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Telecom Fraud Detection
via Hawkes-enhanced Sequence Model

Yan Jiang, Guannan Liu, Junjie Wu, Hao Lin

Abstract—Detecting frauds from a massive amount of user behavioral data is often regarded as finding a needle in a haystack. While
tremendous efforts have been devoted to fraud detection from behavioral sequences, existing studies rarely consider behavioral targets
and companions and their interactions simultaneously in a sequence model. In this paper, we suggest extracting source and target
neighbor sequences from the temporal bipartite network of user behaviors, and disclose the interesting correlation mode and repetition
mode hidden inside the two types of sequences as important clues for fraudsters distinguishment. We then propose a novel
Hawkes-enhanced sequence model (HESM) by integrating the Hawkes process into LSTM for historical influence learning. A historical
attention mechanism is also proposed to enhance the strength of the long-term historical influence in response to the repetition mode.
Moreover, in order to collectively model both types of neighbor sequences for capturing the correlation mode, we propose a correlation
gate to control the information flow in sequences. We conduct extensive experiments on real-world datasets and demonstrate that
HESM outperforms competitive baseline methods consistently in telecom fraud detection. Particularly, the abilities of HESM in
historical influence leaning and sequence correlation learning have been explored visually and intensively.

Index Terms—fraud detection, Hawkes process, Long Short Term Memory (LSTM), sequence model, temporal bipartite network
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1 INTRODUCTION

T ELECOM fraud has been a pervasive type of fraudulent
crimes since telephone becomes one of the most impor-

tant communication channels in the society. With specially
designed fraudulent scripts during several consecutive calls,
fraudsters may induce calling targets to trust their fake
stories and transfer money to designation accounts, which
could bring huge economic losses for ordinary telecom
users. It is reported that the number of telecom fraud
instances has reached 537,000 per year in China, and the
resulting economic loss is as high as 12 billion RMB. Though
great efforts have been made to crack down varied types
of telecom frauds, e.g., using fraudulent voice templates
as interceptor of telecommunications, such cases still oc-
cur frequently for the very low interception probability of
voice templates and the rapidly evolving cheating tactics.
Fraudsters today tend to act more like normal users and
collaborate as highly organized groups, which makes it
extremely challenging to detect telecom frauds from the
massive amount of normal calling records.

Prior research work generally tackles fraud detection
problem with respect to different behavioral characteristics.
In recent years, one research mainstream regards the con-
secutive behaviors as behavioral sequences, and exploits
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sequence learning methods to distinguish fraudsters from
normal users [1, 2, 3]. These studies mainly reconstruct
normal sequential patterns to predict future behaviors, and
the sequences with large prediction losses tend to be iden-
tified as fraudulent. Except for the sequential perspective,
fraudulent behaviors are usually regarded as interactions
between two different parties, i.e., source users who launch
fraudulent behaviors and target users who are potential
victims. In this regard, many prior methods have also
been proposed to tackle fraud detection from the network
structure formed by interactive behaviors [4, 5, 6, 7]. How-
ever, fraudsters can dynamically manipulate the interaction
structure to escape, and hence some extended studies adopt
the idea of burst detection to detect abrupt changes of
the interaction structure [8, 9]. Despite the great efforts
devoted to fraud detection, rarely have they taken both the
temporal information and network interaction perspectives
into account, which indeed motivates our study.

In this work, we take a bipartite view of telecom calling
records, with the callers as the source nodes and the callees
the target nodes. Since the interactions between source and
targets occur at different time, each interactive edge can be
annotated with the calling time, giving rise to the temporal
bipartite network. We then take a sequence view of the
network and form the target neighbor sequence to describe
the short-term massive calling behavior of a fraudster, and
form the source neighbor sequence with the purpose of cap-
turing the latent gang crimes behavior of fraudsters. We
have found several notable characteristics in distinguishing
fraudsters from normal callers from the observing the neigh-
bor sequences in the real-world telecom data. On one hand,
the repetitions of the calling targets in the sequence show
distinctive patterns for normal callers and fraudsters. That
is, the normal users usually maintain long-term contacts
with their families and friends, and thus the repetitions of
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the calling target neighbors in the sequences would likely
span over a long time period; while on the contrary, the
fraudsters often make massive calls to find possible victims,
which results in shorter-time repetitions. On the other hand,
we have also found that the correlation between source
neighbor sequences and target neighbor sequence shows
contrastive trends for the two types of callers. That is, the
average number of target neighbors shows negative correla-
tion with the number of source neighbors for fraudsters but
vice versa for the normal callers.

Therefore, the observed repetition mode in target neighbor
sequences and the correlation mode between the two types of
sequences can serve as important clues for distinguishing
the calling behaviors, which however, have merely been
considered in prior work on sequence modeling. Thus, how
to model the unique sequential patterns, i.e., the repetition
and the correlations in these neighbor sequences remains to
be a focal challenge. In particular, we make use of the Hawkes
process to model the neighbor sequences, which allows past
events to influence current events with a decay gate de-
veloped specifically to help model the long-term historical
influences. In the meantime, a historical attention mechanism
is proposed to jointly capture the historical influences with
regards to the repetition mode. Furthermore, in order to
collectively model both types of neighbor sequences for
capturing the correlation mode, we propose a correlation gate
to control the flow of information across different types of
neighbor sequences. Based on the historical influence learn-
ing as well as the correlation learning, a new conditional
intensity function is developed, which finally gives rise to
a Hawkes-enhanced sequence model (HESM). The experimen-
tal results on real-world telecom datasets demonstrate the
superior detection performance of our model in comparison
with some state-of-the-art methods. Particularly, the abilities
of HESM in historical influence leaning and sequence corre-
lation learning have been explored visually and intensively,
which further explains the effectiveness of the modelling
components of HESM.

The remainder of this work is organized as follows.
Section 2 introduces the related literature. Section 3 intro-
duces the real-life telecom dataset and the two distinguish-
ing behavioral modes, which defines our problem in this
study. Section 4 describes the details of our HESM model
and Section 5 presents the experimental results. We finally
conclude our work in Section 6.

2 RELATED WORK

In this paper, we aim to detect frauds by sequence prediction
based on learned sequence pattern representations. Prior
works along this line can be roughly summarized into three
mainstreams as follows.

2.1 Sequence-based Fraud Detection
Sequence-based fraud detection generally identifies an en-
tire sequence, subsequence or sequential pattern to be
anomalous if it deviates significantly from normal se-
quences [10]. The most intuitive methods are similarity-
based techniques, which compute the pairwise similari-
ties between sequences using some specific similarity mea-
sure [11]. There also exists a stream of studies that have

focused on window-based mining and locating some partial
abnormalities in an entire sequence [12]. Another widely
used family of approaches are Markov model-based tech-
niques, which model the generative process of sequence
data from a probabilistic perspective [13]. More recently,
deep learning methods based on sequence data have be-
come another important class of methods for fraud detec-
tion. Some scholars have studied abnormal sequence data
detection using recurrent neural networks (RNNs) [2, 3].
In particular, Kieu et al. [14] proposed two solutions in
time series based on recurrent autoencoder ensembles for
anomaly detection. Su et al. [15] proposed Omnianomaly, a
novel stochastic recurrent neural network for multivariate
time series anomaly detection that can deal with explicit
temporal dependence among stochastic variables to learn
robust representations of input data. Bernardo et al. [16]
proposed a complete RNN framework to detect fraud in
real-time, presenting an efficient ML pipeline from prepro-
cessing to deployment. Zhu et al. [17] proposed a hierar-
chical explainable network (HEN) to model users behavior
sequences, improving the performance of fraud detection
and making the inference process interpretable. Generally,
these sequence-based approaches are closely related to our
work because they share the common purpose of model-
ing complex normal patterns to reveal anomalous patterns
underlying the observed behaviors. However, they have
rarely taken both the sequence and network interaction
perspectives into account simultaneously.

2.2 Hawkes Process

Temporal point processes [18] are mathematical abstractions
for many different phenomena across a wide range of
domains. In particular, temporal point processes are well
suited to learn the event patterns of user behaviors from
event sequence data [19, 20]. Hawkes process [21], a specific
type of temporal point process, has been widely used to
model event streams, including for constructing and infer-
ring network structures [22] and discovering patterns in
social interactions [23]. In these studies, the specified form of
the point process limits its capability to capture the dynam-
ics of data, and the historical events were generally thought
to influence current events independently and additively.
Recently, an increasing number of studies have focused
on the combination of neural networks and Hawkes pro-
cesses. Some work used recurrent neural network to approx-
imate the conditional intensity function of the Hawkes pro-
cess [24, 25, 26]. There also exist other work that have mod-
eled continuous-time point processes [27, 19, 28]. Addition-
ally, some work combined recurrent neural networks and
Hawkes process to capture the temporal dependency and
historical influence [29, 30, 31]. Particularly, Cai et al. [32]
proposed a long and short term Hawkes process model,
which models the short-term dependency between users’
actions within a period of time via a multi-dimensional
Hawkes process and the long-term dependency between ac-
tions across different periods of time via a one dimensional
Hawkes process. Okawa et al. [33] proposed a deep mixture
point process model, which uses the deep learning method
and point process intensity to capture the complex effects of
unstructured contextual features on the event occurrence.
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Fig. 1. An Example of Temporal Bipartite Network and Neighbor Sequences

Vassøy et al. [34] used a temporal hierarchical recurrent
neural network to model intersession relations and capture
users’ long-term preferences for inter-session and intra-
session recommendations and return-time prediction. Zuo
et al. [35] leveraged the self-attention mechanism to capture
long-term dependencies and meanwhile enjoys computa-
tional efficiency. These methods are similar to our model
philosophy in incorporating the Hawkes process with deep
learning models. However, they have not emphasized the
specific sequential patterns exclusively for telecom frauds,
which calls for more delicate models in capturing the dis-
covered characteristics in the sequences.

2.3 Graph-based Fraud Detection

Graph-based fraud detection has become popular and
has received significant attention because many real-world
fraudulent incidents can form graph structures. One cate-
gory of studies along this line has focused on detecting
anomalous nodes [36, 37] and particular anomalous sub-
graph structures [6, 38] in static networks. In general, these
studies are mainly based on handcrafted node attributes
or structures; however, fraudsters can easily modify their
attributes and connection structures to avoid being detected.
Another category of graph-based methods focuses on de-
tecting anomalous structures in dynamic networks. In these
studies, a scoring function is generally defined for the nor-
mality of nodes, edges or subgraphs [39, 40, 41, 42, 8, 43, 44]
and then abrupt changes in the scoring values are detected
with respect to the whole sequences in a dynamic network.
These methods generally require long sequences, in which
the behaviors remain relatively stable at most times and
abnormalities are shown within a particular time window.
However, these studies merely exploit the dynamic interac-
tive behaviors to mine temporal behavioral patterns but are
not able to discover other complex specific patterns.

3 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first conduct an exploratory analysis to a
real-world telecom dataset. We aim to unveil the unusual

behavioral patterns of telecom fraudsters, which further
motivates the model to propose. Finally, we give a formal
problem definition.

3.1 Real-world Telecom Dataset Description
We obtain a real-world telecommunication dataset from one
of the largest telecommunication operators in China. The
dataset contains millions of call detail records (CDRs), each
recording the detailed information of a phone call such as
the phone numbers of both the caller and callee, the starting
time of a call, the call duration and the call ending time.
For privacy concerns, all the identifiable information of
individuals (e.g., phone numbers and regions) is encrypted.
With the crowdsourcing service provided by the telecom
operator, receivers can mark each incoming call as either
“fraudulent” or not, which enables us to gather 109,425
labeled callers from September 18th to October 1st, 2018.
The callers labeled for more than 10 times as “fraudulent”
are further marked as fraudulent callers and the number of
fraudsters is 17,471, accounting for approximately 16% of
the total labeled callers. We then gather all 109,425 callers’
full calling sequences during this period, which involves
3,905,403 CDRs and 1,948,068 distinct callees.

3.2 Exploratory Analysis
In the real-world telecom dataset, the connections between
callers and callees at different time form a temporal bipartite
network, in which callers act as source users, callees act as
target users, and a directed edge associate with a timestamp
denotes that a caller calls a callee at a specific timestamp, as
shown in Fig.1.
Definition 1. (Temporal Bipartite Network) A temporal bi-

partite network is a network with edges annotated by
the chronological interaction relations between source
users and target users. Specifically, a temporal bipar-
tite network is denoted as G =< U ,V, E >, where
U = {u1, u2, · · · , un} denotes the source users, V =
{v1, v2, · · · , vm} denotes the target users, and E denotes
the set of edges, i.e., the interaction behaviors between U
and V formed at different time t.
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Fig. 2. Analysis of Sequential Behaviors in Telecom Networks

Given a temporal bipartite network, the dynamic evo-
lution of the network can be explored clearly. Specifically,
the target neighbors of each caller, i.e., the callees that
directly connect with the caller, can also be derived. For
example, as shown in Fig.1, caller u1 has direct edges with
callees v1, v2, v3 at different time, which become the target
neighbors of u1. Furthermore, the target neighbors of each
caller in the network can be organized as a sequence in
chronological order. We formally define the target neighbor
sequence as follows.

Definition 2. (Target Neighbor Sequence) Given a source
user u in a temporal bipartite network and its target
neighbor set T N (u), the target neighbor sequence of
u can be represented chronologically as T NS(u) =
[(t1, v1) , (t2, v2) , · · · , (tl, vl)], with each tuple represent-
ing the interaction behavior between u and its target
neighbor vi ∈ T N (u) at time ti.

It is generally understood that fraudulent callers tend
to make scam calls to possible victims. We can therefore
expect the target neighbor sequences could help to expose
fraudulent callers with unusual calling targets and calling
behaviors. It is also reported that many telecom frauds
committed in recent years are gang crimes, which implies
there might exist clues of fraudster groups in the relations
among callers themselves. In reality, the relations between
callers can be revealed by the source neighbors of each caller,
i.e., other callers that have common target neighbors with
the caller in the temporal bipartite network. To avoid data
sparsity, we set those callers who have common target
neighbors within a certain time window (such as one hour)
as the source neighbors of a caller at that time step. For
example, as shown in Fig.1, caller u1 has common target
neighbors with callers u2, u3, u4 at different time steps;
therefore, the source neighbors of u1 are u2, u3, u4. These
source neighbors of the caller are in chronological order
to indicate the evolution of the relations at different time
steps. We formally define the source neighbor sequence in
chronological order below.

Definition 3. (Source Neighbor Sequence) Given a source
user u in the temporal bipartite network and its source
neighbor set SN (u), the source neighbor sequence can
be chronologically represented as a series of target
neighbors, i.e., SNS = [(t1, u1) , (t2, u2) , · · · , (tl, ul)],
with each tuple representing that the source neighbor
ui ∈ SN (u) has at least one common target neighbor
with source u at time step ti.

Given the two types of neighbor sequences of a caller,
in what follows, we showcase two sequential patterns, i.e.,
the correlation mode and the repetition mode, that can help
distinguish fraudsters from normal callers.

3.2.1 The Correlation Mode

In this section, we aim to explore the correlation mode be-
tween the target neighbor sequences and the source neigh-
bor sequences of the callers. To this end, we serially calculate
the average numbers of target neighbors as well as source
neighbors of all the callers per hour on the chronological
timeline. For the convenience of observation, we draw a
scatterplot with the horizontal axis denoting the average
number of target neighbors, and the vertical axis denoting
the average number of source neighbors, and each dot
represents a particular time step. As shown in Fig.2(a) and
Fig.2(b), it is interesting to find that fraudsters generally
exhibit negative correlations between their target neigh-
bor sequences and source neighbor sequences, but normal
callers exhibit mostly positive correlations.

To illustrate this, we recall that fraudsters now prefer to
gang crimes, i.e., work as a group to deceive target callees ac-
cording to the following deception. First, junior fraudsters are
relatively scattered and each makes massive calls to find as
many potential victims as possible. At this stage, fraudsters
have many target neighbors but few source neighbors. Then,
when some potential victims are hooked, senior fraudsters
form a persuasive group with different roles to call and
induce the chosen preys to transfer money. During this
phase, fraudsters have relatively few target neighbors but
more source neighbors.

In addition, from the two subfigures, we can see the
significant difference in neighbor scales. That is, fraudsters
generally have much more target neighbors than normal
callers, which coincides with the fact that fraudsters con-
stantly make many calls to harvest more victims, but normal
users dial more to callees whom they are familiar with. We
can also see that fraudsters have fewer source neighbors
than normal callers, implying that the number of fraudsters
is limited by the size of a fraudulent group.

3.2.2 The Repetition Mode

In real life, callers may repeatedly call the contacts whom
they have called in the past. We explore this repetition mode
by computing the repeatability of the target neighbors of a
source caller in different time steps. Specifically, we compare
two types of repetitions of target neighbors, i.e., the repeated
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neighbors at the last time step referring to as short-term
historical neighbors, and the repeated neighbors from the
beginning of the observation till the last time step referring
to as long-term historical neighbors. We show the neighbor
repetitions for fraudsters and normal callers, respectively,
in Fig.2(c) and Fig.2(d). The horizontal axis denotes the
time step in hour and the vertical axis denotes the average
number of repeated target neighbors at each time step.

It is obvious that while both fraudsters and normal
callers repeat some of their historical calls periodically, their
repetition modes are diverse. First of all, according to the
short-term lines in black, the fraudsters generally have
much more short-term historical neighbors than normal
callers, and the peaks of their repetitive calls usually occur
within a much shorter time period. This agrees with the
fact that telecom fraudsters usually make massive scam
calls to large but carefully selected sets of target neighbors
intensively, which inevitably results in repeated calls. In
contrast, most normal callers would not repeat calling their
target neighbors, e.g., the acquaintances, in a short period if
with little information update.

We next compare the long-term lines in red. Let us focus
on the gap between the long-term and short-term histor-
ical neighbors along the time line, which turns out to be
much sharper for the normal callers than for the fraudsters.
Indeed, normal callers are accustomed to maintaining long-
term contacts with their families and acquaintances, which
generates the wide gap between the numbers of long- and
short-term historical neighbors. The case, however, is not
for the fraudsters, who seeks more short-term contacts as
victims rather than long-term contacts as friends.

3.3 Problem Definition
The correlation mode and repetition mode hidden inside
callers’ target as well as source neighbor sequences reveal
the unusual behaviors of the fraudsters, which indeed mo-
tivates our study on building sequence model for telecom
fraud detection.

Formally, given a temporal bipartite network G =<
U ,V; E >, for each source user u ∈ U , qu

t =
[(t1, v1) , (t2, v2) , · · · , (tl, vl)] denotes its target neighbor se-
quence, and qu

s = [(t1, u1) , (t2, u2) , · · · , (tl′ , ul)] denotes

its source neighbor sequence, where l (l′) is the maximum
number of time steps in the sequence. We aim to detect
fraudsters accurately via learning the correlation mode and
repetition mode from {qu

t } and {qu
s} simultaneously in an

end-to-end manner.

4 THE PROPOSED MODEL

Motivated by the observations from the real-world telecom
data, we propose to model both the source and target
neighbor sequences collectively for telecom fraud detection.
Traditional sequence models such as RNN and LSTM can
well capture the short-term time dependencies of consec-
utive behaviors. But the above-mentioned repetition mode
contains long-term historical influences in sequences and
the correlation mode involves the correlations between dif-
ferent types of behavioral sequences, both of which were not
particularly considered by the traditional models. Therefore
in this paper, we aim to integrate the observed clues into the
sequence models for better distinguishing fraudsters from
normal callers.

In particular, we can regard each call from the source to
a target as an event, and the historical events would have
an influence on the current event in terms of the repeti-
tion mode, which can be nicely modeled with a temporal
point process. Thus, we make use of the Hawkes process to
model the neighbor sequences, which allows past events to
influence current events in a subtle way. Meanwhile, when
each time period in the sequence is represented with a
hidden state, we can further develop a historical attention
mechanism to capture the repetition mode in the calling
history. Furthermore, in order to collectively model both
types of neighbor sequences for capturing the correlation
mode, we propose a correlation gate to control the flow of
information in sequences. These give rise to the so-called
Hawkes-enhanced sequence model (HESM).

The model architecture is shown in Fig.3. The neighbor
sequences of each caller are regarded as model input, and
the LSTM cell is enhanced with the novel historical influence
learning and sequence correlation learning modules. Finally, a
novel conditional intensity function based on the hidden states
of recurrent neural networks is formulated to enable the
target neighbor prediction.
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4.1 Historical Influence Learning
Given the source and target neighbor sequences consisting
of the timestamps and the neighbors, it is naturally ap-
pealing to capture the sequential patterns by modeling the
sequences. LSTM [45] is typically a neural-based sequence
model that can well model the short-term dependencies
along the sequences. One major problem with the traditional
LSTM is that the stored memories only transit between con-
secutive events in an accumulative way. In reality, however,
consecutive events in a sequence might not have dependen-
cies within a short time period. Instead, non-adjacent events
in long-term might have interdependencies as revealed in
the previous exploratory study.

Considering the distinctive historical influences of nor-
mal callers and the fraudsters, a more delicate sequence
model that can capture the repetitions in a longer time
hiorizon is in need. Thus, we integrate the Hawkes pro-
cess [21], a well known temporal point process into LSTM
by introducing a decay gate to learn the complex historical
influences effectively. Additionally, we design a historical
attention mechanism to capture the repetition mode in the
neighbor sequences. In what follows, we firstly review the
basics of the Hawkes process, and then propose a modified
neural unit with the decay gate and the historical attentions.

4.1.1 Hawkes Process
The Hawkes process is a temporal point process that can
capture the influences of historical events on current events
with time decay effect. A core mechanism of the Hawkes
process is the conditional intensity function, which repre-
sents the rate of occurrence for a new event conditioned on
historical events and can be employed for predicting future
events. In the traditional Hawkes process, the conditional
intensity function is formulated as follows:

λ (t) = µ (t) +

∫ t

−∞
exp (−δ (t− s)) dN (s) , (1)

where µ (t) is the base rate of an event, showing the sponta-
neous arrival rate of the event at time t; exp (−δ (t− s)) is
a decay function in the form of an exponential function that
models the time decay effect of the historical events on the
current event. Moreover, to handle different types of events,
the Hawkes process can be extended to a multivariate case,
where we can define the conditional intensity function for
each event type. This gives rise to the self-exciting multi-
variate Hawkes process [21].

The interdependency between historical and current
events modeled in the traditional Hawkes process is
deemed desirable for capturing the historical influences in
neighbor sequences. We therefore adopt the Hawkes process
to model the complex historical influences. Particularly,
the excitation effect is set as a sum over all the historical
target neighbors events of different types, captured by an
excitation rate αz,y between historical target neighbor z
and current target neighbor y. Hence the sequences can be
modeled as follows:

λy|x (t) = µx,y +
∑
tz<t

αz,y exp (−δ (t− tz)) , (2)

where µx,y represents the base connection rate between a
neighbor y and a source node x, while z is the historical

neighbor event that occurred prior to time t. αz,y represents
the degree to which a historical neighbor z can excite the
current neighbor y, and exp (−δ (t− tz)) is the time decay
effect function, illustrating that historical neighbors can in-
fluence current neighbors in different intensities over time.

Though the traditional Hawkes process is appropriate
for modeling the neighbor sequences, it is inefficient in
handling large-scale event types, and the parameter in-
ference could be very time consuming [46]. In addition,
the conditional intensity function of the Hawkes process
generally has the restriction that historical events only have
independent and additive influences on the current event,
but the influences of historical events on future events might
be superadditive or even subtractive. Therefore, rather than
directly modeling the sequences with Hawkes process, we
remove the restrictions by designing an intensity function
conditioned on the hidden states of LSTM. We then enhance
the neural units of LSTM with regards to the pervasive traits
discovered in the above observations.

4.1.2 Decay Gate
The basic neural unit for the hidden state at each time
step of LSTM consists of an input gate it ∈ Rd

+, a forget
gate f t ∈ Rd

+, an output gate ot ∈ Rd
+, a candidate cell

state C̃t ∈ Rd, and a cell state Ct ∈ Rd, with d denoting
the hidden layer size, all of which can control the flow of
memory between consecutive time steps. Obviously, such
an information flow fails to capture the crucial historical in-
fluences, especially the long-term influences in the repetition
mode for discovering fraudsters.

Specifically, as shown in Eq.(2), we can see that the
excitation rates of the historical neighbors on the current
neighbor are determined by the interval lengths between
the historical time and current time, i.e., the excitation rate
decays over time exponentially. Therefore, in analogy to the
time decay factor δ of historical events on the current event
in Eq.(2), we design a new decay gate st ∈ Rd

+ to control
the time decay effect of historical neighbor influence on the
current neighbor over time in the neural unit, which can be
formulated as follows,

st = softplus(W sxxt +W shht−1 + bs), (3)

where xt ∈ Rv is the input vector at current time step t,
and v denotes the input size. W sh ∈ Rd×d,W sx ∈ Rd×v

are the matrices of weight parameters, and bs ∈ Rd is
the corresponding bias vector. Particularly, softplus(x) =
log(1 + exp(x)) is the activation function of the neural
network, which can be regarded as a smooth version of the
relu(x) = max(0, x) function. With this activation function,
Each value of vector st is ensured to be positive, and we
can guarantee that the time decay of historical influence is
proportional to the time interval between the historical time
and the current time.

In sum, the decay gate st can mimic the decay effect of
the historical influences. In particular, we can employ the
decay gate st and the last cell state to express the short-term
historical influence, deterministically controlling the decay
effect of short-term influence from the last time step to the
current time step t. Thus, the cell state and hidden state of
the neural network can account for the decaying influences
of the historical neighbors.
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4.1.3 Historical Attention
According to the analysis in Section 3.2.2, fraudsters can
hardly maintain long-term and stable relationships with
targets, which on the contrary is the commonplace for
normal callers. Therefore, except for the decay effect and
the short-term influences by considering the last cell state,
it is necessary to capture the long-term historical influences
by modeling the complete historical neighbor sequence of
each source caller. We apply a historical attention mecha-
nism [47] by computing the attention weights of historical
events with respect to the current event based on all the
historical states. In this regard, for the current event at each
time step t, we track all the historical events at time step
k ∈ {t1, t2, · · · , tp}, where tp denotes the preceding time
step of the current time t. Finally, the attention weights are
calculated through Eq.(4) and Eq.(5) as follows:

at,k = W a(tanh(W ahh̃t +W akhk + ba)), (4)

αt,k = softmax(at,k), (5)

where h̃t ∈ Rd represents the candidate hidden state given
by Eq.(7) below. To implement the attention mechanism, we
score each historical state hk ∈ Rd by comparing it with
the current candidate hidden state h̃t and further normalize
the scores as the final output of attention weights. at,k ∈ R
denotes the raw attention weight vector, and αt,k ∈ R+

denotes the normalized weight vector. W a ∈ R1×d,W as ∈
Rd×d and W ak ∈ Rd×d are the weight parameters matrices,
and ba ∈ Rd is the attention bias vector.

Finally, we obtain the historical context vector gh ∈ Rd

by considering both the decay effect and the long-term
historical influences. Specifically, as shown in Eq.(6)

gh =
t−1∑
k=1

αt,k � hk � exp(−st(t− tk)), (6)

it can be computed by the weighted average of all the
historical states hk, k ∈ {t1, t2, · · · , tp}. Meanwhile, the
decay effect can be represented by an exponential decay
factor exp(−st(t − tk)), which is analogous to decay effect
of the conditional intensity function of the Hawkes process.

4.2 Sequence Correlation Learning
As seen in the above exploratory analysis, the correlation
mode between target and source neighbor sequences is
crucial for distinguishing fraudsters from normal users.
However, prior work on sequence models merely addresses
the correlations between different types of sequences. We
therefore further incorporate a new correlation gate rt ∈ Rd

into the neural unit of the traditional LSTM and plug it into
the conditional intensity function.

Particularly, we introduce a weight parameter W r ∈
Rd×d to learn the correlation mode between the source and
target neighbor sequences. As shown in Eq.(7) and Eq.(8)

h̃t = ot �Ct, (7)

rt = tanh(h̃t − (W rhyt + br)), (8)

at each time step, we derive the candidate hidden state
h̃t ∈ Rd from the target neighbor sequences based on
the output gate ot and the current cell state Ct ∈ Rd. In

addition to learning from the target neighbor sequences, we
also incorporate the current hidden state hyt ∈ Rd learned
from the source neighbor sequences with respect to another
LSTM model. In this regard, the weight parameter can be
regarded as the correlation between h̃t and hyt with a
bias vector br ∈ Rd, which is further transformed with an
activation function tanh(·) to obtain the correlation gate rt.

4.3 Conditional Intensity Function

In our model, the dynamics of time-varying intensity are
controlled by the hidden state ht, which depends on the
newly designed memory cell state Ct ∈ Rd. The key of Ct

is to extend the basic neural units of the traditional LSTM
with the decay gate and the historical attention mechanism.
As a result, the original cell stateCt of the traditional LSTM
can act as the base intensity of occurrence for an event at
time t, and the new cell stateCt can be employed to account
for the self-exciting effects of the Hawkes process. In sum,
Ct can be formulated as follows:

Ct = W c1Ct +W c2(Ct−1 � exp(−st(t− tp))) +W c3gh,
(9)

where tp denotes the last time step prior to the current time
step, and W c1,W c2,W c3 ∈ Rd×d are weight parameters
matrices. Ct denotes the original cell state at the current
time step t, which is similar to the base intensity of occur-
rence for the next event.Ct−1�exp(−st(t−tp)) denotes the
self-exciting influences of the historical neighbor events on
the occurrence of the current neighbor with an exponentially
decaying rate. The merit of this formulation lies in that
we can explicitly represent the event history by a latent
vector with a nonlinear mapping of the conditional intensity
function, without specifying a fixed parametric form for the
dependency structure over the historical events.

We then derive the hidden state ht of the proposed
model by employing the output gate ot of the traditional
LSTM, and the correlation gate rt and the newly designed
updated cell state Ct given by Eq.(8) and Eq.(9), respec-
tively, as follows:

ht = ot � rt � tanh(Ct). (10)

We can see that Ct deterministically controls the hidden
state ht, and thus can affect indirectly the conditional inten-
sity function vector λ(t) ∈ Rv

+ via ht, which can be regarded
as the intensity of future neighbors’ occurrence to predict
the target neighbor sequence. With the enhanced neural unit
of LSTM, we can extend the conditional intensity function
vector by conditioning on the hidden states output in each
time step of LSTM, which can be formulated as,

λ(t) = f(W hqht + bq), (11)

where W hq ∈ Rv×d is weight parameters matrix and
bq ∈ Rv is the bias vector. f is a nonlinear function, and
we can choose the softplus(·) function to ensure a positive
intensity. Intuitively, ht summarizes the historical behaviors
h1,h2, · · · ,ht−1 and includes the representations of the
current behavior. In short, we can predict the node that most
likely becomes the next target neighbor of the caller.
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Algorithm 1 Training Algorithm of HESM
Input: The training samples: the target neighbor sequences

Xtarget, the source neighbor sequences Xsource; The
maximum number of epochs: epoch; The number of
mini-batches: batch.

Output: The network parameters: Θ.
1: Prepare the training dataset {Xtarget,Xsource};
2: Initialize the network parameters Θ;
3: for each i ∈ 1, 2, · · · , epoch do
4: Shuffle the training dataset;
5: for each j ∈ 1, 2, · · · , batch do
6: for each qjtarget ∈Xtarget, q

j
source ∈Xsource do

7: Compute hyt w.r.t. traditional LSTM;
8: Compute ht w.r.t. Eq.(10);
9: Compute λ(t) w.r.t. Eq.(11);

10: end for
11: Compute the loss function of the training samples

w.r.t. Eq.(12) and Eq.(13);
12: Update the parameters Θ by Adam algorithm;
13: end for
14: end for

4.4 Target Neighbor Sequence Prediction
Based on the learned representations of neighbor sequences,
we then propose an unsupervised fraud detection frame-
work by sequentially predicting the next calling target in a
target neighbor sequence.

Without ground-truth labels for the real-life telecom
frauds in the training phase, we can rank the callers accord-
ing to the loss value between the predicted neighbor se-
quences and the real target sequences. Since we assume that
normal callers have more stable contacts in their neighbor
sequences, their sequential patterns should be more easily
learned than those of fraudsters and hence result in a lower
prediction loss. In contrast, fraudsters do not have stable
contacts and often change their temporal calling modes
fiercely. This implies that to predict their neighbor sequences
is more difficult and may result in a larger loss value.

Formally, the loss function of this framework can be
formulated as follows:

yt = softplus(W hqht + bq), (12)

L = − 1

N

1

T

N∑
n=1

T∑
t=1

(ym
t − ln(

V∑
v=1

exp(yv
t ))), (13)

where m is the real calling target at the t-th time step
and yt ∈ Rv

+ is the predicted target vector based on the
conditional intensity function vector λ(t). V is the number
of targets. T is the maximum sequence length, and N is the
total number of sequences. We use cross-entropy [48] with
softmax to obtain the loss for the prediction. Algorithm 1
illustrates the training process of our model. We employ the
Adam [49] algorithm to minimize the loss function.

5 EXPERIMENTS

In this section, we conduct fraud detection experiments
on real-world telecom datasets. All experiments are imple-
mented on a server with Intel Xeon E5-2609 v4 8 1.7GHz
CPUs and 4 GeForce GTX 1080 Ti GPUs for fair comparison.

TABLE 1
Statistics of the Experimental Datasets

Recording Genuine Complete
# Fraudulent callers 2199 776 17471
# Normal callers 13356 9986 91954
# Total callers 15555 10762 109425
# Interactions 1770240 941176 3905403

5.1 Experimental Setup
5.1.1 Real-world Telecom Datasets
We use a real-world large-scale telecom network for our ex-
periments, the details of which has been given in Section 3.1.
Since different fraudulent types have their own characters,
we additionally construct two datasets, each having only
one type of fraudsters, to test the robustness of HESM in
different fraudulent scenarios. The statistics of all the three
datasets are given in Table 1.

The two types of fraudsters include recording and gen-
uine callers. Recording callers first record their voices as
pre-designed scripts and replay those scripts when calling
targets for intentional deceptions. Genuine callers pretend
to be officials working in public sectors such as police,
procurator, tax bureau, etc., or senior but unfamiliar supe-
riors knowing some private information, and speak directly
to possible victims to gain higher credibility. It is reported
that genuine callers have become the major criminal force
in telecom frauds in recent years. The ability of HESM
in detecting genuine callers is thus the concern of our
experimental study. We randomly extract partial data of two
fraudulent types from the Complete dataset and form the
Recording and Genuine datasets, respectively.

Given the real-world telecom datasets, we construct each
caller’s target and source neighbor sequences to train and
test our model and the baseline models. Since we have
the labels for both fraudulent and normal callers, we use
Precision (P), Recall (R), F-measure (F). Since the precision and
recall may be largely influenced by the threshold, we also
adopt the Area Under the Curve (AUC) as validation mea-
sures to evaluate the model performance which can better
demonstrate the overall performances. All the experiments
are repeated for five times to obtain the average perfor-
mances for reliable evaluation. Given the focus of fraudsters
and limited text space, we only report the classification
performance of the positive class in the experiments.

5.1.2 Baseline Methods
Table 1 shows that normal callers dominate in the datasets,
and therefore it is reasonable to assume sequence learning-
based baseline models can well capture normal sequential
patterns in the data. Based on this assumption, we first
train the neighbor sequences in an unsupervised setting by
predicting the future target neighbors. Then, the prediction
error shown in Eq.(13) is employed as the anomalous score,
given that fraudulent behaviors usually diverge from nor-
mal sequential patterns and are more difficult to predict.

In the experiments, we compare our HESM with several
sequence learning methods, including variants of RNNs,
neural Hawkes methods, etc., as follows.

Long Short-Term Memory (LSTM) [45]: This method
was originally designed to solve the gradient vanishing and
explosion problems of RNNs. Its recurrent unit consists of a
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TABLE 2
Performances of Fraud Detection on Complete Telecom Dataset

Methods Training Proportion 30% Training Proportion 60% Training Proportion 90%
P R F AUC P R F AUC P R F AUC

LSTM 0.5502 0.9546 0.6581 0.6357 0.5323 0.9809 0.6527 0.6321 0.6330 0.8668 0.6635 0.7827
GRU 0.4297 0.7860 0.4872 0.5874 0.4709 0.9939 0.5581 0.6396 0.6111 0.9444 0.6524 0.7394
RMTPP 0.2170 0.8829 0.3413 0.5313 0.2811 0.8922 0.4078 0.5515 0.3908 0.7932 0.4729 0.5884
ERNN 0.1810 0.9265 0.3029 0.5662 0.2107 0.9178 0.3427 0.5977 0.3000 0.6000 0.4000 0.6753
DeepHawkes 0.7925 0.8476 0.8060 0.5147 0.7807 0.9043 0.8098 0.5120 0.8717 0.9247 0.8868 0.6527
NeuralHawkes 0.9275 0.7103 0.8045 0.8851 0.9322 0.4472 0.6044 0.8622 0.9371 0.8543 0.8901 0.9194
HAInt-LSTM 0.7376 0.7236 0.7297 0.8142 0.8510 0.6638 0.7457 0.8276 0.8544 0.6666 0.7870 0.8298
NHA-LSTM 0.8123 0.6611 0.7286 0.8117 0.8583 0.7401 0.7922 0.8295 0.8658 0.7433 0.7696 0.8328
THP 0.6480 0.4327 0.6038 0.6208 0.6667 0.6154 0.6400 0.6591 0.9286 0.6334 0.7530 0.8070
AnomRank 0.9120 0.6085 0.7098 0.7083 0.9097 0.6580 0.7279 0.7160 0.9367 0.7118 0.8098 0.8591
Omnianomaly 0.9253 0.7345 0.8180 0.9296 0.9048 0.8571 0.8803 0.9517 0.9402 0.8055 0.8676 0.9529
HESM (ours) 0.9466 0.7847 0.8573 0.9358 0.9514 0.8305 0.8854 0.9519 0.9708 0.8567 0.9094 0.9641

TABLE 3
Performances of Fraud Detection on Telecom Datasets of Different Fraudulent Types

Methods Recording Genuine
P R F AUC P R F AUC

LSTM 0.5711 0.8043 0.6296 0.7626 0.5493 0.6945 0.5787 0.7937
GRU 0.4562 0.9174 0.5392 0.7130 0.4533 0.7764 0.5154 0.7105
RMTPP 0.3532 0.7050 0.4053 0.6433 0.4028 0.2166 0.2719 0.4924
ERNN 0.2083 0.8333 0.3333 0.5991 0.5000 0.3333 0.4000 0.6318
DeepHawkes 0.7298 0.8373 0.7454 0.4046 0.7580 0.8986 0.7805 0.6060
NeuralHawkes 0.9181 0.6796 0.7762 0.9022 0.9239 0.6845 0.7836 0.9063
HAInt-LSTM 0.8410 0.6590 0.7388 0.8272 0.8085 0.7275 0.7635 0.8129
NHA-LSTM 0.8530 0.7376 0.7885 0.8279 0.8435 0.6688 0.7460 0.8143
THP 0.8334 0.8077 0.8200 0.8185 0.8466 0.4702 0.6044 0.7915
AnomRank 0.9193 0.6966 0.7874 0.8410 0.8980 0.6544 0.7560 0.8065
Omnianomaly 0.9310 0.7297 0.8182 0.9204 0.9167 0.7875 0.8462 0.9197
HESM (ours) 0.9333 0.8130 0.8658 0.9559 0.9321 0.8602 0.8927 0.9495

Note: Training proportion is 90%.

memory cell and three gates, namely, the input gate, forget
gate and output gate, which help it to effectively model
sequential dependencies.

Gated Recurrent Unit (GRU) [50]: This method is an-
other widely used variant of RNNs. It replaces the forget
gate and input gate with a single update gate and passes
the hidden state directly to the next unit, while LSTM uses
the output gate to wrap the hidden state. It also has a reset
gate to control the information from the previous moment.

Recurrent Marked Temporal Point Processes
(RMTPP) [51]: This method simultaneously models
the event time stamps and the markers, views the intensity
function of a temporal point process as a nonlinear function
of the history, and uses a recurrent neural network to
automatically learn representations of the influences of
historical events.

Modeling the Intensity of Point Processes via Recur-
rent Neural Networks (ERNN) [52]: This method models
the background by a RNN whose units are aligned with
time series indexes, while the historical effect is modeled by
another RNN whose units are aligned with asynchronous
events to capture the long-range dynamics of the data. The
whole model, with event type and timestamp prediction
output layers, can be trained in an end-to-end manner.

Continuous-time LSTM (NeuralHawkes) [26]: This
generative model allows past events to influence future
events in complex and realistic ways by conditioning future
event intensities on the hidden state of a recurrent neural
network that has consumed the stream of past events.

DeepHawkes [53]: This model leverages end-to-end
deep learning to make analogies between the interpretable

factors of the Hawkes process.

HAInt-LSTM [54]: This model forms representations of
the behavioral sequences necessary for fraud detection. In
designing the interaction module, it only takes the original
IDs of the source and target users as input and concatenates
them with the feature vectors as the output of the model.

NHA-LSTM [47]: This model augments the traditional
LSTM with a modified forget gate, where the interval time
is the duration between consecutive time steps, and designs
a self-historical attention mechanism to allow for long-term
dependencies. In addition, an enhanced network embed-
ding method, FraudWalk, is considered to construct embed-
dings for the nodes in the interaction network with regard
to higher-order interactions and particular time constraints
for revealing potential group fraud.

THP [35]: The model leverages the self-attention mech-
anism to capture long-term dependencies and meanwhile
enjoys computational efficiency.

AnomRank [43]: The model uses a two pronged ap-
proach defining two novel metrics for anomalousness. Each
metric tracks the derivatives of its own version of a ‘node
score’ (or node importance) function, which can detect two
different types of anomalies: sudden weight changes along
an edge, and sudden structural changes to the graph.

Omnianomaly [15]: The model uses a stochastic recur-
rent neural network for multivariate time series anomaly
detection. Its core idea is to capture the normal patterns of
multivariate time series by learning their robust representa-
tions, and use the reconstruction probabilities to determine
anomalies.
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5.1.3 Parameter Settings
In the experiments, we set the size of all the hidden state
vectors, also can be referred to as embedding size, to 256,
and set the sequence length for prediction to 100 for all the
neural-based methods. For our method HESM, we set the
learning rate to 0.001, and apply gradient clipping during
the training process with the value of the gradient clip
being 0.05. Other parameters for each baseline method are
tuned to achieve the best performance. For the sake of fair
comparisons, we separate a common validation set from the
whole samples and the parameters of all the methods are
tuned in the validation set. We have conducted experiments
to show the influences of the parameters including the
embedding size, the sequence length, which are presented
in the supplemental materials.

5.2 Experimental Results
5.2.1 Performance Comparison on Complete Dataset
For the large-scale, complete telecom dataset, we vary the
size of the training set among 30%, 60%, 90% of the total
samples, and randomly leave out 20%, 20%, 5% from the
data as the validation set respectively, then the remaining
data is used as the test set. After training the model as
presented in Algorithm 1, we apply the trained model on
test set to obtain the prediction loss of each individual caller.

In order to determine whether a caller is a fraudster or
not, we need to set a threshold value for the prediction loss
and the threshold value that yields the largest F-measure in
the validation set can be used as the classification threshold
value for the test dataset. We consider the callers whose pre-
diction loss is greater than the threshold value are classified
as fraudsters. Based on the threshold value, HESM classifies
the callers and reports the classification performances.

Table 2 shows the results, with the best performances
in bold, the second best underlined and the third best in
bold italic. As can be seen, our model achieves the best
performances with all training set sizes in terms of the
general metrics F-measure and AUC. In addition, Omni-
anomaly and NeuralHawkes in some cases are the second
best or the third best baseline methods, respectively, with
classification performances comparable to HESM. The per-
formances of the rest baseline methods, however, are poorer
than the above three methods, although AnomRank, HAInt-
LSTM, NHA-LSTM and THP show relatively comparable
performances with Omnianomaly and Neuralhawkes. As
the best-performed method, HESM also demonstrates its
robustness to different training set sizes. Indeed, HESM
performs almost the same on 30%, 60% and 90% training
sets in terms of AUC, and the gap between 30% and 60%
training sets in terms of F-measure is merely 3%.

The excellent performance of Omnianomaly is not un-
usual. It captures complex temporal patterns of multivariate
time series, which are right the key tasks of HESM in his-
torical influence learning as well as the sequence correlation
learning. The success of NeuralHawkes is worth noting. It
indicates that the time dependency information and his-
torical influences are necessary for modeling behavioral
patterns, which indeed supports the historical influence
learning of HESM. Finally, it is interesting that LSTM and
GRU achieve the near-to-perfect recall values in 30% and

TABLE 4
Ablation Study Results

Methods Precision Recall F-measure AUC
HESM 0.9708 0.8567 0.9094 0.9641
w/o Hawkes 0.8963 0.8056 0.8360 0.8976
w/o corr 0.9000 0.7212 0.8004 0.9154
w/o att 0.9330 0.8136 0.8684 0.9417

60% cases, which however are at the cost of low precision
values. This, in turn, illustrates why we design HESM and
introduce the Hawkes process to the LSTM model.

5.2.2 Performance Comparison on Special-type Datasets
To validate the effectiveness of detecting different types
of telecom frauds, we also conduct fraud detection exper-
iments by employing all the competitive methods on the
Recording and Genuine datasets, with 90% samples as train-
ing set, 5% samples as the validation set and the remaining
as the test set. Table 3 shows the results.

As shown in Table 3, with the best performances in bold,
the second best underlined and the third best in bold italic,
HESM still consistently outperforms all the baselines on the
two datasets, which well demonstrates the effectiveness of
HESM in detecting special types of telecom frauds. Omni-
anomaly and NeuralHawkes in most cases are the second
best and the third best baseline methods, respectively. These
results indeed agree with that of the complete dataset and
indicate the robustness of HESM in different fraud detection
scenarios.

It is also interesting that while the three baseline models
LSTM, GRU and RMTPP show much poorer performances
on the Genuine dataset than on the Recording dataset, the
rest models generate results of much comparability on the
two datasets. It is generally believed that genuine callers
are more like normal callers and thus are harder to be
caught than recording callers. But the introduction of the
Hawkes process and the ability of historical influences mod-
elling and sequence correlation modelling make HESM a
clever detector of crafty genuine callers. The other models
like NeuralHawkes, HAInt-LSTM, NHA-LSTM and Omni-
anomaly, share more or less commonplaces with HESM and
thus also perform well on the Genuine dataset.

5.2.3 Ablation Study of Modelling Components
Our model has three major components, i.e., historical influ-
ence learning with the Hawkes process, historical attention
mechanism, and sequence correlation learning. We here
conduct an ablation study on the complete telecom dataset
by removing these components respectively. We have 90%
samples as the training set, 5% samples as the validation
set and the remaining as the test set. HESM represents
the full model with all the components, HESMw/o Hwakes
removes the Hawkes-enhanced neural unit, HESMw/o att
removes the historical attentions, and HESMw/o corr removes
the sequence correlations.

As shown in Table 4, with the best performances in
bold, we can easily see that HESM with all the components
performs the best. Among the other models with partial
components, the performance of HESMw/o Hwakes without
the Hawkes process degrades the most, suggesting that the
historical influences captured by the Hawkes process is the
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most critical module in HESM. In contrast, the performance
of HESMw/o att is the closest to that of the full model, illus-
trating that the historical attention mechanism contributes
less than the other two components to the success of HESM.

5.2.4 Effectiveness Analysis of Modelling Components
To better understand how different modelling components
can enhance sequence learning of HESM, we further analyze
the effectiveness of these components individually.

(1) Historical influence learning. In our model, we
integrate the Hawkes process into the LSTM to capture
the historical neighbors’ influences on the occurrence of the
current neighbor. To validate the effectiveness of learning
historical influence, we extract the short-term historical in-
fluenceCt−1 and long-term historical influence gh in Eq.(9),
and then employ the tSNE method [55] to project the vectors
to 1-D space.

In Fig.4, the horizontal axis represents the time steps, and
the vertical axis denotes the projected values of the vectors.
As witnessed in Fig.4, the projected values of short-term
historical influence of fraudsters are generally higher than
that of long-term historical influence. This is due to the fact
that fraudsters maintain short-term contacts and frequently
switch between calling targets to harvest more victims,
which exhibits short-term historical influence patterns. In
contrast, the projected values of long-term historical influ-
ence of normal users are higher than that of short-term
historical influence, since normal users have long-term and
stable contacts with others and thus exhibit the significant
long-term historical influence patterns. These results vali-
date the effectiveness of learning the historical influence.

(2) Correlation learning. As observed in the exploratory
analysis, the correlation mode between the target neighbor
sequences and source neighbor sequences plays a vital role
in distinguishing fraudsters from normal callers. To demon-
strate whether we have correctly learned the correlations be-
tween the neighbor sequences, we extract the hidden-state
vectors of the target and the source neighbors sequences,
respectively, and then employ the tSNE method to project
the vectors to 1-D space.

In Fig.5, the horizontal axis represents the projected
value of hidden state vector of the target neighbor se-
quences, and the vertical axis denotes the projected value
of hidden state vector of the source neighbor sequences,
and the circle points denote the projected values at each
time step. As witnessed in Fig.5, normal users show obvious
positive correlations, while in contrast, fraudsters show
negative correlations. This proves that we can effectively
distinguish fraudsters from normal users based on their
correlation modes.

(3) Historical attention mechanism. To evaluate the
effectiveness of the historical attention mechanism with
regard to fraud detection, we examine the performances of
HESM and HESMw/o att (without the attention mechanism)
by varying the sequence length among 50, 100, 150, 200 dur-
ing the training procedure. In Fig.6, we can see that HESM
not only beats HESMw/o att with varying sequence lengths
in terms of precision and F-measure, but also shows much
more stable performances than HESMw/o att. This indicates
that the attention mechanism indeed can help our method
achieve improved performances by learning the enhanced
long-term historical neighbor influences in the data.

We further provide interpretability to the learned se-
quence representations using the attention mechanism. To
that end, we randomly sample 30 callers from the sets of
normal users and fraudsters, respectively, and draw the
attention weights with a heatmap. Each row in Fig.7 repre-
sents the attention weights at each time step, where a darker
color in the grid denotes a larger attention weight and
vice versa. Generally, in the same scale of color range, we
can find that the attention weights differ tremendously for
normal users and fraudsters. Most grids of the normal users
are light blue except for a small amount being deep blue at
several time steps. This indicates that the behaviors of the
normal users can be mainly influenced by several historical
neighbors; meanwhile, different normal users have varied
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cyclical characteristics of attention weights, showing that
they generally have distinctive historical influence patterns.
On the contrary, the attention weights for the fraudsters
concentrate on a narrow scale range without significant
differences, which corresponds to our previous observations
that fraudsters are less likely to maintain long-term contacts.

6 CONCLUSION

Fraud detection is generally a challenging task since fraud-
sters usually hide their illegal behaviors in a large number of
normal behaviors. In this paper, we argued that fraudulent
behaviors can be manifested in a temporal bipartite network
where both the consecutive and interactive behaviors are
considered. Along this line, we conducted an exploratory
analysis on real-world telecom data and discovered two
types of distinguishing behaviors for frauds, namely the
correlation mode and repetition mode. Inspired by these
observations, we proposed a novel Hawkes-enhanced se-
quence model (HESM) to learn the sequential patterns from
the neighbor sequences for the purpose of fraud detection.
HESM integrated the Hawkes process into the neural units
of traditional LSTM by designing a decay gate to allow for
the long-term historical influences, and a historical atten-
tion mechanism was developed to account for the repeti-
tion mode. In addition, the correlations of different types
of neighbor sequences were modeled with a correlation
gate. Extensive experiments on real-world telecom datasets
demonstrated the superiority of our method over the state-

of-the-art sequence-based methods, and the effectiveness of
the major modeling components have been validated.
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D. Makhija, M. Kumar, and C. Faloutsos, “Edgecen-



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3150803, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

tric: Anomaly detection in edge-attributed networks,”
CoRR, vol. abs/1510.05544, 2015.

[38] K. Shin, B. Hooi, and C. Faloutsos, “Fast, accurate, and
flexible algorithms for dense subtensor mining,” ACM
Transactions on Knowledge Discovery from Data, vol. 12,
no. 3, pp. 1–30, 2018.

[39] J. Sun, C. Faloutsos, S. Papadimitriou, and P. Yu,
“Graphscope: Parameter-free mining of large time-
evolving graphs,” 01 2007, pp. 687–696.

[40] S. Liu, B. Hooi, and C. Faloutsos, “Holoscope:
Topology-and-spike aware fraud detection,” in Proceed-
ings of the 2017 ACM on Conference on Information and
Knowledge Management, ser. CIKM ’17. New York, NY,
USA: ACM, 2017, pp. 1539–1548.

[41] C. Chelmis and R. Dani, “Assist: Automatic summa-
rization of significant structural changes in large tem-
poral graphs,” in the 2017 ACM, 2017.

[42] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “Denseal-
ert: Incremental dense-subtensor detection in tensor
streams,” 2017.

[43] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos, “Fast and
accurate anomaly detection in dynamic graphs with a
two-pronged approach,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, ser. KDD ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 647657.

[44] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos,
“Midas: Microcluster-based detector of anomalies in
edge streams,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 4, pp. 3242–3249, 2020.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[46] B. I. Godoy, V. Solo, J. Min, and S. A. Pasha, “Local
likelihood estimation of time-variant hawkes models,”
in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2016.

[47] G. Liu, J. Guo, Y. Zuo, J. Wu, and R. yong Guo,
“Fraud detection via behavioral sequence embedding,”
Knowledge & Information Systems, no. 2, 2020.

[48] P. T. D. Boer, D. P. Kroese, S. Mannor, and R. Y. Rubin-
stein, “A tutorial on the cross-entropy method,” Annals
of Operations Research, vol. 134, no. 1, pp. 19–67, 2005.

[49] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” Computer Science, 2014.

[50] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning
phrase representations using rnn encoder-decoder for
statistical machine translation,” Computer Science, 2014.

[51] N. Du, H. Dai, R. Trivedi, U. Upadhyay, and L. Song,
“Recurrent marked temporal point processes: Embed-
ding event history to vector,” in Acm Sigkdd Interna-
tional Conference on Knowledge Discovery & Data Mining,
2016.

[52] S. Xiao, J. Yan, S. M. Chu, X. Yang, and H. Zha,
“Modeling the intensity function of point process via
recurrent neural networks,” 2017.

[53] Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng,
“Deephawkes: Bridging the gap between prediction
and understanding of information cascades,” in
Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, ser. CIKM ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 11491158. [Online]. Available:
https://doi.org/10.1145/3132847.3132973

[54] J. Guo, G. Liu, Y. Zuo, and J. Wu, “Learning sequential
behavior representations for fraud detection,” in 2018
IEEE International Conference on Data Mining (ICDM),
2018.

[55] G. E. Hinton, “Visualizing high-dimensional data using
t-sne,” Journal of Machine Learning Research, vol. 9, no. 2,
pp. 2579–2605, 2008.

Yan Jiang is currently working toward the Ph.D.
degree in the School of Economics and Manage-
ment at Beihang University, China. Her research
interests generally lie in the areas of data mining
and machine learning, with special interests in
anomaly detection.

Guannan Liu is currently an Associate Profes-
sor in the Department of Information Systems
with Beihang University, Beijing, China. He re-
ceived the Ph.D. degree from Tsinghua Univer-
sity, China. His research interests include data
mining, business intelligence, and anomaly de-
tection. His work has been published in the
journal of IEEE TKDE, ACM TKDD, ACM TIST,
Decision Support Systems, etc., and also in the
conference proceedings such as KDD, ICDM,
SDM etc.

Junjie Wu received his Ph.D. degree in Manage-
ment Science and Engineering from Tsinghua
University. He is currently a full Professor in Infor-
mation Systems Department of Beihang Univer-
sity, the director of the Research Center for Data
Intelligence (DIG), and the director of the In-
stitute of Artificial Intelligence for Management.
His general area of research is data mining and
complex networks. He is the recipient of NSFC
Distinguished Young Scholars award and MOE
Changjiang Young Scholars award in China.

Hao Lin received his bachelor and Ph.D. degree
from Beihang University, Beijing, China, in 2013
and 2020 respectively. He is currently a postdoc
researcher in Department of Informatics, Tech-
nical University of Munich. His research inter-
ests generally lie in the areas of data mining
and machine learning, with special interests in
temporal data analysis and heterogeneous data
fusion. His work has been published in refereed
journals and conference proceedings, including
IEEE TKDE, ACM TOIS, and AAAI.


