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Abstract

The Lipschitz constant plays a crucial role in certifying the robustness of neural
networks to input perturbations. Since calculating the exact Lipschitz constant is
NP-hard, efforts have been made to obtain tight upper bounds on the Lipschitz
constant. Typically, this involves solving a large matrix verification problem, the
computational cost of which grows significantly for both deeper and wider net-
works. In this paper, we provide a compositional approach to estimate Lipschitz
constants for deep feed-forward neural networks. We first obtain an exact decom-
position of the large matrix verification problem into smaller sub-problems. Then,
leveraging the underlying cascade structure of the network, we develop two algo-
rithms. The first algorithm explores the geometric features of the problem and
enables us to provide Lipschitz estimates that are comparable to existing methods
by solving small semidefinite programs (SDPs) that are only as large as the size
of each layer. The second algorithm relaxes these sub-problems and provides a
closed-form solution to each sub-problem for extremely fast estimation, altogether
eliminating the need to solve SDPs. The two algorithms represent different levels
of trade-offs between efficiency and accuracy. Finally, we demonstrate that our
approach provides a steep reduction in computation time (as much as several thou-
sand times faster, depending on the algorithm for deeper networks) while yielding
Lipschitz bounds that are very close to or even better than those achieved by state-
of-the-art approaches in a broad range of experiments*. In summary, our approach
considerably advances the scalability and efficiency of certifying neural network
robustness, making it particularly attractive for online learning tasks.

1 Introduction

The Lipschitz constant, which quantifies how a neural networks output varies in response to changes
in its inputs, is a crucial measure in providing robustness certificates [1, 2] on downstream tasks
such as ensuring resilience against adversarial attacks [3, 4], stability of learning-based models or
systems with neural network controllers [5–9], enhancing generalizability [10], improving gradient-
based optimization methods and controlling the rate of learning [11][12]. The problem of calcu-
lating the exact Lipschitz constant is NP-hard [13]. Therefore, efforts have been made to estimate
tight upper bounds for the Lipschitz constant of feed-forward neural networks (FNNs) [14–18] and
other architectures such as convolutional neural networks (CNNs) [19–21]. Typical approaches in-
clude formulating a polynomial optimization problem [22] or bounding the Lipschitz constant via
quadratic constraints and semidefinite programming (SDP) [14], which in turn requires solving a
large-scale matrix verification problem whose computational complexity grows significantly with

*https://github.com/YuezhuXu/ECLipsE
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both the depth and width of the network. These approaches have also motivated the development of
methods to design neural networks with certifiable robustness guarantees [19, 23–25].

Contribution. In this paper, we provide a scalable compositional approach to estimate Lipschitz
constants for deep feed-forward neural networks. We demonstrate steep reductions in computation
time (as much as several thousand times faster than the state-of-the-art depending on the experiment),
while obtaining Lipschitz estimates that are very close to or even better than those achieved by
state-of-the-art approaches. Specifically, we develop two algorithms, representing different levels
in the trade-off between accuracy and efficiency, allowing for application-specific choices. The first
algorithm, ECLipsE, involves estimating the Lipschitz constant through a compositional layer-by-
layer solution of small SDPs that are only as large as the weight matrix in each layer. The second
algorithm, ECLipsE-Fast, provides a closed-form solution to estimate the Lipschitz constant,
completely eliminating the need to solve any matrix inequality SDPs. Both algorithms provably
guarantee the existence of solutions at each step to generate tight Lipschitz estimates. In summary,
our work significantly advances scalability and efficiency in certifying neural network robustness,
making it applicable to a variety of online learning tasks.

Theoretical Approach. We begin with the large matrix verification SDP for Lipschitz constant esti-
mation under the well-known framework LipSDP [14]. To avoid handling a large matrix inequality,
we employ a sequential Cholesky decomposition technique to obtain an exact decomposition of the
large matrix verification problem into a series of smaller, more manageable sub-problems that are
only as large as the size of the weight matrix in each layer. Then, observing the cascade structure of
the neural network, we develop (i) algorithm ECLipsE, which characterizes the geometric features
of the optimization problem and enables us to provide an accurate Lipschitz estimate and (ii) algo-
rithm ECLipsE-Fast, which further relaxes the sub-problems, and yields a closed-form solution
for each sub-problem that altogether eliminates the need to solve any SDPs, resulting in extremely
fast implementations.

Related Work. The simplest way to estimate the Lipschitz constans is to provide a naive upper
bound using the product of induced weight norms, which is rather conservative [26]. Another ap-
proach is to utilize automatic differentiation to approximate a bound, which is not a strict upper
bound, although it is often so in practice [13]. Additionally, compositions of nonexpansive av-
eraged operators and affine operators [16], Clarke Jacobian based approaches and other methods
focusing on local Lipschitz constants [17][27] have also been studied. Recently, optimization-based
approaches such as sparse polynomial optimization [22] and SDP methods such as the canonical
LipSDP framework [14] have been successful in providing tighter Lipschitz bounds. SDP-based
methods specifically exploit the slope-restrictedness of the activation functions to cast the problem of
estimating a Lipschitz constant as a linear matrix verification problem. However, the computational
cost of such methods explodes as the number of layers increases. A common strategy to address this
is to ignore some coupling constraints among the neurons to reduce the number of decision variables,
yielding a more scalable algorithm at the expense of estimation accuracy [14]. Another strategy is
to exploit the sparsity of the SDP using graph-theoretic approaches to decompose it into smaller
linear matrix inequalities (LMI) [15][28]. Along similar lines, [21] and [29] employ a dissipativity-
based method and dynamic convolutional partition respectively to derive layer-wise LMIs that are
applicable to both FNNs and CNNs. Very recent developments also focus on enhancing the scalabil-
ity of SDP-based implementations through eigenvalue optimization and memory improvement [20],
which are compatible with autodiff frameworks such as PyTorch and TensorFlow.

2 Problem Formulation and Background
Notation. We define ZN = {1, . . . , N}, where N is a natural number excluding zero. A symmetric
positive-definite matrix P ∈ Rn×n is represented as P > 0 (and as P ≥ 0, if it is positive semi-
definite). We denote the largest singular value or the spectral norm of matrix A by σmax(A). The
set of positive semi-definite diagonal matrices is written as D+.

2.1 Problem Formulation

We consider a feedforward neural network (FNN) of l layers with input z ∈ Rd0 and output y ∈ Rdl

defined as y = f(z). The function f is recursively formulated with layers Li, i ∈ Zl, defined as

Li : z
(i) = ϕ(v(i)) ∀i ∈ Zl−1, Ll : y = f(z) = z(l) = v(l), z(0) = z, (1)
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where v(i) = Wiz
(i−1)+bi with Wi and bi representing the weight and bias for layer Li respectively,

and ϕ : Rdi → Rdi is a nonlinear activation function that acts element-wise on its argument. The
last layer Ll is termed the output layer. We denote the number of neurons in layer Li by di, i ∈ Zl.
Definition 1. A function f : Rd0 → Rdl is Lipschitz continuous on Z ⊆ Rd0 if there exists a
constant L > 0 such that ∥f(z1) − f(z2)∥2 ≤ L∥z1 − z2∥2, ∀z1, z2 ∈ Z. The smallest positive L
satisfying this inequality is termed the Lipschitz constant of the function f .

Without loss of generality, we assume Wi ̸= 0, i ∈ Zl, as any weights being 0 will lead to the trivial
case where the output corresponding to any input will remain the same after that layer. Our goal is to
provide a scalable approach to give an efficient and accurate upper bound for the Lipschitz constant
L > 0. Note that the proofs of all the theoretical results in this paper are included in Appendix A.

2.2 Preliminaries

We begin with a slope-restrictedness property satisfied by most activation functions, which is typi-
cally leveraged to to derive SDPs for Lipschitz certificates [14].
Assumption 1 (Slope-restrictedness). For the neural network defined in (1), the activation function
ϕ is slope-restricted in [α, β], α < β in the sense that ∀v1, v2 ∈ Rn, we have α(v1 − v2) ≤
ϕ(v1)− ϕ(v2) ≤ β(v1 − v2) element-wise. Consequently, we have that for ∀Λ ∈ D+,[

v1 − v2
ϕ(v1)− ϕ(v2)

]T [
pΛ −mΛ
−mΛ Λ

] [
v1 − v2

ϕ(v1)− ϕ(v2)

]
≤ 0, p = αβ, m = (α+ β)/2. (2)

Now, we can obtain an upper bound for the Lipschitz constant as follows; this result is equivalent to
the well-known LipSDP framework [14].
Theorem 1 (LipSDP). For the FNN (1) satisfying Assumption 1, if there exists F > 0 and positive
diagonal matrices Λi ∈ D+, i ∈ Zl−1 such that with p = αβ and m = α+β

2 ,

I + pWT
1 Λ1W1 −mWT

1 Λ1 0 ... 0

−mΛ1W1 Λ1 + pWT
2 Λ2W2 −mWT

2 Λ2 ... 0

0 −mΛ2W2 Λ2 + pWT
3 Λ3W3 ... 0

...
0 ... −mΛl−2Wl−2 Λl−2 + pWT

l−1Λl−1Wl−1 −mWT
l−1Λl−1

0 0 ... −mΛl−1Wl−1 Λl−1 − FWT
i+1Wi+1


> 0,

(3)

then
∥∥∥z(l)2 − z

(l)
1

∥∥∥
2
≤
√

1/F
∥∥∥z(0)2 − z

(0)
1

∥∥∥
2
, which provides a sufficient condition for the Lipschitz

constant L to be upper bounded by
√
1/F .

Remark 1. LipSDP provides three variants that tradeoff accuracy and efficiency, namely, LipSDP-
Network, LipSDP-Neuron, and LipSDP-Layer, whose scalability increases sequentially at the ex-
pense of decreased accuracy. However, [30] provides a counterexample showing that the Lipschitz
estimate from LipSDP-Network is not a strict upper bound; thus, only LipSDP-Neuron, and LipSDP-
Layer are valid. Theorem 1 here directly corresponds to LipSDP-Neuron. If all Λi, i ∈ Zl−1 in (3)
are set to multiples of identity matrices, that is, λiI , i ∈ Zl−1, then it corresponds to LipSDP-Layer.

Assumption 1 holds for all commonly used activation functions; for example, it holds with α = 0,
β = 1, that is, p = 0,m = 1/2 for the ReLU, sigmoid, tanh, exponential linear functions. Therefore,
we focus on this case in this work.

3 Methodology

We now develop two fast compositional algorithms based on LipSDP-Layer and Lipschitz-Neuron
respectively. Both algorithms are not only scalable and significantly faster, but also provide compa-
rable estimates for the Lipschitz constant.

3.1 Exact Decomposition

We circumvent direct solution of the large matrix inequality in (3), which becomes computationally
prohibitive as the FNN (1) grows deeper. Instead, we develop a sequential block Cholesky decom-
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position method, akin to the technique introduced in [31], also expanded in [32, 33]. We first restate
Lemma 2 of [31] below.
Theorem 2 (Restatement of Lemma 2 of [31]). A symmetric block tri-diagonal matrix defined as

P1 R2 0 ... 0
RT

2 P2 R3 ... 0
0 RT

3 P2 R3 ... 0
...

0 ... 0 RT
l−1 Pl−1 Rl

0 ... 0 RT
l Pl


, (4)

is positive definite if and only if Xi > 0, ∀i ∈ {0} ∪ Zl−1, where

Xi =

{
Pi if i = 0,

Pi −RT
i X

−1
i−1Ri if i ∈ Zl−1.

(5)

Theorem 3. Let Pl be defined as in (3) with p = 0,m = 1/2. Then, the Lipschitz certificate Pl > 0
holds if and only if the following sequence of matrix inequalities is satisfied:

Mi > 0, ∀i ∈ Zl−2, Ml−1 − FWT
l Wl > 0, (6)

where

Mi =

{
I i = 0

Λi − 1
4ΛiWi(Mi−1)

−1
l WT

i Λi i ∈ Zl−1
. (7)

Theorem 3 provides an exact decomposition of (3), and allows us to establish necessary and suffi-
cient conditions through small matrix inequalities that scale with the size of the weight matrices of
each layer, rather than that of the entire network. To accurately estimate the Lipschitz constant, we
need to decide on Λi, i ∈ Z1−1 that generate a tight upper bound at the last stage. In other words, we
want Ml−1 − FWT

l Wl > 0 to yield the smallest estimate for
√

1/F . In the following subsection,
we provide compositional algorithms to decide the appropriate Λi, i ∈ Z1−1 sequentially, so that we
only need to solve one small problem corresponding to each layer.

3.2 Compositional Algorithms

We first propose two practical algorithms here. The theory supporting the algorithms and the geo-
metric intuition are deliberately deferred, and will be thoroughly discussed in a the next subsection.

The first algorithm, ECLipsE, explores the geometric features that enables us to provide an accurate
Lipschitz estimate by solving small semidefinite programs (SDPs), which are of the size of the
weight matrices on each layer. The second algorithm, ECLipsE-Fast relaxes the sub-problems
at each stage and yields a closed-form solution for each sub-problem that makes it extremely fast.
These algorithms represent different trade-offs between efficiency and accuracy; one may choose
ECLipsE if pursuing accuracy, and ECLipsE-Fast for applications where time is of the essence.

We observe in (7) that Mi is obtained in a recursive manner and depends on Λi and Mi−1, i ∈ Zl−1.
Therefore, we decide Λi and then calculate Mi for i ∈ Zl−1 sequentially. Thus, these two algorithms
can be implemented layer-by-layer in a compositional manner.

Concretely, for ECLipsE, we obtain Λi, i ∈ Zl−1 at each stage i using the information from the
next layer, i.e. Wi+1, by solving the following small SDP:

max
ci

ci s.t.
[

Λi − ciW
T
i+1Wi+1

1
2Λi(Wi(Mi−1)

−1WT
i )

1
2

1
2 (Wi(Mi−1)

−1WT
i )

1
2Λi I

]
> 0, Λi ∈ D+, ci > 0

(8)

For ECLipsE-Fast, Λi is reduced to λiI , i ∈ Zl−1 and λi is calculated in closed-form as

λi =
2

σmax

(
Wi(Mi−1)−1WT

i

) . (9)

Note that this completely eliminates the need to solve matrix inequality SDPs altogether. At last,
after all Λis, i ∈ Zl−1 are decided, we obtain the smallest 1/F , which yields the smallest Lipschitz
estimate L =

√
1/F , as follows

1/F = σmax

(
WT

l Wl(Ml−1)
−1
)
. (10)
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Remark 2. We choose to directly calculate the smallest 1/F rather than first derive the largest F .
This is because obtaining the largest F first involves taking the inverse of WT

l Wl, which can cause
numerical issues due to potential singularity of WT

l Wl. In contrast, directly calculating the smallest
1/F involves taking the inverses of Ml−1, which is already guaranteed to be strictly positive definite
at layer l − 1 when deciding Λl−1.

We summarize the algorithms as one in Algorithm 1. Algorithms ECLipsE and ECLipsE-Fast
are respectively preferable based on whether the priority is on accuracy or speed.

Algorithm 1 ECLipsE and ECLipsE-Fast

Input Weights {Wi}li=1 from a FNN (1) with activation function slope-restricted in [0, 1]
Output Lipschitz estimate L

1: Set M0 = I
2: for i = 1, 2, ..., l − 1 do
3: if ECLipsE (pursuing accuracy) then
4: Obtain Λi from the optimal solution of (8)
5: else if ECLipsE-Fast (pursuing speed) then
6: Obtain λi from (9)
7: Λi ← λiI
8: end if
9: Obtain Mi from (7) with Λi and Mi−1

10: end for
11: Obtain 1/F from (10)
12: Return L =

√
1/F

3.3 Theory

Now we dive into the cascade structure of feed-forward neural networks and demonstrate the theory
behind the two algorithms. We analyze the compositional algorithms in Section 3.2 in a backward
manner, starting with the output layer. After all Λi, i ∈ Zl−1 are decided, Mi > 0, i ∈ Zl−2 hold.
From Theorem 3, it remains to guarantee that Ml−1 − FWT

l Wl > 0, and consequently, (10), for
which we state the following result.
Proposition 1. For given Λi, i ∈ Zl−1 that satisfies Mi > 0, i ∈ Zl−2, the tightest upper bound for

Lipschitz constant is L =
√
σmax

(
WT

l Wl(Ml−1)−1
)
.

Now, at stage l − 1, when deciding Λl−1, Λi, i ∈ Zl−2 are fixed and thus Ml−2 is fixed. According
to Proposition 1, we would like to choose Λl−1 such that σmax

(
WT

l Wl(Ml−1)
−1
)
, where Ml−1 is

a function of Λl−1, is as small as possible. We have the following result.
Lemma 1. If Mi > 0, then WT

i+1Wi+1(Mi)
−1 and Wi+1(Mi)

−1(Wi+1)
T share the same non-zero

eigenvalues.

Note that at stage i, it is guaranteed that Mi > 0. Taking i = l − 1, Lemma 1 infers that it is
equivalent to minimize σmax

(
Wl(Ml−1)

−1WT
l

)
when deciding on Λl−1. Note that Ml−1 > 0,

and consequently, the existence of M−1
l−1 is already guaranteed when we reach the last stage. For the

sake of conciseness, we define Fi ≜ Wi(Mi−1)
−1WT

i i ∈ Zl−1. From (7), Mi = Λi − 1
4ΛiFiΛi.

We further write out the recursive expression for Fi as

Fi+1 = Wi+1(Mi)
−1WT

i+1 =

{
W1W

T
1 i = 0

Wi+1(Λi − 1
4ΛiFiΛi)

−1WT
i+1 i ∈ Zl−1

. (11)

Lemma 2. For any constant γ ∈ (0, 1), any Λi ∈ D+ that satisfies Mi = Λi − 1
4ΛiFiΛi > 0

is also a feasible solution for M̃i ≜ Λi − 1
4Λi(γFi)Λi > 0. In other words, the feasible region

{Λi : Mi > 0,Λi ∈ D+} ⊆ {Λi : M̃i > 0,Λi ∈ D+}.

Lemma 2 gives us the observation that a contraction Fi → γFi, γ ∈ (0, 1) yields a larger fea-
sible space for Λi ∈ D+ to ensure Mi > 0. Meanwhile, (11) shows that for any given Λi, a

5



smaller Fi leads to a smaller Fi+1 for the next stage. We can characterize how ‘small’ Fi is
by its spectral norm σmax(Fi). Then, minimizing σmax(Fi) aligns with our goal of minimizing
σmax

(
WT

l Wl(Ml−1)
−1
)
= σmax

(
Wl(Ml−1)

−1WT
l

)
= σmax(Fl) at the last stage. In other

words, a smaller F1 at the start will generally translate to a tighter Lipschitz estimate at output layer
if we always choose to minimize the spectral norm σmax(Fi) at each stage.

Now we focus on how to specifically optimize Λi, i ∈ Zl−1. At stage i, the goal is to seek for the
Λi that minimizes σmax(Fi+1), where Fi+1 = Wi+1(Λi − 1

4ΛiFiΛi)
−1WT

i+1 as in (11). Note that
Mi−1 and Fi are already fixed and can be regarded as constants at the i-th stage.

Proposition 2. If there exists a singular matrix N ≥ 0 such that Mi = ciW
T
i+1Wi+1 + N , with

constant ci > 0, then σmax(Fi+1) = 1/ci, ∀i ∈ Zl−1.

In other words, we need to find the largest ci > 0 to minimize σmax(Fi+1) = 1/ci. Recall that
Mi = Λi − 1

4ΛiFiΛi is a function of Λi. We state the following proposition that is used to derive
the small sub-problems at each stage.

Proposition 3. Consider the following optimization problem for ∀i ∈ Zl−1.

max
ci

ci s.t. Λi −
1

4
ΛiWi(Mi−1)

−1WT
i Λi − ci(W

T
i+1Wi+1) > 0, Λi ∈ D+, ci > 0

(12)
Then, the optimal value ci is the largest constant such that Mi can be written as Mi =
ciW

T
i+1Wi+1 + N , where N is some singular matrix such that N ≥ 0. Moreover, the feasible

region for the optimization problem is always nonempty.

Geometric Analysis: We illustrate the process of achieving the largest ci > 0 in Fig. 1. We geo-
metrically represent a positive semidefinite matrix by the ellipsoid generated by the transformation
of a unit ball in the Euclidean space by the matrix. For simplicity of exposition, we refer to this
ellipsoid as the ‘shape’ of the matrix. We plot the shapes of Mi and WT

i+1Wi+1 in green and blue,
respectively, in 2D. The positive definiteness of the constraint in (12) is equivalent to the ellipsoid
of WT

i+1Wi+1 being contained in the ellipsoid corresponding to Mi/ci. Specifically, when ci > 1,
Fig. 1a demonstrates the maximum contraction of Mi, corresponding to the largest ci, such that
ellipsoid of WT

i+1Wi+1 is still contained in ellipsoid of ciMi. Similarly, for the case where ci < 1,
Fig. 1b demonstrates the minimum extent (the smallest 1/ci) to which Mi needs to expand, such
that the ellipsoid of WT

i+1Wi+1 is contained. Algebraically, in both cases, ci is the ratio of the
lengths of the green and pink arrows. By Proposition 2, the resulting ellipsoid (depicted in pink) is
Mi/ci = WT

i+1Wi+1+N/ci for both cases, and is tangent to the ellipsoid of WT
i+1Wi+1. Moreover,

the vector pointing from the origin to the tangency point aligns with the direction of eigenvectors
(the grey vector v in the plots) corresponding to the zero eigenvalues of the singular matrix N ≥ 0.

(a) Intuition with ci > 1 (b) Intuition with ci < 1

Figure 1: Geometric Analysis of ECLipsE

Combining Proposition 2 and 3, we can derive an optimization problem to sequentially find the
appropriate Λi, i ∈ Zl−1. The first constraint in (12) is quadratic in Λi, which makes it unattractive
for practical purposes. Therefore, we apply the Schur Complement to transform it into the linear
matrix inequality (LMI) constraint in (8). Thus, the optimization problem in Proposition 3 becomes
equivalent to the SDP in (8), yielding algorithm ECLipsE. Notice that there are several ways to
write the Schur complement of the constraint in (12). We choose this specific structure to avoid
singularity of the diagonal entries and ensure positive definiteness.

ECLipsE-Fast achieves remarkable speed by further reducing Λi, i ∈ Zl−1 to a multiple of
identity matrix λiI , where λi > 0, and by relaxing the sub-problems. While our goal remains to
minimize σmax(Fi+1) = σmax

(
Wi+1(Λi − 1

4ΛiFiΛi)
−1WT

i+1

)
, we intentionally disregard infor-

mation from Wi+1, and instead focus solely on minimizing the spectral norm of (Λi− 1
4ΛiFiΛi)

−1.
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Roughly speaking, a smaller σmax

(
(Λi − 1

4ΛiFiΛi)
−1
)

yields a smaller σmax(Fi+1). This relax-
ation allows us to derive a closed-form solution for Λi, i ∈ Zl−1 as follows.
Proposition 4. Choosing λi =

2
σmax(Fi)

> 0 minimizes σmax

(
(Λi − 1

4ΛiFiΛi)
−1
)

where Λi =

λiI under the constraint that Mi = Λi − 1
4ΛiFiΛi > 0. Moreover, this closed-form solution for λi

always satisfies Mi > 0, i ∈ Zl−1.

By the definition of Fi, Proposition 4 matches with (9), yielding algorithm ECLipsE-Fast. Al-
though this relaxation may result in a loss of tightness, the closed-form solution offers the advantage
of significantly increased computational speed.

Geometric Analysis: We now demonstrate the geometric analysis behind the development of
ECLipsE-Fast and compare it with ECLipsE in the case where ci > 1 (Fig. 2). We also
include the case ci < 1 in Appendix B. The key idea behind ECLipsE-Fast is that instead of
keeping the shape of Mi fixed, and contracting the ellipsoid itself, as in ECLipsE, we first find
the largest inscribed ball (dark green) for the ellipsoid of Mi. Then, we contract this ball to the
maximum extent such that it still contains WT

i+1Wi+1. The resulting ball (dark blue) is precisely
the smallest circumscribing ball for the ellipsoid of WT

i+1Wi+1. Note that this approach serves as
an approximation for the process of contraction depicted in Fig. 7b (corresponding to ECLipsE),
thus yielding a smaller ci. We use this approximation to achieve a closed-form solution, which
significantly increases the computational speed.

(a) Geometric Intuition of ECLipsE-Fast (b) Geometric Intuition of ECLipsE

Figure 2: Comparison between ECLipsE-Fast and ECLipsE with ci > 1

Remark 3. In Lemma 2, the analysis initially fixes the shape of Fi. However, when optimizing
Λi, the shape of the feasible region depends on Fi, which can vary with different Λi−1, i ∈ Zl.
Thus, this approximation, which allows for a scalable distributed algorithm to solve the centralized
problem (3) introduces an unavoidable but minor tradeoff in achieving global optimality.

4 Experiments

We implement our algorithms† on randomly generated neural networks and ones trained on the
MNIST dataset. The details of the experimental setup, and training of the neural networks (both
randomly generated and trained on the MNIST dataset) are described in Appendix D.

Baselines.‡ For ECLipsE, Λi, i ∈ Zl−1 can have different diagonal entries, which bench-
marks to LipSDP-Neuron. For ECLipsE-Fast, Λi = λiI , i ∈ Zl−1, which benchmarks
to LipSDP-Layer. Additionally, we compare our Lipschitz estimates to the naive upper bound
Lnaive =

∏l
i=1 ∥Wi∥2[26], CPLip [16] and LipDiff [20]. The codes for these baselines are avail-

able at [34, 35, 20]. Note that LipDiff is accelerated using a node with 2 NVIDIA A100 GPUs (80G)
and 512 GB of memory.

4.1 Randomly Generated Neural Networks

We first consider randomly generated networks, where the number of layers are chosen from
{2, 5, 10, 20, 30, 50, 75, 100}, and number of neurons are chosen from {20, 40, 60, 80, 100}, amount-
ing to a total of 40 experiments for each algorithm (including the baselines). We quantify the com-
putation time and tightness of the Lipschitz bounds (raw data in Appendix E). The Lipschitz bounds
presented in the following figures are normalized to the trivial upper bound for ease of comparison.

†https://github.com/YuezhuXu/ECLipsE
‡Note that SeqLip [13] is also an often-used benchmark; however, we do not consider it since it does not

represent a true upper bound for the Lipschitz constant. We also note that we do not include Chordal-LipSDP
[15] as a baseline , since only the case where τ = 0 in that work is valid, and all other cases, are no longer valid
in certifying the Lipschitz constant as discussed in Remark 1 as well as [15].
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Case 1: Varying network depth (number of layers). We select a network with 80 neurons per
layer, and demonstrate the scalability of our algorithm as network depth increases. Note that all
baseline approaches fail to provide a Lipschitz estimate within a computational cutoff time of 15
min for networks larger than this size (see results in Appendix E). As the number of layers increases,
the computation time for CPLip algorithm explodes (the algorithm does not return a Lipschitz esti-
mate within the cutoff time beyond 20 layers); however, CPLip provides the most accurate estimates
in smaller networks. LipDiff provides inadmissible Lipschitz estimates even for moderate networks,
returning as much as 10-100 times the trivial bound (see Table 2a, Appendix E for the estimates).
Also, while LipDiff has similar computational time for smaller networks, computational time grows
for deeper networks as recorded in Appendix E Table 2b. Consequently, we do not include these re-
sults in the plots. LipSDP-Neuron and LipSDP-Layer are also scalable to some extent; however, they
fail for a networks of 30 and 50 layers respectively. In contrast, the computation time for ECLipsE
and ECLipsE-Fast stays low and grows only linearly with respect to the number of layers (Fig.
3b). Notably, ECLipsE-Fast is significantly faster (thousands of times) than LipSDP-Layer,
owing to the closed-form solution at each stage, while ECLipsE is also considerably faster than
LipSDP-Neuron. The Lipschitz estimates given by algorithms ECLipsE and ECLipsE-Fast
are very close to the ones from LipSDP-Neuron and LipSDP-Layer respectively (Fig. 3a), and out-
perform the trivial bound. As the number of layers increases, the normalized Lipschitz estimates are
smaller, indicating that our algorithms are well-suited to very deep networks.

0 20 40 60 80 100

Number of Layers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 L

ip
s
c
h

it
z
 E

s
ti
m

a
te

s

Tightness of Lipschitz Estimates for FNN with 80 Neurons

ECLipsE

ECLipsE-Fast

LipSDP-neuron

LipSDP-layer

CPLip

(a) Lipschitz estimates normalized to trivial bound

0 20 40 60 80 100

Number of Layers

0

50

100

150

200

250

300

350

400

T
im

e

Time Used for FNN with 80 Neurons

ECLipsE

ECLipsE-Fast

LipSDP-neuron

LipSDP-layer

CPLip

(b) Computation time (seconds)

Figure 3: Performance of ECLipsE-Fast and ECLipsE, with respect to baselines for increasing
network depth, with 80 neurons per layer. The red x markings indicate that the algorithm fails to
provide an estimate within the computational cutoff time beyond this network size.

Case 2: Varying neural network width (number of neurons per layer). We now examine the per-
formance of our algorithms for wider (more hidden neurons per layer), rather than deeper networks
(with more layers), and demonstrate the results for networks with 20 and 50 layers respectively (Fig.
4). While the complete raw data is presented in Appendix E, we discuss the results for 20 and 50
layer networks here, since they represent the network sizes where different baselines fail to return
Lipschitz estimates beyond the computation cutoff time of 15 min. Note that while LipDiff also
manages to generate estimates for all network sizes in our 50 layers case, it once again provides
inadmissible Lipschitz constants, returning as much as 104− 106 times the trivial bound. Therefore,
we do not include these results in Fig. 4 (see Tables 3a and 3b in Appendix E for the estimates
and computation time.) We can observe from Figs. 4b and 4d that the computation time needed
for CPLip, LipSDP-Layer, and LipSDP-Neuron significantly increases with the number of neurons,
while the computation time of our method still grows linearly. Meanwhile, the Lipschitz estimates
from algorithms ECLipsE and ECLipsE-Fast are close to the ones from LipSDP-Neuron and
LipSDP-Layer respectively (Figs. 4a and 4c). Thus, we can conclude that our method significantly
improves scalability for wider neural networks.

Case 3: Comparison with LipSDP implementations. In order to address the scalability issue as
the size of the network grows, LipSDP utilizes a splitting approach, where the network is split into
smaller sub-networks and the Lipschitz constants for each sub-network are composed at the end to
obtain the final estimate. We benchmark our approach with respect to the performance of LipSDP-
Layer and LipSDP-Neuron considering different sub-network sizes. Note that our algorithms do not
require any splitting, since they remain scalable to large networks. As the FNNs are larger than the
ones in previous cases, we change the cutoff time to 30 minutes. We conduct two sets of experiments
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Figure 4: Performance of ECLipsE-Fast and ECLipsE with respect to baselines as network
width increases, for a randomly generated network with 20 layers ((a) and (b)) and 50 layers ((c)
and (d)). The Red x markings indicate that the algorithms fail to provide an estimate within the
computational cutoff time of 15 min beyond this network size.

to study how our algorithms perform on considerably deep neural networks and how network width
affects these results.

In the first set of experiments, we consider FNNs with 100 layers, with the number of neurons chosen
from the set {80,100,120,140,160}. The splitting sizes for LipSDP-Neuron and LipSDP-Layer are
3, 5 and 10. We represent different FNN sizes by shapes and different algorithms by the color in

Figure 5: Computation time vs estimation ac-
curacy for ECLipsE, ECLipsE-Fast and
LipSDP splitting with different sub-network sizes.

Fig. 5. By plotting the normalized Lipschitz
estimates and computation times on the two
axes, we illustrate how efficient and accurate
an algorithm is by how close the correspond-
ing data point is to the origin. We observe
that all the data points for ECLipsE-Fast
are at the leftmost extreme of the plot, in-
dicating that it is the most efficient algo-
rithm. Further, ECLipsE-Fast also out-
performs the red cluster (LipSDP-layer with
the network split into 3) in both tightness and
speed. Comparing data points of the same
shape, ECLipsE-Fast outperforms LipSDP-
Layer for all sub-network splits both in terms
of the Lipschitz estimate and the computation
time. Finally, the data points corresponding
to ECLipsE are clustered at the bottom left,
demonstrating that it is relatively more accurate

and efficient than all LipSDP methods, no matter how the network is split.

In the second set of experiments, we explore even wider networks. Specifically, we choose a fairly
deep neural network with 50 layers and vary the width from 150 to 1000. The splitting size for
LipSDP-Neuron and LipSDP-Layer is 5. The resulting Lipschitz estimates (normalized with respect
to trivial upper bounds) and the computation time are provided in Tables 4a and 4b of Appendix
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E due to space limitations. From these results, we observe that ECLipsE-Fast is extremely fast
even for very wide networks, with a running time of only 15.63 seconds for a network width of
1000, while the computation time for LipSDP-Layer grows significantly. Also, while ECLipsE
fails when the width reaches 300, it is comparable to LipSDP-Neuron split into 5 sub-networks in
terms of time performance.
Remark 4. We notice that when the neural networks are significantly wide, ECLipsE takes more
than 30 minutes while ECLipsE-Fast remains efficient. This observation can be explained by
examining the computational complexity of these algorithms. Note that we directly state the com-
putational complexity of each algorithm here for brevity; the detailed derivations are included in
Appendix C. Suppose a neural network has n hidden layers with m neurons. Then, the computa-
tional cost for LipSDP and ECLipsE are O(n4m4) and O(nm4) respectively. We can observe that
the complexity is significantly decreased in terms of the depth, but is the same in terms of the width,
immediately indicating the advantage for deep networks. Nevertheless, as m grows, the difference
between O(n4m4) and O(nm4) is still drastically enhanced, especially with large n. More impor-
tantly, for ECLipsE-Fast, the computational cost drops to O(nm3). This is the fastest one can
expect if the weights on each layer are treated as a whole.

4.2 Neural Networks Trained on MNIST.

We now demonstrate our algorithms on four networks trained on the MNIST dataset (see Appendix
D for details) to achieve an accuracy of at least 97%. The resulting networks are not very deep
(3 layers), with 100, 200, 300, and 400 neurons. We set a computational cutoff time of 30 min to
obtain Lipschitz estimates. As described in the note on Baselines earlier in this section, ECLipsE
is benchmarked against LipSDP-Neuron and ECLipsE-Fast is benchmarked against the faster
LipSDP-Layer due to their mathematical structure. From Fig. 6b, we can see that ECLipsE-Fast
is significantly faster than LipSDP-Layer, while ECLipsE is also considerably faster than LipSDP-
Neuron. Note that all algorithms provide very similar Lipschitz estimates (Fig. 6a). Therefore, for
networks that are not very deep, such as those in this example, ECLipsE-Fast is the optimal
choice, since it significantly outperforms all algorithms in terms of speed, while the approximation
error due to the closed-form solution is not too significant compared to the baselines.
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Figure 6: Performance of ECLipsE-Fast and ECLipsE, with respect to baselines for increasing
number of neurons, for a 3-layer network trained on MNIST. The red x markings indicate that the
algorithm fails to provide an estimate within the computational cutoff time beyond this network size.

5 Conclusion

We propose a scalable approach to estimate Lipschitz constants for deep neural networks by develop-
ing a new matrix decomposition that yields two fast algorithms. Our experiments demonstrate that
our algorithms significantly outperform the state-of-the-art in terms of computation speed, while
providing comparable Lipschitz estimates. We envision that further computational speedup can be
achieved through sparse matrix multiplication and eigenvalue estimation techniques, and leveraging
autodiff frameworks, along the lines of [20]. While we can unroll the convolutional layers in CNN
structure to a large fully connected neural network layer to apply ECLipsE and ECLipsE-Fast
to estimate Lipschitz constant, better compositional methods that are tailored to feature the convolu-
tional layers are expected for future work. Similarly, other architectures, such as residual networks,
present additional challenges due to their unique structures and will be considered in future research.
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Appendices

A Technical Proofs

Proof of Relation in Assumption 1. We show how the slope-restrictedness of the activation func-
tion implies (2). The inequality α(v1 − v2) ≤ ϕ(v1)− ϕ(v2) ≤ β(v1 − v2) that holds elementwise
yields

λi [(ϕ(v1)− ϕ(v2))− α(v1 − v2)]i × [(ϕ(v1)− ϕ(v2))− β(v1 − v2)]i ≤ 0, ∀i ∈ Rn, ∀λi ≥ 0,

where subscript i indexes the ith element of the vector.
Summing all the inequalities for i ∈ Rn and letting Λ = diag(λ1, λ2, ..., λn), we have

[(ϕ(v1)−ϕ(v2))−α(v1 − v2)]
T
Λ [(ϕ(v1)−ϕ(v2))−β(v1 − v2)]≤0.

In other words, we have the following quadratic inequality

(ϕ(v1)−ϕ(v2))TΛ(ϕ(v1)−ϕ(v2))−
α+ β

2
(ϕ(v1)−ϕ(v2))TΛ(v1 − v2)

−α+ β

2
(v1−v2)TΛ(ϕ(v1)−ϕ(v2))+αβ(v1−v2)TΛ(v1−v2) ≤ 0,

which can be directly rewritten as (2) with p = αβ and m = α+β
2 .

Proof of Theorem 1. For any two inputs z(0)1 and z
(0)
2 , let z(i)1 , z

(i)
2 , v

(i)
1 , v

(i)
2 , i ∈ Zl be computed

as in (1). Define ∆z(i) = z
(i)
1 − z

(i)
2 , i ∈ {0} ∪ Zl and ∆v(j) = v

(j)
1 − v

(j)
2 , j ∈ Zl. By both left

and right multiplying the left hand side in (3) by the vector [∆z(0),∆z(1), ...,∆z(l−1)]T , we have

(∆z(0))T∆z(0) +

l−1∑
i=1

([
∆z(i−1)

∆z(i)

]T [
pWT

i ΛiWi −mWT
i Λi

−mΛiWi Λi

] [
∆z(i−1)

∆z(i)

])
− F (∆z(l−1))WT

l Wl∆z(l−1) > 0.

(13)

Now, we show that every summand in the above inequality (13) is negative semidefinite. In fact,
with Assumption 1, using notation ∆v(i) = v

(i)
1 − v

(i)
2 and ∆ϕ(v(i)) = ϕ(v

(i)
1 ) − ϕ(v

(i)
2 ), i ∈ Zl,

and taking Λ = Λi, we can write[
∆v(i)

∆ϕ(v(i))

]T [
pΛi −mΛi

−mΛi Λi

] [
∆v(i)

∆ϕ(v(i))

]
≤ 0. (14)

Note that ∆v(i) = (Wiz
(i−1)
1 + bi) − (Wiz

(i−1)
2 + bi) = Wi∆z(i−1) and ∆ϕ(vi) = ∆zi. We can

express these relationships in matrix form as[
∆v(i)

∆ϕ(v(i))

]
=

[
Wi 0
0 I

] [
∆z(i−1)

∆z(i)

]
. (15)

Substituting (15) into (14), we have[
∆z(i−1)

∆z(i)

]T [
pWT

i ΛiWi −mWT
i Λi

−mΛiWi Λi

] [
∆z(i−1)

∆z(i)

]
≤ 0. (16)

Combining (13) and (16), we have

(∆z(0))T∆z(0) − F (∆z(l−1))WT
l Wl∆z(l−1) ≥ 0. (17)

Similarly, as the last layer is a linear layer, ∆z(l) = ∆v(l) = Wl∆z(l−1). Then (17) is exactly

(∆zl)T∆zl ≤ 1

F
(∆z(0))T∆z(0),

yielding a upper bound
√
1/F for the Lipschitz constant.
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Proof of Theorem 2. Applying Lemma 2 in [31], we define

Ri = −
1

2
WT

i−1Λi−1, i ∈ Zl, (18)

and

Pi =


I if i = 0,

Λi if i ∈ Zl−2,

Λi − FWT
l Wl if i = l − 1.

(19)

Then, with Pi andRi defined above, we directly have

Mi =

{
Xi if i ∈ {0}

⋃
Zl−2,

Xi + FWT
l Wl if i = l − 1.

(20)

In other words, the sufficient and necessary condition Xi > 0, ∀i ∈ {0} ∪ Zl−1 is equivalent to

Mi > 0, ∀i ∈ Zl−2, Ml−1 − FWT
l Wl > 0, (21)

which is the same as (21).

Proof of Proposition 1. As Mi > 0, i ∈ Zl−2 has been guaranteed, it remains to ensure that
Ml−1 − FWT

l Wl > 0 by Theorem 3. This is equivalent to Ml−1/F > WT
l Wl. Therefore, the

smallest possible 1/F is σmax(W
T
l Wl(Ml−1)

−1). Then by Theorem 1, the upper bound for the

Lipschitz constant is
√
1/F =

√
σmax(WT

l Wl(Ml−1)−1).

Proof of Lemma 1. Mi > 0 indicates (Mi)
−1 > 0. Then for ∀v0 ̸= 0,

vT0 Wi+1(Mi)
−1WT

i+1v0 = (WT
i+1v0)

T (Mi)
−1WT

i+1v0 ≥ 0, (22)

meaning that all eigenvalues of Wi+1(Mi)
−1WT

i+1 are non-negative. As Wi+1 ̸= 0, we know that
the largest eigenvalue is positive and should be the same as σmax

(
Wi+1(Mi)

−1WT
i+1

)
> 0.

Now consider any non-zero eigenvalue λa of matrix Wi+1(Mi)
−1WT

i+1 and let va ̸= 0 be its corre-
sponding eigenvector. Then,

Wi+1(Mi)
−1WT

i+1va = λava. (23)

Left multiplying both sides with WT
i+1, we have

WT
i+1Wi+1(Mi)

−1(WT
i+1va) = WT

i+1Wi+1(Mi)
−1WT

i+1va = WT
i+1λava = λa(W

T
i+1va). (24)

As λa ̸= 0, we know that WT
i+1va ̸= 0 from (23). (Otherwise, λava = 0 with va ̸= 0 will lead

to λa = 0). With WT
i+1va ̸= 0, (24) implies that λa is also an eigenvalue of WT

i+1Wi+1(Mi)
−1

corresponding to eigenvector WT
i+1va ̸= 0.

Conversely, for any non-zero eigenvalue λb of WT
i+1Wi+1(Mi)

−1 corresponding to eigenvector
vb ̸= 0, we have

WT
i+1Wi+1(Mi)

−1vb = λbvb. (25)

Let vc = 1
λb
Wi+1(Mi)

−1vb. We have vb = WT
i+1vc. Then we substitute vb on the both sides in (25)

and obtain
WT

i+1Wi+1(Mi)
−1WT

i+1vc = λbW
T
i+1vc.

Left multiplying both side with Wi+1(Mi)
−1, we further have

Wi+1(Mi)
−1WT

i+1Wi+1(Mi)
−1WT

i+1vc = λbWi+1(Mi)
−1WT

i+1vc.

Let vd = Wi+1(Mi)
−1WT

i+1vc, we finally have

Wi+1(Mi)
−1WT

i+1vd = λbvd.

Similarly, we can conclude that λb ̸= 0 is the eigenvalue of Wi+1(Mi)
−1WT

i+1 and vd is the corre-
sponding eigenvector.
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Proof of Lemma 2. To prove that {Λi : Mi > 0,Λi ∈ D+} ⊆ {Λi : M̃i > 0,Λi ∈ D+}, it suffices
to show that M̃i −Mi ≥ 0 for any γ ∈ (0, 1). In fact,

M̃i −Mi = Λi −
1

4
ΛiFiΛi − (Λi −

γ

4
ΛiFiΛi) =

1− γ

4
ΛiFiΛi. (26)

At stage i, Mi−1 > 0 is guaranteed. Then, similar to (22), we know thatFi = Wi(Mi−1)
−1WT

i ≥ 0

Since Λi ∈ D+ and 0 < γ < 1, implying 1−γ
4 > 0, we have 1−γ

4 ΛiFiΛi ≥ 0.

Proof of Proposition 2. Recall that by definition, Fi+1 = Wi+1(Mi)
−1WT

i+1. Applying Lemma 1,
we have σmax(Fi+1) = σmax(W

T
i+1Wi+1(Mi)

−1). Meanwhile, with Mi = ciW
T
i+1Wi+1 +N ,

WT
i+1Wi+1(Mi)

−1 = (WT
i+1Wi+1 +

N

ci
)(ciW

T
i+1Wi+1 +N)−1 − N

ci
(ciW

T
i+1Wi+1 +N)−1

=
1

ci
I − N

ci
(Mi)

−1.

(27)
WIth N ≥ 0 and Mi > 0 after Λi is decided, we show that N

ci
(Mi)

−1 only has non-negative
eigenvalues. As Mi > 0 is guaranteed to symmetric according to (7), there exists a symmetric square
root for (Mi)

−1 and we denote it to be (Mi)
− 1

2 . Then N(Mi)
−1 is similar to (Mi)

− 1
2N(Mi)

− 1
2 ,

thus sharing the same eigenvalues. Furthermore, for ∀x ̸= 0,

xT (Mi)
− 1

2N(Mi)
− 1

2x =
(
(Mi)

− 1
2x
)T

N
(
(Mi)

− 1
2x
)
≥ 0.

It indicates (Mi)
− 1

2N(Mi)
− 1

2 only has non-negative eigenvalues. The first equation holds by
the symmetry of (Mi)

− 1
2 and the second inequality is because of the definition of positive semi-

definiteness of N . Therefore, with ci > 0, the eigenvalues of N
ci
(Mi)

−1 = 1
ci
N(Mi)

−1 are all
non-negative. and all eigenvalues of WT

i+1Wi+1(Mi)
−1 should be less than or equal to 1/ci. On the

other hand, as N is singular, N(Mi)
−1 is also singular, thus having eigenvalue 0. Therefore,

σmax(Fi+1) = σmax(W
T
i+1Wi+1(Mi)

−1) = 1/ci.

Proof of Proposition 3. We first show that if Mi−1 > 0, the feasible region is always non-empty
for ∀i ∈ Zl−1. We use σ to denote σmax

(
Wi(Mi−1)

−1WT
i

)
= σmax(Fi). We take Λi =

2
σ I and

ci =
0.9

σ·σmax(WT
i+1Wi+1)

. As Wi ̸= 0, i ∈ Zl, we have σ > 0 and σmax(Fi) > 0, ensuring Λi ∈ D+

and ci > 0. Further,

Λi −
1

4
ΛiWi(Mi−1)

−1WT
i Λi − ci(W

T
i+1Wi+1)

≥ 2

σ
I − 1

4

4

σ2
σI − 0.9

σ · σmax

(
WT

i+1Wi+1

) (WT
i+1Wi+1)

>
1

σ
I − 0.9

σ
I > 0.

(28)

Therefore, the feasible region at least includes the Λi and ci we specified, and is thus not empty.
To make the feasibility complete, we prove that Mi > 0, ∀i ∈ {0}

⋃
Zl−1 by induction. When

i = 0, Mi = M0 = I > 0. When it comes to stage i, we have by induction that Mi−1 > 0 is true.
As Λi are obtained satisfying (12) with ci > 0 and recall the recursive relation for Mi, i ∈ Zl−1 to
be Mi = Λi − 1

4ΛiWi(Mi−1)
−1WT

i Λi, we have Mi > ciW
T
i+1Wi+1 ≥ 0.

We now prove by contradiction that the optimal value ci is the largest constant such that Mi can
be written as Mi = ciW

T
i+1Wi+1 + N , where N is some singular matrix that N ≥ 0. Mi =

ciW
T
i+1Wi+1 + N . Suppose there exists a ĉi > ci such that it satisfies all the constraints. Then,

from the first constraint in (12), we have
(ci − ĉi)W

T
i+1Wi+1 +N = Mi − ĉi(W

T
i+1Wi+1) > 0 (29)

Let v ̸= 0 be the eigenvector of N corresponding to eigenvalue 0. Observe that

vT
(
(ci − ĉi)W

T
i+1Wi+1 +N

)
v

= vT
(
(ci − ĉi)W

T
i+1Wi+1

)
v + 0

= (ci − ĉi) v
T
(
WT

i+1Wi+1

)
v ≤ 0.

(30)
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The last step holds because ci − ĉi < 0 by definition of ĉi. It contradicts (29).

Proof of Proposition 4. When Λi = λiI ,(
Λi −

1

4
ΛiFiΛi

)−1

=

(
λiI −

1

4
λ2
iFi

)−1

.

As Mi = Λi − 1
4ΛiFiΛi > 0, we have

σmax

((
λiI −

1

4
λ2
iFi

)−1
)

=
1

λi − λ2
iσmax(Fi)/4

(31)

Minimizing the above spectrum is equivalent to maximizing the denominator λi − λ2
iσmax(Fi)/4

in (31), which is quadratic in λi. To find the optimal λi, we set the derivative of the denominator
with respect to λi to be 0, and obtain the closed-form solution λi =

2
σmax(Fi)

.
Moreover, with Λi =

2
σmax(Fi)

I and Fi > 0 guaranteed at stage i, we have

Mi = Λi −
1

4
ΛiFiΛi =

1

σmax(Fi)
I > 0.

B Geometric Analysis for ECLipsE-Fast

The geometric analysis for algorithm ECLipsE-Fast analogous to Fig. 2, comparing the case
where ci > 1 and in other cases are shown in Fig. 7.

(a) For ci > 1 (b) For other cases

Figure 7: Geometric Intuition of ECLipsE-Fastwith ci > 1 and otherwise.

C Computational Complexity Derivation

We derive the time complexity for both ECLipsE and ECLipsE-Fast in detail here. Suppose
a neural network has n hidden layers with m neurons. Then, the large matrix in Theorem 1 has
dimension nm+O(1) and the decision variable is of size nm+O(1). Note that the computational
complexity for solving an LMI with the size of the matrix constraint being size A and the number
of decision variables being B is O(A3 + A2B2). Therefore, the computational cost for LipSDP is
O((nm + O(1))3 + (nm + O(1))2(nm + O(1))2) = O(n4m4). Contrarily, ECLipsE solves n
sub-problems as in Eq. (8), each involving a matrix of size O(m) and m decision variables. The
corresponding total computational cost is n×(O(m3+m2m2)) = O(nm4). This directly indicates
the advantage of ECLipsE for deep networks. Also, as m grows, the difference between O(n4m4)
and O(nm4) is still significantly enhanced, especially with large n. Regarding ECLipsE-Fast,
we note that we do not need to solve any SDPs and the computational cost drops to n × O(m3) =
O(nm3). This is the fastest one can expect if the weights on each layer are treated as a whole.

D Experimental Setup and Data Generation

Experimental Setup. All experiments are implemented on a Windows laptop with a 12-core CPU
with 16GB of RAM.

Randomly Generated Neural Networks. We set the input dimension to be 4 and the output dimen-
sion to be 1. The activation functionsare chosen to be ReLU, and the number of neurons in each
hidden layer is set to be the same. We randomly generate weights for each layer to follow the normal
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distribution. Also, in order to avoid the case where the Lipschitz constant is too large or too small
and may cause numerical issues, we scale the weights on each layer such that the is norm randomly
chosen in [0.4, 1.8], following a uniform distribution.

MNIST. For training on the dataset MNIST, the input dimension is 784 and output dimension is
10, which is compatible with the dataset. he activation functionsare chosen to be ReLU, and the
number of neurons in each hidden layer is set to be the same. We train neural networks using the
SGD optimizer with a learning rate of 0.01 and momentum of 0.9 until they achieve at least 97%
accuracy on test data.
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E Additional Experimental Results

The Lipschitz constant estimates and computation times for randomly generated neural networks
with the number of layers chosen from {2, 5, 10, 20, 30, 50, 75, 100}, and number of neurons are
chosen from {20, 40, 60, 80, 100}, are provided below.

Table 1a: Lipschitz constant estimates

Tr
iv

ia
lB

ou
nd

Neurons\Layers 2 5 10 20 30 50 75 100

20 1.020 3.171 1.173 6.725 3.430 49.696 1.091 0.002

40 0.952 3.356 0.910 3.431 0.004 260.807 2.895 0.119

60 1.433 2.830 0.040 0.067 0.706 0.013 16.433 8.890

80 0.875 0.418 0.681 4.023 0.010 0.057 1.291 0.054

100 1.046 0.626 4.144 0.346 2.521 46.466 6.933 95.263

E
C

L
ip

sE

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.856 2.485 0.822 4.189 1.985 18.974 0.290 0.000

40 0.775 2.696 0.722 2.434 0.003 137.421 1.413 0.043

60 1.207 2.391 0.031 0.051 0.480 0.008 9.187 4.388

80 0.737 0.338 0.565 3.078 0.007 0.039 0.810 0.030

100 0.884 0.527 3.414 0.276 1.904 33.261 4.524 57.734

E
C

L
ip

sE
-F

as
t

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.941 2.825 0.990 5.354 2.612 30.884 0.568 0.001

40 0.868 3.030 0.814 2.912 0.003 191.736 2.026 0.072

60 1.324 2.611 0.035 0.059 0.588 0.010 12.355 6.285

80 0.809 0.378 0.622 3.544 0.009 0.047 1.027 0.041

100 0.968 0.577 3.779 0.310 2.204 39.529 5.633 74.570

L
ip

SD
P-

N
eu

ro
n

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.856 2.481 0.819 4.165 1.978 18.851 0.287

40 0.775 2.693 0.721 2.430 0.003 137.025

60 1.207 2.390 0.031 0.051 0.479

80 0.737 0.338 0.564 3.077

100 0.884 0.526 3.413 0.276

L
ip

SD
P-

L
ay

er

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.938 2.814 0.985 5.327 2.607 30.763 0.565

40 0.863 3.019 0.812 2.901 0.003 190.489

60 1.319 2.606 0.035 0.059 0.584 0.010

80 0.806 0.377 0.621 3.531 0.009

100 0.965 0.575 3.770 0.310 2.197

C
PL

ip

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.469 1.408 0.493 2.669

40 0.432 1.510 0.406 1.451

60 0.660 1.303 0.018 0.029

80 0.403 0.189 0.311

100 0.483 0.288 1.885
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Table 1b: Computation time (seconds)

Tr
iv

ia
lB

ou
nd Neurons\Layers 2 5 10 20 30 50 75 100

N/A
E

C
L

ip
sE

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.374 1.393 2.776 6.243 10.246 16.731 24.533 37.118

40 0.572 2.115 4.263 8.944 15.730 27.977 36.769 52.201

60 1.007 3.551 7.768 14.938 25.616 46.128 72.479 109.913

80 1.381 5.428 11.650 28.458 43.255 82.461 120.167 157.274

100 2.346 7.818 18.265 35.685 53.392 102.400 160.400 188.536

E
C

L
ip

sE
-F

as
t

Neurons\Layers 2 5 10 20 30 50 75 100

20 0.001 0.002 0.001 0.002 0.003 0.006 0.007 0.010

40 0.002 0.004 0.008 0.018 0.029 0.036 0.060 0.057

60 0.002 0.005 0.010 0.026 0.038 0.057 0.076 0.083

80 0.004 0.009 0.024 0.051 0.056 0.089 0.127 0.136

100 0.007 0.016 0.021 0.070 0.058 0.095 0.151 0.190

L
ip

SD
P-

N
eu

ro
n

Neurons\Layers 2 5 10 20 30 50 75 100

20 5.684 6.691 8.944 9.876 15.356 83.294 153.800 373.500

40 6.974 8.192 12.519 30.342 87.703 498.750 >15min

60 8.285 9.410 18.654 110.670 438.040 >15min

80 8.812 10.749 43.734 303.440 >15min

100 8.876 15.009 88.894 789.330

L
ip

SD
P-

L
ay

er

Neurons\Layers 2 5 10 20 30 50 75 100

20 5.594 5.941 7.800 9.013 9.831 23.968 117.23 342.93

40 6.941 7.616 8.829 19.676 40.463 216.22 >15min

60 7.849 8.790 12.591 51.714 140.270 692.47

80 8.087 9.834 17.815 125.050 393.480 >15min

100 8.431 10.356 33.859 210.090 687.710

C
PL

ip

Neurons\Layers 2 5 10 20 30 50 75 100

20 ≈0 0.001 0.105 158.603 >15min

40 ≈0 0.003 0.385 614.917

60 ≈0 0.006 0.59 >15min

80 ≈0 0.018 1.633 >15min

100 ≈0 0.079 3.851
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Table 2a: Normalized Lipschitz Estimates for Randomly Generated NN with 80 Neurons

Layers ECLipsE ECLipsE-Fast LipDiff LipSDP-Neuron LipSDP-Layer CP-Lip

20 0.765184 0.88079 1.72459 0.76481 0.877786 >15min

30 0.737564 0.863682 155.8985 >15min 0.861134

50 0.669903 0.823353 5.320799 >15min

75 0.627432 0.795877 18.57997

100 0.557117 0.751101 >15min

Table 2b: Time used (sec) for Randomly Generated NN with 80 Neurons

Layers ECLipsE ECLipsE-Fast LipDiff LipSDP-Neuron LipSDP-Layer CP-Lip

20 28.45839 0.0515 22.23 303.44 125.05 >15min

30 43.25548 0.05645 51.22 >15min 393.48

50 82.46052 0.089058 178.03 >15min

75 120.1665 0.126933 532

100 157.2741 0.136244 >15min

Table 3a: Normalized Lipschitz Estimates for Randomly Generated NN with 50 layers

Neurons ECLipsE ECLipsE-Fast LipDiff LipSDP-Neuron LipSDP-Layer CP-Lip

20 0.381796 0.621443 118628.2 0.379323 0.619014 >15min

40 0.526908 0.735163 2635012.67 0.525388 0.730384

60 0.649970 0.810128 23.46069 >15min 0.808237

80 0.669903 0.823353 5.505175 >15min

100 0.71581 0.850702 10622.75

Table 3b: Time used (sec) for Randomly Generated NN with 50 Layers

Neurons ECLipsE ECLipsE-Fast LipDiff LipSDP-Neuron LipSDP-Layer CP-Lip

20 16.73062 0.005613 12.31672 83.294 23.968 >15min

40 27.97682 0.03643 34.29124 498.75 216.22

60 46.12812 0.056791 86.27217 >15min 692.47

80 82.46052 0.089058 178.2235 >15min

100 102.4001 0.095034 327.946
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Table 4a: Normalized Lipschitz Estimates for Randomly Generated NN with 50 Layers

Neurons ECLipsE ECLipsE-Fast LipSDP-Neuron Split by 5 LipSDP-Layer Split by 5

150 0.743745 0.867548 0.758217 0.87342

200 0.773494 0.883758 0.785171 0.888306

300 >30min 0.897008 >30min 0.899164

400 0.899916 >30min

500 0.903529

1000 0.912093

Table 4b: Time Used (sec) for Randomly Generated NN with 50 Layers

Neurons ECLipsE ECLipsE-Fast LipSDP-Neuron Split by 5 LipSDP-Layer Split by 5

150 387.7 0.387262 451.07 93.129

200 1386.6 0.584115 1377.9 210.16

300 >30min 1.321177 >30min 612.47

400 2.657505 2110.9

500 3.7435 >30min

1000 15.63342

F Broader Impacts

This work is primarily theoretical and pertains to obtaining upper bounds on the Lipschitz constant,
which can serve as a measure of the robustness of deep neural networks, and does not have any direct
societal impact.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in our abstract and introduction accurately reflect the paper’s
scope and contributions. All the theoretical and experimental results are aligned with the
claims made in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly discuss all the theoretical assumptions behind our work and the
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computational efficiency of the proposed algorithms for different network sizes.
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• The answer NA means that the paper has no limitation while the answer No means
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will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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Appendix.
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mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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and data are submitted along with the paper.
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taken to make their results reproducible or verifiable.
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the experiments?
Answer: [Yes]
Justification: The computational resources and computation time required for each experi-
ment are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics, and ensured that our paper
conforms to these regulations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: The paper is primarily theoretical, and does not have any immediate societal
impact. We discuss this in the Appendix section F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose any such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets used to train our neural networks, and the code for the papers
utilized as benchmarks to evaluate our algorithms are cited in the main text and in our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: All the code and data are submitted along with the paper, and will be released
publicly with detailed documentation upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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