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ABSTRACT

Interacting with dynamic objects and even opponent agents in an open world re-
mains a challenge for reinforcement learning. Task planning representations are
crucial in such scenarios. Existing reasoning representations grounded in lan-
guage or vision have demonstrated efficacy, yet most require pretraining and fine-
tuning on domain-specific knowledge datasets. We argue that a reasoning rep-
resentation purely learned from self-supervised environmental interactions, in-
tegrated with brain-like hierarchical structure, offers substantial value for open-
world dynamic tasks. In this paper, we present ResDreamer, a hierarchical world
model with residually connected visual planning representations. In ResDreamer,
high-level world model observes lower level reconstruction residuals, aiming to
capture more advanced world dynamics and form a more comprehensive internal
world representation. Each layer of the world model employs enhanced environ-
mental observations, which include visual foresight reconstructed from imagined
trajectories. These foresight images are further calibrated by residuals predicted
by the higher-level world model. Our approach demonstrates higher sampling effi-
ciency, parameter efficiency, and scalability compared to state-of-the-art methods.

1 INTRODUCTION

In interaction or combat scenarios, task objectives are relevant with dynamic elements or even an-
other active agent. This pose a significant challenge to decision-making agent. The vast state space
of an open-ended environment exacerbates this challenge. The agent must construct an internal
world representation based on partial information and make decisions accordingly.

Task planning representation is critical for achieving human-level intelligence in open-ended dy-
namic environments. World model has pushed the boundaries of reinforcement learning (RL) by
reasoning in internal latent space (Schrittwieser et al., 2020; Robine et al., 2023; Zhang et al., 2023;
Alonso et al., 2024). DreamerV3 (Hafner et al., 2025) achieved high performance generalization
across over 150 diverse tasks with a unified hyperparameters. However, most existing model based
RL (MBRL) methods only consider pixel reconstruction as one of the gradient signals for represen-
tation learning during training. The decision making process did not directly benefit from the world
model’s ability to predict future sensory signal.

Hierarchical methods can naturally integrate with task planning by transmitting plan representations
between layers. Strategies at different levels allow for independent optimization on different time
scales (Lee et al., 2022; Gumbsch et al., 2024). The latent space targets can provide guidance for the
lower-level worker (Hafner et al., 2022; Vezhnevets et al., 2017). JARVIS-1 (Wang et al., 2023b),
MC-Planner (Wang et al., 2023c), and RL-GPT (Liu et al., 2024) are open-ended embodied agents
that integrates RL with Large Language Models (LLMs). Leveraging their generalized world knowl-
edge, LLMs can provide advanced, interpretable language-based task plans through approaches such
as task decomposition and policy-as-code. However, low-frequency target may become infeasible
when the task relevant objects are in dynamic moving and active states.

We hold the view that multi-level reasoning is crucial for open-world general intelligence. Therefore,
an ideal planning representation should be able to hierarchically capture the dynamic of the world
at different levels of abstraction, and should be naturally scalable. Neuroscience evidence suggests
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that the biological neural signals encode prediction error rather than the raw image (Rao & Ballard,
1999; Hosoya et al., 2005). Visual neurons employ a dynamic predictive coding strategy to filter
out predictable components from the visual stream, transmitting only unexpected surprise or ”report
valuable” stimuli (Kok & de Lange, 2015).

Based on the above insights, we present ResDreamer, a hierarchical world model with residually
connected visual planning representations. The residual of visual reconstruction serves as a signal
for interlayer interaction in hierarchical world models. Information about prediction errors and
feedback is transmitted between layers without the propagating gradients. The higher-level world
model, by modeling visual residuals, not only constructs a comprehensive internal representation of
the world but also refines the lower level’s predictions through residual reasoning, thereby providing
more accurate foresight.

In summary, the major contributions of this work are:

• We present a general hierarchical architecture for world models. Through the innovative
design of enhanced visual observation, foresight prediction and sensory surprise are trans-
mitted between neighboring layers in a brain-like manner.

• Experimental results validate the sample efficiency, parameter efficiency and scalability of
our approach in MBRL context. This has enabled the world model to advance towards the
scalable ”ResNet era”.

2 RELATED WORK

MBRL. Recurrent world dynamic models facilitate representation, simulation and policy improve-
ment in MBRL (Ha & Schmidhuber, 2018). MuZero (Schrittwieser et al., 2020) conducts Monte
Carlo tree search in the latent space by the learned state space model. DreamerV3 (Hafner et al.,
2025) outperformed expert models tuned for specific domains and, for the first time, successfully
collected diamonds from scratch in Minecraft. LS-Imagine (Li et al., 2024) breaks the limitations
of single-step reasoning and uses the affordance map to trigger the cross-step jump prediction. It
simulates jumping to the vicinity of high return targets in the future by magnifying specific areas in
the observed image. In the field of visual MBRL, transformer (Micheli et al., 2022; Robine et al.,
2023; Zhang et al., 2023), diffusion model (Alonso et al., 2024) are also known as effective world
models. However, as far as we know, there is no MBRL method that naturally builds a hierarchical
representation learning architecture based on the reconstruction residuals of sensory signals.

Hierarchical RL. Hierarchical RL is considered promising in alleviating the exploration stagnation
caused by sparse rewards in complex and long-term tasks. Capturing task-relevant details across
varying temporal scales is a key focus of current research efforts (McInroe et al., 2022; Schiewer
et al., 2024; Lin et al., 2024; Li et al., 2024). Beyond static temporal scales, THICK (Gumbsch et al.,
2024) adaptively discovers larger temporal scales by guiding lower-level world models to sparsely
update their partial latent states. Automatic goal discovery is another critical aspect, enabling agents
to autonomously identify and pursue meaningful objectives (Hafner et al., 2022; Hamed et al., 2024;
Nicklas Hansen, 2025). Furthermore, hierarchical methods can benifit from internet-scale datasets
to provide generalized prior knowledge for the lower-level policy (Baker et al., 2022; Yuan et al.,
2024; 2023). However, none of the existing method exchange visual residual signal between layers.
In our approach, higher-level models can be scalably stacked to achieve increasingly comprehensive
representation learning.

World model. Recently, Vision-Language Model (VLM) (Cen et al., 2025) and Joint Embedding
Predictive Architecture (JEPA) (LeCun, 2022) have emerged as competitive world model architec-
tures. Web-scale pre-training and relatively sufficient expert demonstration are often prerequisite
of VLA driven Minecraft agents (Wang et al., 2023a;c; Li et al., 2025). JEPA is a self-supervised
representation learning framework. As an autoregressive generative architecture, it is pretrained on
Internet scale multimedia data in the absence of pixel-level reconstruction. Various instances of
JEPA have demonstrated its potential across a wide range of domains, including images (Assran
et al., 2023), videos (Bardes et al., 2024; Assran et al., 2025), optical flow(Bardes et al., 2023),
point clouds (Saito et al., 2025), and graph data (Skenderi et al., 2023). Our approach not only en-
ables plug-and-play training from scratch but also maintains pathways for acquiring internet-scale
knowledge guidance through methods such as MineClip (Fan et al., 2022).
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Figure 1: Overview of ResDreamer a model base RL algorithm based on hierarchical world model.
The left side shows the structure of enhanced visual observations, through which the world model
layers communicate. The right side shows the modules and training process of the k-th layer world
model. The Encoder reads enhanced visual observations and gives the posterior zkt . The dynamic
predictor learns to estimate zkt with ẑkt without accessing the observation. The sequence model
updates internal state hkt by zkt . The Decoder reconstructs the observation signal which generates
reconstruction loss and residual visual signal for upper layer.

3 METHOD

In this section, we present the details of ResDreamer. We introduce ResDreamer from the perspec-
tives of representation learning and behavior learning. First, we describe the basic module of each
layer in our Hierarchical Recurrent State-Space Model (HRSSM). Next, we present our primary in-
novation in representation learning architecture, namely the enhanced observation through residual
connection. Finally, we formalize the loss functions and the training algorithm.

3.1 HIERARCHICAL WORLD MODEL

We implement the HRSSM based on Predictive Processing Blocks (PPBs). Predictive Processing or
Predictive coding is a paradigm to explain hierarchical reciprocally connected organization of the
cortex (Huang & Rao, 2011).

In the k-th layer block PPBk, recurrent state contains the deterministic state hkt and the stochas-
tic state zkt . The sequence model is used to represent the state transitions conditioned by action
taken. The Encoder extracts useful information from the new input observations to guide the recur-
rent state update, while the Predictor attempts to predict the stochastic state without accessing the
observations.

PPBk


Sequence model: hkt = Sϕ

(
zkt−1, h

k
t−1, at−1

)
Encoder: zkt ∼ qϕ

(
zkt | hkt , okt

)
Predictor: ẑkt ∼ pϕ

(
ẑkt | hkt

)
Decoder: ôkt ∼ Dϕ

(
ôkt | hkt , zkt

)
.

(1)

where ẑkt is the predicted stochastic state, okt and ôkt are true and reconstructed observations. Layer
index k = 0, 1, · · ·L− 1 and L is the number of HRSSM layers. Each layer’s PPB module contains
all the components of the dreamerV3 (Hafner et al., 2025).
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3.2 VISUAL HINT STRUCTURE AND RESIDUAL MODELING

Figure 1 gives an overview of ResDreamer, a hierarchical world model in which layers communicate
through error feedback and predictive visual hints. Enhanced observation okt become the channel
for feedforward and feedback information between adjacent hierarchical world models. They have
become the key to our hierarchical world model, enabling it to scale up with linearly increasing
communication bandwidth.

okt =
{
okimag, oraw, o

k
res

}
t
,

ôkt =
{
ôkraw, ô

k
res

}
t
.

(2)

where subscripts (·)imag, (·)raw and (·)res stands for imaginary hint, raw world and lower residual
observation respectively. oraw is always original sensory input during environmental interaction.
None of these observations propagate gradients.

The lower residual observation okres is reconstruction error from lower level, thus is empty for
bottom layer.

okres =


empty set, k = 0,

Normk
(
oraw − ô0raw

)
, k = 1,

Normk
(
ok−1

res − ôk−1
res

)
, k = 2, 3, · · · , L− 1.

(3)

where the omitted time indices are all t, and the same applies hereafter. Normk(·) computes the
mean and variance across the pixel dimension and updates them using an exponential moving aver-
age. The lower residual observation and the raw environmental observation are sensory signals of
equivalent status, both requiring the Decoder to reconstruct.

It is worth noting that any layer of the well-trained PPB can generate future imaginary trajectories
by replacing the posterior with the prior without observation. The imaginary hint observation
okimag is the channel concatenation of imagined video frames on the planned action trajectory. Due
to incomplete modeling, the reconstructed video from the imagined model state can be fuzzy and
distorted. The upper-level world model is precisely trained to reproduce the reconstruction error
of the current layer. Therefore, we add the residual video from the upper layer onto current video
prediction as correction.

okimag =


{
ô0raw + ô1res

}
t+1:t+H

, k = 0,{
ôkres + ôk+1

res

}
t+1:t+H

, k = 1, 2, · · · , L− 2,{
ôkres

}
t+1:t+H

, k = L− 1, .

(4)

The imaginary hint observation utilities the HRSSM’s reasoning capabilities to directly envision
the future, thereby providing additional hints for the current moment. From the perspective of con-
volutional neural networks (CNN), the imaginary hint effectively generates dynamic CNN kernels
based on predictive visual foresight. This process is similar to ”gaze control” in cognitive science,
which refers to the fact that attention is determined by knowledge-driven prediction (Jovancevic-
Misic & Hayhoe, 2009; Henderson, 2017).

Specifically, if the raw image shape is (h,w, 3), then okres has shape (h,w, 3×H) and okimag has shape
(h,w, 3×H). Figure 3 shows the raw observation and imaginary hint observation on world model
bottom layer while the agent is combating a ghast. The complete process of constructing enhanced
observations from the bottom layer to the top layer and updating the recursive state in sequence is
shown in Algorithm 1.

At this point, we have established the feedforward and feedback information channels of the hierar-
chical world model based on the enhanced observation (see Figure 2). This architecture combines
the bandwidth advantage of inter-layer communication and the computational efficiency advantage
within layers.

The visual hint does incur necessary computational cost, but from the perspective of parameter scale,
the above architecture introduces almost no overhead. Within each layer, although the number of
image channels has significantly increased due to the addition of video hint, the distribution of
the visual hint is highly matched with the original image distribution benefits from the residual
modeling, thus allowing for the sharing of major convolutional features. Therefore, in practice,
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Figure 2: The information channel between world model layers is bidirectional. Only errors and
predicted pixel values are transmitted between layers, with no gradients being passed. On one hand,
each layer of the PPB generates predictions about the external world and transmits visual planning
representations to lower layers accordingly. On the other hand, the PPB learns to reconstruct signals
from lower layers, and the error signals are fed back to higher layers.

we have not expanded the depth of the encoder and dimensions of stochastic state compared to
dreamerV3 (Hafner et al., 2025).

Figure 3: Visualization of Residual Enhanced Visual Observation on layer 0. It can be seen that
at timestep 0, the agent had inferred in imagination that the opponent would turn red and enter
the attack state at timestep 2, and drop the bomb at timestep 4. Green: raw observation. Blue:
imaginary hint observation. Yellow: imaginary at time-step of next row. Visual hints is reconstructed
from imaginary internal states. Upper layer residual hint is added to imagined future image. Each
row shows the complete observation of the input encoder, with an interval of 2 timesteps. The video
segment shows a ghast faces the agent and shoots a fireball. The agent reasons in imagination and
makes a retreating evasive move.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 WORLD MODEL AND BEHAVIOR LEARNING

In the context of RL, the final goal is to improve the policy. The actor-critic method is employed for
policy optimization and state value learning.

Actor: at ∼ πθ (at | st)
Critic: vt ∼ vψ (vt | st)

(5)

where st =
{
s0t , s

1
t , · · · , sk−1

t

}
. The actor-critic is conditioned on the concatenation of skt from all

layers.

Additional information such as rewards and episode continuation flags are predicted from the recur-
rent state.

Reward head: r̂t ∼ pϕ (r̂t | st)
Continue head: ĉt ∼ pϕ

(
ĉkt | st

) (6)

The world environment generously provides continuous stream of sensory signals. Reconstructing
sensory inputs serves as a critical training signal for world models. This drives the model to encode
as much environmental information as possible in deterministic state.

Lkrec (ϕ) = − ln pϕ
(
oraw | skt

)
− ln pϕ

(
okres | skt

)
(7)

where k = 0, 1, · · · , L− 1.

The stochastic state serves as the information channel through which new observation guide model
updates. For instance, in a typical configuration of 32 categorical variable with 32 classes, the
encoder extracts only 256 bits of information from observations at each step. Therefore, the encoder
has to retain only the most critical information for updating the internal model. The enforced sparsity
makes the stochastic state more feasible to predict, while the representation loss ensures that it tends
to converge to a more predictable representation.

Lkdyn(ϕ) = max
(
1,KL

[
sg

(
qϕ

(
zkt | hkt , okt

))
|| pϕ

(
zkt | hkt ,

)])
Lkrep(ϕ) = max

(
1,KL

[
qϕ

(
zkt | hkt , okt

)
|| sg

(
pϕ

(
zkt | hkt

))]) (8)

The prediction heads are similarly trained in a self-supervised manner, with the only difference being
that they are conditioned on a stack of recurrent states from all layers.

Lheads(ϕ) = − ln pϕ (rt | st)− ln pϕ (ct | st) (9)

Assuming that the world dynamic and the task-related experiences can be stably represented by the
world model, the actor-critic can learn from the imaginary state trajectories, thereby significantly
improving the sample efficiency.

The value distribution may span multiple orders of magnitude. Therefore, we parameterize the critic
as a categorical distribution with exponentially spaced bins. We compute the bootstrapped λ-return
Rλt to train the critic. Rλt accounts for rt within the trajectory horizon T and incorporates the
critic’s expected value for returns beyond the horizon. The reward signal rt may originate from the
environment or be estimated by the reward prediction head from imagined trajectories.

L(ψ) = −
T∑
t=1

ln pψ
(
Rλt | st

)
Rλt =

{
rt + γct

(
(1− λ)vt + λRλt+1

)
, t < T

E [vψ (· | st)] , t = T

(10)

The actor learns to maximize returns with entropy regularizer. To remain robust to outliers, we track
the range between the 5th and 95th percentiles of returns using an exponential moving average. For
further details on the loss function, please refer to Hafner et al. (2025).

L(θ) = −
T∑
t=1

Rλt − sg (vψ (st))

max(1, S)
log πθ (at | st) + ηH [πθ (at | st)]

S = EMA
(
Per

(
Rλt , 95

)
− Per

(
Rλt , 5

)) (11)
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Figure 4: Comparison of ResDreamer against Steve-1 (Lifshitz et al., 2023), DreamerV3 (Hafner
et al., 2025), PTGM (Yuan et al., 2024). We introduce the compared models in Appendix C.

4 EXPERIMENTS

Engaging in combat within open-ended worlds presents significant challenges including terrain
comprehension, the utilization of weapons and defensive tools, and dynamic anticipation of en-
emy movements. We evaluate ResDreamer on 5 combat tasks in MineDojo (Fan et al., 2022) as is
introduced in Table 2.

The agent is equipped with iron armors and iron sword shield at initialization in all tasks. We adopt
sparse reward from MineDojo at episode termination and dense reward from MineCLIP (Fan et al.,
2022). Each MineCLIP reward is computed of video segment of 16 time-steps, with calculations
taking place every 8 frames. In addition, the agent is rewarded at any valid attack and punished for
losing health points. The agent is trained for 1× 106 environment steps. Image input for both agent
and MineCLIP model is 160×256 pixels. All experiments can be reproduced with VRAM less than
29 GB.

4.1 MAIN COMPARISON

We measure the performance for all the methods with success rates during training. Our implemen-
tation is based on DreamerV3 (Hafner et al., 2025) and provides a brain-inspired hierarchical scaling
method for it. To make a fair comparison with it in terms of parameter efficiency, ResDreamer is
tested with two parameter configurations. Further details are provided in Appendix A.

ResDreamer (100Mx2) adopts residual enhanced observations to extend the Dreamer world model
to 2 layers. It demonstrates the best sample efficiency and convergence speed across all tasks. Res-
Dreamer (100Mx2) is also the only method that have significant probability of defeating a shulker in
1×106 environment steps. As is shown in Table 1, despite using sparse hierarchical connections and
only 84% of the parameter size, ResDreamer (50Mx2) has still surpassed the average performance
of the DreamerV3.

The training curves in Figure 4 and comparisons in Figure 6 suggest that ResDreamer is an effective
method for hierarchical scale-up of world models. The residual-enhanced visual reasoning represen-
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Table 1: ResDreamer and DreamerV3 baseline model sizes

Configurations DreamerV3 ResDreamer (50Mx2) ResDreamer (100Mx2)

Recurrent ht size 6144 4096 6144
Recurrent zt size 32× 48 32× 32 32× 48
Hidden size 768 512 768
Encoder CNN channels 48 32 48
Decoder CNN channels 32 32 32
hierarchies 1 2 2
Total parameters 109.5M 92.0M 192.7M

tation can leverage the inference and reconstruction capabilities of world models to achieve dynamic
visual reference encoding for current observations, while also enabling error propagation upward to
form a more comprehensive world representation across multiple layers of the world model.

4.2 MODEL ANALYSIS

The enhanced observation through residual connection is a key feature of ResDreamer, enabling the
flow of predictive and error information across the layers of the world model. Figure 5 show the
results of the following alternative setups.

Figure 5: Alternative ResDreamer setups study re-
sults.

ResDreamer (50Mx3): the ResDreamer model
from the main comparison is extended to three
layers. ResDreamer aims to learn more com-
prehensive world representations in a scalable
manner. The mean task success rate of the
three-layer ResDreamer surpasses that of the
two-layer version. This indicates that Res-
Dreamer provides an effective method for scal-
ing up world models, achieving model paral-
lelism with linearly increasing communication
bandwidth consumption.

ResDreamer (Heads conditioned on all): the
actor, critic, and prediction heads in Res-
Dreamer are conditioned on the recursive states
of all layers. Experimental results show a
performance decline under equivalent environ-
mental interaction steps. Theoretically, com-
plete recursive states contain more information,
but the distribution of lower residual observa-
tions shifts during training process of lower-
layer models, leading to relatively unstable rep-
resentations in the upper-layer world model be-
fore convergence. Further studies could com-
pare performance across additional environ-
mental interaction step settings.

ResDreamer (Only residual hints): the imaginary hint observations in ResDreamer consist solely
of residual signals from the upper layer, without incorporating the current layer’s predictive recon-
struction. Although the current layer’s recursive state already encompasses complete information
from open-loop predictions, we find that imaginary hint observations with residual connections
yield superior performance. This suggests that visual foresight corrected by residuals facilitates
the encoder’s learning of a more favorable posterior distribution.
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Figure 6: Comparisons of success rate, episode score and episode length across tasks. It can be
seen that ResDreamer achieves higher scores and success rates with fewer steps. Although the Res-
Dreamer (50Mx2) has slightly fewer total parameters than DreamerV3 (100M), it performs better in
almost all tasks.

5 CONCLUSION

In this paper, we present ResDreamer, a hierarchical world model featuring residual-connected vi-
sual planning representations. Residual enhanced observations establish an information channel
between layers. Those explainable sensory signals are stripped, and the remaining novel stimuli are
passed on to higher-level models for learning. The high-level predictions will modify the visual-
based planning representation with residual signal, helping the encoder perform gaze control based
on accurate temporal predictions. Through comparisons with baselines and model analysis, we
demonstrate that ResDreamer achieves superior sample efficiency with fewer parameters compared
to baselines. ResDreamer facilitate excellent world model scalability. Data exchange occurs only
between adjacent layers, and the communication bandwidth consumption increases linearly with the
number of parameters.

The primary limitation of ResDreamer lies in its static image foresight horizon length. Long-horizon
goal image increases computational cost, whereas overly short visual hints may fail to provide suf-
ficient environmental dynamics information. We leave the development of adaptive-length image
foresight to future work.

REPRODUCIBILITY STATEMENT

We submit the source code as part of supplementary materials. Following the experiment setup in
Table 1, all the results can be reproduced on publicly available RL environments and open source
code repositories.

ETHICS STATEMENT

In this work, we are adhere to the code of ethics. This work does not involve human subjects,
personal data, or sensitive information. All training data are synthesized by publicly available envi-
ronment simulator. Our MBRL approach is task-agnostic, introducing no prior biases. We advocate
for thorough testing and safety evaluations before deploying this reinforcement learning system in
broader applications, especially physical systems.
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THE USE OF LARGE LANGUAGE MODELS

We only use LLMs as a tool for improving the quality of writing. We manually write the complete
version of the paper. The output of the LLMs is merely used as a synonym replacement for some
parts of our manually-written version. LLMs are not used for any creative work such as the research
ideation or the design of experiments.

A MODEL DETAILS

Figure 2 intuitively illustrates the data flow diagram of open-loop imagination and how it constructs
enhanced visual observations during training. Our hierarchical model extends the process of updat-
ing the internal recurrent state based on observations. See Algorithm 1 for details.

The sequence of environmental interactions stored in the replay buffer is utilized only for train-
ing the representational learning of the world model, while policy improvement relies exclusively
on imagined trajectories. Consequently, the training pipeline and the environment interaction are
entirely asynchronous. For a detailed description of the training pipeline, refer to Algorithm 2.

B ENVIRONMENT DETAILS

MineDojo agent’s initial inventory includes a iron sword, shield, and a full suite of iron armors across
all tasks. The maximum number of time-steps for one episode is 1000. For other specifications, see
Table 2.

As shown in Table 2, the five Mobs each possess distinct characteristics. Each episode terminates
upon timeout or when the agent’s health reaches zero, which implies that the agent must not only
explore and approach enemies but also learn to evade attacks or defend with a shield. The rich
interaction mechanisms thoroughly test the generalization capabilities of RL algorithms.
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Algorithm 1 Update the recurrent state of ResDreamer upon observation

Input: recurrent state st, raw observation oraw.
Output: recurrent state st+1, world model losses Ldyn(ϕ),Lrep(ϕ),Lrec(ϕ).

1: Open-loop roll out imaginary state-action trajectory
{
ŝ0:L−1, a

}
t+1:t+H

2: initiate okres with empty set.
3: for each k = 0, 1, · · · , L− 1 do
4: Compute okimag with Eq. (4).
5: Compute okt with Eq. (2).
6: zkt ← sample

[
qϕ

(
zkt | hkt , okt

)]
. ▷ Encoder

7: ẑkt ← sample
[
pϕ

(
zkt | hkt

)]
. ▷ Predictor

8: Compute prediction loss Lkdyn(ϕ) and representation loss Lkrep(ϕ) with Eq. (8).
9: hkt+1 ← Sϕ

(
zkt , h

k
t , a

k
t

)
. ▷ Sequence model

10: Compute sensory signal reconstruction ôkt =
{
ôkraw, ô

k
res

}
t
. ▷ Decoder

11: Compute reconstruction loss Lkrec(ϕ) with Eq. (7).
12: Compute okres with Eq. (3).
13: end for
14: return st+1,Ldyn(ϕ),Lrep(ϕ),Lrec(ϕ).

Algorithm 2 The training pipeline of ResDreamer

1: initiate parameters ϕ, θ, ψ.
2: initiate carried state scarry.
3: while not converged do
4: ▷ World model representation learning
5: Sample a environmental interaction sequence {oraw, a}0:T−1 from replay buffer.
6: for each t = 0, 1, · · · , T − 1 do
7: Update the scarry upon {oraw}t with Algorithm 1.
8: Store trajectory feature

{
h0:L−1
t , z0:L−1

t

}
and losses Ldyn(ϕ),Lrep(ϕ),Lrec(ϕ).

9: end for
10: ▷ Actor-critic learning
11: Stack feature sequence F ←

{
h0:L−1
0:T−1, z

0:L−1
0:T−1

}
.

12: Compute the bootstrapped λ-return Rλt and critic loss L(θ) with Eq. 10.
13: View F as a batch of entry points sized T .
14: Open-loop roll out imaginary state-action trajectory of B time-steps starting at entry points

batch F .
15: for each imaginary trajectory {ŝ0:B−1, a0:B−1} do
16: Compute the normalized return and actor loss L(ψ) with Eq. 11.
17: end for
18: Back propagate losses Ldyn(ϕ),Lrep(ϕ),Lrec(ϕ),L(θ),L(ψ).
19: Optimize parameters ϕ, θ, ψ.
20: end while

C BASELINE INTRODUCTION

C.1 SELECTED METHODS

We compare ResDreamer with strong Minecraft RL algorithms, including:

DreamerV3 (Hafner et al., 2025): A model-based RL foundation model. DreamerV3 is trained from
scratch without demonstrations and domain knowledge. It generates future latent states recurrently
with a non-hierarchical world model.

STEVE-1 (Lifshitz et al., 2023): An finetuned Video Pretraining (VPT) model for open-ended text
and visual instructions following. It is post trained through self-supervised behavioral cloning. We
test its zero-shoot text instructions following performance in MineDojo tasks.
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Table 2: MineDojo tasks specifications.

Mobs Biome Mob Features MineClip prompt

Spider extreme hills Fast movement combat a spider in night extreme
hills with a iron sword, shield, and
a full suite of iron armors

Shulker end Shoots guided bullets which
causes floating

combat a shulker in the end with a
iron sword, shield, and a full suite
of iron armors

Wolf taiga More agile, group attacks combat a wolf in taiga with a iron
sword, shield, and a full suite of
iron armors

Skeleton extreme hills Accurate ranged attacks
with arrows

combat a skeleton in night extreme
hills with a iron sword, shield, and
a full suite of iron armors

Ghast nether Flying, ranged attacks with
explosive fireball, terrain de-
struction

combat a ghast in nether with a iron
sword, shield, and a full suite of
iron armors

PTGM (Yuan et al., 2024): A hierarchical approach integrating a high-level task goal generation
strategy and a low-level goal-conditioned RL strategy. The high-level goal strategy is pretrained on
large-scale, task-agnostic datasets, while the low-level strategy is learned online through RL. We
utilize the open-source upper-layer strategy parameters of PTGM and evaluate its online training
performance on MineDojo tasks using the default configuration of PTGM code-base.

C.2 UNSELECTED METHODS

We provide introductions of other strong Minecraft agents and the reasons we do not compare Res-
Dreamer with them.

LS-Imagine (Li et al., 2024): An MBRL method that achieves arbitrary time-span reasoning through
dual-branch prediction. It is based on DreamerV3, but it supports long-term prediction by simulat-
ing jumping to the vicinity of navigation targets through cropping observation. However, combat
missions are different from navigation and exploration. Factors such as terrain, enemy reactions,
etc. have a significant impact on the expected return, and cutting the images disrupts the data dis-
tribution. For instance, it is not reasonable to jump to flying enemies like ghasts by cropping the
image.

Voyager (Wang et al., 2023a), JARVIS-1 (Wang et al., 2023b), MC-Planner (Wang et al., 2023c),
RL-GPT (Liu et al., 2024): Open-Ended embodied agents that integrates RL with LLM. They adopt
heterogeneous hierarchical models, leveraging the prior knowledge of LLMs to achieve task de-
composition, long-term planning, code as strategy, and lifelong skill accumulation. Their focus lies
in the integration and interaction methods between LLMs and RL, emphasizing the evaluation of
an agent’s efficiency in accumulating atomic skills and activating technological milestones. Our
proposed ResDreamer is a model-based RL foundation model, focusing on evaluating the data effi-
ciency, scalability, and interpretability. ResDreamer can work together with all kinds of upper layer
LLMs as a more powerful RL algorithm.

ROCKET-2 (Cai et al., 2025a), ROCKET-3 (Cai et al., 2025b) SkillDiscovery (Deng et al., 2025),
JarvisVLA (Li et al., 2025): Open-world VLA agents powered by imitation learning (IL) and prior
knowledge of visual foundation model such as SAM (Kirillov et al., 2023). VLA agents focus on
following open instructions within a broader range of atomic skills and their combinations. How-
ever, ResDreamer is a MBRL foundation model trained without any prior knowledge. ResDreamer
focuses on developing a task-agnostic and domain general hierarchical world model method.
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D ADDITIONAL VISUALIZATION

Residual Enhanced Visual Observation is the main innovation of this work. To visually demon-
strate the structure of this visual foresight and the planning information it provides, we visualize the
observation sequence of the agent during its combat with the wolf in Figure 7.
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Figure 7: Visualization of all the observations of a ResDreamer with three hierarchies. Gray: raw
observation. Red: residual observation. Blue: original open-loop imagination.
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