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Abstract
Maintaining accurate beliefs in a changing and noisy en-
vironment is a challenging computational problem. Previ-
ous studies have shown that humans adapt their learning
dynamically, especially in the face of change. This con-
clusion is mostly supported in the context of magnitude
learning (e.g., tracking a reward amount, an object posi-
tion), and currently remains more uncertain in the case
of probability learning (e.g., tracking the probability of an
event occurring). Here, we initiate an open benchmarking
approach to uncover the computations humans use for
probability learning. We compared a wide range of mod-
els—including optimal Bayesian models, suboptimal vari-
ants, and simple prediction error-based update rules, us-
ing several datasets in which participants provided trial-
by-trial probability estimates. Bayesian inference often
outperformed simple prediction error-based models, de-
spite being more computationally demanding and often
considered less biologically plausible. Furthermore, in-
ference strategies appear to depend on environmental
volatility: under moderate volatility, an optimal Bayesian
model best explains behavior, whereas in more stable en-
vironments, a simpler Bayesian approximation is better.
These results so far highlight the sophistication of hu-
man adaptive learning for probability and suggest that
humans can adapt their inference strategies based on en-
vironmental context. We invite others to contribute mod-
els and datasets to this benchmark to refine these con-
clusions.
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Introduction
How do humans update their beliefs in an abruptly chang-
ing, noisy environment? When faced with uncertain and dy-
namic conditions, learners should in theory continuously ad-
just their expectations based on new observations, balancing
past knowledge with incoming evidence in an adaptive (i.e.
dynamic) manner (Bruckner et al., 2025). What computational
mechanisms support this adaptive learning process? Numer-
ous models have been proposed to solve inference problems
in dynamic, noisy environments. These models range from
fully Bayesian (a.k.a. probabilistic), to the simple non-adaptive
delta rule. The empirical evidence supporting the existence
of adaptive learning in human is clear in magnitude learning,
such as when tracking the latent mean of symbolic numbers

(Nassar et al., 2012), positions (McGuire et al., 2014; Nas-
sar et al., 2016), or angular directions (Vaghi et al., 2017)dis-
played in a sequence. These studies showed that human sub-
jects weigh prior expectations and information from each ob-
servation according to their uncertainty, in a way that aligns
with Bayesian inference. However, the biological plausibility
of Bayesian inference is highly debated (Bowers and Davis,
2012; Findling et al., 2021; Fiser et al., 2010; Knill and Pouget,
2004), due to the algorithmic complexity of Bayesian inference
in general (Cooper, 1990).

These findings on magnitude learning may not generalize to
probability learning (such as tracking the probability of a stimu-
lus in a sequence) since both types of learning have computa-
tional differences. In magnitude learning, the trial-by-trial rate
of learning is primarily driven by the change-point probability,
while in probability learning, it is primarily driven by prior un-
certainty about the learned estimate (Foucault and Meyniel,
2024). This difference arises because the information con-
veyed by each observation about the latent estimate is larger
for magnitude learning than for probability learning.

Experimental findings on adaptive probability learning re-
main limited. Several studies on reward probability have found
evidence for an adaptive adjustment of learning based on
environmental volatility (Behrens et al., 2007; Meder et al.,
2017). However, these studies only compared average learn-
ing rates across blocks of trials, rather than examining trial-
level adjustments in learning rates. Some decision-making
studies manipulating probabilities used trial-by-trial modeling
(Browning et al., 2015; Iglesias et al., 2013), but with the
limit that the learning process may be partially confounded by
decision-making processes. (By decision-making processes,
we refer to processes that involve response selection, such
as choosing between different actions or options that are as-
sociated with reward probabilities.) It is commonly found in
decision-making research that subjects overestimate and un-
derestimate extreme probabilities (Oprea and Vieider, 2024;
Wulff et al., 2018), which is not the case in probability learning
tasks devoid of choices and rewards (Gallistel et al., 2014).

In this study, our goal is to characterize the sophistication of
human probability learning in the face of abrupt changes. To
this end, we compared a broad range of existing models, rang-
ing from the optimal Bayesian model to coarser and coarser
approximations of it, as well as models that use simple up-
date rules based on prediction errors. We used three openly
available datasets corresponding to a probability learning task
in which subjects continuously reported their estimate of the



abruptly changing hidden probability of stimuli presented in a
sequence. We focused on “pure” probability learning tasks
because they are less confounded by decision-making pro-
cesses.

Methods

We aim to initiate an open benchmarking for probability
learning in changing environments, with Python code for all
models and openly available datasets. The code and the
datasets are available on GitHub at https://github.com/
TheComputationalBrain/adaptive prob learning. In
the following, we describe the 10 models and 3 openly avail-
able datasets already included, used in this study. We hope
that others will contribute new models and datasets.

Datasets: Probability learning in a changing
environment

Common features. The three datasets used here shared
similar experimental procedures (Fig 1). Participants viewed
sequences made of two visual stimuli on a computer screen.
On each trial, the stimulus was sampled from a Bernoulli dis-
tribution, whose parameter remained fixed between abrupt
change points. After a change point, the new stimulus prob-
ability was resampled uniformly in a range that satisfied a
change in the odds ratio (p/(1-p)) of at least 4 around the
change point. A change point could occur independently on
each trial with a small, fixed probability, and the changes were
not signaled to the participants. Subjects were instructed
about the generative process of sequences, and asked to es-
timate the latent probability of stimuli on each trial, which they
report by moving a cursor on a slider.

Specific features of Gallistel et al. (2014) and Khaw et al.
(2017). In Gallistel et al. (2014), stimuli were red and green
rings, drawn in a self-paced sequence on a computer by par-
ticipants. 10 subjects participated, each completing 10 ses-
sions of 1,000 trials. The generative probability range was
from 0 to 1 and the change-point probability was fixed at .005.
In Khaw et al. (2017), the experimental procedure was iden-
tical to Gallistel et al. (2014), except that subjects were re-
warded based on their performance. This dataset included
11 subjects, each completing 10 sessions of 1,000 trials (see
supplementary Fig.1A for task illustration).

Specific features of Foucault and Meyniel (2024) The two
visual stimuli were a blue circle and a yellow circle, presented
in a sequence with 1.5 s interval between each observation.
96 participants each completed 15 sessions of 75 stimuli.
Subjects were partly rewarded based on their performance,
displayed as feedback at the end of each session. Perfor-
mance was calculated based on the mean absolute error be-
tween subjective probability estimates and generative proba-
bilities. The range of generative probability was from 0.1 to
0.9, and change-point probability was 0.05 (see supplemen-
tary Fig.1B for task illustration).

Figure 1: Probability learning tasks. Example sequences of
observations (red dots) and probability estimates from Gallis-
tel et al. (2014) and Foucault and Meyniel (2024).

Formal description of the models We selected 10 mod-
els to approximate subjects’ probability estimates across three
datasets. These models can be broadly categorized into
two groups. The first group consists of different variants of
Bayesian models, ranging from the optimal model that makes
the most accurate inference of the latent probability (com-
puted numerically here with a hidden Markov model, HMM
(Behrens et al., 2007); its estimates are very close of the ex-
act Bayesian online change point detection model (Adams
and MacKay, 2007) — to models that provide increasingly
simplified approximations of Bayesian inference. Such ap-
proximations can be variational, replacing some functions in
the optimal model with other functions that simplify its com-
putation, like the Hierarchical Gaussian Filter (HGF) (Mathys
et al., 2011,0) and Volatile Kalman filter (VKF) (Piray and Daw,
2020,0). Other approximations simplify the optimal model it-
self, by reducing the number of variables to estimate. For in-
stance, in theory the optimal problem can be solved by taking
into account, on a given trial, all possible positions of the previ-
ous change points (parameterized as “run length” i.e. length of
a subsequence devoid of change points). The possible num-
ber of run lengths being potentially very large, one can decide
to approximate the problem by considering only a subset of
possible run lengths, as in the Mixture of Delta Rules (Wil-
son et al., 2013), or only the mean run length as in the Re-
duced Bayesian Model (Nassar et al., 2010). Alternatively,
instead of updating the current probability estimate on every
trial, the optimal model can also be simplified by updating the
model only occasionally, when a change point is detected as
in the Change Point Model (Gallistel et al., 2014; Ricci and
Gallistel, 2017).

Each of these approximations remains, to different degrees,
computationally intensive. As a result, they are sometimes
perceived as offering limited insight into the biological algo-
rithms that the brain actually employs (Bowers and Davis,
2012; Findling et al., 2021; Knill and Pouget, 2004). The sec-
ond group of models we consider does not attempt to approx-
imate the optimal model, instead they directly aim for com-
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putational simplicity. We included models that update their
estimates simply based on the proportion of prediction er-
ror, without relying on a probabilistic framework. Examples
of such models include the Proportional Integral Derivative
controller (PID), which is a simple, yet very efficient adap-
tive filtering model (Ritz et al., 2018), the Delta Rule (Wag-
ner and Rescorla, 1972) with a constant learning rate, and
the Pearce-Hall model that adjusts the learning rate based
on the unsigned prediction error which serves as an indica-
tor of surprise (Pearce and Hall, 1980). This second group is
computationally simpler, and it makes use of prediction errors,
whose representation is well established in the brain (Arias-
Carrión et al., 2010; Bayer and Glimcher, 2005; Pessiglione
et al., 2006; Schultz, 2007) (Figure 2). For these reasons, this
second class of models is often considered as more biologi-
cally plausible. The key features and number of free param-
eters for each model are summarized in Table 1, we refer the
reader to the references under each model for a complete de-
scription.

Figure 2: A gradient of sophistication in probability learn-
ing models. The models included in this paper can be cat-
egorized into two main groups. The x-axis represents model
complexity, ranging from optimal Bayesian inference to pro-
gressively coarser approximations of Bayesian inference, then
to non-Bayesian models. The y-axis represents the biolog-
ical plausibility of these models. Models that require lower
memory and computational demands are generally consid-
ered more biologically plausible. Note that biological plausi-
bility is a complex and not easily quantifiable concept. This
figure is intended to illustrate the general idea that models
with high computational cost are often questioned in terms
of their biological plausibility. The ordering of models along
the sophistication gradient is qualitative and partly reflects our
interpretation of the emphasis of the original authors.

Probability weighting function

The linear in log odds (LLO) function is widely used in
decision-making research to describe how individuals subjec-

tively distort a probability p (noted w(p) when distorted) when
making choices, particularly in risk-based decisions (Gonza-
lez and Wu, 1999; Bruhin et al., 2010):

ln
(

w(p)
1−w(p)

)
= ln(δ)+ γ ln

(
p

1− p

)
By fitting this function to our data, where p represents the
ideal observer estimates, we quantified distortion of subjec-
tive probability. In the LLO framework, δ is the scaling factor
that shifts the function up or down, δ > 1 indicates that sub-
jects generally overestimate probabilities; when δ < 1, they
generally underestimate probabilities. Meanwhile, γ controls
the distortion of probability estimates. When γ < 1, the func-
tion has an inverse S-shape; When γ > 1,the function shows
an S-shape. If δ =1, γ = 1, subjective estimates closely match
objective probabilities.

Model recovery analysis

We performed a model recovery analysis to test if different
models were behaviorally distinguishable from one another.
To do this, we simulated 100 subjects, each containing 10 ses-
sions of 1000 trials, following the same generating procedure
as Gallistel et al. (2014), with a constant change point prob-
ability of 0.005. Then, we fitted all models to each simulated
data set. The resulting model recovery matrix, showing the
proportion of best-fit models across the 100 simulations, is
presented in Fig. 3 (see Supp. Fig. 2 for parameter recov-
ery). The results suggest that most models were behaviorally
identifiable, except for the HGF. This result is likely due to nu-
merical issues the HGF encountered in 6 out of 100 simula-
tions, where the posterior variance over the top (volatility) level
became negative. This issue arises from the Taylor approxi-
mation used to extrapolate the variational posterior and is a
well-known problem of HGF (Mathys et al., 2014; Piray and
Daw, 2020,0). For the Reduced Bayesian model, the model is
better recovered by the Reduced Bayesian model with under-
weighted likelihood information. This outcome is unsurprising,
as the two models are nested, with the latter including an ad-
ditional free parameter to adjust the weight of the likelihood.

Model fit and comparison

Model fitting was performed in Python using scipy.optimize
with the Powell optimization procedure. As the goal of model
fitting was to create models that behave as similarly as possi-
ble to humans (rather than to best perform the task), we min-
imized the mean squared error (MSE) between model predic-
tions and subjects’ estimates. For model comparison, we eval-
uated the performance of each model using a cross-validation
(CV) procedure. Specifically, for each subject, we trained the
model on N-1 sessions and tested using the left-out session,
resulting a 10-fold cross-validation for Gallistel et al.(2014)
and Khaw et al.(2017) data (10 sessions of 1000 trials), and
15 folds in Foucault and Meyniel (2024)’s data (15 sessions of
75 trials). Then the final CV-MSE for each model for each sub-
ject is the sum of the CV-MSE over all the left-out folds used



Figure 3: Model recovery analysis. Confusion matrix show-
ing the proportion of simulated data sequences (out of 100
iterations) generated by a given model (x-axis) and best fitted
by each model (y-axis).

for testing. The cross-validation procedure prevents overfitting
and ensures a fair comparison of models with different num-
bers of free parameters.

Results

Accuracy of subjective probability

We first evaluated the accuracy of subjects’ estimates by com-
paring their reported estimates to the ideal observer estimates
derived from the optimal Bayesian model. Subjects’ estimates
were tightly correlated with the ideal observer estimates in all
three datasets (Gallistel et al. (2014): Pearson r = 0.92 ±
0.008, t(9) = 120.14, p < 10−16; Khaw et al. (2017): r = 0.88
± 0.02, t(10) = 44.36, p< 10−13; Foucault and Meyniel (2024):
r = 0.80 ± 0.01, t(95) = 55.79, p < 10−74 (Figure 4, blue dot).

We assessed the linear in log odds (LLO) probability
weighting function to quantify distortions in subjects’ reported
probability estimates relative to the ideal observer estimates.
The results across the three datasets confirmed the visual im-

pression from Fig. 4 that distortions are very minor. Both
and distortion parameters were very close to 1, with some mi-
nor bias toward overweighting small probabilities and under-
weighting the large probabilities (see Fig. 4, yellow line). This
distortion is much less pronounced than the distortion typically
found when subjects make a decision/action based on learned
probability (for instance, see (Oprea and Vieider, 2024)). To-
gether, these results indicate that subjects produced accurate
probability estimates despite the presence of multiple, unpre-
dictable change points. We also computed several linear re-
gressions, one for each trial number i relative to the change
point, using subjects’ probability estimates as the dependent
variable and the generative probabilities before and after the
change point as predictors. This allowed us to examine the
rate at which subjects adapted to the new generative probabil-
ities after a change point. The results suggested that, in gen-
eral, subjects tended to adapt quickly—within approximately
10 trials (see Fig. 5, black line).

Model comparison reveals the sophistication of
human probability learning

We then compared a wide range of models to characterize the
computations subtending human probability learning. Specif-
ically, we fitted 10 models to each subjects’ data from each
of the three datasets and evaluated their performance us-
ing cross-validated mean squared error (MSE). Note that the
models were not optimized to perform the task well, but rather
to reproduce the observed human responses as accurately
as possible. The results, summarized in Fig. 6, show the per-
centage of subjects in each dataset best fitted (i.e., with the
lowest CV-MSE) by each model, along with the average CV-
MSE difference for each pair of models.

In Foucault & Meyniel (2024), the HMM was the best-fitting
model, accounting for 46.9% (45 out of 96) of subjects, fol-
lowed by the PID, which was the best-fitting model for 24%
(23 out of 96) of subjects. The HMM performed better than



Figure 4: Subjective probability estimates are remarkably accurate. (Blue dots). The accuracy of subjects’ estimates is
assessed in comparison to the ideal observer estimates. The data were binned in 8 quantiles of the ideal observer estimate
and averaged within-subjects for visualization purpose. Points and error bars (too small to be seen) show mean ± s.e.m. across
subjects. (Yellow line). Probability weighting functions based on the median parameters of a linear in log-odds function estimated
from subjects in each dataset. Overall the subjective reported probabilities match closely with the ideal observer probabilities.
Dashed line is the identity line.

all other models, with significant CV-MSE differences with all
models (p < .001 for all comparisons) but the PID model. In
Gallistel et al. (2014), the Mixture of delta rules was the best-
fitting model, accounting for 40% (4 out of 10) of subjects, fol-
lowed by the HMM, which best fit 30% (3 out of 10) of subjects.
The CV-MSE was significantly smaller in the Mixture of delta
rules than in any other model, apart from the HMM and PID.
For Khaw et al. (2017), the results are more mixed. The Mix-
ture of delta rules was also the best-fitting model, accounting
for 54.5% (6 out of 11) of subjects, followed by the VKF and
the Reduced Bayesian model with under-weighted likelihood
information, each best fitting 18.2% (2 out of 11) of subjects.
However, in this dataset no model had a CV-MSE significantly
smaller than most other models.

The results indicate that subjects’ estimates are best cap-
tured by models that update their estimates on a trial-by-trial
basis in a highly adaptive manner. This includes models that
optimally compute Bayesian inference, such as the HMM, as
well as those that use approximations, like the Mixture of Delta
Rules, or the PID. In contrast, models that rely solely on error-
driven updating, such as the Delta Rule and the Pearce-Hall
model, generally provided a worse fit to subjects’ data. Inter-
estingly, the PID model, which is based on proportional error
updates, demonstrated better predictive performance. Unlike
the Delta Rule, which has a fixed learning rate and is there-
fore not adaptive, and the Pearce-Hall model, which adjusts its
learning rate based only on the most recent unsigned predic-
tion error, the PID model incorporates a leaky sum of all past
errors and the rate of change in error. This filtering mecha-
nism allows it to adapt flexibly to sudden changes in the envi-
ronment.

We performed model predictive checks that capture differ-
ent features of learning dynamics, and compared them to sub-

jects’ data, in order to have a better understanding of why
some models perform better than some others beyond the
quantitative model comparison based on mean-squared er-
ror. We estimated how quickly the estimate of subjects and
models (fitted to behavior) become close to the new genera-
tive probability that follows a change point, and how quickly
the generative probability that prevailed before the change
point is forgotten (Figure 5). In the Foucault & Meyniel (2024)
data, the HMM model was the only one to capture the very
quick adaptation of the subject’s estimate to the new genera-
tive probability. This very fast updating of the HMM is actually
the reason why it performed worse than the Mixture of Delta
Rules on the two other data sets, in which subjects adapted
their estimates more slowly. Another model predictive check is
the trial-by-trial learning rate, computed as the ratio between
the update and the prediction (Supp Fig 3). This trial-by-trial
learning rate, time-locked to change points, showed a marked
transient increase in subjects in the Foucault & Meyniel (2024)
dataset that was best captured only by the HMM model. By
contrast, this transient increase was very small in the Gallis-
tel et al. dataset, not compatible with HMM but instead with
the Mixture of Delta Rules, and no increase in the Khaw et al.
dataset.

Overall, these results suggest that subjects’ estimates are
best captured by models that dynamically adjust the learning
rate on each trial.

Discussion

In this study, we trained a wide range of models to approxi-
mate subjects’ data and compared their performance to gain
insight into the computations underlying human probability
learning in the face of latent changes. Our results provide
evidence that probability learning is adapted dynamically on a



Figure 5: Model predictive check: the speed of updating after a change point. The estimates of each subject and each
model were linearly regressed, on all trials having the same location relative to change points (e.g. 3 trials before a change point),
onto two generative probabilities: the one that prevailed before the change point, and the one that follows the change point. The
plot shows the regression weights as a function of trial number relative to change points, to reveal the learning dynamics. As a
result of learning, the weights of the generative probability before and after the change point changed across time, as the models’
estimates and the participants’ estimates progressively align with the new generative probability. Error bars correspond to 95%
CI computed across subjects.



Figure 6: Model comparison reveals the sophistication of human probability learning. The upper panel shows the results
of the pairwise comparison between each model. Positive values in the mean difference indicate that the reference model (on
the x axis) performed better than the model on the y axis, and negative values indicating the reference model performs worse
than the other (*: p < 0.05, **: p < 0.01, ***: p < 0.001 from a paired t-test). The lower panel shows the percentage of subjects
best fitted by each model in each of the three datasets. “+” indicated the best-fitting model in each dataset.

trial-by-trial basis, since subjects’ probability estimates were
best explained by models featuring this property. Further-
more, we show that probability learning tasks in which sub-
jects directly report probability estimates, without a concurrent
decision-making task, induce minimal distortions in the re-
ported estimates, in contrast to studies in the field of decision-
making. This makes such paradigms particularly valuable for
studying human probability learning.

Our results show that the best-fitting models employed trial-
by-trial adjustments of the updating process, either by approx-
imating Bayesian inference, or by using an adaptive filtering
method (PID model). By contrast, models with fixed or weakly
adaptive learning rates, such as the Delta rule (Wagner &
Rescorla, 1972) and the Pearce-Hall model (Pearce & Hall,
1980), generally provided poor fits to subjects’ data. Similarly,
the Change Point model (Gallistel et al., 2014), which does
not update estimates on a trial-by-trial basis, also failed to
capture subjects’ probability estimates effectively. Overall, our
model comparison results suggest that the brain adaptively
updates probability estimates based on each observation. A
key distinction between Bayesian models and those using al-
ternative updating rules is that the Bayesian framework inher-
ently accounts for uncertainty/confidence about the estimate,
as reflected by the variance of its prior distribution. When the
model is highly uncertain about its estimate (i.e., the prior has

a large variance), it updates its estimate more quickly, treat-
ing new observations as more informative. Conversely, when
the model is more certain about its estimate (low variance),
it updates it less, relying more on prior knowledge than new
observations. Therefore, the result that Bayesian models pro-
vided a better fit to subjects’ behavior in most cases suggests
that the brain may compute this uncertainty, and that humans
may adjust their learning dynamically on a trial-by-trial basis
by incorporating uncertainty. The idea is further supported
by previous studies showing that humans can report this un-
certainty in a way that correlates with the uncertainty of the
optimal Bayesian model (Meyniel et al., 2015). In addition,
previous neuroimaging studies have identified brain correlates
of this uncertainty (Iglesias et al., 2013; McGuire et al., 2014;
Tomov et al., 2020).

Interestingly, the PID model performed similarly as the op-
timal model (HMM) in all datasets. This is a notable finding
since this filtering model relies on updating the current esti-
mate using the prediction error, which is computationally sim-
ple and biologically plausible (Arias-Carrión et al., 2010; Bayer
& Glimcher, 2005). The update is done adaptively on a trial-
by-trial basis by filtering previous prediction errors, obviating
the need to perform costly computations as in Bayesian infer-
ence (even approximate ones). Such filtering algorithms are
popular in the engineering field due to their simplicity and ac-



curacy (Ritz et al., 2018). One drawback is that the PID model
is oblivious of the structure of the task, whereas Bayesian in-
ference provides, in theory, a general solution to invert any
generative model. In more complex tasks, with a richer latent
structure, it is likely that the PID model would be surpassed
by more complex models in capturing the subject’s inference,
since simple models may not generalize well (Benjamin et al.,
2023; Foucault and Meyniel, 2021). The benchmarking we
introduce should include more complex tasks in the future to
better compare models.

In our results, we observed that different datasets are best-
fitted by different models. Specifically, in Foucault & Meyniel
(2024), an optimal Bayesian model (the HMM), provided the
best fit to subjects’ responses. While in Gallistel et al. (2014)
and Khaw et al. (2017), the best-fitting model was the Mixture
of Delta Rules. One reason for this difference could be that
they these datasets have different volatility levels. In Foucault
& Meyniel (2024), the probability of a change point in each
session was set at 0.05 (one change point every 20 trials on
average). By contrast, in Gallistel et al. (2014) and Khaw et
al. (2017), the change point probability was much lower, at
0.005 (one change point every 200 trials on average). The
higher volatility in Foucault & Meyniel (2024) may have neces-
sitated the use of a close-to-optimal model, such as the HMM,
which computes the full posterior distribution for the estimate
at each time step to achieve better adaptability to frequent
and abrupt changes. For the Mixture of Delta Rules which
is the best-fitting model for Gallistel et al. (2014) and Khaw
et al. (2017), it approximates Bayesian inference by retaining
only a limited number of possible run lengths and updating
their weights onto the final estimate, trial-by-trial, based on the
probability that a change point has occurred. This approach
reduces computational cost and memory load while sacrificing
some adaptability compared to the optimal Bayesian model.
In a more stable environment, a simplified approximation of
Bayesian inference may be sufficient to provide accurate es-
timates, which would provide a better balance between com-
putational cost and accuracy (Tavoni et al., 2022). If true, it
means that humans flexibly adjust their inference strategies in
response to environmental demands. In a recent paper, Ver-
beke and Verguts (2024) showed that human data are best fit-
ted by different learning strategies depending on the complex-
ity of the environment (e.g. whether optimal action and the as-
sociated reward change over time). Supporting this idea, pre-
vious neuroscience studies supported the existence of multi-
ple computational systems that can be used depending on the
complexity of the task, with an array of memory timescales al-
lowing different subsets of neural populations to be selectively
deployed according to the task demands (Bernacchia et al.,
2011; Maheu et al., 2019; Meder et al., 2017).

The difference in results between datasets may also be
partly explained by procedural differences in the tasks. For ex-
ample, subjects in Foucault & Meyniel (2024) exhibited more
frequent updates, whereas in Gallistel et al. (2014) and Khaw
et al. (2017), subjects updated their reported estimate only

occasionally. This may be due to specific aspects of the task
designs: in Gallistel et al. (2014) and Khaw et al. (2017), up-
dating the estimate incurred a time cost. In contrast, in Fou-
cault & Meyniel (2024), observations occurred at regular in-
tervals, and updating the reported estimates incurred no time
cost, which may explain the step-like, occasional updates in
the studies of Gallistel and Khaw (Forsgren et al., 2020).

We now discuss some limitations of this study. First, it is
based on only three datasets. Ideally, we would like to incor-
porate more datasets using a similar experimental paradigm,
including datasets with a richer task structure, in future stud-
ies. Second, the model comparison does not nail down the
algorithm used by humans for probability learning. Doing
so will require finer analyses of the data beyond the MSE,
looking for specific properties of different possible algorithms
(Palminteri et al., 2017). Neural recordings should also prove
useful to check the existence of variables postulated by algo-
rithmic models.

This study is intended as a preliminary step. All models
and datasets are openly available, and we encourage others
to contribute by sharing their datasets and model implemen-
tations. Our goal is to initiate an open benchmark project,
inspired by other community-based projects such as the Algo-
nauts (Cichy et al., 2019), to facilitate collaborative advances
in understanding human probability learning.
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Supplementary materials

Figure S1: Illustration of task procedure, adapted from Khaw et al. (2017) and Foucault & Meyniel (2024). A. Subjects
are asked to estimate the proportion of green rings in a box containing 1000 rings (either green or red). They indicate their
estimate by adjusting a slider, and a new ring is drawn after they click the ‘Next’ button. Subjects are informed that the box of
rings may occasionally be silently replaced with another box containing a different proportion of green rings. B. Subjects are
asked to estimate the probability of seeing a blue vs. yellow dot on the next trial. At any time, they can adjust their estimate by
moving a cursor on a slider, using continuous tracking (mouse or touchpad). They are informed that the estimate corresponds
to the proportion of blue and yellow on a hidden wheel, which is used to determine the observed colors. Furthermore, the wheel
may change at random intervals without warning. The illustration of the wheel is shown during the instruction phase to facilitate
task comprehension, but no longer during the task.

Figure S2: Parameter recovery analysis. Spearman’s correlations between generative and recovered parameters across
1000 simulations.



Figure S3: Model predictive check: Trial-by-trial learning rate in response to a change point. The baseline of the learning
rates (i.e. their value before the change point) is subtracted from the line plots to isolate the transient increase in learning rate
that follows a change point in most models. The value of the baseline learning rate is displayed in the bar plots.



Figure S4: Mean cv-MSE across subjects of the HMM (optimal Bayesian model), Mixture of delta rules (sub-optimal
Bayesian model) and PID (error-updated model) in each session. This analysis shows that the relative performance among
models is generally preserved across sessions. In particular, the Mixture of Delta Rules is the best model already in the first
session. This result rules out the possibility that this model would better account for the datasets of Gallistel et al. and Khaw et al
than the dataset of Foucault & Meyniel, due to a much lower number of trials in the latter. The number of trials is approximately
matched, per subject, in Foucault & Meyniel, and in the first session of Gallistel et al., or Khaw et al.
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