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Abstract
We study the problem of online unweighted bi-
partite matching with n offline vertices and n on-
line vertices where one wishes to be competitive
against the optimal offline algorithm. While the
classic RANKING algorithm of (Karp et al., 1990)
provably attains competitive ratio of 1 − 1/e >
1/2, we show that no learning-augmented method
can be both 1-consistent and strictly better than
1/2-robust under the adversarial arrival model.
Meanwhile, under the random arrival model, we
show how one can utilize methods from distri-
bution testing to design an algorithm that takes
in external advice about the online vertices and
provably achieves competitive ratio interpolating
between any ratio attainable by advice-free meth-
ods and the optimal ratio of 1, depending on the
advice quality.

1. Introduction
Finding matchings in bipartite graphs is a mainstay of al-
gorithms research. The area’s mathematical richness is
complemented by a vast array of applications — any two-
sided market (e.g., kidney exchange, ridesharing) yields a
matching problem. In particular, the online variant enjoys
much attention due to its application in internet advertising.
Consider a website with a number of pages and ad slots
(videos, images, etc.). Advertisers specify ahead of time the
pages and slots they like their ads to appear in, as well as
the target user. The website is paid based on the number of
ads appropriately fulfilled. Crucially, ads slots are available
only when traffic occurs on the website and are not known in
advance. Thus, the website is faced with the online decision
problem of matching advertisements to open ad slots.

The classic online unweighted bipartite matching problem
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by Karp et al. (1990) features n offline vertices U and n
online vertices V . Each v ∈ V reveals its incident edges se-
quentially upon arrival. With each arrival, one makes an irre-
vocable decision whether (and how) to match v with a neigh-
boring vertex in U . The final offline graph G = (U∪V,E) is
assumed to have a largest possible matching of size n∗ ≤ n,
and we seek online algorithms producing matchings of size
as close to n∗ as possible. The performance of a (random-
ized) algorithm A is measured by its competitive ratio:

min
G=(U∪V,E)

min
V ’s arrival seq.

E[# matches by A]
n∗ , (1)

where the randomness is over any random decisions made
by A. Traditionally, one assumes the adversarial arrival
model, i.e., an adversary controls both the final graph G and
the arrival sequence of online vertices.

Since any maximal matching has size at least n∗/2, a greedy
algorithm trivially attains a competitive ratio of 1/2. Indeed,
Karp et al. (1990) show that no deterministic algorithm can
guarantee better than 1/2− o(1). Meanwhile, the random-
ized RANKING algorithm of Karp et al. (1990) attains an
asymptotic competitive ratio of 1−1/e which is also known
to be optimal (Karp et al., 1990; Goel & Mehta, 2008; Birn-
baum & Mathieu, 2008; Vazirani, 2022).

In practice, advice (also called predictions or side infor-
mation) is often available for these online instances. For
example, online advertisers often aggregate past traffic data
to estimate the future traffic and corresponding user de-
mographic. While such advice may be imperfect, it may
nonetheless be useful in increasing revenue and improving
upon aforementioned worst-case guarantees. Designing al-
gorithms that utilize such advice in a principled manner
falls under the research paradigm of learning-augmented
algorithms. A learning-augmented algorithm is said to be (i)
a-consistent if it is a-competitive with perfect advice and (ii)
b-robust if it is b-competitive with arbitrary advice quality.

Goal 1.1. Let β be the best-known competitive ratio attain-
able by any classical advice-free online algorithm. Can we
design a learning-augmented algorithm for the online bi-
partite matching problem that is 1-consistent and β-robust?

Clearly, Goal 1.1 depends on the form of advice as well as
a suitable measure of its quality. Setting these technicalities
aside for now, we remark that Goal 1.1 strikes the best of
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all worlds: it requires that a perfect matching be obtained
when the advice is perfect, while not sacrificing performance
with respect to advice-free algorithms when faced with low-
quality advice. In other words, there is potential to benefit,
but no possible harm when employing such an algorithm.
We make the following contributions in pursuit of Goal 1.1.

1. Impossibility under adversarial arrivals
We show that under adversarial arrivals, learning augmented
algorithms, no matter what form the advice takes, cannot be
both 1-consistent and strictly more than 1/2-robust. The lat-
ter is worse than the competitive ratio of 1−1/e guaranteed
by known advice-free algorithms (Karp et al., 1990).

2. Achieving Goal 1.1 under the random arrival model
We propose an algorithm TESTANDMATCH achieving
Goal 1.1 under the weaker random arrival model, in which
an adversary controls the online vertices V but its arrival
order is randomized. Our advice is a histogram over types
of online vertices; in the context of online advertising this
corresponds to a forecast of the user demographic and which
ads they can be matched to. TESTANDMATCH assumes per-
fect advice while simultaneously testing for its accuracy via
the initial arrivals. If the advice is deemed useful, we mimic
the matching suggested by it; else, we revert to an advice-
free method. The testing phase is kept short (sublinear in n)
by utilizing state-of-the-art L1 estimators from distribution
testing. We analyze our algorithm’s performance as a func-
tion of the quality of advice, showing that its competitive
ratio gracefully degrades to β as quality of advice decays.
To the best of our knowledge, our work is the first that shows
how one can leverage techniques from the property testing
literature to designing learning-augmented algorithms.

While our contributions are mostly theoretical, we give and
discuss various practical extensions of TESTANDMATCH,
and also show preliminary experiments in Appendix F.

2. Preliminaries and related work
An online bipartite instance is defined by a bipartite graph
G = (U ∪ V,E) where U and V are the set of n offline and
n online vertices respectively. A type of an online vertex
v ∈ V refers to the subset of offline vertices {u ∈ U |
{u, v} ∈ E} that it is neighbors with; there are 2n possible
types and at most n of them are realized through V . The
types of vertices vi ∈ V are revealed one at a time in an
online fashion, when the corresponding vertex arrives and
one has to decide whether (and how) to match the newly
arrived vertex irrevocably. A matching in the graph G is a
set of edges M ⊆ E such that for every vertex w ∈ U ∪ V ,
there is at most one edge in M incident to w. Given two
vectors of length k, we denote the L1-distance between
them as L1(x, y) = ||x − y||1 =

∑k
i=1 |xi − yi|. For any

set S, 2S denotes its power set (set of all subsets of S).

In this work, we focus on the classic unweighted online
bipartite matching (see Mehta (2013) for other variants)
where the final offline graph has a matching of size n∗ ≤ n.

Arrival models. The degree of control an adversary has over
V affects analysis and algorithms. The adversarial arrival
model is the most challenging, with both the final graph G
and the order in which online vertices arrive chosen by the
adversary. Here, an algorithm’s competitive ratio is given
by (1). In random arrival models, G remains adversarial but
the arrival order is random. For this paper, we assume the
Random Order setting, where an adversary chooses a G, but
the arrival order of V is a uniformly random permutation.
In this setting, the competitive ratio is defined as

min
G=(U∪V,E)

EV ’s arrival seq.
E[# matches by A]

n∗ . (2)

Two even easier random arrival models exist: (i) known-IID
model (Feldman et al., 2009), where the adversary chooses
a distribution over types (which is known to us), and the
arrivals of V are chosen by sampling i.i.d. from this dis-
tribution, and (ii) unknown-IID model, which is the same
as known-IID but with the distributions are not revealed to
us. The competitive ratios between these arrival models are
known to exhibit a hierarchy of difficulty (Mehta, 2013):

Adversarial ≤ Rand. Order ≤ Unknown-IID ≤ Known-IID

As our Random Order setting is the most challenging
amongst these random arrival models, our methods also
apply to the unknown-IID and known-IID settings.

2.1. Advice-free online bipartite matching

The following example highlights the key difficulty faced
by online algorithms. Consider the gadget for n = 2 in
Figure 1, where the first online vertex v1 neighbors with
both u1 and u2 and the second online vertex v2 neighbors
with only one of u1 or u2. Even when promised that the
true graph is either G1 or G2, any online algorithm needs
to correctly guess whether to match v1 with u1 or u2 to
achieve perfect matching when v2 arrives.

G1
u1

u2

v1

v2

G2
u1

u2

v1

v2

Figure 1. Gadget for n = 2. Red edges observed when v2 arrives.

Table 1 summarizes known results about attainable compet-
itive ratios and impossibility results in the adversarial and
Random Order arrival models; see Appendix A.1 for more
details. In particular, observe that there is a gap between the
upper and lower bounds in the Random Order arrival model
which remains unresolved.

2



Online bipartite matching with imperfect advice

Table 1. Known competitive ratios for the classic unweighted on-
line bipartite matching problem for deterministic (det.) and ran-
domized (rand.) algorithms under the adversarial and Random
Order arrival models. Note that 1− 1/e ≈ 0.63.

Adversarial Random Order

det. algo. 1/2 1− 1/e
det. hardness 1/2 3/4
rand. algo. 1− 1/e 0.696

rand. hardness 1− 1/e+ o(1) 0.823

The deterministic GREEDY algorithm which matches a
newly arrived vertex with any unmatched offline neighbor
attains a competitive ratio of at least 1/2 in the adversarial
arrival model and at least 1 − 1/e in the random arrival
model (Goel & Mehta, 2008). Meanwhile, the randomized
RANKING algorithm of Karp et al. (1990) achieves a com-
petitive ratio of 1 − 1/e in the adversarial arrival model.
In the Random Order arrival model, RANKING achieves a
strictly larger competitive ratio, shown to be at least 0.653 in
Karande et al. (2011) and 0.696 in Mahdian & Yan (2011).
However, Karande et al. (2011) showed that RANKING can-
not beat 0.727 in general; so, new ideas will be required if
one believes that the tight competitive ratio bound is 0.823
(Manshadi et al., 2012).

2.2. Learning-augmented algorithms for matching

Appendix A.2 broadly reviews learning-augmented algo-
rithms and we focus on matching algorithms here.

Aamand et al. (2022) studied the adversarial arrival mod-
els with offline vertex degrees as advice. While their al-
gorithm is optimal under the Chung-Lu-Vu random graph
model (Chung et al., 2003), the class of offline degree ad-
vice is unable to attain 1-consistency. Feng et al. (2021)
propose a two-stage vertex-weighted variant, where advice
is a proposed matching for the online vertices arriving in
the first stage. Jin & Ma (2022) showed in this setting a
tight robustness-consistency tradeoff and derive a contin-
uum of algorithms tracking this Pareto frontier. Antoniadis
et al. (2020b) studied settings with random vertex arrival and
weighted edges. Their advice is a prediction on edge weights
adjacent to V under an optimal offline matching. Further-
more, their algorithm and analysis uses a hyper-pamareter
quatifying confidence in the advice, leading to different con-
sistency and robustness tradeoffs. Another relevant work
is the LOMAR method proposed by Li et al. (2023). Us-
ing a pre-trained reinforcement learning (RL) model along
with a switching mechanism based on regret to guarantee
robustness with respect to any provided expert algorithm,
they claim “for some tuning parameter ρ ∈ [0, 1], LOMAR
is ρ-competitive against our choice of expert online algo-
rithm”. We differ from LOMAR in two key ways.

1. Our method does not require any pre-training phase and
directly operate on the sequence of online vertices them-
selves. This means that whatever mistakes made during our
“testing” phase contributes to our competitive ratio; a key
technical contribution is the use of distribution testing to en-
sure that the number of such mistakes incurred is sublinear.
2. The robustness guarantee of Li et al. (2023) is substan-
tially weaker than what we provide. Suppose the expert
used by LOMAR is β-competitive, just like how we use the
state-of-the-art algorithm as the baseline. Although Li et al.
(2023) does not analyze the consistency guarantee of their
method, one can see that LOMAR is (1− ρ)-consistent and
ρ ·β-robust (ignoring the B ≥ 0 hyperparameter). LOMAR
can only be 1-consistent when ρ = 0, i.e. it blindly follows
the RL-based method; but then it will have no robustness
guarantees. In other words, LOMAR cannot simultaneously
achieve 1-consistency and ρ ·β-robustness without knowing
the RL quality. In contrast, our method is simultaneously
1-consistent and ≈ β-robust without knowing the quality of
our given advice; we evaluate its quality as vertices arrive.
Table 2 compares the consistency-robustness tradeoffs.

Table 2. Consistency-robustness guarantees of methods that can
achieve 1-consistency. Here, R ∈ [0, 3/4] and ρ ∈ [0, 1]. Note
that Jin & Ma (2022) is for the 2-staged setting.

Jin & Ma (2022) LOMAR Ours

Robustness R ρ · β ≈ β
Consistency 1− (1−

√
1−R)2 1− ρ 1

More broadly, Lavastida et al. (2020; 2021) learn and exploit
parameters of the online matching problem and provide
PAC-style guarantees. Dinitz et al. (2022) studied the use
of multiple advice and seek to compete with the best on a
per-instance basis. Finally, others suggest using advice to
speedup offline matching via “warm-start” heuristics (Dinitz
et al., 2021; Chen et al., 2022; Sakaue & Oki, 2022).

2.3. Distribution testing and distance estimation

In this work, we will use results from (Jiao et al., 2018)
for the problem of L1 distance estimation. This is closely
related to tolerant identity testing, where the tester’s task is
to distinguish whether a distribution p is ε1-close to some
known distribution q from the case where p is ε2-far from q,
according to some natural distance measure.

The following theorem states the number of samples from an
unknown distribution p that needed by the algorithm in (Jiao
et al., 2018) to get an estimate of L1(p, q) for some reference
distribution q with additive error ε and error probability δ.1

1It is our understanding that the tester proposed by Jiao et al.
(2018) requires a significant amount of hyperparameter tuning and
no off-the-shelf implementation is available (Han, 2024).
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Theorem 2.1 (adapted from (Jiao et al., 2018)). Fix a ref-
erence distribution q over a domain T of size |T | = r and

let s ∈ O
(

r·log(1/δ)
ε2·log r

)
be an even integer. There exists an

algorithm that draws s1 + s2 IID samples from an unknown
distribution p over T , where s1, s2 ∼ Poisson(s/2), and
outputs an estimate L̂1 such that |L̂1 − L1(p, q)| ≤ ε with
success probability at least 1− δ.

The algorithm of Theorem 2.1 uses a standard technique
in distribution testing known as Poissonization which aims
to eliminate correlations between samples at the expense
of not having a fixed sample size. Instead, the number of
samples follows a Poisson distribution and we treat its mean
as the sample complexity. As a consequence, the known
result regarding the concentration of the Poisson distribution
would be helpful in bounding the overall algorithmic success
probability, e.g. see (Canonne, 2019).
Lemma 2.2. For any m > 0 and any x > 0, we have

Pr[|X −m| ≥ x] ≤ 2e−
x2

2(m+x) , where X ∼ Poisson(m).

3. Impossibility for adversarial arrival model
Unfortunately, Goal 1.1 is unattainable under the adversarial
arrival model. Our construction is based on generalizing the
gadget in Figure 1 to state Theorem 3.1.
Theorem 3.1. For even n, there exists input graphs G1 and
G2 such that no advice can distinguish between the two
within n/2 online arrivals. Consequently, an algorithm can-
not be both 1-consistent and strictly more than 1/2-robust.

Proof. Consider the restricted case where there are only two
possible final offline graphs G(1) = (U ∪ V (1), E(1)) and
G(2) = (U ∪ V (2), E(2)) where

E(1) =
{
{u(1)

j , v
(1)
j }, {u

(1)
j+n/2, v

(1)
j } : 1 ≤ j ≤ n/2

}
∪
{
{u(1)

j−n/2, v
(1)
j } : n/2 + 1 ≤ j ≤ n

}
E(2) =

{
{u(2)

j , v
(2)
j }, {u

(2)
j+n/2, v

(2)
j } : 1 ≤ j ≤ n/2

}
∪
{
{u(2)

j , v
(2)
j } : n/2 + 1 ≤ j ≤ n

}
We will even restrict the first n/2 to be exactly
v
(i)
1 , . . . , v

(i)
n/2, where i ∈ {1, 2} is the chosen input graph

by the adversary. See Figure 2 for an illustration.

Suppose Gi was the chosen graph, for i ∈ {1, 2}. In this
restricted problem input setting, the strongest possible ad-
vice is knowing the bit i since all other viable advice can be
derived from this bit. Thus, for the sake of a hardness result,
it suffices to only consider the advice of î ∈ {1, 2}.

Within the first n/2 arrivals, any algorithm cannot distin-
guish and will behave in the same manner. Suppose there is

G1
u1

...
un

2

...

un
2 +1

un

v1

...
un

2

...

vn
2 +1

vn

G2
u1

...
un

2

...

un
2 +1

un

v1

...
un

2

...

vn
2 +1

vn

Figure 2. Illustration of G1 and G2 for Theorem 3.1

a 1-consistent algorithm A given bit î. In the first n/2 steps,
A needs to match vj to uj+n/2 if î = 1 and vj to uj for
î = 2. However, if i ̸= î, then A will not be able to match
any remaining arrivals and hence be at most 1/2-robust.

In fact, Theorem 3.1 can be strengthened: for any α ∈
[0, 1/2], no algorithm can be simultaneously (1 − α)-
consistent and strictly more than (1/2 + α)-robust. The
proof is essentially identical and deferred to Appendix B.

While Theorem 3.1 appears simple, we stress that hardness
results for learning-augmented algorithms are rare, since the
form of advice and its utilization is arbitary. For instance,
Aamand et al. (2022) only showed that when advice is the
true degrees of the offline vertices, there exist inputs such
that any learning-augmented algorithm can only achieve a
competitive ratio of at most 1− 1/e+ o(1).

4. Imperfect advice for random arrival model
In this section, we present our learning-augmented algo-
rithm TESTANDMATCH which is 1-consistent, (β − o(1))-
robust, and achieves a smooth interpolation on an appro-
priate notion of advice quality, where β is any achieveable
competitive ratio by some advice-free baseline algorithm.
As discussed in Section 2, the best known competitive ra-
tio of β = 0.696 is achieveable using RANKING (Karp
et al., 1990) but it is unknown if it can be improved. In
fact, TESTANDMATCH is a meta-algorithm that uses any
advice-free baseline algorithm as a blackbox and so our
robustness guarantee improves as β improves.

Using realized type counts as advice. Given the final
offline graph G∗ = (U ∪ V,E) with maximum matching
size n∗ ≤ n, we can classify each online vertex based on
their types, i.e., the set of offline vertices they are adjacent to
(Borodin et al., 2020). Define the vector c∗ ∈ Z2n indexed
by the possible types 2U , such that c∗(t) is the number of
times type t ∈ 2U occurs in G∗. Even though there are
2n possible types, the number of realized types is at most
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Algorithm 1 TESTANDMATCH

input Advice ĉ with r̂ = |T̂ |, BASELINE advice-free al-
gorithm with competitive ratio β < 1, error threshold
ε > 0, failure rate δ = δ′+δpoi for δpoi = O

(
1

poly(r̂)

)
1: Compute advice matching M̂ from ĉ
2: if n̂

n ≤ β then
3: Run BASELINE on all arrivals
4: end if
5: Define sr̂,ε,δ = O

(
(r̂+1)·log(1/δ′)
ε2·log(r̂+1)

)
6: Define testing threshold τ = 2

(
n̂
n − β

)
− ε

7: Run MIMIC on sr̂,ε,δ ·
√
log(r̂ + 1) arrivals while keep-

ing track of the online arrivals in a set A
8: if MINIMAXTEST(sr̂,ε,δ,

ĉ
n , A, τ, δ′) = “Pass” then

9: Run MIMIC on the remaining arrivals
10: else
11: Run BASELINE on the remaining arrivals
12: end if

n. Let T ∗ ⊆ 2U be the set of types with non-zero counts
in c∗. Since |U | = |V | = n, c∗ is sparse and contains
r∗ = |T ∗| ≤ n ≪ 2n non-zero elements; see Figure 3.
Note that c∗ fully determines G∗ for our purposes, as vertices
may be permuted but n∗ remains identical.

u1

u2

u3

u4

v1

v2

v3

v4

Type counts c∗ in G∗

Type Count

{u1, u3} 1
T ∗ {u2, u3} 1

{u1, u2, u4} 2

2U\T ∗ . . . 0

Figure 3. For n = 4, there may be 24 = 16 possible types but at
most n = 4 of them can ever be non-zero. Here, c∗({u1, u3}) =
1, c∗({u2, u3}) = 1 and c∗({u1, u2, u4}) = 2. We see that type
{u1, u2, u4} appears twice in c∗ and |T ∗| = 3.

In this work, we consider advice to be an estimate of the
realized type counts ĉ ∈ Z2n with non-zero entries in T̂ ⊆
2U . As before, we assume that ĉ sums to n and contains r̂ =
|T̂ | ≤ n≪ 2n non-zero entries. Just like c∗, ĉ fully defines
some “advice graph” Ĝ = (U ∪ V, Ê) that we can find a
maximum matching for in polynomial time. We discuss the
practicality of obtaining such advice in Appendix C.

Throughout this section, we will use star (·)∗ and hat (̂·)
to denote ground truth and advice quantities respectively.
In particular, we use n∗ ≤ n and n̂ ≤ n to denote the
maximum matching size in the final offline graph G∗ and
advice graph Ĝ respectively. Note that star (·)∗ quantities
are not known and exist purely for the purpose of analysis.

Intuition behind TESTANDMATCH. If ĉ = c∗, one triv-

ially obtains a 1-consistency by solving for a maximum
matching M̂ on the advice graph Ĝ and then mimicking
matches based on M̂ as vertices arrive. While ĉ ̸= c∗

in general, we may consider distributions p∗ = c∗/n and
q = ĉ/n and test if p∗ is close to q in L1 distance via Theo-
rem 2.1; this is done sample efficiently using just the first
o(n) online vertices (Section 4.2). If L1(p

∗, q) is less than
some threshold τ , we conclude ĉ ≈ c∗ and continue mim-
icking M̂ , enjoying a competitive ratio close to 1. If not,
we revert to BASELINE. Crucially, each wrong match made
during the testing phase hurts our final matching size by at
most a constant, yielding a competitive ratio of β − o(1).

TESTANDMATCH is described in Algorithm 1, which takes
as input a number of additional parameters (δ, ϵ, etc) and
subroutines that we will explain in a bit. For now, we state
our main result describing the performance of TESTAND-
MATCH in terms of the competitive ratio.

Theorem 4.1. For any advice ĉ with |T̂ | = r̂, ε > 0 and
δ > 1

poly(r̂) , let L̂1 be the estimate of L1(p
∗, q) obtained

from k = sr̂,ε,δ ·
√
log(r̂ + 1) IID samples of p∗. TESTAND-

MATCH produces a matching of size m with competitive
ratio of at least n̂

n −
L1(p,q)

2 ≥ β when L̂1 ≤ 2
(
n̂
n − β

)
−ε,

and at least β · (1− k
n ) otherwise, with success prob. 1− δ.

For sufficiently large n and constants ε, δ, we have sr̂,ε,δ ·√
log(r̂ + 1) ∈ o(1), so Theorem 4.1 implies a lower bound

on the achieved competitive ratio of m
n∗ (see Figure 4) where

m

n∗ ≥
m

n
≥

{
n̂
n −

L1(p
∗,q)

2 when L̂1 ≤ 2
(
n̂
n − β

)
− ε

β · (1− o(1)) otherwise

n̂
n

β

β · (1− on(1))

12
(
n̂
n − β

)
− 2ε

0
L1(p

∗, q)

Lower bound on achieved
competitive ratio (w.p. ≥ 1− δ)

Figure 4. A (conservative) competitive ratio plot for n̂
n

> β. If
MINIMAXTEST (Algorithm 3) succeeds, we have L1(p

∗, q) <
2
(
n̂
n
− β

)
−2ε whenever L̂1 < 2

(
n̂
n
− β

)
−ε. Observe that there

is a smooth interpolation between the achieveable competitive ratio
as L1(p

∗, q) degrades whilst paying only o(1) for robustness.

Under random order arrivals, the competitive ratio is mea-
sured in expectation over all possible arrival sequences. One
can easily convert the guarantees of Theorem 4.1 to one in
expectation by assuming the extreme worst case scenario

5



Online bipartite matching with imperfect advice

Algorithm 2 MIMIC

input Matching M̂ , advice counts ĉ, arrival type label t
1: if c(t) > 0 then
2: Mimic an arbitrary unused type t match in M̂
3: Decrement c(t) by 1
4: end if
5: return c ▷ Updated counts

of obtaining 0 matches whenever the tester fails. So, the
expected competitive ratio is simply (1 − δ) factor of the
bounds given in Theorem 4.1. Setting δ = 0.001, we get a
robustness guarantee of β · (1− o(1)) · 0.999 in expectation.
Note that our guarantees hold regardless of what value of
ε is used. In the event that a very small ε is chosen and
the test always fails, we are still guaranteed the robustness
guarantees of ≈ β. One possible default for ε could be to
assume that the optimal offline matching has size n and just
set it to half the threshold value, i.e. set ε = n̂/n− β.

Remark about lines 4 and 6 in TESTANDMATCH. As
we subsequently require Poisson(sr̂,ε,δ) IID samples from
p∗ for testing, we collect sr̂,ε,δ ·

√
log(r̂ + 1) online ar-

rivals into the set A. Note that E[Poisson(sr̂,ε,δ)] = sr̂,ε,δ
and Poisson(sr̂,ε,δ) ≤ sr̂,ε,δ ·

√
log(r̂ + 1) with high prob-

ability. This additional slack of
√

log(r̂ + 1) allows for
Theorem 4.1 to hold with high probability (as opposed to
constant) while ensuring that the competitive ratio remains
in the β · (1 − o(1)) regime. Finally, when r ∈ Ω(n), we
remark that sr̂,ε,δ is sublinear in n only for sufficiently large
n; see Section 5 for some practical modifications.

The rest of this section is devoted to describing Algorithm 1
and proving Theorem 4.1. We study in Section 4.1 how mim-
icking poor advice quality impacts matching sizes, yielding
conditions where mimicking is desirable, which we test for
via Theorem 2.1. Section 4.2 describes transformations to
massage our problem into the form required by Theorem 2.1.
Lastly, we tie up our analysis of Theorem 4.1 in Section 4.3.

4.1. Effect of advice quality on matching sizes

Given an advice ĉ of type counts, we first solve optimally
for a maximum matching M̂ on the advice graph Ĝ and then
mimic the matches for online arrivals whenever possible;
see Algorithm 2. That is, whenever new vertices arrive, we
match according to some unused vertex of the same type if
possible and leave it unmatched otherwise.

It is useful to normalize counts as p∗ = c∗/n and q = ĉ/n.
These are distributions on the realized and predicted (by
advice) counts, and have sparse support T ∗ and T̂ .

Now, suppose M̂ has matching size n̂ ≤ n. By definition of
L1(c

∗, ĉ) and MIMIC, one would obtain a matching of size
at least n̂− L1(c

∗, ĉ)/2 by blindly following advice. This

yields a competitive ratio of n̂−L1(c
∗,ĉ)/2

n∗ . Rearranging, we
see that MIMIC outperforms the advice-free baseline (in
terms of worst case guarantees) if and only if

n̂− L1(c
∗, ĉ)/2

n∗ > β ⇐⇒ L1(p
∗, q) <

2

n
(n̂− βn∗)

The above analysis suggests a natural way to use advice
type counts: use MIMIC if L1(p

∗, q) ≤ 2
n (n̂− βn∗), and

BASELINE otherwise. Note that one should always just
use BASELINE whenever n̂

n∗ < β, matching the natural
intuition of ignoring advice of poor quality.

Unfortunately, as we only know n but not n∗, our algorithm
conservatively checks whether L1(p

∗, q) < 2 (n̂/n− β),
and so the resulting guarantee is conservative since n∗ ≤ n.

4.2. Estimating advice quality via property testing

As c∗ is unknown, we cannot obtain L1(p
∗, q). However, p∗

and q are distributions and we can apply the property testing
method of Theorem 2.1 to estimate L1(p

∗, q) to some ε > 0
accuracy. Applying Theorem 2.1 raises two difficulties.

Simulating IID arrivals. Under the Random Order arrival
model (Section 2), online vertices arrive “without replace-
ment”, which is incompatible with Theorem 2.1. Thankfully,
we can apply a standard trick to simulate IID “sampling with
replacement” from p∗ by “re-observing arrivals”. See SIM-
ULATEP (Algorithm 4) in the appendix for details.

Operating in reduced domains. Strictly speaking, the do-
main of p∗ and q could be as large as 2n, since any one
of these types may occur. If all of these types occur with
non-zero probability, then applying Theorem 2.1 for test-
ing could take a near-exponential (in n) number of online
vertex arrivals, which is clearly impossible. However, as
established earlier, p∗ and q enjoy sparsity; in particular, ĉ
and thus q contain 0 in all but at most r̂ = |T̂ | ≤ n ≪ 2n

entries. The key insight is to express L1 distances by op-
erating on T̂ , plus an additional dummy type t0 which has
0 counts in ĉ. Whenever we observe an online vertex with
type t ∈ T ∗\T̂ , we classify it as t0. Specifically,

L1(p
∗, q) =

∑
t∈2U

|p∗(t)− q(t)| =
∑

t∈T̂∪T∗

|p∗(t)− q(t)|

=
∑
t∈T̂

|p∗(t)− q(t)|+
∑

t∈T∗\T̂

p∗(t),

which we can view as an L1 distance on distributions with
support T̂ ∪ {t0}. Thus, the domain size when applying
Theorem 2.1 is r̂ + 1 ≤ n + 1. For any constant ϵ, δ > 0,
the required samples is sr̂,ε,δ ·

√
log(r̂ + 1) ∈ o(n).

Now that these difficulties are overcome, the estimation of
L1(p

∗, q) = L1(
c∗

n , ĉ
n ) is done via MINIMAXTEST (Algo-

rithm 3), whose correctness follows from Theorem 2.1.
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Algorithm 3 MINIMAXTEST(s, ĉ
n , A, τ, δ′)

input Sample size s, distribution q = ĉ/n, s
√
log(r̂ + 1)

online arrivals A, testing threshold τ , failure rate δ′

1: Compute s1, s2 ∼ Poisson(s/2)
2: if s1 + s2 > s

√
log(r̂ + 1) then

3: return “Fail” ▷ occurs w.p. δpoi ≤ 1/poly(r̂)
4: end if
5: Collect s1 + s2 IID samples from p∗ = c∗

n by running
SIMULATEP with A.

6: Run algorithm of Theorem 2.1 to obtain estimate L̂1

such that |L̂1 − L1(p, q)| ≤ ε with probability 1− δ′

7: return L̂1 < τ

Lemma 4.2. Suppose MINIMAXTEST uses the estimator
of Theorem 2.1 and passes if and only if L̂1 < τ . Given
sr̂,ε,δ ·

√
log(r̂ + 1) online arrivals in a set A, we have

L1(p
∗, q) < 2 (n̂/n− β) whenever MINIMAXTEST passes.

The success probability of MINIMAXTEST is at least 1− δ.

Proof. The algorithm of Theorem 2.1 guarantees tells us
that |L̂1 − L1(p

∗, q)| ≤ ε with probability at least 1 − δ′.
Therefore, when MINIMAXTEST passes, we are guaranteed
that L1(p

∗, q) ≤ L̂1 + ε < τ + ε = 2 (n̂/n− β).

Meanwhile, in the analysis of Theorem 2.1, one actu-
ally needs to use s1 + s2 IID samples from p∗, where
s1, s2 ∼ Poisson(sr̂,ε,δ′), which can be simulated from
the arrival set A; see SIMULATEP (Algorithm 4) in the ap-
pendix. By Lemma 2.2, we may assume that s1 + s2 ≤ s
with probability at least 1− δpoi(s). Taking a union bound
over the failure probability of the “Poissonization” event
and the estimator, we see that the overall success probability
is at least 1− (δ′ + δpoi) = 1− δ.

4.3. Tying up our analysis of TESTANDMATCH

If we run BASELINE from the beginning due to n̂
n ≤ β,

then we trivially recover a β-competitive ratio. The follow-
ing lemma gives a lower bound on the obtained matching
size if we performed MINIMAXTEST but decided switch to
BASELINE due to the estimated L̂1 being too large.

Lemma 4.3. Suppose we run an arbitrary algorithm for the
first k ∈ [n] online arrivals and then switch to BASELINE
for the remaining n− k online arrivals. If j matches made
in the first k arrivals, where 0 ≤ j ≤ k, then the overall
produced matching size is at least β · (n− k − j) + j.

Proof. Any match made in the first k arrivals decreases the
maximum attainable matching size by at most two, exclud-
ing the match made. As the maximum attainable matching
size was originally n, the maximum attainable matching size
on the postfix sequence after the k is at least n−k−j. Since
BASELINE has competitive ratio β, running BASELINE on

the remaining n−k steps will produce a matching of size at
least β · (n− k − j). Thus, the overall produced matching
size is at least β · (n− k − j) + j.

The proof of Theorem 4.1 requires the following lemma.

Lemma 4.4. For any advice ĉ with |T̂ | = r̂, ε > 0 and
δ > 1

poly(r̂) , let L̂1 be the estimate of L1(p
∗, q) in MINI-

MAXTEST. If MINIMAXTEST succeeds, then TESTAND-
MATCH produces a matching of size m with competitive
ratio m

n∗ at least n̂
n−

L1(p,q)
2 ≥ β when L̂1 ≤ 2

(
n̂
n − β

)
−ε,

and at least β · (1− sr̂,ε,δ·
√

log(r̂+1)

n ) otherwise.

Proof. We consider each case separately.

Case 1: L̂1 ≤ 2
(
n̂
n − β

)
− ε

TESTANDMATCH executed MIMIC for all online arrivals,
yielding a matching of size m ≥ n̂− L1(c

∗,ĉ)
2 . Since MIN-

IMAXTEST succeeds, |L̂1 − L1(p, q)| ≤ ε, so L1(p, q) ≤
L̂1 + ε ≤ 2

(
n̂
n − β

)
− ε+ ε = 2

(
n̂
n − β

)
. Therefore,

m

n∗ ≥
m

n
≥ n̂

n
− L1(c

∗, ĉ)

2n
=

n̂

n
− L1(p

∗, q)

2
≥ β

Case 2: L̂1 > 2
(
n̂
n − β

)
− ε

TESTANDMATCH executes BASELINE after an initial batch
of k = sr̂,ε,δ ·

√
log(r̂ + 1) arrivals that follow MIMIC.

Suppose we made j matches via MIMIC before MINIMAX-
TEST. Then, Lemma 4.3 tells us that the overall produced
matching size is at least m ≥ β · (n − k − j) + j. Since
β < 1, we have β · (n−k− j)+ j ≥ β · (n−k). Therefore,

m

n∗ ≥
m

n
≥ β ·

(
1−

sr̂,ε,δ ·
√

log(r̂ + 1)

n

)

Theorem 4.1 follows from bounding the failure probability.

Proof of Theorem 4.1. The competitive ratio guarantees fol-
low directly from Lemma 4.4, given that MINIMAXTEST
succeds. Therefore, it only remains to bound the failure
probability, which equals that probability that MINIMAX-
TEST fails. This can happen if either line 3 is executed
(event E1) or the algorithm in line 5 fails (event E2).

The event E1 occurs when the one of the Poisson random
variables in line 1 of Algorithm 3 exceed the expectation by
a
√
log r̂ factor. Since s1, s2 ∼ Poisson(s/2), we have that

(s1 + s2) ∼ Poisson(s). Thus, by Lemma 2.2 we have that:

δpoi = Pr[|(s1 + s2)− s| > s
√
log r̂]

≤ 2e
− s2 log r̂

2(s+s
√

log r̂) = O
(
r̂
− s

2(1+
√

log r̂)

)
= O

(
1

poly(r̂)

)
for the value of s = O

(
(r̂+1)·log(1/δ′)
ε2·log(r̂+1)

)
chosen.

7
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Combining the above with Lemma 4.2 via union bound
yields Pr(failure) ≤ Pr(E1)+Pr(E2) ≤ δpoi+δ′ = δ.

5. Practical considerations
While our contributions are mostly theoretical, we discuss
some practical considerations here. In particular, we would
like to highlight that there is no existing practical implemen-
tation of the algorithm of Theorem 2.1 by Jiao et al. (2018).
As is the case for most state-of-the-art distribution testing
algorithms, this implementation is highly non-trivial and
requires the use of optimal polynomial approximations over
functions, amongst other complicated constructions.2 For
completeness, we implemented a proof-of-concept based
on the empirical L1 estimation; see Appendix F. While it
is known that the estimation error scales with the sample
size in the form Ω(r/ε2), we observe good empirical per-
formance when r is sublinear in n or when combined with
some of the practical extensions that we discussed below.

Section 5.1 and Section 5.2 can be viewed as ways to extend
the usefulness of a given advice. Section 5.3 provides a
way to “patch” an advice with n̂ < n to one with perfect
matching, without hurting the provable guarantees. Sec-
tion 5.4 gives a pre-processing step that can be prepended
to any procedure: by losing o(1), one can test whether |T ∗|
is small and if so learn p∗ up to ε error to fully exploit it.

5.1. Remapping online arrival types

Consider the graph example in Figure 3 with type counts c∗

and we are given some advice count ĉ as follows:

Types T ∗ c∗ count Types T̂ ĉ count
{u1, u3} 1 {u1} 1
{u2, u3} 1 {u3} 1
{u1, u2, u4} 2 {u4} 1

{u2, u4} 1

While one can verify that both the true graph G∗ and the
advice graph Ĝ have perfect matching, L1(c

∗, ĉ) = 4 since
as T ∗ and T̂ have disjoint types. From the perspective of
our earlier analysis, ĉ would be deemed as a poor quality
advice and one should default to BASELINE.

However, a closer look reveals there exists a mapping σ from
T ∗ to T̂ such that one can credibly “mimic” the proposed
matching of Ĝ as online vertices arrive. For example, when
an online vertex v with neighborhood type {u1, u3} arrive,
one can “ignore” the edge u3 ∼ v and treat it as if v had the
type {u1}. Similarly, {u2, u3} could be treated as {u3}, the
first instance of {u1, u2, u4} could be treated as {u2, u4},

2The tester proposed by Jiao et al. (2018) requires a significant
amount of hyperparameter tuning and no off-the-shelf implementa-
tion is available (Han, 2024); see Appendix F for more comments.

and the second instance of {u1, u2, u4} could be treated as
{u4}. Running MIMIC under such a remapping of online
types would then produce a perfect matching! We discuss
how to perform such remappings in Appendix D.2.

5.2. Coarsening of advice

While Theorem 4.1 has good asymptotic guarantees as n→
∞, the actual number of vertices n is finite in practice. In
particular, when n is “not large enough”, TESTANDMATCH
will never utilize the advice and always default to BASELINE
for all problem instances where n≪ sr̂,ε,δ .

In practice, while the given advice types may be diverse,
there could be many “overlapping subtypes” and a natural
idea is to “coarsen” the advice by grouping similar types
together in an effort to reduce the resultant support size
of the advice (and hence sr̂,ε,δ). Figure 5 illustrates an
extreme example where we could decrease the support size
from n to 2 while still maintaining a perfect matching. In
Appendix D.1, we explain two possible ways to coarsen ĉ.

Ĝ
u1

...

un
2

...

un
2 +1

un

v1

...

un
2

...

vn
2 +1

vn

Ĝ′
u1

...

un
2

...

un
2 +1

un

v1

...

un
2

...

vn
2 +1

vn

Figure 5. Consider Ĝ made by taking the union of two complete
bipartite graphs (Ĝ′) and adding the red dashed edges. By con-
necting vi to u(i+n/2)mod n, |T̂ | = r = n. Meanwhile, if we
coarsen ĉ into ĉ′ by ignoring the red dashed edges, Ĝ′ still has a
maximum matching of size n̂′ = n while |T̂ ′| = r′ = 2, thus
requiring significantly less samples to test since sr̂′,ε,δ ≪ sr̂,ε,δ .
Furthermore, if G∗ = Ĝ′, then L1(c

∗, ĉ) = 2n and we will reject
the advice ĉ if we do not coarsen it first.

5.3. Advice does not have perfect matching

As the given advice ĉ is arbitrary, it could be the case that
any maximum matching of size n̂ in the graph Ĝ implied
by ĉ is not perfect, i.e. n̂ < n. A natural idea would be
to “patch” ĉ into some other type count ĉ′ which has a
maximum matching size of n̂′ = n in the tweaked graph
Ĝ′. This can be done by augmenting ĉ with additional edges
between the unmatched vertices in the advice graph to obtain
ĉ′. In Appendix D.3, we show how to do this in a way
that running TESTANDMATCH on ĉ′ does not worsen the
provable guarantees as compared to directly using ĉ.
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5.4. True distribution has small support size

If the support size of the true types is o(n), a natural thing to
do is to learn c∗ up to some ε accuracy while forgoing some
o(n) initial matches, and then obtain ≈ 1− ε competitive
ratio on the remaining arrivals. Though this is wholly possi-
ble in the random arrival model, it crucially depends on c∗

having at most o(n) types. Although we do not know the
support size of c∗ a priori, we can again employ techniques
from property testing. For any desired support size k and
constant ε, Valiant & Valiant (2017); Wu & Yang (2019) tell
us that O( k

log k ) samples are sufficient for us to estimate the
support size of a discrete distribution up to additive error of
εk. Therefore, for any k ∈ o(n) and constant ε, given any
algorithm ALG under the random arrival model achieving
competitive ratio α, we can first spend o(1) arrivals to test
whether c∗ is supported on (1 + ε) · k types:

• If “Yes”, then we can spend another O(k/ε2) ⊆ o(1)
arrivals to estimate c∗ up to ε accuracy, i.e. we can form ĉ
with L1(c

∗, ĉ) ≤ ε, then exploit ĉ via MIMIC.

• If “No”, use ALG and achieve a comp. ratio of α− o(1).

The choice of k is flexible in practice, depending on how
much one is willing to lose in the o(1) in the “No” case.

6. Discussion and future directions
We studied the online bipartite matching problem with re-
spect to Goal 1.1. We showed that it is impossible under
the adversarial arrival model and designed a meta algorithm
TESTANDMATCH for the random arrival model that is 1-
consistent and β · (1− o(1))-robust while using histograms
over arrival types as advice. The guarantees TESTAND-
MATCH degrades gracefully as the quality of the advice
worsens, and improves whenever the state-of-the-art β im-
proves. There are several interesting follow-up questions:

1. Other versions of online bipartite matching. Whether
the ideas presented in this work can be generalized to other
versions of the online bipartite matching problem is indeed
an interesting question. The hardness results of Theorem 3.1
directly translate as the unit weight version is a special case
of the general case with vertex or edge weights, implying
impossibility more general settings. Algorithmically, we
believe that the TESTANDMATCH framework should gener-
alize. However, it would require a different advice quality
metric in the space of edge weights (e.g., something like
earthmover distance), along with a corresponding sample
efficient way to test this quality with sublinear samples so
that one can still achieve a competitive ratio of β · (1−o(1))
when the test detects that the advice quality is bad.

2. Consistency and robustness tradeoff. Our algorithm is
a meta-algorithm that is both 1-consistent and β · (1−o(1))-
robust, where the robustness guarantee improves with the

state-of-the-art (with respect to β). As, it is impossible
for any algorithm to be strictly better than 1-consistent (by
definition of competitive ratio) or strictly better than β-
robust (by definition of β), our algorithm (weakly-)pareto-
dominates all other possible algorithm for this problem up to
an 1−o(1) multiplicative factor in the robustness guarantee.
Can this 1− o(1) multiplicative factor be removed?

3. Beyond consistency and robustness. TESTAND-
MATCH’s performance guarantee is based on the L1 dis-
tance over type histograms. This is very sensitive to certain
types of noise, e.g., adding or removing edges at random
(Erdos-Renyi). However, Section 5 suggests there are prac-
tical extensions that hold even when L1 is large, implying
it is a non-ideal metric despite satisfying consistency and
robustness. Is there another criterion that could fill this gap?

4. Going beyond MIMIC.Our current approach exploits
advice solely through MIMIC, which arbitrarily chooses one
matching M̂ to follow. Is there a more intelligent way of
doing so? For example, Feldman et al. (2009) constructed
two matchings to “load balance” in the known IID setting.

5. Is there a graph where advice coarsening recovers
perfect matching while RANKING does not have a com-
petitive ratio close to 1? RANKING is known to have a
competitive ratio of 1−1/

√
k if there exist k disjoint perfect

matchings in the graph (Karande et al., 2011). Beyond triv-
ial settings where there are no perfect matchings or having
a pattern connecting to just 1 offline vertex (so that there
is at most 1 disjoint perfect matching), we do not have an
example with a formal proof that advice coarsening recov-
ers a perfect matching while RANKING does not have a
competitive ratio close to 1. We suspect that one may not
be able to construct a graph with few disjoint matchings
and few patterns. To see why, fix some graph with a per-
fect matching and suppose there are q types t1, t2, . . . , tq
of sizes s1, . . . , sq . By “circularly permuting the matches”,
we see that there will be k = min(s1, . . . , sq) disjoint per-
fect matchings. However, this does not totally invalidate
TESTANDMATCH in general. For example, consider the
following augmentation to our approach: if ĉ has k disjoint
perfect matchings after coarsening, one can run RANKING
instead of MIMIC and switch to BASELINE if the test fails
later. By doing so, one pays only an additive 1/

√
k in consis-

tency by running RANKING instead of MIMIC in the event
that the advice was perfect. Note that BASELINE may be
different from RANKING as it is still unknown what is the
true β ∈ [0.696, 0.823]. In particular, if β > 0.727, then
BASELINE cannot be RANKING (Karande et al., 2011).

6. Other online problems with random arrivals. TE-
STANDMATCH did not exploit any specific properties of
bipartite matching, and we suspect it may be generalized to
a certain class of online problems.
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A. Additional related work
A.1. A more detailed discussion of advice-free online bipartite matching results

As mentioned in Section 2, Table 1 (replicated below for convenience as Table 3) summarizes known results about attainable
competitive ratios and impossibility results in the adversarial and Random Order arrival models. Observe that there is a gap
between the upper and lower bounds in the Random Order arrival model which remains unresolved.

Table 3. (Restated) Known competitive ratios for the classic unweighted online bipartite matching problem for deterministic and
randomized algorithms under the adversarial and Random Order arrival models. Note that 1− 1/e ≈ 0.63.

Adversarial arrival model Random Order arrival model

deterministic algorithms 1/2 1− 1/e
deterministic hardness 1/2 3/4
randomized algorithms 1− 1/e 0.696
randomized hardness 1− 1/e+ o(1) 0.823

On the positive side of things, the deterministic GREEDY algorithm which matches newly arrived vertex with any unmatched
offline neighbor attains a competitive ratio of at least 1/2 in the adversarial arrival model and at least 1− 1/e in the random
arrival model (Goel & Mehta, 2008). Meanwhile, the randomized RANKING algorithm of Karp et al. (1990) achieves a
competitive ratio of 1 − 1/e in the adversarial arrival model. In the Random Order arrival model, RANKING achieves a
strictly larger competitive ratio, shown to be at least 0.653 in Karande et al. (2011) and 0.696 in Mahdian & Yan (2011).
However, Karande et al. (2011) showed that RANKING cannot beat 0.727 in general; so, new ideas will be required if one
believes that the tight competitive ratio bound is 0.823.

On the negative side, the following example highlights the key difficulty faced by online algorithms. Consider the gadget for
n = 2 in Figure 1 (replicated below for convenience as Figure 6), where the first online vertex v1 neighbors with both u1

and u2 and the second online vertex v2 neighbors with only one of u1 or u2. Even when promised that the true graph is
either G1 or G2, any online algorithm needs to correctly guess whether to match v1 with u1 or u2 to achieve perfect matching
when v2 arrives.

G1
u1

u2

v1

v2

G2
u1

u2

v1

v2

Figure 6. (Restated) Gadget for n = 2. Red edges observed when v2 arrives.

By repeating the gadget multiple times sequentially, any deterministic algorithm can only hope to attain competitive ratios
of 1/2 and 3/4 in the adversarial and random arrival models respectively. For randomized algorithms, (Karp et al., 1990)
showed that RANKING is essentially optimal for the adversarial arrival model since no algorithm can achieve a competitive
ratio better than 1− 1/e+ o(1). In the Random Order arrival model, Goel & Mehta (2008) showed (in their Appendix E)
that a ratio better than 5/6 ≈ 0.83 cannot be attained by brute force analysis of a 3× 3 gadget bipartite graph. Subsequently,
Manshadi et al. (2012) showed that no algorithm (deterministic or randomized) can achieve a competitive ratio better than
0.823.

Technically speaking, the hardness result of Manshadi et al. (2012) is for the known IID model introduced by Feldman
et al. (2009), but this extends to the Random Order arrival model since the former is an easier setting; e.g. see Theorem 2.1
in (Mehta, 2013) for an explanation. Under the easier known IID model, the current state of the art algorithms achieve a
competitive ratio of 0.7299 using linear programming (Jaillet & Lu, 2014; Brubach et al., 2016; 2020).

A.2. Broad overview of learning-augmented algorithms

Learning-augmented algorithms as a whole have received significant attention since the seminal work of Lykouris &
Vassilvitskii (2021), where they investigated the online caching problem with predictions; their result was further improved
by Rohatgi (2020); Antoniadis et al. (2020a); Wei (2020). Algorithms with advice was also studied for the ski-rental problem
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Gollapudi & Panigrahi (2019); Wang et al. (2020); Angelopoulos et al. (2020), non-clairvoyant scheduling Purohit et al.
(2018), scheduling (Lattanzi et al., 2020; Bamas et al., 2020a; Antoniadis et al., 2022), augmenting classical data structures
with predictions (e.g. indexing (Kraska et al., 2018) and Bloom filters (Mitzenmacher, 2018)), online selection and matching
problems (Antoniadis et al., 2020b; Dütting et al., 2021), online TSP (Bernardini et al., 2022; Gouleakis et al., 2023), a more
general framework of online primal-dual algorithms (Bamas et al., 2020b), and causal graph learning (Choo et al., 2023).

B. Extended variant of Theorem 3.1
Let us first prove the case when the algorithm A is deterministic, but α ∈ [0, 1/2]. We will again use G1 and G2 of Figure 2
(replicated below for convenience as Figure 7) as a counterexample. Our argument follows that of the case where α = 0.

G1
u1

...
un

2

...

un
2 +1

un

v1

...
un

2

...

vn
2 +1

vn

G2
u1

...
un

2

...

un
2 +1

un

v1

...
un

2

...

vn
2 +1

vn

Figure 7. (Restated) Illustration of G1 and G2 for Theorem 3.1

Special case: A is deterministic. As before, we observe that any algorithm cannot distinguish between the G1 and G2 after
the first n/2 arrivals. Suppose A is (1− α)-consistent. Without loss of generality, by symmetry of the argument, suppose
G∗ = G2 and A is given advice bit î = 2.

Since A is (1− α)-consistent, it has to make at least n
2 − (1− α) · n matches in the first n

2 arrivals3, leaving at most α · n
unmatched offline vertices amongst {u1, . . . un

2
}. Meanwhile, if G∗ = G1 instead, there can only be at most α · n matches

amongst the remaining n
2 arrivals {vn

2 +1, . . . , vn}, resulting in a total matching size of at most n
2 + α · n =

(
1
2 + α

)
· n.

That is, any deterministic A that is (1− α)-consistent cannot be strictly more than
(
1
2 + α

)
-robust.

General case where A could be randomized. Unfortunately, randomization does not appear to help much, as we can
repeat all of the above arguments in expectation. That is, if î = 2, it follows from consistency that in expectation, at least
(1− α) · n of all vertices must be eventually matched, meaning that in expectation there must be n

2 − α · n matches in the
first half. Now, if G1 was the true graph, then in expectation we only have α · n possible matches to make in the second half,
thus we have a maximum of

(
1
2 + α

)
· n matches in expectation when î is wrong.

C. Examples of realized type counts as advice
Example 1: Online Ads. The canonical example of online bipartite matching is that of online ads (Mehta, 2013). Recall
that the online vertices are advertisement slots (also called impressions) and the offline vertices are advertisers. We can
see that the distribution over types can be possibly forecasted by machine learning models (and in fact, indirectly used
(Alomrani et al., 2021) for bipartite matching) and used as advice. This directly gives us q, possibly bypassing ĉ. Regardless,
the more accurate the forecasting, the lower L1(p

∗, q) will be.

Example 2: Food allocation. Consider a conference organizer catering lunch. As a cost-cutting measure, they cater exactly
one food item per attendee, based on their self-reported initial dietry preferences reported during registration (each attendee
may report more than one item). During the conference, attendees will queue up in random order, sequentially reporting

3Otherwise, even if the remaining n
2

vertices are matched, A cannot achieve (1− α) · n total matches, violating (1− α)-consistency
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their preferences once again and being assigned their food. Organizers have the flexibility to assign food items based on
this new reporting of preferences (or, in a somewhat morally questionable fashion refuse to serve the attendee—though in
the unweighted setting, reasonable algorithms should not have to do this!). Alas, a fraction of attendees claim a different
preference from their initial preference, e.g., because they were fickle, or did not take initial dietry preference questionnaire
seriously. Given that food is already catered, how should the conference organizers sequentially distribute meals to minimize
hungry attendees?

The attendees are represented by n online vertices, while each of the n offline vertices represent one of k types of food
item4. The attendees’ initial preference gives our advice q (the distribution over types of food prefernces), which also
describes a perfect matching. This preference may differ from the distribution over true preferences reported on the day
of the conference p. However, one can reasonable assume that only a small fraction of attendees exhibit such a mismatch,
meaning that the L1(p

∗, q) is fairly small and advice should be accepted most of the time.

Example 3: Centralized labor Allocation. Suppose there are n employees and m jobs. There are η different qualifications.
This is represented by a binary matrix {0, 1}n,η , where Xi,k = 1, if employee i posseses qualification k. Therefore, the i-th
row of X , Xi is a length η boolean string containing all of i’s skills.

For employee i to perform a job, Xi needs to satisfy a boolean formula (say, given in conjunctive form). This is quite
reasonable, e.g., to be an AI researcher, it needs to have knowledge of some programming language (Python, Matlab,
etc.), some statistics (classical or modern), and some optimization (whether discrete or continuous). In the bipartite graph,
employee i has an edge to job j if and only if Xi satisfies this formula.

In this case, the qualifications of each employee are known by the company, who has access to their employees. Given the
qualifications, the set of jobs that may be performed can be computed offline and used as advice. This advice may not be
entirely correct: for example, employees may have picked up new skills (hence there may be more edges than we thought,
but no less). Of course, there could also be some employees with phoney qualifications; this fraction is not too high.

One interesting property about this application is that advice may only be imperfect in the sense that edges could be added.
This means that if we just mimicked, we are guaranteed to get at least n̂. Also, the coarsening method is more easily applied.

D. Practical considerations and extensions to our learning-augmented algorithm
D.1. Advice coarsening

While Theorem 4.1 has good asymptotic guarantees as n → ∞, the actual number of vertices n is finite in practice. In
particular, when n is “not large enough”, TESTANDMATCH will never utilize the advice and always default to BASELINE
for all problem instances where n≪ sr̂,ε,δ .

In practice, while the given advice types may be diverse, there could be many “overlapping subtypes” and a natural idea is
to “coarsen” the advice by grouping similar types together in an effort to reduce the resultant support size of the advice
(and hence sr̂,ε,δ). Figure 5 illustrates an extreme example where we could decrease the support size from n to 2 while still
maintaining a perfect matching.

While one could treat this coarsening subproblem as an optimization pre-processing task. For completeness, we show later
how one may potentially model the coarsening optimization as an integer linear program (ILP) but remark that it does not
scale well in practice. That said, there are many natural scenarios where a coarsening is readily available to us. For instance,
in the online advertising, market studies typically classify users into “types” (with the number of types significantly less
than n) where each type of user typically have a “core set” of suitable ads though the actual realized type of each arrival may
be perturbed due to individual differences.

Another way to reduce the required samples for testing is to “bucket” the counts which are below a certain threshold to
reduce the number of distinct types within the advice. The newly created bucket type will then be a union of the types that
are being grouped together.

4For practical settings, the types of food items is generally much smaller thatn n.
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D.1.1. ILP FOR ADVICE COARSENING

Here, we give an integer linear program (ILP) that takes in any number |T̂ | = r̂ of desired groupings as input and produces
a grouping proposed advice count ĉr̂ on r̂ labels that implies the maximum possible matching. Recall that the a smaller
number of resulting groups r̂ directly translates to fewer samples sr̂,ε,δ required in TESTANDMATCH. So, to utilize this ILP,
one can solve for decreasing values of r = |L̂|, |L̂| − 1, . . . , 1 and evaluate the resulting maximum matching size n̂r for
each proposed advice count ĉr. Then, one can either use the smallest possible r which still preserves the size of maximum
matching or even combine this with the idea from Section 5.3 if one needs to further decrease r.

We propose to update the labels by taking intersections of the patterns, i.e. for any resulting group gi, we define its label
pattern as ∩v∈giN(v). Since taking intersections only restricts the edges which can be used in forming a maximum matching,
this ensures that MIMIC will always be able to mimic any proposed matching implied by the grouped patterns.

Explanation of constants and variables

• Given the n online input patterns, bi,j is a Boolean constant indicating whether online vertex i ∈ [n] does not have
j ∈ [n] as a neighbor in its pattern.

• Main decision variable: xi,j whether edge from online vertex i to offline vertex j is part of the matching.

• Auxiliary variable: zi,ℓ is an indicator whether online vertex i ∈ [n] is assigned to group ℓ ∈ [k].

• Product variable: wi,j,ℓ = zi,ℓ · zj,ℓ is an indicator whether both online vertices i and j are in group ℓ

The ILP

max
∑

(i,j)∈E

xi,j

s.t.
∑
j∈[n]

(i,j)∈E

xi,j ≤ 1 ∀i ∈ [n] (C1)

∑
i∈[n]

(i,j)∈E

xi,j ≤ 1 ∀j ∈ [n] (C2)

xi,j ≤ 1− wi,q,ℓ · bq,j ∀(i, j) ∈ E, q ∈ [n], ℓ ∈ [k] (C3)

wi,j,ℓ ≤ zi,ℓ ∀i ∈ [n], ℓ ∈ [k] (C4)

wi,j,ℓ ≤ zj,ℓ ∀j ∈ [n], ℓ ∈ [k] (C5)

wi,j,ℓ ≥ zi,ℓ + zj,ℓ − 1 ∀i, j ∈ [n], ℓ ∈ [k] (C6)

k∑
ℓ=1

zi,ℓ = 1 ∀i ∈ [n] (C7)

xi,j ∈ {0, 1} ∀(i, j) ∈ E

zi,ℓ ∈ {0, 1} ∀i ∈ [n], ℓ ∈ [k]

wi,j,ℓ ∈ {0, 1} ∀i, j ∈ [n], ℓ ∈ [k]

Explanation of constraints

• (C1, C2) Standard matching constraints.

• (C3) Can only use edge (i, j) if it is not “disabled” due to intersections. As long as some other vertex in the same group
as i does not have j, the edge (i, j) will be disabled.

• (C4, C5, C6) Encoding wi,j,ℓ = zi,ℓ · zj,ℓ.

• (C7) Every vertex assigned exactly one group.
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D.2. Remapping online arrival types

Recall the example described in Section 5.1 and how remapping helps obtain a perfect matching. In fact, remappings can
only increase the number of matches as these vertices would have been left unmatched otherwise under MIMIC. Note that
the proposed remappings always maps an online type to a subset so that any subsequent proposed matching can be credibly
performed.

In an offline setting, given c∗ and ĉ, one can efficiently compute a mapping σ that maximizes overlap using a max-flow
formulation (see Appendix D.2.1) and then redefine the quality of ĉ in terms of L1(σ(c

∗), ĉ). As this is impossible in an
online setting, we propose a following simple mapping heuristic: when type L arrives, map it to the largest subset of A ⊆ L
with the highest remaining possible match count. Note that it may be the case that all subset types of L no longer have a
matching available to mimic from M̂ . In the example above, we first mapped {u1, u2, u4} to {u2, u4} and then to {u4} as ĉ
only had one count for {u2, u4}.

D.2.1. COMPUTING THE OPTIMAL REMAPPING σ VIA A MAXIMUM FLOW FORMULATION

Consider the offline setting where we are given the true counts c∗ and the advice counts ĉ.

Suppose c∗ has r non-zero counts, represented by: ⟨L∗
1, c

∗
1⟩, ⟨L∗

2, c
∗
2⟩, . . . ⟨L∗

r , c
∗
r⟩, where

∑r
i=1 c

∗
i = n.

Suppose ĉ has s non-zero counts, represented by: ⟨L̂1, ĉ1⟩, ⟨L̂2, ĉ2⟩, . . . ⟨L̂s, ĉs⟩, where
∑s

i=1 ĉi = n.

To compute a remapping from c∗ to ĉ to maximize the number of resulting overlaps, consider the following max flow
formulation on a directed graph G = (V,E) with |V | = r + s+ 2 nodes:

• Create a node for each of L∗
1, . . . , L

∗
r , L̂1, . . . , L̂s.

• Create a “source” and a “destination” node.

• Add an edge with a capacity c∗i from the “source” node to each of the L∗
i nodes, for i ∈ {1, . . . , r}

• (∗) Add an edge from L∗
i to L̂j with capacity c∗i if L̂j ⊆ L∗

i , for i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.

• Add an edge with a capacity ĉj from each of the L̂j nodes to the “destination” node, for j ∈ {1, . . . , s}.

• Compute the maximum flow from “source” to “destination”.

Since the graph has integral edge weights, the maximum flow is integral and the flow across each edge is integral. The
resultant maximum flow is the maximum attainable overlap between a remapped c∗ and ĉ, and we can obtain the remapping
σ by reading off the flows between on the edges from (∗).

D.3. Augmenting advice to perfect matching

The following lemma tells us that there is an explicit way of augmenting ĉ to form a new advice ĉ′ such that using ĉ′ in
TESTANDMATCH does not hurt the provable theoretical guarantees as compared to directly using ĉ.

Lemma D.1. Let ĉ be an arbitrary type count with labels T̂ implying a graph Ĝ with maximum matching size n̂. There is an
explicit way to augment ĉ to obtain ĉ′ with labels T̂ ′ such that the implied graph Ĝ′ has maximum matching size n̂′ = n.
Furthermore, running TESTANDMATCH with a slight modification of MIMIC on (ĉ′, T̂ ′) produces a matching of size m
where

m

n∗ ≥
m

n
≥

{
n̂
n −

L1(p
∗,q)

2 when L̂1 ≤ 2 (1− β)− ε

β − o(1) otherwise

Proof. Suppose we are given an arbitrary pattern count ĉ and corresponding labels L̂ such that the corresponding graph Ĝ
has maximum matching M̂ of size n̂ < n. Let us fix any arbitrary maximum matching M̂ . Denote AU ⊆ U as the set of
k = n− n̂ offline vertices and AV ⊆ V as the set of k online vertices that are unmatched in M̂ . We construct a new graph
Ĝ′ by adding a complete bipartite graph of size k on AU ∪AV to Ĝ. By construction, the resulting graph Ĝ′ has a maximum
matching of size n̂′ = n due to the modified adjacency patterns of the online vertices AV .
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We now explain how to modify the pattern counts and labels accordingly. Define the new set of labels L̂′ as L̂ with a new
pattern called “New”. Then, we subtract away the counts of AV from ĉ and add a count of k to the label “New” to obtain a
new pattern count ĉ′. By construction, we see that |L̂′| = |L̂|+ 1 and

L1(ĉ, ĉ
′) = |ĉ(“New”)− ĉ′(“New”)|+

∑
ℓ∈L̂

|ĉ(ℓ)− ĉ′(ℓ)| = k + k = 2k

Note that c∗(“New”) = 0. By triangle inequality, we also see that

L1(c
∗, ĉ′) ≤ L1(c

∗, ĉ) + L1(ĉ, ĉ
′) ≤ L1(c

∗, ĉ) + 2k

Slight modification of MIMIC. MIMIC will now be informed of the sets AU and AV along with the proposed matching
M̂ for the online vertices V \AV . Then, whenever an online vertex v arrives whose pattern does not match any in L̂, we
first try to match v to an unmatched neighbor in AU if possible before leaving it unmatched. Observe that this modified
procedure can only increase the number of resultant matches since we do not disrupt any possible matchings under (ĉ, L̂)
while only possibly increasing the matching size via the complete bipartite graph between AU and AV .

To complete the analysis, we again consider whether MIMIC was executed throughout the online arrivals or we switched to
BASELINE, as in the analysis of Theorem 4.1. Note that now L̂1 is an estimate of L1(c

∗, ĉ′) instead of L1(c
∗, ĉ) and the

threshold is 2
(

n̂′

n − β
)
− ε = 2 (1− β)− ε instead of 2

(
n̂
n − β

)
− ε since n̂′ = n. Also, recall that k = n− n̂.

Case 1: L̂1 < 2(1− β)− ε

Then, TESTANDMATCH executed MIMIC throughout for all online arrivals, yielding a matching of size m ≥ n− L1(c
∗,ĉ′)
2 .

Therefore,

m

n∗ ≥
m

n
≥ 1− L1(c

∗, ĉ′)

2n
≥ 1− L1(c

∗, ĉ) + 2k

2n
= 1− L1(p, q)

2
− n− n̂

n
=

n̂

n
− L1(p, q)

2

Case 2: L̂1 ≥ 2(1− β)− ε
Repeat the exact same analysis as in Theorem 4.1 but with r̂ replaced by r̂′ = |T̂ ′| = |T̂ |+ 1 = r̂ + 1 yields a matching
size of at least β · n− sr̂+1,ε,δ ·

√
log(r̂ + 1), where

sr̂,ε,δ = O

(
(r̂ + 1) · log 1/δ
ε2 · log(r̂ + 1)

)
and sr̂+1,ε,δ ·

√
log(r̂ + 1) ∈ o(1).

E. Deferred proofs
Lemma E.1. In the output of SIMULATEP (Algorithm 4), T s

p∗ contains s i.i.d. samples from the realized type count
distribution p∗ = c∗/n while using at most s fresh online arrivals.

Proof. With probability i/n, we choose a uniform at random item from {A[0], . . . , A[i− 1]}. With probability 1− i/n, we
pick the next item A[i] from the existing arrivals which was uniform at random under the random arrival model assumption.
Since we could possibly reuse arrivals, T s

p∗ is formed by using at most s fresh arrivals.

E.1. Proof of Theorem 2.1

Theorem 2.1 (adapted from (Jiao et al., 2018)). Fix a reference distribution q over a domain T of size |T | = r and

let s ∈ O
(

r·log(1/δ)
ε2·log r

)
be an even integer. There exists an algorithm that draws s1 + s2 IID samples from an unknown

distribution p over T , where s1, s2 ∼ Poisson(s/2), and outputs an estimate L̂1 such that |L̂1 −L1(p, q)| ≤ ε with success
probability at least 1− δ.

Proof. Using Theorem 2 in (Jiao et al., 2018), we get that using s = Θ( r
ε2 log r ), their estimator has ε additive error in

expectation. Therefore, by using 100 · s samples, we can achive ε/10 additive error in expectation, i.e E[|L̂1 − L1(p, q)|] =
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Algorithm 4 SIMULATEP
input Array A of online arrivals so far and number of desired i.i.d. samples s, where s ≤ |A|
output T s

p∗ ▷ s i.i.d. samples from p∗

1: T s
p∗ ← ∅ ▷ Collect simulated i.i.d. arrivals from p∗

2: i← 0
3: while |T s

p∗ | < s do
4: if Bernoulli(i/n) == 1 then
5: x← Pick uniformly at random from the set {A[0], . . . , A[i− 1]}
6: else
7: x← A[i] ▷ Uniform at random from c∗ under the random arrival model
8: i← i+ 1
9: end if

10: Add x to T s
p∗

11: end while
12: return T s

p∗

ε/10. By Markov’s inequality, we get:
Pr[|L̂1 − L1(p, q)| > ε] ≤ 1/10

Thus, by repeating the entire algorithm O(log(1/δ)) times and choosing the median L̃1 of the resulting estimates, we get:

Pr[|L̃1 − L1(p, q)| > ε] ≤ δ

F. Proof of concept
It is our understanding that the tester proposed by Jiao et al. (2018) requires a significant amount of hyperparameter tuning
and no off-the-shelf implementation is available (Han, 2024). One may consider using an older method by Valiant & Valiant
(2011) which is also sublinear in the number of samples but their proposed algorithm is for non-tolerant testing and requires
a non-trivial code adaptation before it is applicable to L1 estimation.

As a proof-of-concept, we implemented TESTANDMATCH with the empirical L1 estimator and study the resultant com-
petitive ratio under degrading advice quality. The source code is available at https://github.com/cxjdavin/
online-bipartite-matching-with-imperfect-advice.

F.1. Implementation details

From Section 2, we know that the state-of-the-art advice-less algorithm for random order arrival is the RANKING algorithm
of (Karp et al., 1990) which achieve a competitive ratio of β = 0.696 (Mahdian & Yan, 2011).

For our testing threshold, we set ε = n̂/n− β so that τ = 2(n̂/n− β)− ε = n̂/n− β. We also implemented the following
practical extensions to TESTANDMATCH which we discussed in Section 5:

1. Sigma remapping (Section 5.1)

2. Bucketing so that r̂/ε2 < n (Section 5.2)

3. Patching so that n̂′ = n (Section 5.3)

We tested 4 variants of TESTANDMATCH, one with all extensions enabled and three others that disables one extension at a
time (for ablation testing).

F.2. Instances

Our problem instances are generated from the synthetic hard known IID instance of (Manshadi et al., 2012) where any
online algorithm achieves a competitive ratio of at most 0.823 in expectation:
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Online bipartite matching with imperfect advice

• Let Yk denote the set of online vertices with k random offline neighbors (out of
(
n
k

)
)

• Let m =
c∗2.5
2 · n, where c∗2.5 = 0.81034 is some constant defined in (Manshadi et al., 2012) (not to be confused with

our type counts c∗)

• Sample m random online vertices from Y2, i.e. each online vertex is adjacent to a random subset of 2 offline vertex.

• Sample m random online vertices from Y3, i.e. each online vertex is adjacent to a random subset of 3 offline vertex.

• Sample n− 2m random online vertices from Yn, i.e. each online vertex is adjacent to every offline vertex.

• Permute the online vertices for a random order arrival

Here, the support size of any generated type count c∗ is roughly 0.8n due to the samples from Y2 and Y3.

F.3. Corrupting advice

Starting with perfect advice ĉ = c∗, we corrupt the advice by an α parameter using two types of corruption.

1. Pick a random α ∈ [0, 1] fraction of online vertices

2. Generate a random type for each of them by independently connecting to each offline vertex with probability lnn
10n .

3. Type 1 corruption (add extra connections): Define the new type as the union of the old vertex type and the new random
type.

4. Type 2 corruption (replace connections): Define the new type as the new random type.

As a remark, our random type generation biases towards a relatively sparse corrupted graph.

F.4. Preliminary results

We generated 10 random graph instances with n = 2000 offline and n online vertices. Figure 8 illustrates the resulting plots
with error bars.

Figure 8. n = 2000, averaged over 10 runs. TaM refers to our implementation of TESTANDMATCH.

In all cases, we see that the attained competitive ratio is highest when all extensions are enabled. We also see that the
degradation below the baseline is not very severe (< 0.1 for all cases, even when not all extensions are enabled).

Unsurprisingly, the competitive ratios of Ranking and “TaM without bucket” coincide because because r/ε2 > n and we
always default to baseline without performing any tests (to maintain robustness).

For corruption type 1, the “sigma remapping” extension makes our algorithm robust against additive edge corruption, and so
the “patching” extension has no further impact.
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