

000 001 002 003 004 005 006 007 008 009 010 MGHF: MULTI-GRANULAR HIGH-FREQUENCY PERCEP- TUAL LOSS FOR IMAGE SUPER-RESOLUTION

005
006
007
008
009
010
005
006
007
008
009
010
Anonymous authors

Paper under double-blind review

ABSTRACT

011 An avalanche of innovations in perceptual loss has advanced the super-resolution (SR) litera-
012 ture, enabling the synthesis of realistic and detailed high-resolution images. However, most
013 of these approaches rely on convolutional neural network (CNN)-based non-homeomorphic
014 transforms, which result in information loss during guidance and often necessitate complex
015 architectures and training procedures. To address these limitations—particularly the infor-
016 mation loss and unwanted harmonics introduced by CNNs—we propose a diffeomorphic
017 transform-based variant of a computationally efficient invertible neural network (INN) for
018 a naive Multi-Granular High-Frequency (MGHF-n) perceptual loss, trained on ImageNet.
019 Building on this foundation, we extend the framework into a comprehensive variant (MGHF-
020 c) that integrates multiple constraints to preserve, prioritize, and regularize information
021 across several aspects: texture and style preservation, content fidelity, regional detail pres-
022 erivation, and joint content-style regularization. Information is prioritized through adaptive
023 entropy-based pruning and reweighting of INN features, while a content-style consistency
024 regularizer regulates excessive texture generation and ensures content fidelity. To capture
025 intricate local details, we further introduce modulated PatchNCE on INN features as a local
026 information preservation (LIP) objective. As another thread in the tapestry, we present
027 the theoretical foundation, showing that (1) the LIP objective compels the SR network to
028 maximize the mutual information between super-resolved and ground-truth modalities,
029 and (2) a diffeomorphic transform-based perceptual loss enables more effective learning
030 of the ground-truth distribution manifold compared to non-homeomorphic counterparts.
031 Empirical results demonstrate that the proposed MGHF objective substantially improves
032 both GAN- and diffusion-based SR algorithms across multiple evaluation metrics, and the
033 code will be released publicly after the review process.

034 1 INTRODUCTION

035 Super-resolution (SR) aims to improve the detailed information in images degraded by down-sampling,
036 blurring, noise, and various real-world distortions (Wang et al., 2020). Degraded images contain structural
037 information but lack high-frequency information Zhang et al. (2024); Chen et al. (2022). Researchers employ
038 various generative models (Wu et al., 2024a; Ledig et al., 2017; Lugmayr et al., 2020; Lu et al., 2022; Guo
039 et al., 2022; Wei and Zhang, 2023) and objective functions (Johson et al., 2016; Zhang et al., 2018; Cheon
040 et al., 2018; Kim et al., 2024a; Deng et al., 2019) to enhance high-frequency features in the SR problem Kim
041 et al. (2016); Lugmayr et al. (2020); Wu et al. (2024a). The objective functions for SR can be categorized
042 as perceptual (Zhang et al., 2018; Johson et al., 2016), content (Qin and Wang, 2024), style losses (Sajjadi
043 et al., 2017), structural similarity measures (Wang et al., 2004; Singla et al., 2024), and frequency domain
044 losses (Sims, 2020a; Cai et al., 2021). Among these categories, naive perceptual losses (Johson et al., 2016;
045 Zhang et al., 2018) are widely used; however, while effective in capturing many characteristics of the source
046 image, they fall short of preserving complete details due to the inherent information approximation (Yarotsky,

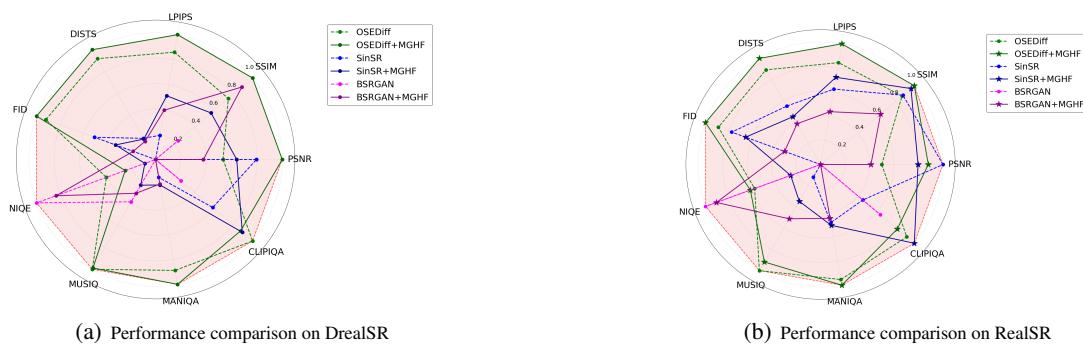


Figure 1: Performance comparison of different super-resolution models with and without MGHF framework. (a) Results on the DrealSR (Wei et al., 2020) dataset showing the effectiveness of MGHF across different metrics. (b) Results on the RealSR (Cai et al., 2019) dataset demonstrate consistent improvements. The dotted line of each color represents the baseline model, and the solid line of the same color represents the baseline model with the MGHF framework.

2017; Achille and Soatto, 2018) and lossy nature of CNN operations (Jacobsen et al., 2018). In the SR literature (Deng et al., 2019; Fuoli et al., 2021; Zhang et al., 2018; Sims, 2020b), several variants of information approximation within the perceptual loss family have been implemented through diverse techniques such as quantization (Gray and Neuhoff, 1998), adversarial training (Liu et al., 2017), neural network feature extraction (Yarotsky, 2017; Lu et al., 2017; Tishby and Zaslavsky, 2015; Achille and Soatto, 2018), and feature enhancement (Dai et al., 2018). Some of these approximation approaches are: i) LPIPS (Zhang et al., 2018), which employs learned feature map weighting to align with human perception; ii) FDPL (Sims, 2020b), which applies quantization to discrete cosine transform (DCT) (Ahmed et al., 1974) coefficients, despite DCT’s inherent lossless nature; iii) Fourier space loss (Fuoli et al., 2021), which shifts generation toward perceptually pleasing high-frequencies through adversarial training (Goodfellow et al., 2014); and iv) wavelet domain style transfer (Deng et al., 2019), which introduces feature enhancement through a selective wavelet filter. Moreover, since OSEDiff (Wu et al., 2024a) employs the LPIPS (Zhang et al., 2018) objective based on a non-homeomorphic CNN transform (Plastock, 1974) rather than a diffeomorphic (Earle and Eells, 1967) invertible neural network (INN) (Dinh et al., 2022), which introduces information loss and approximation errors in perceptual evaluation, our results in Fig. 1 show that the diffeomorphic transform-based multi-granular high-frequency (MGHF) framework effectively mitigates these issues and improves performance across several metrics.

Another inherent problem of several perceptual loss families during SR is the substantial complexity of the architecture design (Kim et al., 2024a; Rad et al., 2019) and training procedure (Ledig et al., 2017). For example, SRGAN (Ledig et al., 2017) employs a relatively straightforward perceptual loss (Johnson et al., 2016) by using VGG (Simonyan and Zisserman, 2014) features, and requires unstable adversarial training (Goodfellow et al., 2014). SROBB (Rad et al., 2019) significantly increases complexity by introducing region-specific perceptual losses that process objects, backgrounds, and boundaries differently, requiring additional segmentation labels and specialized loss calculations for each semantic region. SR4IR (Kim et al., 2024a) presents the complex training methodology with its alternate training framework that switches between updating the SR network and the task network, combined with a specialized cross-quality patch mix data augmentation strategy. We propose a naive version of MGHF perceptual loss that maintains an efficient architecture while delivering effective results for the super-resolution task, addressing these complexity issues.

Perceptual losses (Johnson et al., 2016; Zhang et al., 2018) trained on the VGG (Simonyan and Zisserman, 2014) or AlexNet (Krizhevsky et al., 2012) backbone in ImageNet (Deng et al., 2009) and stable diffusion (Rombach et al., 2022a) trained on billions of image-text pairs serve as important super-resolution priors (Wu et al., 2024a; Wang et al., 2024a). We introduce a novel high-frequency perceptual loss based on an invertible neural network (INN) trained on ImageNet as a new prior for SR. INNs have previously been utilized in image super-resolution and rescaling (Xiao et al., 2020) literature in ways distinct from our

094 approach. For instance, SRFlow (Lugmayr et al., 2020) employs INN-based normalizing flows (Rezende and
 095 Mohamed, 2015) to learn conditional distributions of high-resolution images given low-resolution inputs,
 096 while IRN (Xiao et al., 2020) explicitly models downscaling or upscaling as forward or inverse operations
 097 of an invertible network with Haar wavelet (Haar, 1910) transformation. HCFlow (Liang et al., 2021b)
 098 creates bijective mappings between HR-LR image pairs where high-frequency components are hierarchically
 099 conditional on low-frequency components through specially designed flow levels, and IARN (Pan et al., 2023)
 100 adapts the invertible framework by replacing Haar wavelet transforms with preemptive channel splitting and
 101 embedding position-aware scale encoding, enabling arbitrary rescaling factors within a single model while
 102 maintaining bidirectional invertibility. The authors (Wei et al., 2024) introduced invertible priors for image
 103 rescaling through Invertible Feature Recovery Modules (IFRM), which establish bijective transformations
 104 between quantized features obtained by VQGAN (Esser et al., 2021) and low-resolution images using coupling
 105 layers (Dinh et al., 2022). Extending this line of research, our work makes a distinct contribution by employing
 106 an INN trained on ImageNet as a super-resolution (SR) prior. Furthermore, we underscore a fundamental
 107 limitation of existing perceptual loss approaches (Johnson et al., 2016; Zhang et al., 2018): the information loss
 108 and harmonic distortion introduced by non-homeomorphic transformations, such as MaxPooling and ReLU
 109 layers in AlexNet and VGG backbones, when computing widely adopted perceptual losses. This observation
 110 leads us to formulate the central research question: *Can a lossless, diffeomorphism-based super-resolution
 111 prior be established to facilitate more efficient and effective perceptual loss computation in comparison to
 conventional non-homeomorphic transforms?*

112 We propose a **multi-granular high-frequency** perceptual loss (MGHF) to overcome the aforementioned issues.
 113 The naive version, MGHF-n, serves as an effective invertible neural network (INN) prior trained on ImageNet
 114 to guide the super-resolution process. Building upon this foundation, our comprehensive version (MGHF-c)
 115 addresses the perception-distortion tradeoff (Blau and Michaeli, 2018) and improves the SR performance
 116 on several image quality metrics (Wang et al., 2023; Ke et al., 2021; Zhang et al., 2015) by both focusing
 117 and regularizing essential detail information alongside the INN prior. To achieve these goals, MGHF-c
 118 introduces an adaptive importance score based on normalized entropy to prioritize and select significant
 119 INN features, which are then processed through a multifaceted approach that incorporates a modulated
 120 PatchNCE (Zhan et al., 2022)-based local information preservation objective to maintain intricate details,
 121 while simultaneously preserving style and content information in the INN domain via Gram matrix and
 122 mean-squared loss, respectively. Additionally, to overcome unnecessary style transfer and preserve content
 123 information while guiding SR, we propose a correlation loss-based content-style consistency regularizer.
 124 Our experiments demonstrate that the proposed MGHF objective significantly improves the performance
 125 of three super-resolution algorithms: OSEDiff (Wu et al., 2024a), SinSR (Wang et al., 2024c), and BSR-
 126 GAN (Zhang et al., 2021), with the first two based on diffusion models, and the last on a GAN. Notably,
 127 in SinSR (Wang et al., 2024c), even our simpler variant, MGHF-n, outperforms both LPIPS (Zhang et al.,
 128 2018) and the naive perceptual loss (Johnson et al., 2016). Furthermore, our MGHF framework consistently
 129 outperforms several image enhancement (Zhu et al., 2024; Qin et al., 2024) approaches and remains robust
 130 across diverse degradation techniques (Wang et al., 2021c; Yue et al., 2022; Wang et al., 2021a; Yao et al.,
 131 2024) and scaling factors within OSEDiff. Also, our proposed INN feature extractor within the MGHF
 132 framework requires 41 times fewer parameters than the VGG (Simonyan and Zisserman, 2014)-based feature
 133 extractor typically used for calculating perceptual losses (Johnson et al., 2016; Zhang et al., 2018). We term our
 134 approach the Multi-Granular High-Frequency (MGHF) perceptual loss, as it accounts for different levels of
 135 information—specifically style, content, and consistency—while the diffeomorphic transformation-based
 136 prior preserves high-frequency information during SR. The details of related works regarding SR methods
 137 and perceptual objectives are discussed in Appendix A.

138 2 METHODOLOGY

139 In this section, we introduce a diffeomorphic transform-based, multi-granular high-frequency perceptual
 140 objective for super-resolution and establish its theoretical advantages over non-homeomorphic alternatives.

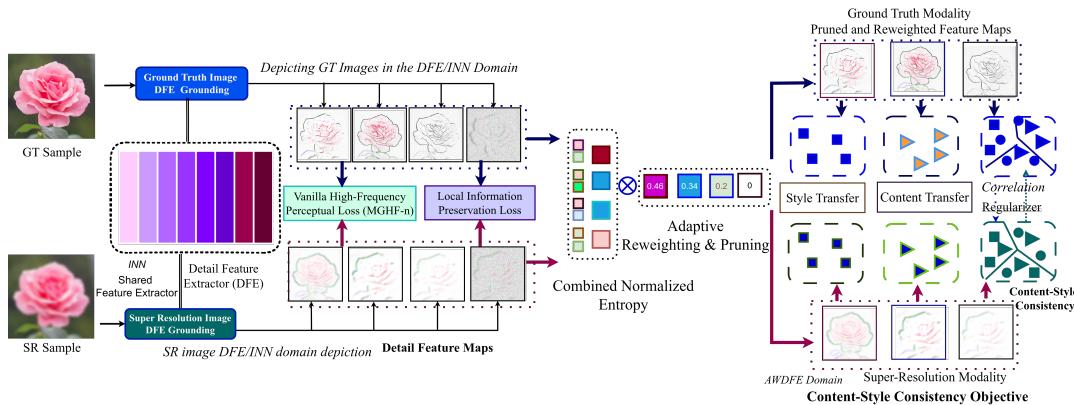


Figure 2: The depiction of proposed MGHF perceptual loss, where the detail feature extractor (DFE) is based on an invertible neural network. The vanilla high-frequency perceptual loss is calculated among feature maps of the DFE, while the content-style consistency loss is calculated from the most informative pruned and reweighted DFE feature maps.

We then present an invertible neural-network-based detail feature extractor (DFE) and its adaptive weighted variant (AWDFE), along with objectives for content–style consistency and local information preservation. We provide a concise overview here; full details appear in the Appendix.

2.1 DETAIL FEATURE EXTRACTOR

We propose a detail feature extractor (DFE), trained on ImageNet (Deng et al., 2009), to preserve texture, fine-grained detail, and content correspondence between super-resolution and ground-truth images. The DFE’s backbone is an invertible neural network built from affine coupling layers (Dinh et al., 2022); a brief specification appears in Algorithm 1. The DFE adheres to the diffeomorphic principle, whereas conventional perceptual losses rely on CNN feature spaces that employ non-injective operations (MaxPooling, ReLU), which cause information loss and harmonic distortion (see Remark 1 and Corollary 1). The advantages of diffeomorphic over non-homeomorphic transforms are formalized in Proposition 1 and Theorem 1.

2.1.1 THEORY OF SUPERIORITY OF DIFFEOMORPHIC INN OVER CNN IN PERCEPTUAL LOSS CALCULATION

Proposition 1. [Information Preservation] *The use of non-homeomorphic transform-based perceptual loss results in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all frequency components during translation. Consequently, the latter facilitates superior performance in perceptual loss calculation.*

See proof in App. Sec. D.1. Using the first part of the proposition, the toy example in App. Sec. D.2 shows that a diffeomorphic transform preserves information, whereas a non-homomorphic transform does not.

Remark 1. [Information Loss in CNN] *The ReLU activation function and the MaxPooling operation are inherently non-injective mappings. As a consequence, they introduce irreversible information loss within perceptual loss frameworks that rely on feature representations extracted from AlexNet and VGG networks.*

These remarks can be explained by feature map visualization on Fig. 3, where deeper layers of VGG lost fine-grained details.

188

189 **Corollary 1.** [Frequency distortion by ReLU operation] *The output signal $y(t) = \text{ReLU}(\cos(\omega_0 t))$ contains*
 190 *frequency components at integer multiples of ω_0 that were not present in the input signal $x(t) = \cos(\omega_0 t)$.*

191 See proof in App. Sec. D.5. This proof demonstrates that the ReLU operation introduces unwanted
 192 harmonics in a simple sinusoidal signal. While MaxPooling and ReLU cause the generalization capacity
 193 of CNNs (Brutzkus and Globerson, 2021; Banerjee et al., 2019), they also induce information loss and
 194 harmonic distortion—effects that can be detrimental in applications where strict information preservation
 195 is essential.

196

197 **Theorem 1.** *[Superiority of diffeomorphic INN over CNN in perceptual loss calculation].* Invertible Neural
 198 Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when used as perceptual
 199 feature extractors. Formally, let $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote a diffeomorphic INN and $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$ a standard CNN
 200 feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following contrasts
 hold:

- 201 • **Information conservation.** INN: $H(f(X)) = H(X)$ (entropy preserved due to bijectivity). CNN: $H(g(X)) <$
 202 $H(X)$ (irreversible compression due to non-invertibility).
- 203 • **Manifold preservation.** INN: diffeomorphic mappings preserve topology of the image manifold. CNN: distortion
 204 mappings collapse neighborhoods and destroy manifold structure.
- 205 • **Statistical equivalence.** INN: all statistical moments of X are preserved in $f(X)$. CNN: higher-order moments
 206 are altered or lost.
- 207 • **Spectral completeness.** INN: full frequency spectrum preserved, including high-frequency details. CNN: effective
 208 low-pass filtering due to pooling and convolution kernels.
- 209 • **Gradient stability.** INN: Jacobians are well-conditioned ($\det J_f(x) \neq 0$). CNN: singular Jacobians induce
 210 unstable or vanishing gradients.
- 211 • **Distribution matching.** INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive
 212 Wasserstein distance.

214

215 We provide the proof in App. Sec. D.6. Our experimental results on App. Table 4 depict that the proposed
 216 diffeomorphic transform-based MGHF-n outperforms naive perceptual losses (Zhang et al., 2018; Johson
 217 et al., 2016).

218 Let X_{GT} and X_{LR} be the ground-truth and corresponding low-resolution image sample caused by
 219 down-sampling, blur, and real-world degradation. Any super-resolution method can transform X_{LR} to X_{SR} .
 220 The DFE is used to extract detailed feature maps by:

$$221 \quad \mathbf{G} = \text{DFE}(X_{GT}), \quad \mathbf{S} = \text{DFE}(X_{SR}), \quad \text{where} \\ 222 \quad \mathbf{G} = \{G_1, G_2, \dots, G_L\}, \quad \mathbf{S} = \{S_1, S_2, \dots, S_L\}, \quad L \text{ is the number of DFE feature maps.} \quad (1)$$

223 The naive multi-granular high-frequency perceptual loss (MGHF-n) is calculated between DFE features
 224 of GT and SR images in the following way:

$$225 \quad \mathcal{L}_{\text{MGHF-n}} = \mathcal{L}_{\text{MSE}}(\mathbf{G}, \mathbf{S}). \quad (2)$$

227

228 2.2 ADAPTIVE AND WEIGHTED DETAIL FEATURE EXTRACTOR

229

230 The detail feature maps encompass various aspects of an image. However, some of the feature maps consist
 231 of less informative and redundant information. To overcome these issues and improve robustness (Correia
 232 et al., 2019; Niculae and Blondel, 2017) while calculating perceptual loss, we propose adaptive DFE filter
 233 weighting and pruning strategies that utilize the entropy calculation on DFE feature maps. The importance
 234 score ($I_{\text{combined}}(j)$) of all the extracted DFE feature maps is calculated using entropy, which enables us to
 select the most informative M feature maps from the L detailed feature maps by using Eq. 4. These M selected

Algorithm 1 Pretraining of Detail Feature Extractor

```

235
236
237 Require: Invertible modules  $\{\psi_k\}_{k=1}^K$ , CNN modules  $\{C_l\}_{l=1}^L$ , fully connected layers (FC), and convolution  $\{\text{Conv}(3 \rightarrow N \text{ channel})\}$ .
238 Require: ImageNet training set  $\mathcal{Z}$ 
239 1: while not converged do
240 2:   Sample  $\bar{z} \sim \mathcal{Z}$ 
241 3:    $z_0 \leftarrow \text{Conv}(\bar{z})$ 
242 4:   for  $k \leftarrow 1$  to  $K$  do
243 5:      $z_k \leftarrow \psi_k(z_{k-1})$ 
244 6:   end for
245 7:    $\hat{y}_1 \leftarrow z_K$ 
246 8:   for  $l \leftarrow 1$  to  $L$  do
247 9:      $\hat{y}_{l+1} \leftarrow C_l(\hat{y}_l)$ 
248 10:  end for
249 11:   $y_{\text{score}} \leftarrow \text{Softmax}(\text{FC}(\hat{y}_{L+1}))$ 
250 12:   $\mathcal{L} \leftarrow \text{CrossEntropy}(y_{\text{score}}, y_{\text{class}})$ 
251 13:  Update Conv,  $\{\psi_k\}$ ,  $\{C_l\}$ , FC by descending  $\nabla \mathcal{L}$ 
252 14: end while
253 15: return embedding  $z_K$ 
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  
```

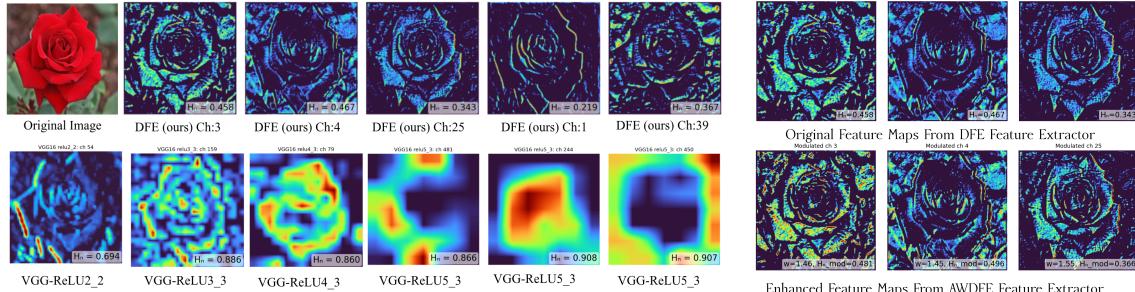


Figure 3: Visualization of feature maps of the detail feature extractor (DFE) and VGG. (Please zoom in on the figure for better perception.)

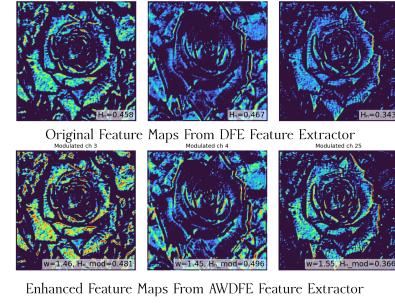


Figure 4: Visualization of original DFE and AWDDE feature maps.

feature maps are then weighted by introducing an adaptive weighting strategy in Eq. 5.

$$I_{\text{combined}}(j) = \frac{(1 - H_{\text{norm}}(G_j)) + (1 - H_{\text{norm}}(S_j))}{2}, \quad (3)$$

where H_{norm} is the normalized entropy in the range $[0, 1]$; and $j = 1, 2, \dots, L$ feature maps from DFE.

$$\mathcal{M} = \{\text{indices of top } M \text{ feature maps}\}, \quad (4)$$

$\hat{G} = \{G_i \mid i \in \mathcal{M}\} = \{G_{i_1}, \dots, G_{i_M}\}$, and similarly, \hat{S} is calculated.

$$\begin{aligned} w_i &= (1 + \alpha \cdot I_{\text{combined}}(i))^{\gamma}, \quad i \in \mathcal{M}, \\ G_i^w &= w_i \cdot G_i, \quad S_i^w = w_i \cdot S_i, \quad i \in \mathcal{M}, \\ \mathbf{G}^w &= \{G_{i_1}^w, G_{i_2}^w, \dots, G_{i_M}^w\}, \quad \mathbf{S}^w = \{S_{i_1}^w, S_{i_2}^w, \dots, S_{i_M}^w\}, \end{aligned} \quad (5)$$

where \hat{G} and \hat{S} are the adaptive ground-truth and super-resolution pruned filters, respectively. w_i is the importance score of i -th pruned feature map, and α and γ are constant. By prioritizing and pruning the detail feature extractor's (DFE) outputs based on importance scores, we obtain the adaptive and weighted feature maps \mathbf{G}^w and \mathbf{S}^w , constituting our AWDDE module.

2.3 CONTENT-STYLE CONSISTENCY

The content-style consistency objective preserves and regularizes the content and style features between ground-truth and super-resolution AWDDE features. While style and content information preservation is widely employed in super-resolution literature (Sajjadi et al., 2017; Cheon et al., 2018), we specifically utilize

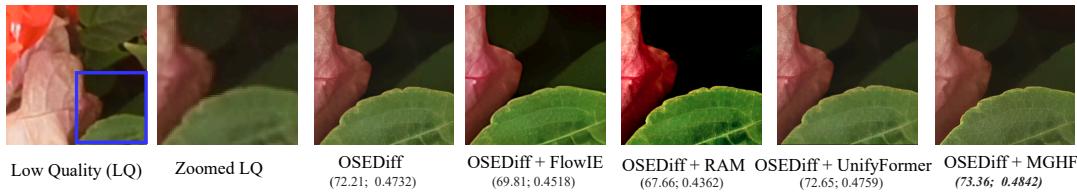


Figure 5: Qualitative comparisons of different image enhancement methods in OSEDiff. Please zoom in for a better view. The values in the parenthesis are the quantitative result measured by (MUSIQ↑ (Ke et al., 2021); MANIQA↑ (Yang et al., 2022)). Our MGHF achieves better MUSIQ and MANIQA compared to others. However, the FlowIE (Zhu et al., 2024), RAM (Qin et al., 2024), and UnifyFormer (Yang et al., 2024) over-enhance the image.

style and content loss in the features of the AWDDE domain by applying the Gram matrix and mean squared error loss. We propose content-style consistency regularization by utilizing the correlation loss between SR and GT image pairs in the AWDDE domain. The total content-style consistency objective is denoted as (\mathcal{L}_{CSC}) in the following equation:

$$\mathcal{L}_{\text{CSC}} = \beta_1 \cdot \mathcal{L}_{\text{MSE}}(\mathbf{G}^w, \mathbf{S}^w) + \beta_2 \cdot \mathcal{L}_{\text{corr}}(\mathbf{G}^w, \mathbf{S}^w) + \beta_3 \cdot \mathcal{L}_{\text{Gram}}(\mathbf{G}^w, \mathbf{S}^w), \quad (6)$$

where $\mathcal{L}_{\text{corr}}$, $\mathcal{L}_{\text{Gram}}$, and \mathcal{L}_{MSE} are content-style consistency regularizer, style, and content loss, respectively.

$$\mathcal{L}_{\text{corr}}(\mathbf{G}^w, \mathbf{S}^w) = 1 - \frac{1}{M} \sum_{i=1}^M \frac{\text{cov}(G_i^w, S_i^w)}{\sigma_{G_i^w} \cdot \sigma_{S_i^w}}, \quad \mathcal{L}_{\text{Gram}}(\mathbf{G}^w, \mathbf{S}^w) = \frac{1}{M} \sum_{i=1}^M \|\text{Gram}(G_i^w) - \text{Gram}(S_i^w)\|^2. \quad (7)$$

2.4 LOCAL INFORMATION PRESERVATION OBJECTIVE

Unpaired image-to-image domain translation (Zhu et al., 2017) is a well-known technique in the computer vision literature for transferring modalities. We assume super-resolution and ground truth modalities as two distinct modalities during the SR training procedure. To transfer GT to SR modality, we utilize the modulated patch-wise noise contrastive estimation (MoNCE) (Zhan et al., 2022) that effectively facilitates regional texture transfer. The proposed local information preservation (LIP) objective is calculated between DFE feature maps of SR and GT modalities, which can be depicted as:

$$\begin{aligned} \mathcal{L}_{\text{LIP}} &= \frac{1}{L} \sum_{k=1}^L \mathcal{L}_{\text{MoNCE}}(G_k, S_k), \\ &= \frac{1}{L} \sum_{k=1}^L \left\{ - \sum_{i=1}^{N_k} \log \left[\frac{e^{(s_{ki} \cdot g_{ki} / \tau)}}{e^{(s_{ki} \cdot g_{ki} / \tau)} + Q(N_k - 1) \sum_{j=1, j \neq i}^{N_k} a_{ij}^k e^{(s_{ki} \cdot g_{kj} / \tau)}} \right] \right\}, \end{aligned} \quad (8)$$

where L is the number of feature maps from DFE, each feature map is divided into N_k patches, and each patch is projected into the embedding space. a_{ij}^k is the weighting factor for a negative patch that is calculated through the Sinkhorn optimal transport plan (Cuturi, 2013). Thm. 2 demonstrates that our proposed LIP objective enhances information maximization between the GT and SR modalities. The further details of the mathematical formulations, and the parameter settings are provided in App. Sec. B.3, and App. Sec. C.3, respectively.

2.4.1 THEORY OF ENHANCEMENT OF INFORMATION MAXIMIZATION BY LIP OBJECTIVE

Theorem 2. [Information maximization between SR and GT modalities]

The \mathcal{L}_{LIP} objective provides a tighter lower bound on mutual information than standard InfoNCE.

$$I(G; S) \geq \log N_k - \mathcal{L}_{\text{LIP}} \geq \log N_k - \mathcal{L}_{\text{InfoNCE}} \quad (9)$$

We present the detailed proof in App. Sec. D.7, while the experimental results in App. Table 6 highlight the significance of the LIP objective for super-resolution.

329 2.5 TOTAL OBJECTIVE
330331 Our proposed MGHF-c framework optimizes the MGHF-n, content-style consistency, and local information
332 preservation objectives. The overall objective can be defined as:

333
$$\mathcal{L}_{\text{MGHF-c}} = \Gamma_1 \cdot \mathcal{L}_{\text{MGHF-n}} + \Gamma_2 \cdot \mathcal{L}_{\text{CSC}} + \Gamma_3 \cdot \mathcal{L}_{\text{LIP}}, \quad (10)$$

334

335 where Γ_1 , Γ_2 and Γ_3 are hyperparameters to balance the overall super-resolution process in multifarious
336 granularity.337 3 EXPERIMENT
338339 3.1 EXPERIMENTAL SETUP
340341 **Compared methods.** We analyze the performance of our proposed method with several super-resolution
342 algorithms, e.g., StableSR-s200 (Wang et al., 2024b), RealSR-JPEG (Ji et al., 2020), DiffBIR-s50 (Lin
343 et al., 2023), SeeSR-s50 (Wu et al., 2024b), OSEDiff (Wu et al., 2024a), PASD-s20 (Yang et al., 2023),
344 ESRGAN (Wang et al., 2018), ResShift (Yue et al., 2023), SinSR (Wang et al., 2024c), BSRGAN (Zhang
345 et al., 2021), SwinIR (Liang et al., 2021a), RealESRGAN (Wang et al., 2021c), DASR (Liang et al., 2022),
346 and LDM (Rombach et al., 2022b). In addition, we evaluate MGHF against three contemporary image-
347 enhancement approaches—RAM (Qin et al., 2024), FlowIE (Zhu et al., 2024), and UnifyFormer (Yang et al.,
348 2024)—on the OSEDiff output.349 **Metrics.** We employ PSNR, SSIM, DISTs (Ding et al., 2020), and LPIPS (Zhang et al., 2018) metrics for
350 performance analysis on the testing dataset with reference images. Fréchet Inception Distance (FID) (Heusel
351 et al., 2017) measures the distribution distance between ground-truth and generated images. Furthermore,
352 we utilize five widely used non-reference image quality metrics to evaluate SR images’ realism and seman-
353 tic coherence: CLIPQA (Wang et al., 2023), MUSIQ (Ke et al., 2021), MANIQ (Yang et al., 2022),
354 QualiCLIP⁺ (Agnolucci et al., 2024), and NIQE (Zhang et al., 2015).355 3.2 EXPERIMENTAL RESULTS AND COMPARISON WITH STATE-OF-THE-ART
356357 **Quantitative comparisons on real-world datasets.** We evaluate the performance of our proposed MGHF
358 framework on three real-world datasets: RealSR (Cai et al., 2019), RealSet65 (Yue et al., 2023), and
359 DrealSR (Wei et al., 2020). We investigate the image perceptual quality of MGHF compared with other
360 state-of-the-art super-resolution algorithms in Table 1, and 2. As shown in Table 2, by applying our MGHF-n
361 to SinSR, we achieve the best CLIPQA (Wang et al., 2023) score among widely used GAN-, transformer-, and
362 diffusion-based SR algorithms on the RealSR and RealSet65 datasets. We also analyze various reference and
363 non-reference metrics of diffusion model-based approaches compared to ours on the DrealSRWei et al. (2020)
364 and RealSRWu et al. (2024a) datasets in Table 1. In the RealSR and DrealSR datasets, OSEDiff+MGHF-c
365 achieves the best LPIPS, DISTs, and FID scores. Furthermore, we visualize several samples with and without
366 MGHF on the baseline methods in App. Fig. 8, and Fig. 9.367 **Quantitative comparisons on synthetic datasets.** We investigate the reference-based fidelity metrics and
368 non-reference-based image quality metrics in the ImageNet-Test (Deng et al., 2009) and DIV2K-Val (Agust-
369 son and Timofte, 2017) datasets. From Table 3, the SinSR+MGHF-n method achieves the best MUSIQ
370 and CLIPQA scores and the second-best LPIPS score compared to the nine other SR approaches in the
371 ImageNet-Test dataset, though SinSR+MGHF-n lags slightly in PSNR and SSIM metrics. We also find on the
372 DIV2K-val dataset from Table 1 that MGHF-c significantly improves the performance on numerous metrics,
373 e.g., SSIM, LPIPS, DISTs, FID, when applied to the OSEDiff, SinSR, and BSRGAN baseline models.374 **Parameter and computational complexity of MGHF.** Our INN-based detailed feature extractor (DFE) pro-
375 vides substantial efficiency improvements compared to the conventional VGG16-based perceptual loss (Johnson
et al., 2016; Zhang et al., 2018) model. A comprehensive depiction of the time and space complexity of the

376 Table 1: Quantitative comparison with state-of-the-art SR methods ($4 \times$ scaling) on both synthetic and real-world benchmarks. s denotes the number of
 377 diffusion reverse steps. Highlighted **skyblue**, **lightgreen**, and **orange** rows are variants of the SR algorithm with our MGHF framework.

378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422
Datasets	Methods	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQ \uparrow	CLIPQA \uparrow																																		
DIV2K-Val	StableSR-s200	23.26	0.5726	0.3113	0.2049	24.44	4.7581	65.92	0.6192	0.6771																																		
	DifffBIR-s50	23.64	0.5647	0.3524	0.2128	30.72	4.7042	65.81	0.6210	0.6704																																		
	SeeSR-s50	23.68	0.6043	0.3194	0.1968	25.00	4.8102	68.67	0.630	0.6936																																		
	PASD-s20	23.14	0.5505	0.3271	0.2269	36.20	4.7048	68.05	0.6483	0.6798																																		
	ResShift-s15	24.65	0.881	0.3349	0.2213	36.11	6.9312	61.09	0.5454	0.6071																																		
	BSRGAN*	22.67	0.5717	0.4428	0.2839	90.74	4.6398	58.92	0.4231	0.6268																																		
	BSRGAN ⁺ +MGHF-c	23.27	0.5922	0.3910	0.2569	69.16	3.9963	62.54	0.4949	0.5875																																		
	SinSR-s1	24.41	0.6018	0.3240	0.2066	35.57	6.0159	62.82	0.5386	0.6471																																		
	SinSR+MGHF-c	24.25	0.6100	0.3393	0.2202	50.78	5.6939	62.53	0.5208	0.6708																																		
	OSEDiff-s1	23.72	0.6108	0.2941	0.1976	26.32	4.7097	67.97	0.6148	0.6683																																		
DrealSR	OSEDiff+MGHF-c	24.27	0.6208	0.2824	0.1936	25.33	4.6985	68.5023	0.6200	0.6735																																		
	OSEDiff+RAM (Qin et al., 2024)	17.61	0.5302	0.3655	0.2364	28.69	5.7877	65.47	0.5918	0.6410																																		
	OSEDiff+FlowIE (Zhu et al., 2024)	22.20	0.6157	0.3692	0.2398	41.32	6.0190	64.18	0.5940	0.5711																																		
	OSEDiff+UnityFormer (Yang et al., 2024)	23.76	0.6154	0.2982	0.2010	26.61	4.8104	68.54	0.6071	0.5798																																		
	StableSR-s200	28.03	0.7536	0.3282	0.2269	148.98	6.5239	58.51	0.5601	0.6356																																		
	DifffBIR-s50	26.71	0.6571	0.4557	0.2745	166.79	6.3124	61.07	0.5930	0.6395																																		
	SeeSR-s50	28.17	0.7693	0.3189	0.2255	147.39	6.3967	64.93	0.6042	0.6848																																		
	PASD-s20	27.36	0.7073	0.3241	0.2531	156.13	5.517	6.917	0.610	0.6808																																		
	ResShift-s15	28.40	0.7767	0.4006	0.2656	136.79	6.1249	50.60	0.4589	0.5342																																		
	BSRGAN*	26.79	0.7380	0.4027	0.2839	224.89	5.9202	53.18	0.4334	0.6067																																		
	BSRGAN ⁺ +MGHF-c	27.66	0.7895	0.3454	0.2497	198.54	5.9792	58.20	0.4956	0.5552																																		
	SinSR-s1	28.36	0.7515	0.3665	0.2485	170.57	6.9907	55.33	0.4884	0.6383																																		
	SinSR+MGHF-c	28.10	0.7759	0.3334	0.2488	185.84	6.8817	57.51	0.4967	0.6813																																		
	OSEDiff-s1	27.92	0.7835	0.2968	0.2165	135.30	6.4902	64.65	0.5899	0.6063																																		
RealSR	OSEDiff+MGHF-c	28.87	0.8057	0.2713	0.2088	132.52	6.8203	64.27	0.6012	0.6995																																		
	OSEDiff+RAM (Qin et al., 2024)	18.31	0.6502	0.3928	0.2717	140.96	7.1188	63.01	0.5734	0.6957																																		
	OSEDiff+FlowIE (Zhu et al., 2024)	24.57	0.7805	0.2882	0.2347	161.88	8.0641	61.39	0.5714	0.5806																																		
	OSEDiff+UnityFormer (Yang et al., 2024)	27.97	0.7889	0.2923	0.2190	137.32	6.5703	65.33	0.5823	0.6180																																		
	StableSR-s200	24.70	0.7085	0.3018	0.2288	128.51	5.9122	65.78	0.6221	0.6178																																		
	DifffBIR-s50	24.75	0.6567	0.3636	0.2312	128.99	5.5346	64.98	0.6346	0.6463																																		
	SeeSR-s50	25.18	0.7216	0.3009	0.2223	125.55	5.4081	69.77	0.6442	0.6612																																		
	PASD-s20	25.21	0.6708	0.3380	0.2260	124.20	5.4137	68.75	6.4887	0.6620																																		
	ResShift-s15	26.31	0.7421	0.3460	0.2498	141.71	7.2635	58.43	0.5285	0.5444																																		
	BSRGAN*	24.02	0.6830	0.3949	0.2716	218.79	5.1710	59.67	0.4424	0.6350																																		
	BSRGAN ⁺ +MGHF-c	24.95	0.7207	0.3416	0.2463	185.26	5.2761	64.49	0.5314	0.5572																																		
	SinSR-s1	26.28	0.7347	0.3188	0.2353	135.93	6.2872	60.80	0.5385	0.6122																																		
	SinSR+MGHF-c	25.82	0.7397	0.3069	0.2419	148.88	5.9970	62.94	0.5430	0.6792																																		
	OSEDiff-s1	25.15	0.7341	0.2921	0.2128	123.49	5.6476	69.09	0.6326	0.6693																																		
4 CONCLUSION AND LIMITATION	OSEDiff+MGHF-c	26.01	0.7418	0.2731	0.2057	111.54	5.6058	68.32	0.6419	0.6673																																		
	OSEDiff+RAM (Qin et al., 2024)	16.84	0.6025	0.3601	0.2666	134.34	6.0761	68.34	0.6200	0.6761																																		
	OSEDiff+FlowIE (Zhu et al., 2024)	23.19	0.7310	0.2784	0.2219	148.45	7.2668	64.33	0.5923	0.5279																																		
	OSEDiff+UnityFormer (Yang et al., 2024)	25.18	0.7387	0.2862	0.2157	124.47	5.5983	69.56	0.6297	0.5666																																		

components in the MGHF-c objective and the VGG-16 feature extractor is provided in App. Table 5.

Comparisons with image enhancement methods. We qualitatively and quantitatively compare our MGHF objective with different image enhancement methods in Table 1 and Fig. 5. Experimental results show the performance gain of MGHF over some image enhancement approaches on OSEDiff.

Robustness under real-world degradations and blind SR. We conduct a quantitative assessment of the MGHF objective under different real-world degradation methods, e.g., haze, rain, ISP signal, noise, JPEG, etc., in App. Table 8, evidencing consistent robustness.

Ablation study of different objective functions in MGHF. We thoroughly investigate the importance of each loss function in the MGHF-c objective. A comprehensive experiment of each objective and its optimal hyperparameter choice is discussed in App. Table 6, and Sec. C.

4 CONCLUSION AND LIMITATION

Despite the Cambrian explosion of perceptual objectives in the super-resolution (SR) literature, diffeomorphism-based approaches to preserving high-frequency content remain largely unexplored. This manuscript identifies limitations of existing non-homeomorphic transform-based perceptual losses and demonstrates the theoretical and empirical advantages of diffeomorphic transforms. We also affirm that tighter lower bounds on mutual information between ground truth and SR modalities enhance SR.

The MGHF framework demonstrates consistent improvements across OSEDiff, SinSR, and BSRGAN. In the next stage, we aim to generalize MGHF to flow-, autoregressive-, transformer-, and neural-operator-based super-resolution architectures. In CLIPQA evaluations, our approach—along with several enhancement baselines—shows a marginal degradation on OSEDiff. This observation motivates an analysis of biases in CLIPQA (Agnolucci et al., 2024; Miyata, 2023), which we address using the QualiCLIP⁺ metric on test sets (Wei et al., 2020; Agustsson and Timofte, 2017; Cai et al., 2019) (see App. Sec. C.2 and Table 9).

423
424 **REPRODUCIBILITY STATEMENT**425
426 To facilitate reproducibility of our empirical results and findings, we intend to make our code publicly
427 available in the final version. We describe all mathematical and algorithmic details necessary to reproduce our
428 results throughout this paper. In Sec. 2, Sec. D, we outline the theoretical basis and mathematical framework
429 for our method. Furthermore, we provide pseudocode for our method in Algorithm 1. For our theoretical
430 contributions, we offer detailed proofs of theorems and propositions in Sec. D, Sec. D.1, Sec. D.5, Sec. D.6,
431 and Sec. D.7. We provide experimental details in Sec. 3, and Sec. C. We have utilized the large language
432 model (LLM) for grammatical correction of the manuscript and information collection from online sources.
433434 **REFERENCES**435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Andreas Aakerberg, Kamal Nasrollahi, and Thomas B Moeslund. Real-world super-resolution of face-images from surveillance cameras. *IET Image Processing*, 16(2):442–452, 2022.

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations through noisy computation. *IEEE transactions on pattern analysis and machine intelligence*, 40(12):2897–2905, 2018.

Lorenzo Agnolucci, Leonardo Galteri, and Marco Bertini. Quality-aware image-text alignment for opinion-unaware image quality assessment. *arXiv preprint arXiv:2403.11176*, 2024.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, July 2017.

N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. *IEEE Transactions on Computers*, C-23(1):90–93, 1974. doi: 10.1109/T-C.1974.223784.

Chaity Banerjee, Tathagata Mukherjee, and Eduardo Pasiliao Jr. An empirical study on generalizations of the relu activation function. In *Proceedings of the 2019 ACM southeast conference*, pages 164–167, 2019.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6228–6237, 2018.

Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling networks. In *Uncertainty in Artificial Intelligence*, pages 1650–1660. PMLR, 2021.

Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3086–3095, 2019.

Runyuan Cai, Yue Ding, and Hongtao Lu. Freqnet: A frequency-domain image super-resolution network with discrete cosine transform. *CoRR*, 2021.

Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xiaoguang Han, Tao Yang, and Shihui Guo. Real-world blind super-resolution via feature matching with implicit high-resolution priors. In *Proceedings of the 30th ACM International Conference on Multimedia*, pages 1329–1338, 2022.

Jin Chen, Jun Chen, Zheng Wang, Chao Liang, and Chia-Wen Lin. Identity-aware face super-resolution for low-resolution face recognition. *IEEE Signal Processing Letters*, 27:645–649, 2020. doi: 10.1109/LSP.2020.2986942.

Manri Cheon, Jun-Hyuk Kim, Jun-Ho Choi, and Jong-Seok Lee. Generative adversarial network-based image super-resolution using perceptual content losses. In *Proceedings of the European Conference on Computer Vision (ECCV) Workshops*, pages 0–0, 2018.

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 2174–2184, 2019.

470 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information*
 471 *processing systems*, 26, 2013.

472 Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the variational information
 473 bottleneck. In *International Conference on Machine Learning*, pages 1135–1144. PMLR, 2018.

474 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image
 475 database. In *2009 IEEE conference on computer vision and pattern recognition*, pages 248–255. Ieee, 2009.

476 Xin Deng, Ren Yang, Mai Xu, and Pier Luigi Dragotti. Wavelet domain style transfer for an effective perception-distortion
 477 tradeoff in single image super-resolution. In *Proceedings of the IEEE/CVF international conference on computer*
 478 *vision*, pages 3076–3085, 2019.

479 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. *Advances in neural*
 480 *information processing systems*, 34:8780–8794, 2021.

481 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying structure and texture
 482 similarity. *IEEE transactions on pattern analysis and machine intelligence*, 44(5):2567–2581, 2020.

483 Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components estimation. In *International*
 484 *Conference on Learning Representations*, 2015.

485 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In *International Conference*
 486 *on Learning Representations*, 2022.

487 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep convolutional networks.
 488 *IEEE transactions on pattern analysis and machine intelligence*, 38(2):295–307, 2015.

489 Tingxing Tim Dong, Hao Yan, Mayank Parasar, and Raun Krisch. RenderSR: A lightweight super-resolution model for
 490 mobile gaming upscaling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 491 pages 3087–3095, 2022.

492 CJ Earle and J Eells. *The Diffeomorphism Group of a Compact Riemann Surface*. 1967.

493 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In
 494 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12868–12878,
 495 June 2021. doi: 10.1109/CVPR46437.2021.01267.

496 Marc Finzi, Pavel Izmailov, Wesley Maddox, Polina Kirichenko, and Andrew Gordon Wilson. Invertible convolutional
 497 networks. In *Workshop on Invertible Neural Nets and Normalizing Flows, International Conference on Machine*
 498 *Learning*, volume 2, 2019.

499 Dario Fuoli, Luc Van Gool, and Radu Timofte. Fourier space losses for efficient perceptual image super-resolution. In
 500 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 2360–2369, 2021.

501 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
 502 Yoshua Bengio. Generative adversarial nets. *Advances in neural information processing systems*, 27, 2014.

503 Robert M. Gray and David L. Neuhoff. Quantization. *IEEE transactions on information theory*, 44(6):2325–2383, 1998.

504 Baisong Guo, Xiaoyun Zhang, Haoning Wu, Yu Wang, Ya Zhang, and Yan-Feng Wang. LAR-SR: A local autoregressive
 505 model for image super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 506 *Recognition*, pages 1909–1918, 2022.

507 Alfred Haar. Zur theorie der orthogonalen funktionensysteme. *Mathematische Annalen*, 69(3):331–371, Sep 1910. ISSN
 508 1432-1807. doi: 10.1007/BF01456326. URL <https://doi.org/10.1007/BF01456326>.

509 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings*
 510 *of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

511

517 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two
 518 time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30,
 519 2017.

520 Jörn-Henrik Jacobsen, Arnold WM Smeulders, and Edouard Oyallon. i-RevNet: Deep Invertible Networks. In *International
 521 Conference on Learning Representations*, 2018.

522

523 Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin Li, and Feiyue Huang. Real-world super-resolution via kernel
 524 estimation and noise injection. In *proceedings of the IEEE/CVF conference on computer vision and pattern recognition
 525 workshops*, pages 466–467, 2020.

526 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution.
 527 In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
 528 Proceedings, Part II* 14, pages 694–711. Springer, 2016.

529 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution.
 530 *Computer Vision–ECCV 2016*, pages 694–711, 2016.

531

532 Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard negative mixing for
 533 contrastive learning. *Advances in Neural Information Processing Systems*, 33:21798–21809, 2020.

534 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In
 535 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4401–4410, 2019.

536 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. MUSIQ: Multi-scale image quality transformer. In
 537 *Proceedings of the IEEE/CVF international conference on computer vision*, pages 5148–5157, 2021.

538

539 Jaeha Kim, Junghun Oh, and Kyoung Mu Lee. Beyond image super-resolution for image recognition with task-driven
 540 perceptual loss. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 541 2651–2661, 2024a.

542 Jaeha Kim, Junghun Oh, and Kyoung Mu Lee. Beyond image super-resolution for image recognition with task-driven
 543 perceptual loss. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 544 2651–2661, 2024b.

545 Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convolutional
 546 networks. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun 2016. doi: 10.1109/
 547 cvpr.2016.182. URL <http://dx.doi.org/10.1109/cvpr.2016.182>.

548 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

549

550 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in neural
 551 information processing systems*, 31, 2018.

552

553 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks.
 554 *Advances in neural information processing systems*, 25, 2012.

555 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
 556 Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using a generative
 557 adversarial network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages
 558 4681–4690, 2017.

559 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun Liu, Denis
 560 Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of the IEEE/CVF Conference on
 561 Computer Vision and Pattern Recognition*, pages 1775–1787, 2023.

562 Jie Liang, Hui Zeng, and Lei Zhang. Efficient and degradation-adaptive network for real-world image super-resolution.
 563 In *European Conference on Computer Vision*, pages 574–591. Springer, 2022.

564 Jingyun Liang, Jie Zhang, Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR: Image restoration using
 565 swin transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 1833–1844,
 566 2021a.

567 Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin Danelljan, Luc Van Gool, and Radu Timofte. Hierarchical
 568 conditional flow: A unified framework for image super-resolution and image rescaling. In *Proceedings of the*
 569 *IEEE/CVF International Conference on Computer Vision*, pages 4076–4085, 2021b.

570 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, and Chao Dong.
 571 DiffBIR: Towards blind image restoration with generative diffusion prior. *arXiv preprint arXiv:2308.15070*, 2023.

572 Shuang Liu, Olivier Bousquet, and Kamalika Chaudhuri. Approximation and convergence properties of generative
 573 adversarial learning. *Advances in Neural Information Processing Systems*, 30, 2017.

574 Xiaoyi Liu and Hao Tang. DiffFNO: Diffusion fourier neural operator. *arXiv preprint arXiv:2411.09911*, 2024.

575 Zhisheng Lu, Juncheng Li, Hong Liu, Chaoyan Huang, Linlin Zhang, and Tieyong Zeng. Transformer for single image
 576 super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
 577 457–466, 2022.

578 Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A
 579 view from the width. *Advances in Neural Information Processing Systems*, 30, 2017.

580 Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. SRFlow: Learning the super-resolution space
 581 with normalizing flow. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
 582 2020, Proceedings, Part V 16*, pages 715–732. Springer, 2020.

583 Roey Mechrez, Itamar Talmi, Firas Shama, and Lihai Zelnik-Manor. Maintaining natural image statistics with the
 584 contextual loss. In *Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia,
 585 December 2–6, 2018, Revised Selected Papers, Part III 14*, pages 427–443. Springer, 2019.

586 Takamichi Miyata. Interpretable image quality assessment via clip with multiple antonym-prompt pairs. In *2023 IEEE
 587 13th International Conference on Consumer Electronics-Berlin (ICCE-Berlin)*, pages 39–40. IEEE, 2023.

588 Vlad Niculae and Mathieu Blondel. A regularized framework for sparse and structured neural attention. *Advances in
 589 neural information processing systems*, 30, 2017.

590 Zhihong Pan, Baopu Li, Dongliang He, Wenhao Wu, and Errui Ding. Effective invertible arbitrary image rescaling. In
 591 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 5416–5425, 2023.

592 JoonKyu Park, Sanghyun Son, and Kyoung Mu Lee. Content-aware local gan for photo-realistic super-resolution. In
 593 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10585–10594, 2023.

594 Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image
 595 translation. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
 596 Proceedings, Part IX 16*, pages 319–345. Springer, 2020.

597 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. *Foundations and
 598 Trends® in Machine Learning*, 11(5–6):355–607, 2019.

599 Roy Plastock. Homeomorphisms between banach spaces. *Transactions of the American mathematical society*, 200:
 600 169–183, 1974.

601 Chu-Jie Qin, Rui-Qi Wu, Zikun Liu, Xin Lin, Chun-Le Guo, Hyun Hee Park, and Chongyi Li. Restore anything with
 602 masks: Leveraging mask image modeling for blind all-in-one image restoration. In *European Conference on Computer
 603 Vision*, pages 364–380. Springer, 2024.

604 Rui Qin and Bin Wang. Scene text image super-resolution via content perceptual loss and criss-cross transformer blocks.
 605 In *2024 International Joint Conference on Neural Networks (IJCNN)*, pages 1–10. IEEE, 2024.

611 Zhongxi Qiu, Yan Hu, Xiaoshan Chen, Dan Zeng, Qingyong Hu, and Jiang Liu. Rethinking dual-stream super-resolution
 612 semantic learning in medical image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 613 46(1):451–464, 2024. doi: 10.1109/TPAMI.2023.3322735.

614 Mohammad Saeed Rad, Behzad Bozorgtabar, Urs-Viktor Marti, Max Basler, Hazim Kemal Ekenel, and Jean-Philippe
 615 Thiran. SROBB: Targeted perceptual loss for single image super-resolution. In *Proceedings of the IEEE/CVF*
 616 *international conference on computer vision*, pages 2710–2719, 2019.

617 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International conference on*
 618 *machine learning*, pages 1530–1538. PMLR, 2015.

619 Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with hard negative
 620 samples. In *International Conference on Learning Representations*, 2020.

621 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis
 622 with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 623 pages 10684–10695, 2022a.

624 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis
 625 with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 626 pages 10684–10695, 2022b.

627 Frank Rosenblatt. The perceptron: A perceiving and recognizing automaton. 1957. Project PARA, Report No. 85-460-1.

628 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image super-
 629 resolution via iterative refinement. *IEEE transactions on pattern analysis and machine intelligence*, 45(4):4713–4726,
 630 2022.

631 Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael Hirsch. Enhancenet: Single image super-resolution through
 632 automated texture synthesis. In *Proceedings of the IEEE international conference on computer vision*, pages 4491–
 633 4500, 2017.

634 Shoaib Meraj Sami, Md Mahedi Hasan, Nasser M Nasrabadi, and Raghubeer Rao. Contrastive learning and cycle
 635 consistency-based transductive transfer learning for target annotation. *IEEE Transactions on Aerospace and Electronic*
 636 *Systems*, 60(2):1628–1646, 2023.

637 Shoaib Meraj Sami, Md Mahedi Hasan, Nasser M Nasrabadi, and Raghubeer Rao. FDCT: Frequency-Aware Decomposi-
 638 tion and Cross-Modal Token-Alignment for Multi-Sensor Target Classification. *IEEE Transactions on Aerospace and*
 639 *Electronic Systems*, 2025.

640 Julian Schwinger. Unitary operator bases. *Proceedings of the National Academy of Sciences*, 46(4):570–579, 1960.

641 Hossein Sekhavaty-Moghadam, Marzieh Hosseinkhani, and Azadeh Mansouri. DCT-based Perceptual Loss For Screen
 642 Content Image Super-Resolution. 2024.

643 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv*
 644 *preprint arXiv:1409.1556*, 2014.

645 Shane D Sims. Frequency domain-based perceptual loss for super resolution. In *2020 IEEE 30th International Workshop*
 646 *on Machine Learning for Signal Processing (MLSP)*, pages 1–6. IEEE, 2020a.

647 Shane D. Sims. Frequency domain-based perceptual loss for super resolution. In *2020 IEEE 30th International Workshop*
 648 *on Machine Learning for Signal Processing (MLSP)*, pages 1–6, 2020b. doi: 10.1109/MLSP49062.2020.9231718.

649 Shivam Singla, Vijay Kumar Bohat, Manav Aggarwal, and Yatin Mehta. Hybrid perceptual structural and pixelwise
 650 residual loss function based image super-resolution. In *2024 3rd International Conference for Innovation in Technology*
 651 (*INOCON*), pages 1–6. IEEE, 2024.

652 Fanny Spagnolo, Pasquale Corsonello, Fabio Frustaci, and Stefania Perri. Design of a low-power super-resolution
 653 architecture for virtual reality wearable devices. *IEEE Sensors Journal*, 23(8):9009–9016, 2023.

654

658 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015 ieee information*
 659 *theory workshop (itw)*, pages 1–5. Ieee, 2015.

660

661 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
 662 Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, 2017. URL
 663 <https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>.

664 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel of images. In
 665 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 2555–2563, 2023.

666 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion prior for
 667 real-world image super-resolution. *International Journal of Computer Vision*, pages 1–21, 2024a.

668 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion prior for
 669 real-world image super-resolution. *International Journal of Computer Vision*, pages 1–21, 2024b.

670

671 Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu Xu, Jungang Yang, Wei An, and Yulan Guo. Unsupervised
 672 degradation representation learning for blind super-resolution. In *Proceedings of the IEEE/CVF conference on computer*
 673 *vision and pattern recognition*, pages 10581–10590, 2021a.

674 Weilun Wang, Wengang Zhou, Jianmin Bao, Dong Chen, and Houqiang Li. Instance-wise hard negative example genera-
 675 tion for contrastive learning in unpaired image-to-image translation. In *Proceedings of the IEEE/CVF International*
 676 *Conference on Computer Vision*, pages 14020–14029, 2021b.

677

678 Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:
 679 enhanced super-resolution generative adversarial networks. In *Proceedings of the European conference on computer*
 680 *vision (ECCV) workshops*, pages 0–0, 2018.

681 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-ESRGAN: training real-world blind super-resolution with
 682 pure synthetic data. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 1905–1914,
 683 2021c.

684 Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao, Alex C Kot,
 685 and Bihan Wen. SinSR: Diffusion-based image super-resolution in a single step. In *Proceedings of the IEEE/CVF*
 686 *Conference on Computer Vision and Pattern Recognition*, pages 25796–25805, 2024c.

687 Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A survey. *IEEE transactions on*
 688 *pattern analysis and machine intelligence*, 43(10):3365–3387, 2020.

689

690 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to
 691 structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.

692

693 Hao Wei, Chenyang Ge, Zhiyuan Li, Xin Qiao, and Pengchao Deng. Toward extreme image rescaling with generative
 694 prior and invertible prior. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(7):6181–6193, 2024.

695

696 Min Wei and Xuesong Zhang. Super-resolution neural operator. In *Proceedings of the IEEE/CVF Conference on*
 697 *Computer Vision and Pattern Recognition*, pages 18247–18256, 2023.

698

699 Pengxu Wei, Ziwei Xie, Hannan Lu, ZongYuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang Lin. Component divide-
 700 and-conquer for real-world image super-resolution. In *Proceedings of the European Conference on Computer Vision*,
 701 2020.

702

703 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for real-world image
 704 super-resolution. *Advances in Neural Information Processing Systems*, 37:92529–92553, 2024a.

705 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. SeeSR: Towards semantics-aware
 706 real-world image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 707 *recognition*, pages 25456–25467, 2024b.

705 Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang, Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan
 706 Liu. Invertible image rescaling. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August*
 707 *23–28, 2020, Proceedings, Part I 16*, pages 126–144. Springer, 2020.

708 Ren Yang, Radu Timofte, Bingchen Li, Xin Li, Mengxi Guo, Shijie Zhao, Li Zhang, Zhibo Chen, Dongyang Zhang, Yash
 709 Arora, et al. NTIRE 2024 challenge on blind enhancement of compressed image: methods and results. In *Proceedings*
 710 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6524–6535, 2024.

711 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang. Maniq: Multi-dimension attention network for no-reference image quality assessment. In *Proceedings of the IEEE/CVF*
 712 *conference on computer vision and pattern recognition*, pages 1191–1200, 2022.

713 Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion for realistic image
 714 super-resolution and personalized stylization. *arXiv preprint arXiv:2308.14469*, 2023.

715 Mingde Yao, Ruikang Xu, Yuanshen Guan, Jie Huang, and Zhiwei Xiong. Neural degradation representation learning for
 716 all-in-one image restoration. *IEEE transactions on image processing*, 2024.

717 Dmitry Yarotsky. Error bounds for approximations with deep relu networks. *Neural Networks*, 94:103–114, 2017.

718 Hisaaki Yoshizawa. A proof of the plancherel theorem. *Proceedings of the Japan Academy*, 30(4):276–281, 1954.

719 Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu Meng, and Kwan-Yee K Wong. Blind image super-resolution
 720 with elaborate degradation modeling on noise and kernel. In *Proceedings of the IEEE/CVF conference on computer*
 721 *vision and pattern recognition*, pages 2128–2138, 2022.

722 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. ResShift: Efficient diffusion model for image super-resolution by
 723 residual shifting. *Advances in Neural Information Processing Systems*, 2023.

724 Fangneng Zhan, Jiahui Zhang, Yingchen Yu, Rongliang Wu, and Shijian Lu. Modulated contrast for versatile image
 725 synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18280–
 726 18290, 2022.

727 Aiping Zhang, Zongsheng Yue, Renjing Pei, Wenqi Ren, and Xiaochun Cao. Degradation-guided one-step image
 728 super-resolution with diffusion priors. *arXiv preprint arXiv:2409.17058*, 2024.

729 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for deep blind
 730 image super-resolution. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages
 731 4791–4800, 2021.

732 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality evaluator. *IEEE Transactions*
 733 *on Image Processing*, 24(8):2579–2591, 2015.

734 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep
 735 features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 736 pages 586–595, 2018.

737 Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao. RankSRGAN: Generative adversarial networks with ranker
 738 for image super-resolution. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages
 739 3096–3105, 2019.

740 Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Shuang Xu, Zudi Lin, Radu Timofte, and Luc Van Gool.
 741 CDDFuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion. In *Proceedings of*
 742 *the IEEE/CVF conference on computer vision and pattern recognition*, pages 5906–5916, 2023a.

743 Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan, Shuang Xu, Yulun Zhang, Radu Timofte, and Luc Van Gool.
 744 Spherical space feature decomposition for guided depth map super-resolution. In *Proceedings of the IEEE/CVF*
 745 *International Conference on Computer Vision*, pages 12547–12558, 2023b.

752 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent
753 adversarial networks. In *Proceedings of the IEEE international conference on computer vision*, pages 2223–2232,
754 2017.

755 Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, and Jiwen Lu. Flowie: Efficient image enhancement via
756 rectified flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13–22,
757 2024.

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799 MGHF: Multi-Granular High-Frequency Perceptual Loss 800 for Image Super-Resolution 801 802 803 804

805 In the appendix, we provide the following materials:

806 • Related works regarding different image super-resolution and perceptual objectives on super-resolution.
807 • Elaboration of the invertible neural network-based detail feature extractor.
808 • Preliminary discussion of local information preservation objective, therefore, we discussed PatchNCE and
809 Modulated PatchNCE.
810 • Visual comparisons of real-world and synthetic samples are shown under a $4\times$ scaling factor.
811 • Ablation study in multifarious perspectives.
812 • Mathematical foundation and proofs of our proposed approach.
813

814 815 A APPENDIX: RELATED WORKS

816 817 A.1 IMAGE SUPER-RESOLUTION

818 Super-resolution is a well-known low-level computer vision problem widely used in many applications (Wang et al., 2020; Dong et al., 2015), such as surveillance (Aakerberg et al., 2022), medical imaging (Qiu et al., 2024), gaming (Dong et al., 2022), virtual reality (Spagnolo et al., 2023), photography (Park et al., 2023), face recognition (Chen et al., 2020), etc. After the evolution of AlexNet (Krizhevsky et al., 2012), researchers implemented deep learning-based super-resolution approaches (Dong et al., 2015; Johnson et al., 2016). Following that, the generative adversarial network (GAN) evolved, and the GAN-based SR algorithms (Ledig et al., 2017; Wang et al., 2018; Zhang et al., 2021) were mainstream in the computer vision community (Dong et al., 2015). The SR-GAN (Ledig et al., 2017), ESRGAN (Wang et al., 2018), and RankSRGAN (Zhang et al., 2019) are some well-known GAN-based super-resolution algorithms. The invertible neural network-based SRFlow (Lugmayr et al., 2020) outperformed the GAN-based SR algorithms in 2020. Furthermore, the transformer (Vaswani et al., 2017) is the dominant network for natural language processing, image classification, and detection, which facilitates researchers to implement the transformer in super-resolution (Lu et al., 2022). Additionally, the denoising diffusion model outperforms the GAN in various perceptual metrics within the generative computer vision field (Dhariwal and Nichol, 2021). The first denoising diffusion model-based SR algorithm was introduced in 2021 (Saharia et al., 2022). However, these early diffusion-based SR algorithms (Saharia et al., 2022; Yue et al., 2023) initially faced challenges with slow sampling speeds and required many inference steps. Recently, researchers (Wang et al., 2024c; Wu et al., 2024a; Zhang et al., 2024) have successfully developed diffusion-based super-resolution methods that can operate in a single step. Autoregressive models and neural operator-based SR algorithms (Guo et al., 2022; Wei and Zhang, 2023; Liu and Tang, 2024) have also been successfully employed in the SR domain. Our paper introduces a novel family of perceptual loss objectives that improve several state-of-the-art SR algorithms (Wu et al., 2024a; Wang et al., 2024c; Zhang et al., 2021) across different metrics.

819 820 A.2 PERCEPTUAL OBJECTIVES IN SUPER-RESOLUTION

821 In the super-resolution literature, various perceptual losses have been proposed to improve realistic texture and edge
822 generation. Initial works utilized a pretrained VGG network (Simonyan and Zisserman, 2014), alongside multiple
823 training strategies (Zhang et al., 2018) and the inclusion of adversarial loss (Ledig et al., 2017). Wavelet domain style
824 transfer (Deng et al., 2019) has improved the perception-distortion trade-off in SR by enhancing low-frequency features
825 and transferring style into the wavelet domain. Frequency domain perceptual loss emphasizes several frequency bands
826 of an image to depict its perceptual quality better (Sims, 2020a). Targeted perceptual loss has been applied in SR,
827 utilizing semantic information (object, background, boundary labels) across different image regions to compute perceptual
828 loss and enhance texture and edge quality (Rad et al., 2019). Furthermore, Fourier loss introduces adversarial losses
829 directly in Fourier space to enable perception-oriented SR, allowing a smaller network to achieve comparable perceptual
830 losses (Wang et al., 2024b). Our paper introduces a novel family of perceptual loss objectives that improve several
831 state-of-the-art SR algorithms (Wu et al., 2024a; Wang et al., 2024c; Zhang et al., 2021) across different metrics.

846 quality (Fuoli et al., 2021). Task-driven perceptual (TDP) loss guides SR networks in restoring high-frequency details
 847 relevant to specific recognition tasks (Kim et al., 2024b). The authors (Mechrez et al., 2019) demonstrate that contextual
 848 loss approximates KL divergence as a statistical comparison tool for a more effective super-resolution strategy. The
 849 authors of EnhanceNet (Sajjadi et al., 2017) argue that traditional SR methods optimize for pixel-wise accuracy (PSNR)
 850 but tend to produce blurry images during SR. Consequently, the authors propose combining adversarial training with
 851 perceptual loss and a novel texture-matching loss to facilitate the generation of more realistic textures. Perceptual content
 852 losses (Cheon et al., 2018) utilize various perceptual loss functions, including discrete cosine transform coefficient loss
 853 and differential content loss, in conjunction with adversarial networks for super-resolution. The SSDNet (Zhao et al.,
 854 2023b) maps RGB and depth features to spherical space for improved feature decomposition, then fuses and refines
 855 the information to achieve depth map super-resolution. The Discrete Cosine Transform (DCT)-based perceptual loss
 856 emphasizes structural information that is sensitive to the human visual system (Sekhavaty-Moghadam et al., 2024).
 857 FreqNet (Cai et al., 2021) uses the DCT to learn and reconstruct high-frequency details, the spatial extraction network
 858 (SEN), which extracts and transforms spatial features from the low-resolution input image into frequency-domain
 859 features, and a frequency reconstruction network (FRN), which reconstructs the high-frequency details. Our MGHF
 860 framework prioritizes, preserves, and regularizes multi-granular information, including details, style, content, and regional
 861 characteristics, during super-resolution.

862 In the subsequent section, we will discuss the different components of the MGHF framework: the invertible neural
 863 network-based detailed feature extractor, adaptive filter pruning, and reweighting of the detailed features. We will also
 864 address our content-style consistency approach that preserves and regularizes content and style information in the INN
 865 domain.

866 B APPENDIX: ELABORATION OF DIFFERENT COMPONENTS IN MGHF

867 B.1 DETAIL FEATURE EXTRACTOR

868 We utilize an invertible neural network (INN) to capture high-frequency detail features in our proposed MGHF framework.
 869 In the NICE paper (Dinh et al., 2015), researchers first proposed the INN concept. The authors of RealNVP (Dinh
 870 et al., 2022) subsequently developed the *affine coupling layer*, which enabled more efficient and straightforward data
 871 inversion. Utilizing 1×1 invertible convolution, the Glow paper (Kingma and Dhariwal, 2018) demonstrated generation
 872 of realistic high-resolution images. INNs have been applied beyond generation—they’ve improved classification tasks
 873 through superior feature extraction capabilities and information-preserving properties (Finzi et al., 2019). Moreover,
 874 the INN-based detail feature extractor is also used in visible-infrared image fusion (Zhao et al., 2023a) and sensor
 875 fusion (Sami et al., 2025) literature. Let X_{GT} and X_{LR} be the ground-truth and corresponding low-resolution image
 876 sample caused by down-sampling, blur, and real-world degradation. Any super-resolution method transforms X_{LR} to
 877 X_{SR} . The DFE is used to extract detailed feature maps by:

$$878 \quad \mathbf{G} = \mathbf{DFE}(X), \quad \mathbf{S} = \mathbf{DFE}(X), \quad \text{where} \\ 879 \quad \mathbf{G} = \{G, G, \dots, G\}, \quad \mathbf{S} = \{S, S, \dots, S\}, \quad L \text{ is the number of DFE feature maps.} \quad (11)$$

880 where G and S represent detail features extracted from the ground-truth and super-resolution images, respectively. The
 881 invertible module in the DFE consists of affine coupling layers (Dinh et al., 2022). The illustration of the invertible
 882 module is in Figure 6. In this figure, $\psi_{I,l}^S[1:c]$ is the first c channels of the input feature at the l -th invertible layer, where
 883 $l = 1, \dots, L$. The arbitrary mapping functions in each invertible layer are: \mathcal{I}_1 , \mathcal{I}_2 , and \mathcal{I}_3 . We utilize the shallow
 884 diffeomorphic module (Earle and Eells, 1967) as an arbitrary mapping function in the invertible module. Moreover,
 885 $G = \psi_{I,L}(X_{GT})$. Finally, the extraction of $S = \mathbf{DFE}(X_{SR}) = \psi_{I,L}(X_{SR})$ can be calculated in the same way as G .

886 B.2 PATCHNCE OBJECTIVE

887 We introduce a local information preserving (LIP) objective in our MGHF framework. The building block of MGHF is the
 888 modulated PatchNCE objective. To understand this, we will first discuss the naive PatchNCE objective. The CUT (Park
 889 et al., 2020) was one of the pioneering works that introduced a method to maximize the mutual information between the
 890 input patch and the corresponding output patch to preserve the semantic content in an unpaired I2I translation (Zhu et al.,
 891 2017) scheme by utilizing a contrastive learning framework. After that, several research studies (Zhan et al., 2022; Sami
 892 et al., 2023; Wang et al., 2021b) have improved the CUT architecture. The PatchNCE objective maximizes the mutual

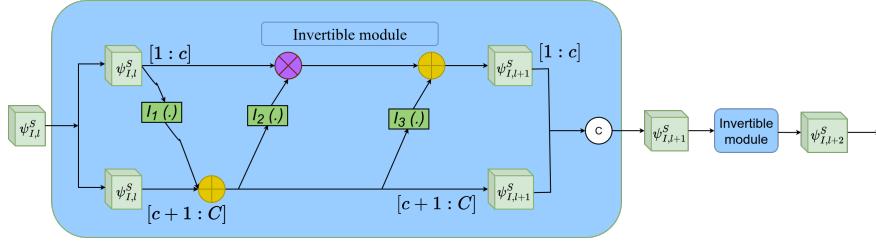


Figure 6: The architecture of the invertible module in the detail feature extractor (DFE) when calculating the multi-granular high-frequency perceptual framework. The DFE consists of L cascaded invertible modules (Dinh et al., 2022). Each invertible module has an affine coupling layer consisting of scaling and translation functions and a \odot Hadamard product. We use shallow diffeomorphic modules to conduct the scaling and translation operations. Each invertible module contains three shallow diffeomorphic modules.

information, $I(X, Y) = H(X) - H(X|Y)$, which is equivalent to minimizing the conditional entropy $H(X|Y)$. The PatchNCE objective can be denoted as:

$$\mathcal{L}_{Patch-NCE}(X, \bar{Y}) = - \sum_{i=1}^N \log \left[\frac{e^{(\bar{y} \cdot x / \tau)}}{e^{(\bar{y} \cdot x / \tau)} + \sum_{j=1}^N e^{(\bar{y} \cdot x / \tau)}} \right], \quad (12)$$

where τ is a temperature parameter, and \bar{Y} and X are the generated target domain and ground truth images, respectively. $X = [x_1, x_2, \dots, x_N]$ and $\bar{Y} = [\bar{y}_1, \bar{y}_2, \dots, \bar{y}_N]$ represent encoded feature vectors from the 1st, 4th, 8th, 12th, and 16th layers of the encoder. Afterward, these features are passed through a two-layer MLP network (Rosenblatt, 1957; Park et al., 2020; Zhan et al., 2022). Unlike PatchNCE, we introduce feature maps from every layer of the detail feature extractor while calculating our proposed LIP objective B.4.

In the standard PatchNCE objective, N -class classification is performed where the anchor applies the same contrastive force on all $N - 1$ negative patches, which is often too stringent and detrimental for convergence (Zhan et al., 2022). To address this issue, we utilize the modulated contrast NCE loss (Zhan et al., 2022) when calculating our local information preservation loss.

B.3 MODULATED PATCH-WISE NOISE CONTRASTIVE ESTIMATION OBJECTIVE

In the contrastive learning literature, the hardness of negative samples has been addressed adequately in (Robinson et al., 2020; Wang et al., 2021b; Kalantidis et al., 2020). In contrastive learning literature, hard negatives have facilitated the learning of data representations (Robinson et al., 2020). The hardness of negative patches in unpaired image translation is defined by their similarity to the query (Zhan et al., 2022). As shown in Eq. 13, hard negative weighting defines the similarity between a negative sample x_j and an anchor \bar{y}_i :

$$a_{ij} = \frac{e^{(\bar{y} \cdot x / \beta)}}{\sum_{j=1}^N e^{(\bar{y} \cdot x / \beta)}}, \quad (13)$$

where β is the weighting temperature parameter. The modulated NCE objective employs reweighting procedures by implementing the constraint represented by the following equation:

$$\sum_{i=1}^N a_{ij} = 1, \sum_{j=1}^N a_{ij} = 1; i, j \in [1, N]. \quad (14)$$

Considering the optimal transport (Peyré et al., 2019), Eq. 15 provides the primary framework, subject to the constraints of Eq. 14.

$$\min_{a, i, j \in [1, N]} \left[\sum_{i=1}^N \sum_{j=1, j \neq i}^N a_{ij} \cdot e^{\bar{y} \cdot x / \tau} \right], \quad (15)$$

$$\min_T \langle C, T \rangle \text{ s.t. } \langle T \vec{1} \rangle = 1, \langle T^T \vec{1} \rangle = 1, \quad (16)$$

where $\langle C, T \rangle$ is the inner product of the cost matrix (C) and transport plan (T). In the unpaired I2I network and local information preservation objective, the cost matrix is $e^{\bar{y} \cdot x / \beta}$ where $i \neq j$; if $i = j$ then $C_{ij} = \infty$. The Sinkhorn (Cuturi, 2013) algorithm is applied to Eq. 16 for calculating the optimal transport plan. Furthermore, while calculating the modulated contrastive objective in our LIP loss, we use every layer of feature maps of the detail feature extractor. The examples of vanilla and modulated contrast are depicted in Figure 7(a). and Figure 7(b). The MoNCE objective (\mathcal{L}_{MoNCE}) can be expressed as:

$$\mathcal{L}_{MoNCE} = - \sum_{i=1}^N \log \left[\frac{e^{(\bar{y} \cdot x / \tau)}}{e^{(\bar{y} \cdot x / \tau)} + Q(N-1) \sum_{j=1}^N a_{ij} e^{\bar{y} \cdot x / \tau}} \right], \quad (17)$$

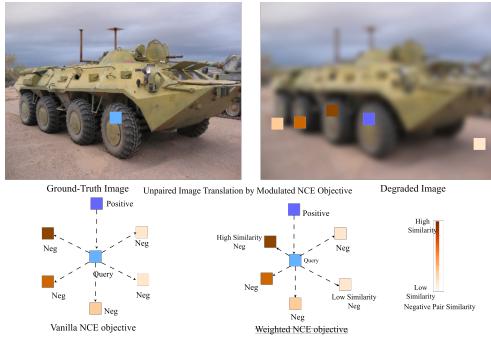
where Q denotes the weight of negative terms in the denominator and typically $Q = 1$.

B.4 LOCAL INFORMATION PRESERVATION OBJECTIVE

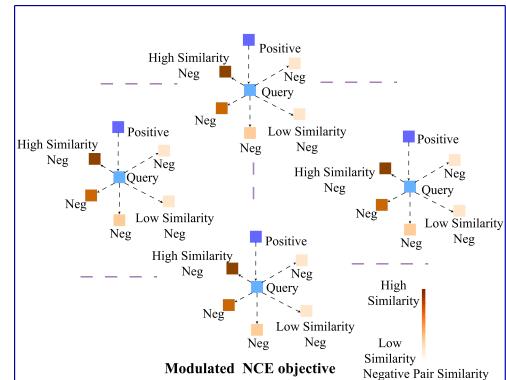
We assume super-resolution and ground truth modalities are two distinct modalities during the training. To transfer GT to SR modality, we utilize the modulated patch-wise noise contrastive estimation (MoNCE) (Zhan et al., 2022) that effectively facilitates regional texture transfer. The proposed local information preservation objective is calculated between the detail feature extractor (DFE) feature maps of SR and GT modalities, which can be depicted as:

$$\begin{aligned} \mathcal{L}_{LIP} &= \frac{1}{L} \sum_{k=1}^L \mathcal{L}_{MoNCE}(G_k, S_k), \\ &= \frac{1}{L} \sum_{k=1}^L \left\{ - \sum_{i=1}^N \log \left[\frac{e^{(s \cdot g / \tau)}}{e^{(s \cdot g / \tau)} + Q(N_k - 1) \sum_{j=1, j \neq i}^N a_{ij}^k e^{(s \cdot g / \tau)}} \right] \right\}, \end{aligned} \quad (18)$$

where L is the number of feature maps from DFE, each feature map is divided into N_k patches, and each patch is projected into the embedding space. a_{ij} is the weighting factor for a negative patch that is calculated through the Sinkhorn optimal transport plan (Cuturi, 2013). The mathematical framework of MoNCE (Zhan et al., 2022) is elaborately described in ??.



(a) Vanilla and weighted contrastive objective (Zhan et al., 2022).



(b) Modulated contrastive objective (Zhan et al., 2022).

Figure 7: The depiction of modulated contrastive objective (Zhan et al., 2022), which is utilized in our proposed local information preservation objective for image super-resolution.

987 **C APPENDIX: EXPERIMENT AND RESULTS**

988

Training Details. While training different models with the MGHF objective, we adopt the same model architecture and parameter setup as their corresponding original baselines (Wang et al., 2024c; Wu et al., 2024a; Zhang et al., 2021). For all models, we follow the real-world degradation pipeline (Wang et al., 2021c; Zhang et al., 2021). We maintain the original training protocols and datasets for each model: SinSR is trained on ImageNet (Deng et al., 2009), while OSEDiff uses the LSDIR (Li et al., 2023) dataset combined with the first 10K face images from FFHQ (Karras et al., 2019). We train OSEDiff+MGHF and SinSR+MGHF following the same procedure as in the original OSEDiff and SinSR papers, respectively. For training both BSRGAN and BSRGAN+MGHF from scratch, we use the LSDIR (Li et al., 2023) dataset and the first 10K face images from FFHQ (Karras et al., 2019) for five epochs.

990

In the total objective equation 10, we determine the optimal values of Γ_1 , Γ_2 , and Γ_3 to be 2, 2, and 8×10^{-2} , respectively. In Eq. (3), we determine the optimal values of β_1 , β_2 , and β_3 to be 6×10^{-3} , 10^{-1} , and 5×10^{-4} , respectively. Based on empirical observations, we set $\alpha = 1.1$ and $\gamma = \sqrt{2}$ in Eq. (5). A more detailed analysis of this objective is provided in Sec. C.1 and illustrated in Sec. C.1. Our experiments are conducted on two workstations, each equipped with two NVIDIA RTX A6000 GPUs.

991

Training Detail Feature Extractor. We train our detail feature extractor (based on an invertible neural network (Zhao et al., 2023a)) alongside convolutional and fully-connected layers to calculate MGHF perceptual loss. Initially, we use a convolutional block (He et al., 2016) to expand the image feature map from 3 to $N (= 128)$. The N channel of an image then passes through an invertible neural network. We take the output from the detail feature extractor to calculate MGHF-n perceptual loss. This network is trained on the ImageNet (Deng et al., 2009) dataset. We train this model for 20 epochs with a learning rate of 5e-4 with a batch size of 32 and an exponential scheduler with a factor of 0.95 every 5000 iterations. This model is optimized by Adam (Kingma, 2014) optimizer.

992

Qualitative comparisons. We visually compare four samples with and without the use of MGHF on OSEDiff (Wu et al., 2024a), SinSR (Wang et al., 2024c), and BSRGAN (Zhang et al., 2021) in Fig. 8 and Fig. 9. From these comparisons, we deduce that MGHF captures more details than the corresponding baseline approaches.

993

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

Methods	Datasets			
	RealSR [†]		RealSet65	
	CLIPQA↑	MUSIQ↑	CLIPQA↑	MUSIQ↑
ESRGAN	0.2362	29.048	0.3739	42.369
RealSR-JPEG	0.3615	36.076	0.5282	50.539
BSRGAN	0.5439	63.586	0.6163	65.582
SwinIR	0.4654	59.636	0.5782	63.822
RealESRGAN	0.4898	59.678	0.5995	63.220
DASR	0.3629	45.825	0.4965	55.708
LDM-15	0.3836	49.317	0.4274	47.488
ResShift-15	0.5958	59.873	0.6537	61.330
<i>SinSR-I</i>	0.6887	61.582	0.7150	62.169
<i>SinSR-I + MGHF-n</i>	0.7240	61.897	0.7405	63.966

1023 [†] RealSR is preprocessed with similar procedure as SinSR.

1024 Table 2: Quantitative comparison among different super-resolution models on two real-world datasets. The best and the second best results among the SR
1025 methods are highlighted in red and blue colors, respectively.

1026

1027 **C.1 ABLATION STUDY**

1028

Effectiveness of naive multi-granular high-frequency (MGHF-n) perceptual loss. The effectiveness of the proposed MGHF-n perceptual loss can be deduced from the quantitative comparison in Tables 2, 3, and 4. All these results depict the efficacy of MGHF-n in the SinSR algorithm. Specifically, CLIPQA (Wang et al., 2023) is significantly improved by the naive MGHF objective. Also, from Table 6, we observe that MGHF-n improves PSNR, SSIM, and LPIPS when applied to OSEDiff.

1029

Effectiveness of content-style consistency (CSC) and local information preservation (LIP) objective in MGHF.

Methods	Metrics				
	PSNR↑	SSIM↑	LPIPS↓	CLIPQA↑	MUSIQ↑
ESRGAN	20.67	0.448	0.485	0.451	43.615
RealSR-JPEG	23.11	0.591	0.326	0.537	46.981
BSRGAN	24.42	0.659	0.259	0.581	54.697
SwinIR	23.99	0.667	0.238	0.564	53.790
RealESRGAN	24.04	0.665	0.254	0.523	52.538
DASR	24.75	0.675	0.250	0.536	48.337
LDM-30	24.49	0.651	0.248	0.572	50.895
LDM-15	24.89	0.670	0.269	0.512	46.419
ResShift-s15	24.90	0.673	0.228	0.603	53.897
SinSR-s1	24.56	0.657	0.221	0.611	53.357
<i>SinSR-1 +MGHF-n</i>	24.31	0.645	0.225	0.660	55.323

Table 3: Quantitative comparison among widely used super-resolution models on *ImageNet-Test*. The best and second best results are highlighted in red and blue, respectively.

We systematically add the content-style consistency (CSC) and local information preservation (LIP) objectives to the MGHF-n framework while training on OSEDiff (Wu et al., 2024a). The effect of these objectives is depicted in Table 6. **Comparison of MGHF with LPIPS and naive perceptual loss.** We compare the efficacy of the proposed MGHF-n and MGHF-c with VGG-based naive perceptual loss (Johson et al., 2016) and LPIPS (Zhang et al., 2018) on DIV2K-Val, RealSet65, and RealSR test sets. From Table 4, we can deduce that simple MGHF-n outperforms both VGG-based naive perceptual loss and LPIPS on these datasets when implemented in SinSR (Wang et al., 2024c). This comparison is performed using NIQE, MUSIQ, and CLIPQA metrics across two real-world datasets and one synthetic dataset.

MGHF’s performance gain on different downscaling factors. We investigated the robustness of MGHF across different downscaling factors by applying it to OSEDiff. We downsampled the test set Drealsr (Wei et al., 2020) by factors $2\times$, $4\times$, $8\times$ using Real-ESRGAN (Wang et al., 2021c). We found that MGHF yields superior performance compared to the original OSEDiff across almost every metric for $2\times$, $4\times$, $8\times$ upscaling factors, as demonstrated in Table 7.

MGHF’s performance gain under different degradation methods. We further evaluate the robustness of MGHF on diverse degradation methods using the DRealSR dataset (Wei et al., 2020). Specifically, we adopt degradations generated by Real-ESRGAN (Wang et al., 2021c), NDR (Yao et al., 2024), BSRDM (Yue et al., 2022), and DASR (Wang et al., 2021a). Our results on Table 8 show that OSEDiff+MGHF consistently outperforms OSEDiff under degradations such as rain, haze, noise, ISP signal, and real-world conditions.

Time and space complexity of each component of MGHF. We analyze the time and space complexity of each component of the MGHF-c objective in Table 5. The results show that the DFE feature extractor is more computationally efficient than the VGG-16 feature extractor.

Effect of hyperparameters on the adaptive weighted detail feature extractor (AWDFE). We investigate the effect of the hyperparameters α and γ (see Eq. (5)) on the feature maps shown in Sec. C.1. We found that γ has a stronger influence on the feature maps than α . Based on empirical observations, we set $\alpha = 1.1$ and $\gamma = \frac{1}{\sqrt{2}}$ in our experiments.

1081
1082
1083 Table 4: Ablation study of the proposed MGHF-n and widely used perceptual losses.
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Datasets	Methods	NIQE \downarrow	MUSIQ \uparrow	CLIPQA \uparrow
DIV2K-Val	SinSR-s1 (Wang et al., 2024c)	6.02	62.82	0.6471
	SinSR-1 + Perceptual Loss †	5.97	61.94	0.6713
	SinSR-1 + LPIPS ‡	6.06	62.95	0.6638
	SinSR-1 + MGHF-n	5.80	63.69	0.6822
RealSet65	SinSR-s1 (Wang et al., 2024c)	5.98	62.17	0.7150
	SinSR-1 + Perceptual Loss †	5.63	62.64	0.7343
	SinSR-1 + LPIPS ‡	5.84	63.70	0.7295
	SinSR-1 + MGHF-n	5.54	63.97	0.7405
RealSR *	SinSR-s1 (Wang et al., 2024c)	6.29	60.80	0.6122
	SinSR-1 + Perceptual Loss †	6.15	62.43	0.6670
	SinSR-1 + LPIPS ‡	6.36	61.84	0.6580
	SinSR-1 + MGHF-n	6.02	62.85	0.6740

1094
1095
1096^{*} RealSR is pre-processed following Wu et al. (2024a).
[†] VGG-based perceptual loss Johnson et al. (2016).
[‡] LPIPS loss Zhang et al. (2018).

Objective	GFLOPs	Memory (MB)	Params (M)
LIP Loss	21.402	819.96	0.139
Gram Loss	8.590	512.13	0.000
Correlation Loss	0.369	512.00	0.000
AWDFE MSE Loss	0.067	256.00	0.000
DFE MSE Loss	0.067	384.00	0.000
Detail Feature Extractor (DFE)	72.290	1.31	0.34
TOTAL	102.785	2499.89	0.479
VGG Feature Extractor	160.36	56.13	14.71

1104
1105
1106 Table 5: Time and Space Complexity of the MGHF-c Algorithm.1107
1108
1109 Table 6: Ablation study of each objective contribution on MGHF-c while applying on OSEDiff.

Method Name	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
OSEDiff (original)	27.9200	0.7835	0.2968
MGHF-naive	28.4000	0.7980	0.2839
Correlation loss	28.5996	0.7923	0.2943
CSC	28.6432	0.7931	0.2845
Only AWDDE	28.5005	0.7971	0.2818
MGHF-Naive+AWDDE MSE	28.4040	0.7991	0.2737
MGHF-naive+CSC	28.7218	0.7956	0.2813
LIP Only loss	28.6826	0.8008	0.2793
MGHF-c (MGHF-naive+LIP+CSC)	28.8702	0.8057	0.2713

1117
1118 Table 7: Comparison of OSEDiff and OSEDiff+MGHF under different upscaling factors on DrealSR dataset.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQA \uparrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	FID \downarrow
2 \times Downscale by Real-ESRGAN (SR upscaling factor: 2 \times)									
Original OSEDiff	27.1099	0.7621	0.3240	0.2301	0.6947	6.3130	65.1418	0.5831	140.6872
OSEDiff+MGHF	28.2440	0.8007	0.2815	0.2156	0.6601	6.7596	64.7557	0.5957	133.1088
4 \times Downscale by Real-ESRGAN (SR upscaling factor: 4 \times)									
Original OSEDiff	25.7130	0.7082	0.4219	0.2842	0.6184	6.6597	57.0138	0.5335	169.3852
OSEDiff+MGHF	26.4370	0.7405	0.3545	0.2577	0.6309	6.7118	62.9601	0.5743	163.3906
8 \times Downscale by Real-ESRGAN (SR upscaling factor: 8 \times)									
Original OSEDiff	24.0767	0.6839	0.6058	0.4113	0.4688	9.0937	33.8054	0.4193	248.6803
OSEDiff+MGHF	23.9231	0.6825	0.4926	0.3406	0.5526	6.9721	55.0441	0.5359	221.2790

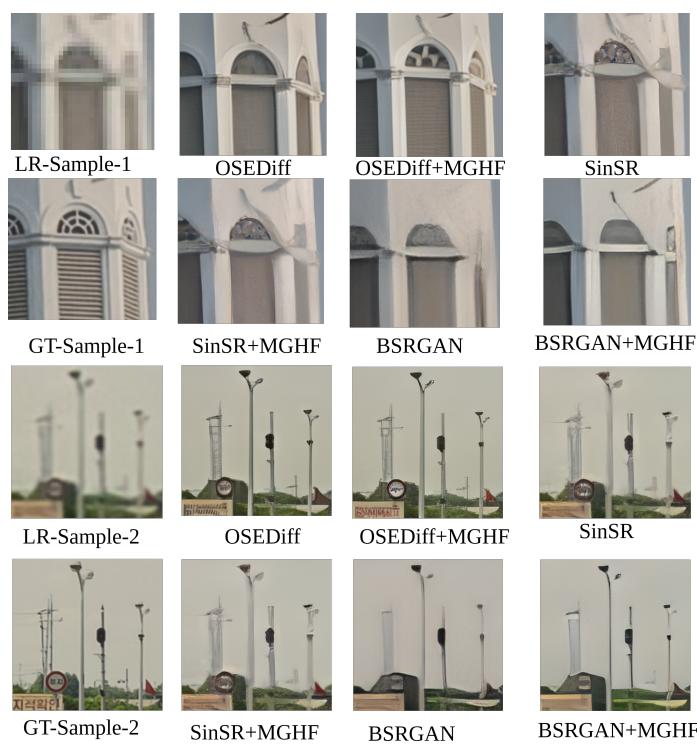


Figure 8: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework. Zoom in for a clearer view.

Table 8: Different Degradation Method Ablation Study on DrealSR dataset.

Degradation	SR Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQQA \uparrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	FID \downarrow
Real-ESRGAN (Wang et al., 2021c)	OSEDiff	25.7130	0.7082	0.4219	0.2842	0.6184	6.6597	57.0138	0.5335	169.3852
	OSEDiff+MGHF	26.4370	0.7405	0.3545	0.2577	0.6309	6.7118	62.9601	0.5743	163.3906
NDR (Yao et al., 2024): Dehaze	OSEDiff	29.3003	0.8293	0.2525	0.1973	0.7095	6.7410	66.9494	0.6238	108.4836
	OSEDiff+MGHF	30.6512	0.8431	0.2322	0.1940	0.6760	7.1101	66.4416	0.6264	104.8985
NDR (Yao et al., 2024): Denoise	OSEDiff	28.4467	0.8016	0.2884	0.2107	0.6894	6.3463	65.4359	0.5967	117.4478
	OSEDiff+MGHF	29.6504	0.8261	0.2517	0.2023	0.6781	6.6985	65.5262	0.6156	117.0953
NDR (Yao et al., 2024): Derain	OSEDiff	29.2999	0.8293	0.2525	0.1974	0.7093	6.7322	66.9490	0.6237	108.4542
	OSEDiff+MGHF	30.6535	0.8432	0.2321	0.1939	0.6764	7.1249	66.4288	0.6264	104.6391
BSRDM (Yue et al., 2022): Gaussian (n=25)	OSEDiff	23.5872	0.6722	0.3849	0.2503	0.6518	6.0765	62.2250	0.5426	146.5159
	OSEDiff+MGHF	23.9160	0.7023	0.3219	0.2311	0.6735	6.4936	64.2867	0.5988	136.2164
BSRDM (Yue et al., 2022): JPEG	OSEDiff	24.9658	0.7034	0.2974	0.2167	0.6864	6.2706	64.4699	0.5834	126.8771
	OSEDiff+MGHF	25.4904	0.7207	0.2700	0.2105	0.6576	7.0892	63.9669	0.6004	121.7394
BSRDM (Yue et al., 2022): Signal	OSEDiff	24.7141	0.7012	0.2883	0.2083	0.6948	6.6281	65.3582	0.6030	118.5541
	OSEDiff+MGHF	25.2224	0.7184	0.2637	0.2002	0.6723	6.9913	64.9218	0.6062	110.6171
DASR (Wang et al., 2021a): Bicubic	OSEDiff	29.2698	0.8219	0.2623	0.2029	0.7024	6.7434	66.2623	0.6138	115.8055
	OSEDiff+MGHF	30.5273	0.8401	0.2373	0.1966	0.6588	7.0826	65.3810	0.6122	110.6456
DASR (Wang et al., 2021a): s-fold downampler	OSEDiff	27.4674	0.7835	0.2644	0.2032	0.6971	6.7787	66.1245	0.6121	115.7809
	OSEDiff+MGHF	28.1878	0.7954	0.2427	0.1980	0.6617	7.0105	65.5845	0.6146	112.7479

Figure 9: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework. Zoom in for a clearer view.

1269 Table 9: Comparison of OSEDiff and OSEDiff+MGHF on different datasets using QualiCLIP⁺ and CLIPiQA metrics.
1270

Dataset	Method	QualiCLIP ⁺ \uparrow	CLIPiQA \uparrow
DIV2K-Val	OSEDiff Original	0.6689	0.6680
	OSEDiff + MGHF-c	0.6737	0.6735
DRealSR	OSEDiff Original	0.6566	0.6964
	OSEDiff + MGHF-c	0.6566	0.6955
RealSR	OSEDiff Original	0.6643	0.6686
	OSEDiff + MGHF-c	0.6672	0.6673

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280 C.2 PERFORMANCE COMPARISON BETWEEN CLIPiQA AND QUALiCLIP⁺ METRICS
1281

1282 CLIP-IQA (Wang et al., 2023) is a widely used image quality metric, yet it has notable limitations. The primary short-
1283 coming is its ability to only classify images as good or bad without providing explanations for its quality assessments.
1284 This limitation stems from a broader challenge inherent in off-the-shelf CLIP models: their focus on high-level semantics
1285 prevents them from generating quality-aware image representations, as they lack sensitivity to low-level image character-
1286 teristics such as noise and blur. To address these limitations, QualiClip (Agnolucci et al., 2024) proposes a novel approach
1287 that trains CLIP to rank degraded images by measuring their similarity to quality-related antonym text prompts.
1288 In our experiment (Table 9), we observed that OSEDiff+MGHF outperforms OSEDiff in the QualiCLIP⁺ metric across
1289 the DIV2K-Val (Agustsson and Timofte, 2017), DRealSR (Wei et al., 2020), and RealSR (Cai et al., 2019) datasets.
1290 However, when evaluated with the CLIP-IQA metric, OSEDiff+MGHF exhibits slightly lower or comparable performance
1291 to OSEDiff on the DRealSR and RealSR datasets. Furthermore, as shown in Table 1, MGHF improves performance
1292 across most metrics when integrated with OSEDiff on these three datasets.

1293
1294 C.3 MORE PARAMETER DETAILS
1295

1296 In the detail feature extractor, before sending the image to the invertible neural network, we expand the image channels
1297 from 3 to N . In our experiment, we set $N = 128$. Moreover, in our experiment, we set the number of invertible blocks in
1298 the detail feature extractor to one. Finally, in the local information preservation objective, while calculating MoNCE (Zhan
1299 et al., 2022), we use 32×32 patches with a stride of 24 for selecting the neighboring patches.

1316 **D APPENDIX: PROOF**
13171318 **D.1 PROPOSITION 1**
1319

1320 **Proposition 1.** [Information Preservation] *The use of non-homeomorphic transform-based perceptual loss results*
1321 *in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all frequency*
1322 *components during translation. Consequently, the latter facilitates superior performance in perceptual loss*
1323 *calculation.*

1324 *Proof.*

1325 *Note:* We will combine foundational concepts from functional analysis (Hilbert spaces, unitary operators (Schwinger, 1960)), measure theory (change of variables), and signal processing (Plancherel's theorem (Yoshizawa, 1954)) with a clear application to the decision-theoretic framework of machine learning for justifying this proposition.

1326 **[Diffeomorphic perceptual losses preserve frequency information]** Let $\Omega \subset \mathbb{R}^d$ be a bounded open set and let
1327 $\mathcal{X} = L^2(\Omega)$ with inner product $\langle f, g \rangle = \int_{\Omega} f(x)g(x) dx$. For a map $T : \mathcal{X} \rightarrow \mathcal{H}$ into a Hilbert space \mathcal{H} , define
1328 the perceptual loss

$$\mathcal{L}_T(f, g) = \|T(f) - T(g)\|_{\mathcal{H}}.$$

1329 Then:

1330 (i) If T_{nh} is non-homeomorphic (in particular, non-injective) on \mathcal{X} , there exist $f \neq g$ with $\mathcal{L}_T(f, g) = 0$.
1331 Thus the loss performs only an *information approximation*, collapsing some distinctions between inputs.

1332 (ii) Let $\phi : \overline{\Omega} \rightarrow \overline{\Omega}$ be a C^1 diffeomorphism, and define the pullback operator

$$(U_{\phi}f)(y) = f(\phi^{-1}(y)) \sqrt{|\det D\phi^{-1}(y)|}.$$

1333 Then U_{ϕ} is unitary on $L^2(\Omega)$ and

$$\mathcal{L}_U(f, g) = \|f - g\|_2.$$

1334 Consequently, by Plancherel's theorem, the discrepancy energy across *all* Fourier frequencies is preserved;
1335 no frequency component is lost under U_{ϕ} .

1336 (i) *Non-homeomorphic case.* Since T_{nh} is not injective, by definition there exist $f \neq g$ in \mathcal{X} with $T_{\text{nh}}(f) = T_{\text{nh}}(g)$.
1337 Hence, the perceptual loss is zero:

$$\mathcal{L}_T(f, g) = \|T_{\text{nh}}(f) - T_{\text{nh}}(g)\|_{\mathcal{H}} = 0.$$

1338 However, since $f \neq g$, their L^2 distance is non-zero:

$$\|f - g\|_2 > 0.$$

1339 This demonstrates that the loss metric \mathcal{L}_T cannot distinguish between distinct signals f and g , implying that
1340 information is necessarily discarded or approximated.

1341 (ii) *Diffeomorphic case.* Let $\phi \in \text{Diff}(\overline{\Omega})$ be a C^1 diffeomorphism. The operator U_{ϕ} is defined as the pullback, a
1342 generalization of the change of variables in integration. To prove that U_{ϕ} is unitary on $L^2(\Omega)$, we must show it
1343 preserves the inner product. For $f, g \in L^2(\Omega)$, we consider the inner product $\langle U_{\phi}f, U_{\phi}g \rangle$:

$$\langle U_{\phi}f, U_{\phi}g \rangle = \int_{\Omega} ((U_{\phi}f)(y)) ((U_{\phi}g)(y)) dy$$

1363 Substituting the definition of U_ϕ , we get:

$$\begin{aligned} 1365 &= \int_{\Omega} f(\phi^{-1}(y)) g(\phi^{-1}(y)) \sqrt{|\det D\phi^{-1}(y)|}^2 dy \\ 1366 &= \int_{\Omega} f(\phi^{-1}(y)) g(\phi^{-1}(y)) |\det D\phi^{-1}(y)| dy. \end{aligned}$$

1367 Now, we perform a change of variables using $x = \phi^{-1}(y)$. By the multi-variable change of variables formula, we
1370 have $dy = |\det D\phi(x)| dx$. Since ϕ is a diffeomorphism, $D\phi^{-1}(y) = (D\phi(x))^{-1}$ and thus $|\det D\phi^{-1}(y)| =$
1371 $|\det(D\phi(x))^{-1}| = |\det D\phi(x)|^{-1}$. Therefore, $dy = |\det D\phi(x)| dx = \frac{1}{|\det D\phi(x)|} dx$. Using the change of
1372 variables, the integral becomes:

$$1373 \langle U_\phi f, U_\phi g \rangle = \int_{\phi(\Omega)} f(x) g(x) dx.$$

1375 Since $\phi : \bar{\Omega} \rightarrow \bar{\Omega}$ is a diffeomorphism, it maps the domain Ω onto itself. Thus $\phi(\Omega) = \Omega$.

$$1377 \langle U_\phi f, U_\phi g \rangle = \int_{\Omega} f(x) g(x) dx = \langle f, g \rangle.$$

1379 This proves that U_ϕ is a unitary operator. A direct consequence of this is that the norm (and thus the distance) is
1380 preserved:

$$1381 \mathcal{L}_U(f, g) = \|U_\phi f - U_\phi g\|_2 = \|f - g\|_2.$$

1382 By Plancherel's theorem, which relates the energy of a signal to the energy of its Fourier transform, we have:

$$1383 \langle f, g \rangle = \int_{\mathbb{R}} |\widehat{f}(\xi) - \widehat{g}(\xi)|^2 d\xi,$$

1386 where $\widehat{f}(\xi)$ is the Fourier transform of f . Since $\mathcal{L}_U(f, g) = \|f - g\|_2$, the perceptual loss directly measures the
1387 total spectral energy of the difference between the signals. This means that no frequency component is ignored or
1388 annihilated by the transformation, thus preserving all frequency information.

1389 **Conclusion for Part I:** Diffeomorphic transformations, by their unitary nature, lead to a perceptual loss that is
1390 a perfect surrogate for the true L^2 distance, preserving all information including frequency components. Non-
1391 homeomorphic transformations, being non-injective, necessarily discard information.

1393 **[Diffeomorphic perceptual losses are decision-theoretically superior]** Let $\Omega \subset \mathbb{R}^d$ be a bounded open set and
1394 $\mathcal{X} = L^2(\Omega)$ with inner product $\langle f, g \rangle = \int_{\Omega} f(x)g(x) dx$ and norm $\|f\|_2 = \sqrt{\langle f, f \rangle}$. For a (measurable) feature
1395 map $T : \mathcal{X} \rightarrow \mathcal{H}$ into a Hilbert space \mathcal{H} , define the *perceptual loss*

$$1396 \mathcal{L}_T(f, g) := \|T(f) - T(g)\|_{\mathcal{H}}.$$

1398 Given a distribution P on pairs (X, Y) with $Y \in \mathcal{X}$ and a hypothesis class \mathcal{H}^\dagger of predictors $h : \text{dom}(X) \rightarrow \mathcal{X}$,
1399 define the population (expected) risks:

$$1400 \mathcal{R}(h) := \mathbb{E}[\|h(X) - Y\|_2^2], \quad \mathcal{R}_T(h) := \mathbb{E}[\|T(h(X)) - T(Y)\|_{\mathcal{H}}^2].$$

1402 (a) *(Exact calibration)* Let $\phi : \bar{\Omega} \rightarrow \bar{\Omega}$ be a C^1 diffeomorphism and define the pullback U_ϕ as before. Then
1403 for all h , $\mathcal{R}_U(h) = \mathcal{R}(h)$. Consequently, for every hypothesis class \mathcal{H}^\dagger , $\arg \min_{h \in \mathcal{H}^\dagger} \mathcal{R}_U(h) =$
1404 $\arg \min_{h \in \mathcal{H}^\dagger} \mathcal{R}(h)$.

1410
 1411 (b) (*Strict suboptimality of non-homeomorphic transforms*) If T is non-injective, there exist a distribution P
 1412 and a hypothesis class $\mathcal{H}^\dagger_{\sqrt{}}$ for which any minimizer of \mathcal{R}_T has strictly larger true risk than a minimizer
 1413 of \mathcal{R} .

1414 (a) *Exact calibration.* As shown in the previous section, the operator U_ϕ is unitary on $L^2(\Omega)$, which implies it is an
 1415 isometry, preserving distances: $\|U_\phi f - U_\phi g\|_2 = \|f - g\|_2$. Applying this property to the risk functions, we have:
 1416

$$\mathcal{R}_U(h) = \mathbb{E}[\|U_\phi h(X) - U_\phi Y\|_2^2]$$

1417 Since the norm is preserved, this simplifies to:
 1418

$$\mathcal{R}_U(h) = \mathbb{E}[\|h(X) - Y\|_2^2] = \mathcal{R}(h).$$

1419 This shows the risks are identical for any predictor h . Therefore, the set of minimizers for the perceptual risk is
 1420 exactly the same as the set of minimizers for the true risk:
 1421

$$\arg \min_{h \in \mathcal{H}^\dagger_{\sqrt{}}} \mathcal{R}_U(h) = \arg \min_{h \in \mathcal{H}^\dagger_{\sqrt{}}} \mathcal{R}(h).$$

1422 This property is crucial as it guarantees that a model trained to minimize the perceptual loss will also be optimal
 1423 with respect to the true objective.
 1424

1425 (b) *Strict suboptimality.* Because T is non-injective, there exist at least two distinct signals $u, v \in \mathcal{X}$ such that
 1426 $u \neq v$ but $T(u) = T(v)$. Let's set a specific value for this collapsed point, $T(u) = T(v) =: z$. We construct a
 1427 counterexample. Let the distribution P be a simple Bernoulli distribution on the pair (X, Y) , where X is arbitrary
 1428 and

$$Y = \begin{cases} u, & \text{with probability } 1/2, \\ v, & \text{with probability } 1/2. \end{cases}$$

1429 Now, let the hypothesis class $\mathcal{H}^\dagger_{\sqrt{}}$ be the set of constant predictors, $h_w(\cdot) \equiv w$, for any $w \in \mathcal{X}$.
 1430

1431 First, consider the perceptual risk $\mathcal{R}_T(h_w)$:

$$\begin{aligned} \mathcal{R}_T(h_w) &= \mathbb{E}[\|T(h_w(X)) - T(Y)\|_{\mathcal{H}}^2] \\ &= \frac{1}{2}\|T(w) - T(u)\|_{\mathcal{H}}^2 + \frac{1}{2}\|T(w) - T(v)\|_{\mathcal{H}}^2. \end{aligned}$$

1432 Since $T(u) = T(v) = z$, this simplifies to:
 1433

$$\mathcal{R}_T(h_w) = \frac{1}{2}\|T(w) - z\|_{\mathcal{H}}^2 + \frac{1}{2}\|T(w) - z\|_{\mathcal{H}}^2 = \|T(w) - z\|_{\mathcal{H}}^2.$$

1434 This risk is minimized when $T(w) = z$. Therefore, any constant predictor h_w where $T(w) = z$ is a minimizer of
 1435 the perceptual risk. This includes h_u and h_v .
 1436

1437 Next, consider the true risk $\mathcal{R}(h_w)$:

$$\mathcal{R}(h_w) = \mathbb{E}[\|h_w(X) - Y\|_2^2] = \frac{1}{2}\|w - u\|_2^2 + \frac{1}{2}\|w - v\|_2^2.$$

1438 We want to find the true risk of the minimizers of the perceptual loss. The perceptual minimizers are h_u and h_v .
 1439 The true risk for the minimizer h_u is:
 1440

$$\mathcal{R}(h_u) = \frac{1}{2}\|u - u\|_2^2 + \frac{1}{2}\|u - v\|_2^2 = \frac{1}{2}\|u - v\|_2^2.$$

1441 The true risk for the minimizer h_v is:
 1442

$$\mathcal{R}(h_v) = \frac{1}{2}\|v - u\|_2^2 + \frac{1}{2}\|v - v\|_2^2 = \frac{1}{2}\|u - v\|_2^2.$$

Now, let's find the true minimizer of $\mathcal{R}(h_w)$. To minimize $\frac{1}{2}\|w - u\|_2^2 + \frac{1}{2}\|w - v\|_2^2$, we can take the derivative with respect to w and set it to zero, which gives the true optimal constant predictor as the mean $w^* = \frac{u+v}{2}$. The minimum true risk is:

$$\begin{aligned}\mathcal{R}(h_w) &= \frac{1}{2}\left\|\frac{u+v}{2} - u\right\|_2^2 + \frac{1}{2}\left\|\frac{u+v}{2} - v\right\|_2^2 = \frac{1}{2}\left\|\frac{v-u}{2}\right\|_2^2 + \frac{1}{2}\left\|\frac{u-v}{2}\right\|_2^2 \\ &= \frac{1}{2} \cdot \frac{1}{4}\|u-v\|_2^2 + \frac{1}{2} \cdot \frac{1}{4}\|u-v\|_2^2 = \frac{1}{4}\|u-v\|_2^2.\end{aligned}$$

We can compare the true risk of the perceptual minimizer h_u with the true optimal risk:

$$\mathcal{R}(h_u) = \frac{1}{2}\|u-v\|_2^2 = \frac{1}{4}\|u-v\|_2^2 + \frac{1}{4}\|u-v\|_2^2 = \mathcal{R}(h_w) + \frac{1}{4}\|u-v\|_2^2.$$

Since $u \neq v$, we have $\|u-v\|_2^2 > 0$, and thus the gap is strictly positive. This shows that the solution found by minimizing the non-homeomorphic perceptual loss is strictly suboptimal for the true objective.

Summary. This proof provides that:

1. **Diffeomorphic losses:** The unitary nature of the transformation ensures the perceptual loss is exactly equal to the true L^2 loss, for any signals, distributions, and hypothesis classes. This provides a guarantee that the model learns the correct underlying objective.
2. **Non-homeomorphic losses:** Their non-injective nature means they can map distinct signals to the same output. A model trained with such a loss can be "tricked" into finding a solution that appears optimal for the loss function but is demonstrably and strictly suboptimal for the true objective, leading to a poorer generalization or performance.

Therefore, a diffeomorphic transform-based invertible neural network is a theoretically superior choice than a non-homomorphic transform-based CNN for perceptual losses. □

D.2 TOY EXAMPLE OF INFORMATION PRESERVATION BY DIFFEOMOPHIC TRANSFORM

D.3 SWIRLED TRANSFORM

We define a swirled transformation that applies radially-dependent rotation around the center (x_0, y_0) . Given pixel coordinates (x, y) , we compute centered coordinates and polar representation, then apply quadratic angular displacement proportional to distance-squared. This invertible transform preserves topological structure while introducing controlled spiral distortion for data augmentation.

$$\begin{aligned}x_c &= x - x_0, & y_c &= y - y_0, \\ r &= \sqrt{x_c^2 + y_c^2}, & \theta &= \text{atan2}(y_c, x_c), \\ \theta' &= \theta + k r^2, \\ x' &= x_0 + r \cos \theta', & y' &= y_0 + r \sin \theta'.\end{aligned}$$

D.4 COLLAPSED TRANSFORM

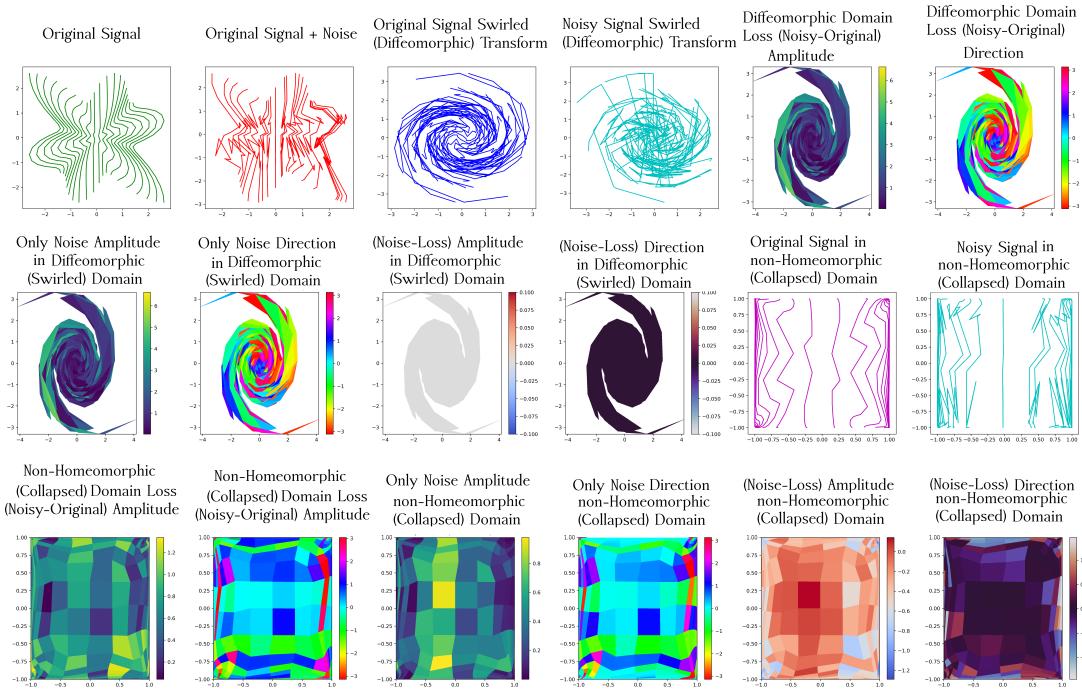
We introduce non-invertible collapse transformations for dimensionality reduction and feature compression. The radial variant contracts points toward center (x_0, y_0) via scaling function $g(r) \in [0, 1]$, enabling controllable information loss. Setting $g(r) = 0$ yields complete collapse, while $g(r) < 1$ provides partial compression. Orthogonal projection represents the simplest linear collapse operation.

1504 $x' = x_0 + g(r)(x - x_0),$
 1505 $y' = y_0 + g(r)(y - y_0),$
 1506
 1507 where $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}, \quad g : [0, \infty) \rightarrow [0, 1].$

1508 Simple collapse transform onto the x-axis:

$$(x', y') = (x, 0).$$

1509
 1510 In Fig. 11, the diffeomorphic swirled transform preserves high-frequency noise during loss computation, whereas the
 1511 non-homomorphic collapsed transform fails to do so.



1536 Figure 11: Toy examples illustrating high-frequency preservation in diffeomorphic transforms, whereas non-homomorphic
 1537 transforms exhibit information loss.

1551
1552

D.5 COROLLARY 1.

1553
1554
1555

Corollary 1. [Frequency distortion by ReLU operation] *The output signal $y(t) = \text{ReLU}(\cos(\omega_0 t))$ contains frequency components at integer multiples of ω_0 that were not present in the input signal $x(t) = \cos(\omega_0 t)$.*

1556
1557

Proof. Let $y(t) = \text{ReLU}(\cos(\omega_0 t))$. The complex Fourier series coefficients c_n for $y(t)$ are given by:

1558
1559
1560
1561
1562
1563

$$\begin{aligned} c_0 &= \frac{1}{\pi} \\ c_1 &= c_{-1} = \frac{1}{4} \\ c_n &= \frac{\cos(n\pi/2)}{\pi(1-n^2)} \quad \text{for } |n| > 1 \end{aligned}$$

1564
1565

The signal $y(t)$ is periodic with period $T_0 = 2\pi/\omega_0$. The Fourier coefficients c_n are calculated by the integral:

1566
1567

$$c_n = \frac{1}{T_0} \int_0^T y(t) e^{-jn\omega_0 t} dt$$

1568
1569

The function $\cos(\omega_0 t)$ is positive on the interval $[-T_0/4, T_0/4]$ within one period. Therefore, the integral simplifies to:

1570
1571

$$c_n = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} \cos(\omega_0 t) e^{-jn\omega_0 t} dt$$

1572
1573

Using Euler's formula, $\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$, we get:

1574
1575
1576
1577
1578

$$\begin{aligned} c_n &= \frac{1}{2T_0} \int_{-T_0/4}^{T_0/4} (e^{j\omega_0 t} + e^{-j\omega_0 t}) e^{-jn\omega_0 t} dt \\ &= \frac{1}{2T_0} \int_{-T_0/4}^{T_0/4} (e^{j(1-n)\omega_0 t} + e^{-j(1+n)\omega_0 t}) dt \end{aligned}$$

1579
1580

For the case where $n \neq \pm 1$, we can integrate directly:

$$\begin{aligned} c_n &= \frac{1}{2T_0} \left[\frac{e^{j(1-n)\omega_0 t}}{j(1-n)\omega_0} - \frac{e^{-j(1+n)\omega_0 t}}{j(1+n)\omega_0} \right]_{-T_0/4}^{T_0/4} \\ &= \frac{1}{2T_0} \left(\frac{2 \sin((1-n)\pi/2)}{(1-n)\omega_0} + \frac{2 \sin((1+n)\pi/2)}{(1+n)\omega_0} \right) \\ &= \frac{1}{2\pi(1-n^2)} ((1+n) \sin(\pi/2 - n\pi/2) + (1-n) \sin(\pi/2 + n\pi/2)) \\ &= \frac{1}{2\pi(1-n^2)} ((1+n) \cos(n\pi/2) + (1-n) \cos(n\pi/2)) \\ &= \frac{2 \cos(n\pi/2)}{2\pi(1-n^2)} = \frac{\cos(n\pi/2)}{\pi(1-n^2)} \end{aligned} \tag{19}$$

1581
1582

The special cases for $n = 0$ and $n = \pm 1$ must be calculated separately, yielding $c_0 = 1/\pi$ and $c_{\pm 1} = 1/4$.

1583
1584
1585
1586
1587
1588
1589
1590

The output signal $y(t) = \text{ReLU}(\cos(\omega_0 t))$ contains frequency components at integer multiples of ω_0 that were not present in the input signal $x(t) = \cos(\omega_0 t)$.

1591
1592
1593
1594
1595
1596
1597

1598 The input signal $x(t)$ is band-limited, containing only frequencies at $\pm\omega_0$. From Eq. (19), we can evaluate the
 1599 coefficients c_n for $|n| > 1$. For example, for the second harmonic ($n = 2$):
 1600

$$1601 c_2 = \frac{\cos(\pi)}{\pi(1-4)} = \frac{-1}{-3\pi} = \frac{1}{3\pi} \neq 0$$

$$1602$$

1603 And for the fourth harmonic ($n = 4$):
 1604

$$1605 c_4 = \frac{\cos(2\pi)}{\pi(1-16)} = \frac{1}{-15\pi} \neq 0$$

$$1606$$

1607 Since c_n is non-zero for even integers $n \geq 2$, the Fourier series representation of $y(t)$ contains terms for frequencies
 1608 $2\omega_0, 4\omega_0, \dots$. These are new high-frequency components.
 1609

1610 Applying the ReLU activation function to a band-limited signal can produce an output signal that is not band-limited
 1611 to the original frequency range.
 1612

1613 Let $x(t) = \cos(\omega_0 t)$ be a signal band-limited to the frequency ω_0 . Its Fourier Transform contains energy only
 1614 at $\omega = \pm\omega_0$. Let $y(t) = \text{ReLU}(x(t))$. By Eq. (19), the Fourier series of $y(t)$ contains non-zero coefficients
 1615 corresponding to frequencies $n\omega_0$ for even integers $n \geq 2$. The existence of these harmonics implies that the
 1616 Fourier Transform of $y(t)$ is non-zero for frequencies $|\omega| > \omega_0$. Therefore, the output signal $y(t)$ is no longer
 1617 band-limited to the original frequency ω_0 , proving that the ReLU function has introduced new higher-frequency
 1618 components. \square

1619 D.6 THEOREM 1

1620 **Theorem 1.** [Superiority of INN over CNN in perceptual loss calculation]

1621 *Invertible Neural Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when
 1622 used as perceptual feature extractors. Formally, let $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote a diffeomorphic INN and $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$ a
 1623 standard CNN feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following
 1624 contrasts hold:*

- **Information conservation.** INN: $H(f(X)) = H(X)$ (entropy preserved due to bijectivity). CNN: $H(g(X)) < H(X)$ (irreversible compression due to non-invertibility).
- **Manifold preservation.** INN: diffeomorphic mappings preserve topology of the image manifold. CNN: distortion mappings collapse neighborhoods and destroy manifold structure.
- **Statistical equivalence.** INN: all statistical moments of X are preserved in $f(X)$. CNN: higher-order moments are altered or lost.
- **Spectral completeness.** INN: full frequency spectrum preserved, including high-frequency details. CNN: effective low-pass filtering due to pooling and convolution kernels.
- **Gradient stability.** INN: Jacobians are well-conditioned ($\det J_f(x) \neq 0$). CNN: singular Jacobians induce unstable or vanishing gradients.
- **Distribution matching.** INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive Wasserstein distance.

1635 *Proof.* D.6.1 INFORMATION CONSERVATION

1636 [CNN Information Destruction]

1637 Any CNN with non-invertible operations (pooling, ReLU) necessarily destroys information. Specifically, for CNN
 1638 function $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$:

$$1639 H(X) > H(g(X)) \tag{20}$$

$$1640$$

1641 where $H(\cdot)$ denotes differential entropy.
 1642

1643 Consider max pooling operation $\text{Pooling} : \mathbb{R}^4 \rightarrow \mathbb{R}$ defined as $\text{Poolin}(x_1, x_2, x_3, x_4) = \max\{x_1, x_2, x_3, x_4\}$.
 1644

1645 The mapping is not injective since multiple inputs map to the same output. For example, $(4, 1, 2, 3)$ and $(4, 0, 1, 2)$
 1646 both map to 4.
 1647

1648 By the data processing inequality:

$$1649 \quad I(X; \text{Pooling}(X)) \leq I(X; X) = H(X) \quad (21)$$

1651 Since P is not invertible, the inequality is strict: $I(X; \text{Pooling}(X)) < H(X)$.

1652 For ReLU activation $\sigma(x) = \max(0, x)$, the function maps all negative values to zero, creating information loss
 1653 quantified by:

$$1654 \quad H(X) - H(\sigma(X)) = \int_{-\infty}^0 p_X(x) \log p_X(x) dx > 0 \quad (22)$$

1656 where p_X is the probability density of X .

1657 **[Information Preservation in INNs]**

1658 For any invertible neural network f and random variable X :

$$1659 \quad H(f(X)) = H(X) \quad (23)$$

1661 Since f is invertible with inverse f^{-1} , we have:

$$1663 \quad H(f(X)) = - \int p_{f(X)}(y) \log p_{f(X)}(y) dy \quad (24)$$

$$1665 \quad = - \int p_X(f^{-1}(y)) \left| \det \left(\frac{\partial f^{-1}}{\partial y} \right) \right| \log \left(p_X(f^{-1}(y)) \left| \det \left(\frac{\partial f^{-1}}{\partial y} \right) \right| \right) dy \quad (25)$$

1667 Using the change of variables $x = f^{-1}(y)$, $dx = \left| \det \left(\frac{\partial f}{\partial y} \right) \right| dy$:

$$1670 \quad H(f(X)) = - \int p_X(x) \log \left(p_X(x) \left| \det \left(\frac{\partial f^{-1}}{\partial f(x)} \right) \right| \right) dx \quad (26)$$

$$1672 \quad = - \int p_X(x) \log p_X(x) dx - \int p_X(x) \log \left| \det \left(\frac{\partial f^{-1}}{\partial f(x)} \right) \right| dx \quad (27)$$

$$1674 \quad = H(X) - \mathbb{E}_X \left[\log \left| \det \left(\frac{\partial f}{\partial x} \right)^{-1} \right| \right] \quad (28)$$

$$1677 \quad = H(X) + \mathbb{E}_X \left[\log \left| \det \left(\frac{\partial f}{\partial x} \right) \right| \right] \quad (29)$$

1679 For coupling layers in INNs, the Jacobian determinant is designed to have unit absolute value, making the
 1680 expectation zero, thus $H(f(X)) = H(X)$.
 1681

1682 **D.6.2 MANIFOLD PRESERVATION THEORY**

1684 [Natural Image Manifold Preservation] Let $M \subset \mathbb{R}^n$ be the natural image manifold. INNs preserve manifold
 1685 structure while CNNs create distortions.

1686 For INN $f : M \rightarrow M$, since f is bijective and differentiable:

- 1687 1. f is a homeomorphism preserving topological structure
- 1688 2. The tangent space structure is preserved: $T_{f(x)} M = df_x(T_x M)$

1692 3. Geodesic distances are preserved up to the Riemannian metric transformation
 1693

1694 For CNN $g : M \rightarrow M'$ where $\dim(M') < \dim(M)$ due to information loss:

$$1695 \quad \exists x_1, x_2 \in M : x_1 \neq x_2 \text{ but } g(x_1) = g(x_2) \quad (30)$$

1696 This violates injectivity and creates manifold collapse, fundamentally distorting the natural image structure.

1697 D.6.3 STATISTICAL DISTRIBUTION THEORY

1701 **[Moment Preservation in INNs]** For invertible function f and random variable X :

$$1702 \quad \mathbb{E}[X^k] = \mathbb{E}[(f^{-1}(f(X)))^k] = \mathbb{E}[X^k], \quad \forall k \in \mathbb{N} \quad (31)$$

1704 Since f is invertible, $f^{-1}(f(X)) = X$ almost surely. Therefore:

$$1706 \quad \mathbb{E}[(f^{-1}(f(X)))^k] = \mathbb{E}[X^k] \quad (32)$$

1708 This preservation extends to all statistical moments, ensuring complete distributional equivalence.

1709 **[CNN Moment Distortion]** For CNN with information-destroying operations, higher-order moments are not
 1710 preserved:

$$1711 \quad \mathbb{E}[X^k] \neq \mathbb{E}[(g^\dagger(g(X)))^k] \text{ for } k \geq 2 \quad (33)$$

1712 where g^\dagger represents the pseudo-inverse reconstruction.

1713 **Perceptual Loss Optimality** [INN Perceptual Loss Optimality] INN-based perceptual loss achieves theoretical
 1714 minimum distortion:

$$1715 \quad D_{\text{INN}}^* = \inf_{f \in \mathcal{F}_{\text{INN}}} \mathbb{E}[\|X - f^{-1}(f(X))\|_2^2] = 0 \quad (34)$$

1717 For perfect invertible reconstruction:

$$1718 \quad D_{\text{INN}}^* = \mathbb{E}[\|X - f^{-1}(f(X))\|_2^2] \quad (35)$$

$$1719 \quad = \mathbb{E}[\|X - X\|_2^2] \quad (36)$$

$$1720 \quad = 0 \quad (37)$$

1723 In contrast, for CNNs with pseudo-inverse g^\dagger :

$$1725 \quad D_{\text{CNN}} = \mathbb{E}[\|X - g^\dagger(g(X))\|_2^2] > 0 \quad (38)$$

1726 This limitation arises from the information loss of CNNs, as shown in Sec. D.6.1.

1728 D.6.4 SPECTRAL PROPERTIES OF CNNS VS. INNS

1730 The difference in how CNNs and INNs handle frequency information stems from their core mathematical designs:
 1731 CNNs use non-bijective operations, while INNs rely on bijective transformations.

1732 CNN: Low-Pass Filtering

1733 The primary culprit for a CNN's low-pass filtering behavior is the **pooling layer**, which performs non-invertible
 1734 downsampling.

1739
 1740 Let's consider a simple 2×2 average pooling operation on a discrete signal $x[n, m]$. The output signal $y[n, m]$ is
 1741 given by:

$$1742 \quad 1743 \quad y[n, m] = \frac{1}{4} \sum_{i=0}^1 \sum_{j=0}^1 x[2n+i, 2m+j]$$

1744 This operation discards information. In the frequency domain, this downsampling without an anti-aliasing filter
 1745 causes high-frequency content to alias into the low-frequency spectrum. The new spectrum is a superposition of the
 1746 original spectrum and its shifted, aliased versions. Since this is a many-to-one mapping, the original high-frequency
 1747 details cannot be recovered, leading to a permanent loss of information. This fundamentally proves the low-pass
 1748 filtering effect.

1749 **INN: Spectral Completeness**

1750 INNs, by design, are composed of layers that perform bijective transformations. The key mathematical property is
 1751 that the Jacobian determinant for each layer is non-singular (i.e., non-zero).

1752 Let $f : \mathbb{R}^D \rightarrow \mathbb{R}^D$ be a layer in an INN. Its Jacobian matrix is $J_f(x) = \frac{\partial f(x)}{\partial x}$. For the mapping to be invertible,
 1753 the determinant of this matrix must be non-zero for all inputs x :

$$1754 \quad 1755 \quad |\det(J_f(x))| \neq 0$$

1756 For a complete INN, which is a composition of N such layers, $f_{\text{total}} = f_N \circ \dots \circ f_1$, the overall Jacobian determinant
 1757 is the product of the individual layers' determinants:

$$1758 \quad 1759 \quad |\det(J_{f_{\text{total}}}(x))| = \prod_{i=1}^N |\det(J_f(x))| \neq 0$$

1760 This non-zero determinant ensures that the transformation is a **diffeomorphism** and that a unique inverse exists.
 1761 This means no information, including high-frequency content, is ever collapsed or destroyed. The original signal
 1762 can be perfectly reconstructed from the output, thus proving the spectral preservation of INNs.

1763 **D.6.5 GRADIENT FLOW STABILITY**

1764 [INN Gradient Preservation] INNs maintain gradient structure while CNNs suffer degradation:

$$1765 \quad 1766 \quad \nabla_x L = J_f^T \nabla_{f(x)} L \quad (39)$$

1767 where J_f is the Jacobian of the INN transformation f .

1768 For invertible f with well-conditioned Jacobian:

$$1769 \quad 1770 \quad \sigma_{\min}(J_f) \geq \epsilon > 0 \quad (40)$$

1771 where, σ_{\min} is the minimum singular value of a matrix. It's a scalar value that comes from the Singular Value
 1772 Decomposition (SVD). The gradient transformation preserves magnitude:

$$1773 \quad 1774 \quad \sigma_{\min}(J_f) \|\nabla_{f(x)} L\|_2 \leq \|J_f^T \nabla_{f(x)} L\|_2 \leq \sigma_{\max}(J_f) \|\nabla_{f(x)} L\|_2 \quad (41)$$

1775 For CNNs with potentially singular Jacobian J_g due to information loss:

$$1776 \quad 1777 \quad \|J_g^T \nabla_{g(x)} L\|_2 \leq \sigma_{\max}(J_g) \|\nabla_{g(x)} L\|_2 \quad (42)$$

1778 with $\sigma_{\min}(J_g) \rightarrow 0$ causing gradient vanishing in certain directions.

1779
 1780
 1781
 1782
 1783
 1784
 1785

1786 D.6.6 WASSERSTEIN DISTANCE ANALYSIS
17871788 [Distribution Matching Optimality] INNs achieve perfect distribution matching while CNNs exhibit positive
1789 Wasserstein distance:

1790
$$W_1(P_X, P_{f^{-1}(f(X))}) = 0 \quad (\text{INN}) \quad (43)$$

1791

1792
$$W_1(P_X, P_{g^\dagger(g(X))}) > 0 \quad (\text{CNN}) \quad (44)$$

1793

1794 For INNs, since $f^{-1}(f(X)) = X$ almost surely:

1795
$$W_1(P_X, P_{f^{-1}(f(X))}) = W_1(P_X, P_X) = 0. \quad (45)$$

1796

1797 For CNNs with information loss, the distributions differ:
1798

1799
$$W_1(P_X, P_{g^\dagger(g(X))}) = \int |F_X(t) - F_{g^\dagger(g(X))}(t)| dt > 0 \quad (46)$$

1800

1801
$$W_1(P_X, P_{f^{-1}(f(X))}) = W_1(P_X, P_X) = 0 \quad (47)$$

1802

1803 where F denotes cumulative distribution functions.
1804

□

1805 D.7 THEORY 2
18061807 **Theorem 2.** The \mathcal{L}_{LIP} objective provides a tighter lower bound on mutual information than standard InfoNCE.
1808

1809
$$I(G; S) \geq \log N_k - \mathcal{L}_{LIP} \geq \log N_k - \mathcal{L}_{\text{InfoNCE}} \quad (48)$$

1810

1811 *Proof.* **Step 1: Setup.** For one feature map k with N_k patches, define the modulation
1812

1813
$$m(s_{ki}, g_{kj}) = \begin{cases} 1, & j = i, \\ Q(N_k - 1) a_{ij}^k, & j \neq i, \end{cases} \quad (49)$$

1814

1815 where $a_{ij}^k \in [0, 1]$ are Sinkhorn OT weights and Q is a scalar. Define
1816

1817
$$r(s, g) = m(s, g) \exp\left(\frac{1}{\tau} s^\top g\right). \quad (50)$$

1818

1819 The per-query loss is
1820

1821
$$L_{i,k} = -\mathbb{E}\left[\log r(s_{ki}, g_{ki}) - \log \sum_{j=1}^N r(s_{ki}, g_{kj})\right]. \quad (51)$$

1822

1823 **Step 2: AM–GM bound on the log-sum.** By the arithmetic–geometric mean inequality,
1824

1825
$$\sum_{j=1}^N r(s, g_j) \geq N_k \left(\prod_{j=1}^N r(s, g_j) \right)^{1/N}. \quad (52)$$

1826

1827

1828

1829

1830

1831

1832

1833

Taking logs,

1834

1835

1836

$$\log \sum_{j=1}^N r(s, g_j) \geq \log N_k + \frac{1}{N_k} \sum_{j=1}^N \log r(s, g_j). \quad (53)$$

1837

Therefore,

1838

1839

1840

$$\mathbb{E} \left[\log \sum_{j=1}^N r(s_{ki}, g_{kj}) \right] \geq \log N_k + \frac{1}{N_k} \sum_{j=1}^N \mathbb{E} [\log r(s_{ki}, g_{kj})]. \quad (54)$$

1841

1842

Step 3: Lower bound on $\log N_k - L_{i,k}$. Substituting into the definition of $L_{i,k}$,

1843

1844

1845

1846

1847

1848

$$\begin{aligned} \log N_k - L_{i,k} &= \log N_k + \mathbb{E} [\log r(s_{ki}, g_{ki})] - \mathbb{E} \left[\log \sum_j r(s_{ki}, g_{kj}) \right] \\ &\geq \mathbb{E} [\log r(s_{ki}, g_{ki})] - \frac{1}{N_k} \sum_{j=1}^N \mathbb{E} [\log r(s_{ki}, g_{kj})]. \end{aligned} \quad (55)$$

1849

If negatives $\{g_{kj}\}_{j \neq i}$ are i.i.d. from the marginal $p(g)$, then

1850

1851

1852

$$\log N_k - L_{i,k} \geq \mathbb{E} [\log r(s_{ki}, g_{ki})] - \mathbb{E}_s [\mathbb{E}_{g \sim p(g)} [\log r(s_{ki}, g)]]. \quad (56)$$

1853

Step 4: Split into InfoNCE part and a gain term. Expanding $r(s, g)$,

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

Step 5: Evaluate Δ for LIP. For LIP, $m(s, g) = 1$ if g is the positive pair and $m(s, g) = Q(N_k - 1)a_{ij}^k$ otherwise. Hence

1864

1865

$$\Delta = -\mathbb{E} [\log (Q(N_k - 1)a_{ij}^k)]. \quad (59)$$

1866

1867

Choosing $Q = \frac{1}{N-1}$ gives $\Delta = -\mathbb{E} [\log a_{ij}^k] \geq 0$, with strict inequality whenever $\mathbb{P}(a_{ij}^k < 1) > 0$.

1868

Step 6: Conclude. Averaging over all patches and feature maps,

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

$$I(G; S) \geq \log N_k - \mathcal{L}_{\text{LIP}} \geq \log N_k - \mathcal{L}_{\text{InfoNCE}}, \quad (60)$$

with an additional non-negative gap Δ . Therefore, LIP provides a strictly tighter lower bound than InfoNCE. \square