 10, 50, 100, 500 654

and 1000. The n selected examples were then all 655

tokenized and passed through either the further- 656

pretrained BioBERT model or the base Bio-BERT 657

model. For either approach, representations corre- 658

sponding to the word of interest were then extracted 659

wholly (i.e. as a single 1x768 word representa- 660

tion, or k individual sub-word representations) and 661

added to the list of n (explained further in 3.3). 662

Benchmarking was performed as described in 3.5. 663

For the Bio-SimVerb benchmarks (Left side of 664

Figure 4), there is a clear increase in performance 665

by increasing n from 10 to 1000 contexts. Also 666

apparent is that the representations extracted from 667

the further pre-trained model underperform relative 668

to those extracted from the base model for the same 669

n. Biggest increases in performance are seen going 670

from n = 10 to n = 100. Increasing n beyond 671

this begins to demonstrate smaller performance 672

boosts. Interestingly, best performing verb embed- 673

dings from the further pre-trained model were taken 674

from layer 12 (see 3) while for the base model, per- 675

formance peaked at embeddings extracted from 676

layer 8. In some cases, embeddings taken from 677

layer 12 of the further pre-trained model almost 678

reached peak performance from embeddings taken 679

from layer 8 of the base model. 680

For the Bio-SimLex benchmarks (Right side of 681

Figure 4), though there was a general performance 682

increase between representations extracted from 683
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Figure 7: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Pretrained n/Base n refer to either the further-pretrained model or the base model,
respectively, followed by the n aggregated contexts. Horizontal dashed lines correspond to performance of static
models.

the further-pretrained model and the base BioBERT684

model, it was less pronounced as it was for the verb685

benchmarks, with performance for the first 6 lay-686

ers approximately equal before diverging thereafter.687

Moreover, a substantial boost is seen going from688

n = 10 to n = 50, becoming less pronounced as689

n increases. Again, performance for the represen-690

tations extracted from a further pre-trained model691

demonstrate a trough following their maximum692

performance at layer 8, but increase substantially693

thereafter going from layer 11 to 12, though with-694

out reaching their layer 6 peak. This characteristic695

was not observed with the base model represen-696

tations. Finally, representations from either the697

further-pretrained or base models did not outper-698

form either Word2Vec 200 or 300 dimensional rep-699

resentations, or the BioWordVec representations.700

Method Bio-SimVerb Bio-SimLex
Pre-Trained 10 0.5169 (12) 0.6770 (1)
Pre-Trained 50 0.5351 (12) 0.6991 (6)
Pre-Trained 500 0.5440 (12) 0.7004 (6)
Pre-Trained 1000 0.5487 (12) 0.7008 (6)
Base 10 0.5229 (8) 0.6744 (5)
Base 50 0.5415 (8) 0.7054 (6)
Base 500 0.5494 (8) 0.7072 (6)
Base 1000 0.5504 (8) 0.7078 (6)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWV 200 0.4923 0.7213

Table 3: Top performing (Spearman’s ρ) distilled
BERT embeddings and static embeddings from pilot
study. ‘Pre-Trained/Base n’ indicates embeddings ex-
tracted from n examples taken from the distilled pre-
trained or base model, respectively. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.
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