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ABSTRACT

An avalanche of innovations in perceptual loss has advanced the super-resolution (SR) litera-
ture, enabling the synthesis of realistic and detailed high-resolution images. However, most
of these approaches rely on convolutional neural network (CNN)-based non-homeomorphic
transforms, which result in information loss during guidance and often necessitate complex
architectures and training procedures. To address these limitations—particularly the infor-
mation loss and unwanted harmonics introduced by CNNs—we propose a diffeomorphic
transform–based variant of a computationally efficient invertible neural network (INN) for
a naive Multi-Granular High-Frequency (MGHF-n) perceptual loss, trained on ImageNet.
Building on this foundation, we extend the framework into a comprehensive variant (MGHF-
c) that integrates multiple constraints to preserve, prioritize, and regularize information
across several aspects: texture and style preservation, content fidelity, regional detail preser-
vation, and joint content–style regularization. Information is prioritized through adaptive
entropy-based pruning and reweighting of INN features, while a content–style consistency
regularizer regulates excessive texture generation and ensures content fidelity. To capture
intricate local details, we further introduce modulated PatchNCE on INN features as a local
information preservation (LIP) objective. As another thread in the tapestry, we present
the theoretical foundation, showing that (1) the LIP objective compels the SR network to
maximize the mutual information between super-resolved and ground-truth modalities,
and (2) a diffeomorphic transform–based perceptual loss enables more effective learning
of the ground-truth distribution manifold compared to non-homeomorphic counterparts.
Empirical results demonstrate that the proposed MGHF objective substantially improves
both GAN- and diffusion-based SR algorithms across multiple evaluation metrics, and the
code will be released publicly after the review process.

1 INTRODUCTION

Super-resolution (SR) aims to improve the detailed information in images degraded by down-sampling,
blurring, noise, and various real-world distortions (Wang et al., 2020). Degraded images contain structural
information but lack high-frequency information Zhang et al. (2024); Chen et al. (2022). Researchers employ
various generative models (Wu et al., 2024a; Ledig et al., 2017; Lugmayr et al., 2020; Lu et al., 2022; Guo
et al., 2022; Wei and Zhang, 2023) and objective functions (Johson et al., 2016; Zhang et al., 2018; Cheon
et al., 2018; Kim et al., 2024a; Deng et al., 2019) to enhance high-frequency features in the SR problem Kim
et al. (2016); Lugmayr et al. (2020); Wu et al. (2024a). The objective functions for SR can be categorized
as perceptual (Zhang et al., 2018; Johson et al., 2016), content (Qin and Wang, 2024), style losses (Sajjadi
et al., 2017), structural similarity measures (Wang et al., 2004; Singla et al., 2024), and frequency domain
losses (Sims, 2020a; Cai et al., 2021). Among these categories, naive perceptual losses (Johson et al., 2016;
Zhang et al., 2018) are widely used; however, while effective in capturing many characteristics of the source
image, they fall short of preserving complete details due to the inherent information approximation (Yarotsky,
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(a) Performance comparison on DrealSR (b) Performance comparison on RealSR

Figure 1: Performance comparison of different super-resolution models with and without MGHF framework. (a) Results on the DrealSR (Wei et al.,
2020) dataset showing the effectiveness of MGHF across different metrics. (b) Results on the RealSR (Cai et al., 2019) dataset demonstrate consistent
improvements.The dotted line of each color represents the baseline model, and the solid line of the same color represents the baseline model with the MGHF
framework.

2017; Achille and Soatto, 2018) and lossy nature of CNN operations (Jacobsen et al., 2018). In the SR litera-
ture (Deng et al., 2019; Fuoli et al., 2021; Zhang et al., 2018; Sims, 2020b), several variants of information
approximation within the perceptual loss family have been implemented through diverse techniques such
as quantization (Gray and Neuhoff, 1998), adversarial training (Liu et al., 2017), neural network feature
extraction (Yarotsky, 2017; Lu et al., 2017; Tishby and Zaslavsky, 2015; Achille and Soatto, 2018), and
feature enhancement (Dai et al., 2018). Some of these approximation approaches are: i) LPIPS (Zhang et al.,
2018), which employs learned feature map weighting to align with human perception; ii) FDPL (Sims, 2020b),
which applies quantization to discrete cosine transform (DCT) (Ahmed et al., 1974) coefficients, despite
DCT’s inherent lossless nature; iii) Fourier space loss (Fuoli et al., 2021), which shifts generation toward
perceptually pleasing high-frequencies through adversarial training (Goodfellow et al., 2014); and iv) wavelet
domain style transfer (Deng et al., 2019), which introduces feature enhancement through a selective wavelet
filter. Moreover, since OSEDiff (Wu et al., 2024a) employs the LPIPS (Zhang et al., 2018) objective based on
a non-homeomorphic CNN transform (Plastock, 1974) rather than a diffeomorphic (Earle and Eells, 1967)
invertible neural network (INN) (Dinh et al., 2022), which introduces information loss and approximation
errors in perceptual evaluation, our results in Fig. 1 show that the diffeomorphic transform-based multi-
granular high-frequency (MGHF) framework effectively mitigates these issues and improves performance
across several metrics.
Another inherent problem of several perceptual loss families during SR is the substantial complexity of the ar-
chitecture design (Kim et al., 2024a; Rad et al., 2019) and training procedure (Ledig et al., 2017). For example,
SRGAN (Ledig et al., 2017) employs a relatively straightforward perceptual loss (Johson et al., 2016) by using
VGG (Simonyan and Zisserman, 2014) features, and requires unstable adversarial training (Goodfellow et al.,
2014). SROBB (Rad et al., 2019) significantly increases complexity by introducing region-specific perceptual
losses that process objects, backgrounds, and boundaries differently, requiring additional segmentation labels
and specialized loss calculations for each semantic region. SR4IR (Kim et al., 2024a) presents the complex
training methodology with its alternate training framework that switches between updating the SR network
and the task network, combined with a specialized cross-quality patch mix data augmentation strategy. We
propose a naive version of MGHF perceptual loss that maintains an efficient architecture while delivering
effective results for the super-resolution task, addressing these complexity issues.
Perceptual losses (Johson et al., 2016; Zhang et al., 2018) trained on the VGG (Simonyan and Zisserman,

2014) or AlexNet (Krizhevsky et al., 2012) backbone in ImageNet (Deng et al., 2009) and stable diffu-
sion (Rombach et al., 2022a) trained on billions of image-text pairs serve as important super-resolution
priors (Wu et al., 2024a; Wang et al., 2024a). We introduce a novel high-frequency perceptual loss based
on an invertible neural network (INN) trained on ImageNet as a new prior for SR. INNs have previously
been utilized in image super-resolution and rescaling (Xiao et al., 2020) literature in ways distinct from our
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approach. For instance, SRFlow (Lugmayr et al., 2020) employs INN-based normalizing flows (Rezende and
Mohamed, 2015) to learn conditional distributions of high-resolution images given low-resolution inputs,
while IRN (Xiao et al., 2020) explicitly models downscaling or upscaling as forward or inverse operations
of an invertible network with Haar wavelet (Haar, 1910) transformation. HCFlow (Liang et al., 2021b)
creates bijective mappings between HR-LR image pairs where high-frequency components are hierarchically
conditional on low-frequency components through specially designed flow levels, and IARN (Pan et al., 2023)
adapts the invertible framework by replacing Haar wavelet transforms with preemptive channel splitting and
embedding position-aware scale encoding, enabling arbitrary rescaling factors within a single model while
maintaining bidirectional invertibility. The authors (Wei et al., 2024) introduced invertible priors for image
rescaling through Invertible Feature Recovery Modules (IFRM), which establish bijective transformations be-
tween quantized features obtained by VQGAN (Esser et al., 2021) and low-resolution images using coupling
layers (Dinh et al., 2022). Extending this line of research, our work makes a distinct contribution by employing
an INN trained on ImageNet as a super-resolution (SR) prior. Furthermore, we underscore a fundamental
limitation of existing perceptual loss approaches (Johson et al., 2016; Zhang et al., 2018): the information loss
and harmonic distortion introduced by non-homeomorphic transformations, such as MaxPooling and ReLU
layers in AlexNet and VGG backbones, when computing widely adopted perceptual losses. This observation
leads us to formulate the central research question: Can a lossless, diffeomorphism-based super-resolution
prior be established to facilitate more efficient and effective perceptual loss computation in comparison to
conventional non-homeomorphic transforms?
We propose a multi-granular high-frequency perceptual loss (MGHF) to overcome the aforementioned issues.
The naive version, MGHF-n, serves as an effective invertible neural network (INN) prior trained on ImageNet
to guide the super-resolution process. Building upon this foundation, our comprehensive version (MGHF-c)
addresses the perception-distortion tradeoff (Blau and Michaeli, 2018) and improves the SR performance
on several image quality metrics (Wang et al., 2023; Ke et al., 2021; Zhang et al., 2015) by both focusing
and regularizing essential detail information alongside the INN prior. To achieve these goals, MGHF-c
introduces an adaptive importance score based on normalized entropy to prioritize and select significant
INN features, which are then processed through a multifaceted approach that incorporates a modulated
PatchNCE (Zhan et al., 2022)-based local information preservation objective to maintain intricate details,
while simultaneously preserving style and content information in the INN domain via Gram matrix and
mean-squared loss, respectively. Additionally, to overcome unnecessary style transfer and preserve content
information while guiding SR, we propose a correlation loss-based content-style consistency regularizer.
Our experiments demonstrate that the proposed MGHF objective significantly improves the performance
of three super-resolution algorithms: OSEDiff (Wu et al., 2024a), SinSR (Wang et al., 2024c), and BSR-
GAN (Zhang et al., 2021), with the first two based on diffusion models, and the last on a GAN. Notably,
in SinSR (Wang et al., 2024c), even our simpler variant, MGHF-n, outperforms both LPIPS (Zhang et al.,
2018) and the naive perceptual loss (Johnson et al., 2016). Furthermore, our MGHF framework consistently
outperforms several image enhancement (Zhu et al., 2024; Qin et al., 2024) approaches and remains robust
across diverse degradation techniques (Wang et al., 2021c; Yue et al., 2022; Wang et al., 2021a; Yao et al.,
2024) and scaling factors within OSEDiff. Also, our proposed INN feature extractor within the MGHF
framework requires 41 times fewer parameters than the VGG (Simonyan and Zisserman, 2014)-based feature
extractor typically used for calculating perceptual losses (Johson et al., 2016; Zhang et al., 2018).We term our
approach the Multi-Granular High-Frequency (MGHF) perceptual loss, as it accounts for different levels of
information—specifically style, content, and consistency—while the diffeomorphic transformation–based
prior preserves high-frequency information during SR. The details of related works regarding SR methods
and perceptual objectives are discussed in Appendix A.

2 METHODOLOGY

In this section, we introduce a diffeomorphic transform-based, multi-granular high-frequency perceptual
objective for super-resolution and establish its theoretical advantages over non-homeomorphic alternatives.
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Figure 2: The depiction of proposed MGHF perceptual loss, where the detail feature extractor (DFE) is based on an
invertible neural network. The vanilla high-frequency perceptual loss is calculated among feature maps of the DFE, while
the content-style consistency loss is calculated from the most informative pruned and reweighted DFE feature maps.

We then present an invertible neural-network-based detail feature extractor (DFE) and its adaptive weighted
variant (AWDFE), along with objectives for content–style consistency and local information preservation. We
provide a concise overview here; full details appear in the Appendix.

2.1 DETAIL FEATURE EXTRACTOR

We propose a detail feature extractor (DFE), trained on ImageNet (Deng et al., 2009), to preserve texture,
fine-grained detail, and content correspondence between super-resolution and ground-truth images. The
DFE’s backbone is an invertible neural network built from affine coupling layers (Dinh et al., 2022); a brief
specification appears in Algorithm 1. The DFE adheres to the diffeomorphic principle, whereas conventional
perceptual losses rely on CNN feature spaces that employ non-injective operations (MaxPooling, ReLU),
which cause information loss and harmonic distortion (see Remark 1 and Corollary 1). The advantages of
diffeomorphic over non-homeomorphic transforms are formalized in Proposition 1 and Theorem 1.

2.1.1 THEORY OF SUPERIORITY OF DIFFEOMORPHIC INN OVER CNN IN PERCEPTUAL LOSS
CALCULATION

Proposition 1. [Information Preservation] The use of non-homeomorphic transform-based perceptual loss
results in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all
frequency components during translation. Consequently, the latter facilitates superior performance in perceptual
loss calculation.

See proof in App. Sec. D.1. Using the first part of the proposition, the toy example in App. Sec. D.2 shows that
a diffeomorphic transform preserves information, whereas a non-homomorphic transform does not.

Remark 1. [Information Loss in CNN] The ReLU activation function and the MaxPooling operation are inherently
non-injective mappings. As a consequence, they introduce irreversible information loss within perceptual loss
frameworks that rely on feature representations extracted from AlexNet and VGG networks.

These remarks can be explained by feature map visualization on Fig. 3, where deeper layers of VGG lost
fine-grained details.
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Corollary 1. [Frequency distortion by ReLU operation] The output signal y(t) = ReLU(cos(ω0t)) contains
frequency components at integer multiples of ω0 that were not present in the input signal x(t) = cos(ω0t).

See proof in App. Sec. D.5. This proof demonstrates that the ReLU operation introduces unwanted
harmonics in a simple sinusoidal signal. While MaxPooling and ReLU cause the generalization capacity
of CNNs (Brutzkus and Globerson, 2021; Banerjee et al., 2019), they also induce information loss and
harmonic distortion—effects that can be detrimental in applications where strict information preservation
is essential.

Theorem 1. [Superiority of diffeomorphic INN over CNN in perceptual loss calculation]. Invertible Neural
Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when used as perceptual
feature extractors. Formally, let f : Rn → Rn denote a diffeomorphic INN and g : Rn → Rm a standard CNN
feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following contrasts
hold:

•• Information conservation. INN: H(f(X)) = H(X) (entropy preserved due to bijectivity). CNN: H(g(X)) <
H(X) (irreversible compression due to non-invertibility).

• Manifold preservation. INN: diffeomorphic mappings preserve topology of the image manifold. CNN: distortion
mappings collapse neighborhoods and destroy manifold structure.

• Statistical equivalence. INN: all statistical moments of X are preserved in f(X). CNN: higher-order moments
are altered or lost.

• Spectral completeness. INN: full frequency spectrum preserved, including high-frequency details. CNN: effective
low-pass filtering due to pooling and convolution kernels.

• Gradient stability. INN: Jacobians are well-conditioned (det Jf (x) ̸= 0). CNN: singular Jacobians induce
unstable or vanishing gradients.

• Distribution matching. INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive
Wasserstein distance.

We provide the proof in App. Sec. D.6. Our experimental results on App. Table 4 depict that the proposed
diffeomorphic transform-based MGHF-n outperforms naive perceptual losses (Zhang et al., 2018; Johson
et al., 2016).
Let XGT and XLR be the ground-truth and corresponding low-resolution image sample caused by
down-sampling, blur, and real-world degradation. Any super-resolution method can transform XLR to XSR.
The DFE is used to extract detailed feature maps by:

G = DFE(XGT ), S = DFE(XSR), where

G = {G1, G2, . . . , GL}, S = {S1, S2, . . . , SL}, L is the number of DFE feature maps.
(1)

The naive multi-granular high-frequency perceptual loss (MGHF-n) is calculated between DFE features
of GT and SR images in the following way:

LMGHF-n = LMSE(G,S). (2)

2.2 ADAPTIVE AND WEIGHTED DETAIL FEATURE EXTRACTOR

The detail feature maps encompass various aspects of an image. However, some of the feature maps consist
of less informative and redundant information. To overcome these issues and improve robustness (Correia
et al., 2019; Niculae and Blondel, 2017) while calculating perceptual loss, we propose adaptive DFE filter
weighting and pruning strategies that utilize the entropy calculation on DFE feature maps. The importance
score (Icombined(j)) of all the extracted DFE feature maps is calculated using entropy, which enables us to
select the most informative M feature maps from the L detailed feature maps by using Eq. 4. These M selected
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Algorithm 1 Pretraining of Detail Feature Extractor
Require: Invertible modules {ψk}Kk=1, CNN modules {Cl}Ll=1, fully connected layers (FC), and convolution {Conv(3→N channel)}.
Require: ImageNet training set Z̄
1: while not converged do
2: Sample z̄ ∼ Z̄
3: z0 ← Conv(z̄)
4: for k ← 1 toK do
5: zk ← ψk(zk−1)
6: end for
7: ŷ1 ← zK
8: for l← 1 to L do
9: ŷl+1 ← Cl(ŷl)
10: end for
11: yscore ← Softmax(FC(ŷL+1))
12: L ← CrossEntropy(yscore, yclass)
13: Update Conv, {ψk}, {Cl}, FC by descending∇L
14: end while
15: return embedding zK

Figure 3: Visualization of feature maps of the detail feature extractor (DFE)
and VGG. (Please zoom in on the figure for better perception.)

Figure 4: Visualization of original DFE
and AWDFE feature maps.

feature maps are then weighted by introducing an adaptive weighting strategy in Eq. 5.

Icombined(j) =
(1−Hnorm(Gj)) + (1−Hnorm(Sj))

2
, (3)

where Hnorm is the normalized entropy in the range [0, 1]; and j = 1, 2, ..., L feature maps from DFE.

M = {indices of top M feature maps},
Ĝ = {Gi | i ∈ M} = {Gi1 , . . . , GiM } , and similarly, Ŝ is calculated.

(4)

wi =
(
1 + α · Icombined(i)

)γ
, i ∈ M,

Gw
i = wi ·Gi, Swi = wi · Si, i ∈ M,

Gw = {Gw
i1 , G

w
i2 , . . . , G

w
iM }, Sw = {Swi1 , S

w
i2 , . . . , S

w
iM },

(5)

where Ĝ and Ŝ are the adaptive ground-truth and super-resolution pruned filters, respectively. wi is the
importance score of i-th pruned feature map, and α and γ are constant. By prioritizing and pruning the detail
feature extractor’s (DFE) outputs based on importance scores, we obtain the adaptive and weighted feature
maps Gw and Sw, constituting our AWDFE module.

2.3 CONTENT-STYLE CONSISTENCY

The content-style consistency objective preserves and regularizes the content and style features between
ground-truth and super-resolution AWDFE features. While style and content information preservation is
widely employed in super-resolution literature (Sajjadi et al., 2017; Cheon et al., 2018), we specifically utilize
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Low Quality (LQ) Zoomed LQ OSEDiff OSEDiff + FlowIE OSEDiff + RAM OSEDiff + UnifyFormer OSEDiff + MGHF
 (72.21;  0.4732) (69.81; 0.4518)  (67.66; 0.4362)  (72.65; 0.4759)  (73.36; 0.4842) 

Figure 5: Qualitative comparisons of different image enhancement methods in OSEDiff. Please zoom in for a better view. The values in the parenthesis
are the quantitative result measured by (MUSIQ↑ (Ke et al., 2021); MANIQA↑ (Yang et al., 2022)). Our MGHF achieves better MUSIQ and MANIQA
compared to others. However, the FlowIE (Zhu et al., 2024), RAM (Qin et al., 2024), and UnifyFormer (Yang et al., 2024) over-enhance the image.

style and content loss in the features of the AWDFE domain by applying the Gram matrix and mean squared
error loss. We propose content-style consistency regularization by utilizing the correlation loss between SR
and GT image pairs in the AWDFE domain. The total content-style consistency objective is denoted as (LCSC)
in the following equation:

LCSC = β1 · LMSE(G
w,Sw) + β2 · Lcorr(G

w,Sw) + β3 · LGram(G
w,Sw), (6)

where Lcorr, LGram, and LMSE are content-style consistency regularizer, style, and content loss, respectively.

Lcorr(G
w,Sw) = 1− 1

M

M∑
i=1

cov(Gw
i , S

w
i )

σGw
i
· σSw

i

, LGram(G
w,Sw) =

1

M

M∑
i=1

∥Gram(Gw
i )− Gram(Swi )∥2. (7)

2.4 LOCAL INFORMATION PRESERVATION OBJECTIVE

Unpaired image-to-image domain translation (Zhu et al., 2017) is a well-known technique in the computer
vision literature for transferring modalities. We assume super-resolution and ground truth modalities as two
distinct modalities during the SR training procedure. To transfer GT to SR modality, we utilize the modulated
patch-wise noise contrastive estimation (MoNCE) (Zhan et al., 2022) that effectively facilitates regional
texture transfer. The proposed local information preservation (LIP) objective is calculated between DFE
feature maps of SR and GT modalities, which can be depicted as:

LLIP =
1

L

L∑
k=1

LMoNCE(Gk, Sk),

=
1

L

L∑
k=1

−
Nk∑
i=1

log

 e(ski·gki/τ)

e(ski·gki/τ) +Q(Nk − 1)
∑Nk
j=1
j ̸=i

akije
(ski·gkj/τ)


,

(8)

where L is the number of feature maps from DFE, each feature map is divided into Nk patches, and each
patch is projected into the embedding space. aij is the weighting factor for a negative patch that is calculated
through the Sinkhorn optimal transport plan (Cuturi, 2013). Thm. 2 demonstrates that our proposed LIP
objective enhances information maximization between the GT and SR modalities. The further details of the
mathematical formulations, and the parameter settings are provided in App. Sec. B.3, and App. Sec. C.3,
respectively.

2.4.1 THEORY OF ENHANCEMENT OF INFORMATION MAXIMIZATION BY LIP OBJECTIVE

Theorem 2. [Information maximization between SR and GT modalities]

The LLIP objective provides a tighter lower bound on mutual information than standard InfoNCE.

I(G;S) ≥ logNk − LLIP ≥ logNk − LInfoNCE (9)

We present the detailed proof in App. Sec. D.7, while the experimental results in App. Table 6 highlight the
significance of the LIP objective for super-resolution.
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2.5 TOTAL OBJECTIVE

Our proposed MGHF-c framework optimizes the MGHF-n, content-style consistency, and local information
preservation objectives. The overall objective can be defined as:

LMGHF-c = Γ1 · LMGHF-n + Γ2 · LCSC + Γ3 · LLIP, (10)

where Γ1, Γ2 and Γ3 are hyperparameters to balance the overall super-resolution process in multifarious
granularity.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Compared methods. We analyze the performance of our proposed method with several super-resolution
algorithms, e.g., StableSR-s200 (Wang et al., 2024b), RealSR-JPEG (Ji et al., 2020), DiffBIR-s50 (Lin
et al., 2023), SeeSR-s50 (Wu et al., 2024b), OSEDiff (Wu et al., 2024a), PASD-s20 (Yang et al., 2023),
ESRGAN (Wang et al., 2018), ResShift (Yue et al., 2023), SinSR (Wang et al., 2024c), BSRGAN (Zhang
et al., 2021), SwinIR (Liang et al., 2021a), RealESRGAN (Wang et al., 2021c), DASR (Liang et al., 2022),
and LDM (Rombach et al., 2022b). In addition, we evaluate MGHF against three contemporary image-
enhancement approaches—RAM (Qin et al., 2024), FlowIE (Zhu et al., 2024), and UnifyFormer (Yang et al.,
2024)—on the OSEDiff output.
Metrics. We employ PSNR, SSIM, DISTS (Ding et al., 2020), and LPIPS (Zhang et al., 2018) metrics for
performance analysis on the testing dataset with reference images. Fréchet Inception Distance (FID) (Heusel
et al., 2017) measures the distribution distance between ground-truth and generated images. Furthermore,
we utilize five widely used non-reference image quality metrics to evaluate SR images’ realism and se-
mantic coherence: CLIPIQA (Wang et al., 2023), MUSIQ (Ke et al., 2021), MANIQA (Yang et al., 2022),
QualiCLIP+ (Agnolucci et al., 2024), and NIQE (Zhang et al., 2015).

3.2 EXPERIMENTAL RESULTS AND COMPARISON WITH STATE-OF-THE-ART

Quantitative comparisons on real-world datasets. We evaluate the performance of our proposed MGHF
framework on three real-world datasets: RealSR (Cai et al., 2019), RealSet65 (Yue et al., 2023), and
DrealSR (Wei et al., 2020). We investigate the image perceptual quality of MGHF compared with other
state-of-the-art super-resolution algorithms in Table 1, and 2. As shown in Table 2, by applying our MGHF-n
to SinSR, we achieve the best CLIPIQA (Wang et al., 2023) score among widely used GAN-, transformer-, and
diffusion-based SR algorithms on the RealSR and RealSet65 datasets. We also analyze various reference and
non-reference metrics of diffusion model-based approaches compared to ours on the DrealSRWei et al. (2020)
and RealSRWu et al. (2024a) datasets in Table 1. In the RealSR and DrealSR datasets, OSEDiff+MGHF-c
achieves the best LPIPS, DISTS, and FID scores. Furthermore, we visualize several samples with and without
MGHF on the baseline methods in App. Fig. 8, and Fig. 9.
Quantitative comparisons on synthetic datasets. We investigate the reference-based fidelity metrics and
non-reference-based image quality metrics in the ImageNet-Test (Deng et al., 2009) and DIV2K-Val (Agusts-
son and Timofte, 2017) datasets. From Table 3, the SinSR+MGHF-n method achieves the best MUSIQ
and CLIPIQA scores and the second-best LPIPS score compared to the nine other SR approaches in the
ImageNet-Test dataset, though SinSR+MGHF-n lags slightly in PSNR and SSIM metrics. We also find on the
DIV2K-val dataset from Table 1 that MGHF-c significantly improves the performance on numerous metrics,
e.g., SSIM, LPIPS, DISTS, FID, when applied to the OSEDiff, SinSR, and BSRGAN baseline models.
Parameter and computational complexity of MGHF. Our INN-based detailed feature extractor (DFE) pro-
vides substantial efficiency improvements compared to the conventional VGG16-based perceptual loss (Johson
et al., 2016; Zhang et al., 2018) model. A comprehensive depiction of the time and space complexity of the
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Table 1: Quantitative comparison with state-of-the-art SR methods (4× scaling) on both synthetic and real-world benchmarks. s denotes the number of
diffusion reverse steps. Highlighted skyblue, lightgreen, and orange rows are variants of the SR algorithm with our MGHF framework.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑

DIV2K-Val

StableSR-s200 23.26 0.5726 0.3113 0.2048 24.44 4.7581 65.92 0.6192 0.6771
DiffBIR-s50 23.64 0.5647 0.3524 0.2128 30.72 4.7042 65.81 0.6210 0.6704
SeeSR-s50 23.68 0.6043 0.3194 0.1968 25.90 4.8102 68.67 0.6240 0.6936
PASD-s20 23.14 0.5505 0.3571 0.2207 29.20 4.3617 68.95 0.6483 0.6788

ResShift-s15 24.65 0.6181 0.3349 0.2213 36.11 6.8212 61.09 0.5454 0.6071
BSRGAN∗ 22.67 0.5717 0.4428 0.2839 90.74 4.6398 58.92 0.4231 0.6268

BSRGAN∗+MGHF-c 23.27 0.5922 0.3910 0.2569 69.16 3.9963 62.54 0.4949 0.5875
SinSR-s1 24.41 0.6018 0.3240 0.2066 35.57 6.0159 62.82 0.5386 0.6471

SinSR +MGHF-c 24.25 0.6100 0.3393 0.2202 50.78 5.6939 62.53 0.5208 0.6708
OSEDiff-s1 23.72 0.6108 0.2941 0.1976 26.32 4.7097 67.97 0.6148 0.6683

OSEDiff +MGHF-c 24.27 0.6294 0.2824 0.1936 25.33 4.6985 68.5023 0.6200 0.6735
OSEDiff +RAM (Qin et al., 2024) 17.61 0.5302 0.3655 0.2364 28.69 5.7877 65.47 0.5918 0.6410

OSEDiff +FlowIE (Zhu et al., 2024) 22.20 0.6157 0.3692 0.2398 41.32 6.0190 64.18 0.5940 0.5711
OSEDiff +UnifyFormer (Yang et al., 2024) 23.76 0.6154 0.2982 0.2010 26.61 4..8104 68.54 0.6071 0.5798

DrealSR

StableSR-s200 28.03 0.7536 0.3284 0.2269 148.98 6.5239 58.51 0.5601 0.6356
DiffBIR-s50 26.71 0.6571 0.4557 0.2748 166.79 6.3124 61.07 0.5930 0.6395
SeeSR-s50 28.17 0.7691 0.3189 0.2315 147.39 6.3967 64.93 0.6042 0.6804
PASD-s20 27.36 0.7073 0.3760 0.2531 156.13 5.5474 64.87 0.6169 0.6808

ResShift-s15 28.46 0.7673 0.4006 0.2656 172.26 8.1249 50.60 0.4586 0.5342
BSRGAN∗ 26.79 0.7580 0.4027 0.2839 224.89 5.9202 53.18 0.4334 0.6067

BSRGAN∗+MGHF-c 27.66 0.7895 0.3454 0.2497 198.54 5.9792 58.20 0.4956 0.5552
SinSR-s1 28.36 0.7515 0.3665 0.2485 170.57 6.9907 55.33 0.4884 0.6383

SinSR +MGHF-c 28.10 0.7759 0.3334 0.2488 185.78 6.8817 57.51 0.4967 0.6813
OSEDiff-s1 27.92 0.7835 0.2968 0.2165 135.30 6.4902 64.65 0.5899 0.6963

OSEDiff +MGHF-c 28.87 0.8057 0.2713 0.2088 132.52 6.8203 64.27 0.6012 0.6995
OSEDiff +RAM (Qin et al., 2024) 18.31 0.6502 0.3928 0.2717 140.96 7.1188 63.01 0.5734 0.6957

OSEDiff +FlowIE (Zhu et al., 2024) 24.57 0.7805 0.2882 0.2347 161.88 8.0641 61.39 0.5714 0.5806
OSEDiff +UnifyFormer (Yang et al., 2024) 27.97 0.7889 0.2928 0.2190 137.32 6.5703 65.33 0.5823 0.6180

RealSR

StableSR-s200 24.70 0.7085 0.3018 0.2288 128.51 5.9122 65.78 0.6221 0.6178
DiffBIR-s50 24.75 0.6567 0.3636 0.2312 128.99 5.5346 64.98 0.6246 0.6463
SeeSR-s50 25.18 0.7216 0.3009 0.2223 125.55 5.4081 69.77 0.6442 0.6612
PASD-s20 25.21 0.6798 0.3380 0.2260 124.29 5.4137 68.75 0.6487 0.6620

ResShift-s15 26.31 0.7421 0.3460 0.2498 141.71 7.2635 58.43 0.5285 0.5444
BSRGAN∗ 24.02 0.6830 0.3949 0.2716 218.79 5.1710 59.67 0.4424 0.6350

BSRGAN∗+MGHF-c 24.95 0.7207 0.3416 0.2463 185.26 5.2761 64.49 0.5314 0.5572
SinSR-s1 26.28 0.7347 0.3188 0.2353 135.93 6.2872 60.80 0.5385 0.6122

SinSR +MGHF-c 25.82 0.7397 0.3069 0.2419 148.88 5.9970 62.94 0.5430 0.6792
OSEDiff-s1 25.15 0.7341 0.2921 0.2128 123.49 5.6476 69.09 0.6326 0.6693

OSEDiff +MGHF-c 26.01 0.7418 0.2731 0.2057 111.54 5.6058 68.32 0.6419 0.6673
OSEDiff +RAM (Qin et al., 2024) 16.84 0.6025 0.3601 0.2666 134.34 6.0761 68.34 0.6200 0.6761

OSEDiff +FlowIE (Zhu et al., 2024) 23.19 0.7310 0.2784 0.2219 148.45 7.2668 64.33 0.5923 0.5279
OSEDiff +UnifyFormer (Yang et al., 2024) 25.18 0.7387 0.2862 0.2157 124.47 5.5983 69.56 0.6297 0.5666

components in the MGHF-c objective and the VGG-16 feature extractor is provided in App. Table 5.
Comparisons with image enhancement methods. We qualitatively and quantitatively compare our MGHF
objective with different image enhancement methods in Table 1 and Fig. 5. Experimental results show the
performance gain of MGHF over some image enhancement approaches on OSEDiff.
Robustness under real-world degradations and blind SR. We conduct a quantitative assessment of the
MGHF objective under different real-world degradation methods, e.g., haze, rain, ISP signal, noise, JPEG,
etc., in App. Table 8, evidencing consistent robustness.
Ablation study of different objective functions in MGHF. We thoroughly investigate the importance of
each loss function in the MGHF-c objective. A comprehensive experiment of each objective and its optimal
hyperparameter choice is discussed in App. Table 6, and Sec. C.

4 CONCLUSION AND LIMITATION

Despite the Cambrian explosion of perceptual objectives in the super-resolution (SR) literature,
diffeomorphism-based approaches to preserving high-frequency content remain largely unexplored. This
manuscript identifies limitations of existing non-homeomorphic transform-based perceptual losses and demon-
strates the theoretical and empirical advantages of diffeomorphic transforms. We also affirm that tighter lower
bounds on mutual information between ground truth and SR modalities enhance SR.
The MGHF framework demonstrates consistent improvements across OSEDiff, SinSR, and BSRGAN. In the
next stage, we aim to generalize MGHF to flow-, autoregressive-, transformer-, and neural-operator-based
super-resolution architectures. In CLIPIQA evaluations, our approach—along with several enhancement
baselines—shows a marginal degradation on OSEDiff. This observation motivates an analysis of biases in
CLIPIQA (Agnolucci et al., 2024; Miyata, 2023), which we address using the QualiCLIP+ metric on test
sets (Wei et al., 2020; Agustsson and Timofte, 2017; Cai et al., 2019) (see App. Sec. C.2 and Table 9).
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our empirical results and findings, we intend to make our code publicly
available in the final version. We describe all mathematical and algorithmic details necessary to reproduce our
results throughout this paper. In Sec. 2, Sec. D, we outline the theoretical basis and mathematical framework
for our method. Furthermore, we provide pseudocode for our method in Algorithm 1. For our theoretical
contributions, we offer detailed proofs of theorems and propositions in Sec. D, Sec. D.1, Sec. D.5, Sec. D.6,
and Sec. D.7. We provide experimental details in Sec. 3,and Sec. C. We have utilized the large language
model (LLM) for grammatical correction of the manuscript and information collection from online sources.
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MGHF: Multi-Granular High-Frequency Perceptual Loss
for Image Super-Resolution

In the appendix, we provide the following materials:

• Related works regarding different image super-resolution and perceptual objectives on super-resolution.

• Elaboration of the invertible neural network-based detail feature extractor.

• Preliminary discussion of local information preservation objective, therefore, we discussed PatchNCE and
Modulated PatchNCE.

• Visual comparisons of real-world and synthetic samples are shown under a 4× scaling factor.

• Ablation study in multifarious perspectives.

• Mathematical foundation and proofs of our proposed approach.

A APPENDIX: RELATED WORKS

A.1 IMAGE SUPER-RESOLUTION

Super-resolution is a well-known low-level computer vision problem widely used in many applications (Wang et al., 2020;
Dong et al., 2015), such as surveillance (Aakerberg et al., 2022), medical imaging (Qiu et al., 2024), gaming (Dong et al.,
2022), virtual reality (Spagnolo et al., 2023), photography (Park et al., 2023), face recognition (Chen et al., 2020), etc.
After the evolution of AlexNet (Krizhevsky et al., 2012), researchers implemented deep learning-based super-resolution
approaches (Dong et al., 2015; Johnson et al., 2016). Following that, the generative adversarial network (GAN) evolved,
and the GAN-based SR algorithms (Ledig et al., 2017; Wang et al., 2018; Zhang et al., 2021) were mainstream in the
computer vision community (Dong et al., 2015). The SR-GAN (Ledig et al., 2017), ESRGAN (Wang et al., 2018), and
RankSRGAN (Zhang et al., 2019) are some well-known GAN-based super-resolution algorithms. The invertible neural
network-based SRFlow (Lugmayr et al., 2020) outperformed the GAN-based SR algorithms in 2020. Furthermore, the
transformer (Vaswani et al., 2017) is the dominant network for natural language processing, image classification, and
detection, which facilitates researchers to implement the transformer in super-resolution (Lu et al., 2022). Additionally,
the denoising diffusion model outperforms the GAN in various perceptual metrics within the generative computer
vision field (Dhariwal and Nichol, 2021). The first denoising diffusion model-based SR algorithm was introduced in
2021 (Saharia et al., 2022). However, these early diffusion-based SR algorithms (Saharia et al., 2022; Yue et al., 2023)
initially faced challenges with slow sampling speeds and required many inference steps. Recently, researchers (Wang
et al., 2024c; Wu et al., 2024a; Zhang et al., 2024) have successfully developed diffusion-based super-resolution methods
that can operate in a single step. Autoregressive models and neural operator-based SR algorithms (Guo et al., 2022; Wei
and Zhang, 2023; Liu and Tang, 2024) have also been successfully employed in the SR domain. Our paper introduces a
novel family of perceptual loss objectives that improve several state-of-the-art SR algorithms (Wu et al., 2024a; Wang
et al., 2024c; Zhang et al., 2021) across different metrics.

A.2 PERCEPTUAL OBJECTIVES IN SUPER-RESOLUTION

In the super-resolution literature, various perceptual losses have been proposed to improve realistic texture and edge
generation. Initial works utilized a pretrained VGG network (Simonyan and Zisserman, 2014), alongside multiple
training strategies (Zhang et al., 2018) and the inclusion of adversarial loss (Ledig et al., 2017). Wavelet domain style
transfer (Deng et al., 2019) has improved the perception-distortion trade-off in SR by enhancing low-frequency features
and transferring style into the wavelet domain. Frequency domain perceptual loss emphasizes several frequency bands
of an image to depict its perceptual quality better (Sims, 2020a). Targeted perceptual loss has been applied in SR,
utilizing semantic information (object, background, boundary labels) across different image regions to compute perceptual
loss and enhance texture and edge quality (Rad et al., 2019). Furthermore, Fourier loss introduces adversarial losses
directly in Fourier space to enable perception-oriented SR, allowing a smaller network to achieve comparable perceptual
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quality (Fuoli et al., 2021). Task-driven perceptual (TDP) loss guides SR networks in restoring high-frequency details
relevant to specific recognition tasks (Kim et al., 2024b). The authors (Mechrez et al., 2019) demonstrate that contextual
loss approximates KL divergence as a statistical comparison tool for a more effective super-resolution strategy. The
authors of EnhanceNet (Sajjadi et al., 2017) argue that traditional SR methods optimize for pixel-wise accuracy (PSNR)
but tend to produce blurry images during SR. Consequently, the authors propose combining adversarial training with
perceptual loss and a novel texture-matching loss to facilitate the generation of more realistic textures. Perceptual content
losses (Cheon et al., 2018) utilize various perceptual loss functions, including discrete cosine transform coefficient loss
and differential content loss, in conjunction with adversarial networks for super-resolution. The SSDNet (Zhao et al.,
2023b) maps RGB and depth features to spherical space for improved feature decomposition, then fuses and refines
the information to achieve depth map super-resolution. The Discrete Cosine Transform (DCT)-based perceptual loss
emphasizes structural information that is sensitive to the human visual system (Sekhavaty-Moghadam et al., 2024).
FreqNet (Cai et al., 2021) uses the DCT to learn and reconstruct high-frequency details, the spatial extraction network
(SEN), which extracts and transforms spatial features from the low-resolution input image into frequency-domain
features, and a frequency reconstruction network (FRN), which reconstructs the high-frequency details. Our MGHF
framework prioritizes, preserves, and regularizes multi-granular information, including details, style, content, and regional
characteristics, during super-resolution.

In the subsequent section, we will discuss the different components of the MGHF framework: the invertible neural
network-based detailed feature extractor, adaptive filter pruning, and reweighting of the detailed features. We will also
address our content-style consistency approach that preserves and regularizes content and style information in the INN
domain.

B APPENDIX: ELABORATION OF DIFFERENT COMPONENTS IN MGHF

B.1 DETAIL FEATURE EXTRACTOR

We utilize an invertible neural network (INN) to capture high-frequency detail features in our proposed MGHF framework.
In the NICE paper (Dinh et al., 2015), researchers first proposed the INN concept. The authors of RealNVP (Dinh
et al., 2022) subsequently developed the affine coupling layer, which enabled more efficient and straightforward data
inversion. Utilizing 1×1 invertible convolution, the Glow paper (Kingma and Dhariwal, 2018) demonstrated generation
of realistic high-resolution images. INNs have been applied beyond generation—they’ve improved classification tasks
through superior feature extraction capabilities and information-preserving properties (Finzi et al., 2019). Moreover,
the INN-based detail feature extractor is also used in visible-infrared image fusion (Zhao et al., 2023a) and sensor
fusion (Sami et al., 2025) literature. Let XGT and XLR be the ground-truth and corresponding low-resolution image
sample caused by down-sampling, blur, and real-world degradation. Any super-resolution method transforms XLR to
XSR. The DFE is used to extract detailed feature maps by:

G = DFE(X
GT

), S = DFE(X
SR

), where

G = {G
1

, G
2

, . . . , G
L

}, S = {S
1

, S
2

, . . . , S
L

}, L is the number of DFE feature maps.
(11)

where G and S represent detail features extracted from the ground-truth and super-resolution images, respectively. The
invertible module in the DFE consists of affine coupling layers (Dinh et al., 2022). The illustration of the invertible
module is in Figure 6. In this figure, ψS

I,l[1 :c] is the first c channels of the input feature at the l-th invertible layer, where
l = 1, · · · , L. The arbitrary mapping functions in each invertible layer are: I1, I2, and I3. We utilize the shallow
diffeomorphic module (Earle and Eells, 1967) as an arbitrary mapping function in the invertible module. Moreover,
G = ψI,L(XGT ). Finally, the extraction of S = DFE(XSR) = ψI,L(XSR) can be calculated in the same way as G.

B.2 PATCHNCE OBJECTIVE

We introduce a local information preserving (LIP) objective in our MGHF framework. The building block of MGHF is the
modulated PatchNCE objective. To understand this, we will first discuss the naive PatchNCE objective. The CUT (Park
et al., 2020) was one of the pioneering works that introduced a method to maximize the mutual information between the
input patch and the corresponding output patch to preserve the semantic content in an unpaired I2I translation (Zhu et al.,
2017) scheme by utilizing a contrastive learning framework. After that, several research studies (Zhan et al., 2022; Sami
et al., 2023; Wang et al., 2021b) have improved the CUT architecture. The PatchNCE objective maximizes the mutual
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Figure 6: The architecture of the invertible module in the detail feature extractor (DFE) when calculating the multi-
granular high-frequency perceptual framework. The DFE consists of L cascaded invertible modules (Dinh et al., 2022).
Each invertible module has an affine coupling layer consisting of scaling and translation functions and a ⊙ Hadamard
product. We use shallow diffeomorphic modules to conduct the scaling and translation operations. Each invertible module
contains three shallow diffeomorphic modules.

information, I(X,Y ) = H(X)−H(X|Y ), which is equivalent to minimizing the conditional entropy H(X|Y ). The
PachNCE objective can be denoted as:

LPatch−NCE(X, Ȳ ) = −
N∑
i=1

log[
e(ȳi

.x
i

/τ)

e(ȳi

.x
i

/τ) +
∑

N
j=1

j ̸=i

e(ȳi

.x
j

/τ)
], (12)

where τ is a temperature parameter, and Ȳ and X are the generated target domain and ground truth images, respectively.
X = [x1, x2, . . . , xN ] and Ȳ = [ȳ1, ȳ2, . . . , ȳN ] represent encoded feature vectors from the 1st, 4th, 8th, 12th, and
16th layers of the encoder. Afterward, these features are passed through a two-layer MLP network (Rosenblatt, 1957;
Park et al., 2020; Zhan et al., 2022). Unlike PatchNCE, we introduce feature maps from every layer of the detail feature
extractor while calculating our proposed LIP objective B.4.

In the standard PatchNCE objective, N-class classification is performed where the anchor applies the same contrastive
force on all N − 1 negative patches, which is often too stringent and detrimental for convergence (Zhan et al., 2022). To
address this issue, we utilize the modulated contrast NCE loss (Zhan et al., 2022) when calculating our local information
preservation loss.

B.3 MODULATED PATCH-WISE NOISE CONTRASTIVE ESTIMATION OBJECTIVE

In the contrastive learning literature, the hardness of negative samples has been addressed adequately in (Robinson et al.,
2020; Wang et al., 2021b; Kalantidis et al., 2020). In contrastive learning literature, hard negatives have facilitated the
learning of data representations (Robinson et al., 2020). The hardness of negative patches in unpaired image translation
is defined by their similarity to the query (Zhan et al., 2022). As shown in Eq. 13, hard negative weighting defines the
similarity between a negative sample xj and an anchor ȳi:

aij =
e(ȳi

.x
i

/β)∑
N
j=1e

(ȳ
i

.x
j

/β)
, (13)

where β is the weighting temperature parameter. The modulated NCE objective employs reweighing procedures by
implementing the constraint represented by the following equation:

N∑
i=1

aij = 1,

N∑
j=1

aij = 1; i, j ∈ [1, N ]. (14)

Considering the optimal transport (Peyré et al., 2019), Eq. 15 provides the primary framework, subject to the constraints
of Eq. 14.

min
a

ij

,i,j∈[1,N ]
[

N∑
i=1

N∑
j=1
j ̸=i

aij .e
ȳ

i

.x
j

/τ ], (15)
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min
T

⟨C, T ⟩ s.t ⟨T−→1 ⟩ = 1, ⟨TT−→1 ⟩ = 1, (16)

where ⟨C, T ⟩ is the inner product of the cost matrix (C) and transport plan (T ). In the unpaired I2I network and local
information preservation objective, the cost matrix is eȳi

.x
j

/β where i ̸= j; if i = j then Cij = ∞. The Sinkhorn (Cuturi,
2013) algorithm is applied to Eq. 16 for calculating the optimal transport plan. Furthermore, while calculating the
modulated contrastive objective in our LIP loss, we use every layer of feature maps of the detail feature extractor. The
examples of vanilla and modulated contrast are depicted in Figure 7(a). and Figure 7(b). The MoNCE objective(LMoNCE)
can be expressed as:

LMoNCE = −
N∑
i=1

log[
e(ȳi

.x
i

/τ)

e(ȳi

.x
i

/τ) +Q(N − 1)
∑

N
j=1

j ̸=i

aijeȳi

.x
j

/τ
], (17)

where Q denotes the weight of negative terms in the denominator and typically Q = 1.

B.4 LOCAL INFORMATION PRESERVATION OBJECTIVE

We assume super-resolution and ground truth modalities are two distinct modalities during the training. To transfer
GT to SR modality, we utilize the modulated patch-wise noise contrastive estimation (MoNCE) (Zhan et al., 2022)
that effectively facilitates regional texture transfer. The proposed local information preservation objective is calculated
between the detail feature extractor (DFE) feature maps of SR and GT modalities, which can be depicted as:

LLIP =
1

L

L∑
k=1

LMoNCE(Gk, Sk),

=
1

L

L∑
k=1

−
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log

 e(ski

·g
ki
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ki
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j=1
j ̸=i

akije
(s

ki

·g
kj

/τ)


,

(18)

where L is the number of feature maps from DFE, each feature map is divided intoNk patches, and each patch is projected
into the embedding space. aij is the weighting factor for a negative patch that is calculated through the Sinkhorn optimal
transport plan (Cuturi, 2013). The mathematical framework of MoNCE (Zhan et al., 2022) is elaborately described in ??.

(a) Vanilla and weighted contrastive objective (Zhan
et al., 2022).

(b) Modulated contrastive objective (Zhan et al.,
2022).

Figure 7: The depiction of modulated contrastive objective (Zhan et al., 2022), which is utilized in our proposed local
information preservation objective for image super-resolution.
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C APPENDIX: EXPERIMENT AND RESULTS

Training Details. While training different models with the MGHF objective, we adopt the same model architecture and
parameter setup as their corresponding original baselines (Wang et al., 2024c; Wu et al., 2024a; Zhang et al., 2021). For
all models, we follow the real-world degradation pipeline (Wang et al., 2021c; Zhang et al., 2021). We maintain the
original training protocols and datasets for each model: SinSR is trained on ImageNet (Deng et al., 2009), while OSEDiff
uses the LSDIR (Li et al., 2023) dataset combined with the first 10K face images from FFHQ (Karras et al., 2019). We
train OSEDiff+MGHF and SinSR+MGHF following the same procedure as in the original OSEDiff and SinSR papers,
respectively. For training both BSRGAN and BSRGAN+MGHF from scratch, we use the LSDIR (Li et al., 2023) dataset
and the first 10K face images from FFHQ (Karras et al., 2019) for five epochs.
In the total objective equation 10, we determine the optimal values of Γ1, Γ2, and Γ3 to be 2, 2, and 8×10−2, respectively.
In Eq. (3), we determine the optimal values of β1, β2, and β3 to be 6× 10−3, 10−1, and 5× 10−4, respectively. Based
on empirical observations, we set α = 1.1 and γ =

√
2 in Eq. (5). A more detailed analysis of this objective is provided

in Sec. C.1 and illustrated in Sec. C.1. Our experiments are conducted on two workstations, each equipped with two
NVIDIA RTX A6000 GPUs.
Training Detail Feature Extractor. We train our detail feature extractor (based on an invertible neural network (Zhao
et al., 2023a)) alongside convolutional and fully-connected layers to calculate MGHF perceptual loss. Initially, we use
a convolutional block (He et al., 2016) to expand the image feature map from 3 to N(= 128). The N channel of an
image then passes through an invertible neural network. We take the output from the detail feature extractor to calculate
MGHF-n perceptual loss. This network is trained on the ImageNet (Deng et al., 2009) dataset. We train this model for 20
epochs with a learning rate of 5e-4 with a batch size of 32 and an exponential scheduler with a factor of 0.95 every 5000
iterations. This model is optimized by Adam (Kingma, 2014) optimizer.
Qualitative comparisons. We visually compare four samples with and without the use of MGHF on OSEDiff (Wu et al.,
2024a), SinSR (Wang et al., 2024c), and BSRGAN (Zhang et al., 2021) in Fig. 8 and Fig. 9. From these comparisons, we
deduce that MGHF captures more details than the corresponding baseline approaches.

Methods
Datasets

RealSR† RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

ESRGAN 0.2362 29.048 0.3739 42.369
RealSR-JPEG 0.3615 36.076 0.5282 50.539
BSRGAN 0.5439 63.586 0.6163 65.582
SwinIR 0.4654 59.636 0.5782 63.822
RealESRGAN 0.4898 59.678 0.5995 63.220
DASR 0.3629 45.825 0.4965 55.708
LDM-15 0.3836 49.317 0.4274 47.488

ResShift-15 0.5958 59.873 0.6537 61.330
SinSR-1 0.6887 61.582 0.7150 62.169
SinSR-1 + MGHF-n 0.7240 61.897 0.7405 63.966
† RealSR is preprocessed with similar procedure as SinSR.

Table 2: Quantitative comparison among different super-resolution models on two real-world datasets. The best and the second best results among the SR
methods are highlighted in red and blue colors, respectively.

C.1 ABLATION STUDY

Effectiveness of naive multi-granular high-frequency (MGHF-n) perceptual loss.The effectiveness of the proposed
MGHF-n perceptual loss can be deduced from the quantitative comparison in Tables 2, 3, and 4. All these results depict
the efficacy of MGHF-n in the SinSR algorithm. Specifically, CLIPIQA (Wang et al., 2023) is significantly improved
by the naive MGHF objective. Also, from Table 6, we observe that MGHF-n improves PSNR, SSIM, and LPIPS when
applied to OSEDiff.
Effectiveness of content-style consistency (CSC) and local information preservation (LIP) objective in MGHF.
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Methods
Metrics

PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑
ESRGAN 20.67 0.448 0.485 0.451 43.615
RealSR-JPEG 23.11 0.591 0.326 0.537 46.981
BSRGAN 24.42 0.659 0.259 0.581 54.697
SwinIR 23.99 0.667 0.238 0.564 53.790
RealESRGAN 24.04 0.665 0.254 0.523 52.538
DASR 24.75 0.675 0.250 0.536 48.337
LDM-30 24.49 0.651 0.248 0.572 50.895
LDM-15 24.89 0.670 0.269 0.512 46.419

ResShift-s15 24.90 0.673 0.228 0.603 53.897
SinSR-s1 24.56 0.657 0.221 0.611 53.357
SinSR-1 +MGHF-n 24.31 0.645 0.225 0.660 55.323

Table 3: Quantitative comparison among widely used super-resolution models on ImageNet-Test. The best and second best results are highlighted in red
and blue, respectively.

We systematically add the content-style consistency (CSC) and local information preservation (LIP) objectives to the
MGHF-n framework while training on OSEDiff (Wu et al., 2024a). The effect of these objectives is depicted in Table 6.
Comparison of MGHF with LPIPS and naive perceptual loss.We compare the efficacy of the proposed MGHF-n and
MGHF-c with VGG-based naive perceptual loss (Johson et al., 2016) and LPIPS (Zhang et al., 2018) on DIV2K-Val,
RealSet65, and RealSR test sets. From Table 4, we can deduce that simple MGHF-n outperforms both VGG-based
naive perceptual loss and LPIPS on these datasets when implemented in SinSR (Wang et al., 2024c). This comparison is
performed using NIQE, MUSIQ, and CLIPIQA metrics across two real-world datasets and one synthetic dataset.
MGHF’s performance gain on different downscaling factors. We investigated the robustness of MGHF across different
downscaling factors by applying it to OSEDiff. We downscaled the test set DrealSR (Wei et al., 2020) by factors 2×,
4×, 8× using Real-ESRGAN (Wang et al., 2021c). We found that MGHF yields superior performance compared to the
original OSEDiff across almost every metric for 2×, 4×, 8× upscaling factors, as demonstrated in Table 7.
MGHF’s performance gain under different degradation methods. We further evaluate the robustness of MGHF on
diverse degradation methods using the DRealSR dataset (Wei et al., 2020). Specifically, we adopt degradations generated
by Real-ESRGAN (Wang et al., 2021c), NDR (Yao et al., 2024), BSRDM (Yue et al., 2022), and DASR (Wang et al.,
2021a). Our results on Table 8 show that OSEDiff+MGHF consistently outperforms OSEDiff under degradations such as
rain, haze, noise, ISP signal, and real-world conditions.
Time and space complexity of each component of MGHF. We analyze the time and space complexity of each component
of the MGHF-c objective in Table 5. The results show that the DFE feature extractor is more computationally efficient
than the VGG-16 feature extractor.
Effect of hyperparameters on the adaptive weighted detail feature extractor (AWDFE). We investigate the effect
of the hyperparameters α and γ (see Eq. (5)) on the feature maps shown in Sec. C.1. We found that γ has a stronger
influence on the feature maps than α. Based on empirical observations, we set α = 1.1 and γ = 1√

2
in our experiments.
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Table 4: Ablation study of the proposed MGHF-n and widely used perceptual losses.

Datasets Methods NIQE↓ MUSIQ↑ CLIPIQA↑

DIV2K-Val

SinSR-s1 (Wang et al., 2024c) 6.02 62.82 0.6471
SinSR-1 + Perceptual Loss† 5.97 61.94 0.6713

SinSR-1 + LPIPS‡ 6.06 62.95 0.6638
SinSR-1 + MGHF-n 5.80 63.69 0.6822

RealSet65

SinSR-s1 (Wang et al., 2024c) 5.98 62.17 0.7150
SinSR-1 + Perceptual Loss† 5.63 62.64 0.7343

SinSR-1 + LPIPS‡ 5.84 63.70 0.7295
SinSR-1 + MGHF-n 5.54 63.97 0.7405

RealSR*

SinSR-s1 (Wang et al., 2024c) 6.29 60.80 0.6122
SinSR-1 + Perceptual Loss† 6.15 62.43 0.6670

SinSR-1 + LPIPS‡ 6.36 61.84 0.6580
SinSR-1 + MGHF-n 6.02 62.85 0.6740

* RealSR is pre-processed following Wu et al. (2024a).
† VGG-based perceptual loss Johnson et al. (2016).
‡ LPIPS loss Zhang et al. (2018).

Objective GFLOPs Memory (MB) Params (M)
LIP Loss 21.402 819.96 0.139
Gram Loss 8.590 512.13 0.000
Correlation Loss 0.369 512.00 0.000
AWDFE MSE Loss 0.067 256.00 0.000
DFE MSE Loss 0.067 384.00 0.000
Detail Feature Extractor (DFE) 72.290 1.31 0.34

TOTAL 102.785 2499.89 0.479
VGG Feature Extractor 160.36 56.13 14.71

Table 5: Time and Space Complexity of the MGHF-c Algorithm.

Table 6: Ablation study of each objective contribution on MGHF-c while applying on OSEDiff.

Method Name PSNR ↑ SSIM ↑ LPIPS ↓

OSEDiff (original) 27.9200 0.7835 0.2968

MGHF-naive 28.4000 0.7980 0.2839

Correlation loss 28.5996 0.7923 0.2943

CSC 28.6432 0.7931 0.2845

Only AWDFE 28.5005 0.7971 0.2818

MGHF-Naive+AWDFE MSE 28.4040 0.7991 0.2737

MGHF-naive+CSC 28.7218 0.7956 0.2813

LIP Only loss 28.6826 0.8008 0.2793

MGHF-c (MGHF-naive+LIP+CSC) 28.8702 0.8057 0.2713

Table 7: Comparison of OSEDiff and OSEDiff+MGHF under different upscaling factors on DrealSR dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑ FID ↓
2× Downscale by Real-ESRGAN (SR upscaling factor: 2×)

Original OSEDiff 27.1099 0.7621 0.3240 0.2301 0.6947 6.3130 65.1418 0.5831 140.6872
OSEDiff+MGHF 28.2440 0.8007 0.2815 0.2156 0.6601 6.7596 64.7557 0.5957 133.1088

4× Downscale by Real-ESRGAN (SR upscaling factor: 4×)
Original OSEDiff 25.7130 0.7082 0.4219 0.2842 0.6184 6.6597 57.0138 0.5335 169.3852
OSEDiff+MGHF 26.4370 0.7405 0.3545 0.2577 0.6309 6.7118 62.9601 0.5743 163.3906

8× Downscale by Real-ESRGAN (SR upscaling factor: 8×)
Original OSEDiff 24.0767 0.6839 0.6058 0.4113 0.4688 9.0937 33.8054 0.4193 248.6803
OSEDiff+MGHF 23.9231 0.6825 0.4926 0.3406 0.5526 6.9721 55.0441 0.5359 221.2790

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Figure 8: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework.
Zoom in for a clearer view.

Table 8: Different Degradation Method Ablation Study on DrealSR dataset.

Degradation SR Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑ FID ↓

Real-ESRGAN (Wang et al., 2021c)
OSEDiff 25.7130 0.7082 0.4219 0.2842 0.6184 6.6597 57.0138 0.5335 169.3852
OSEDiff+MGHF 26.4370 0.7405 0.3545 0.2577 0.6309 6.7118 62.9601 0.5743 163.3906

NDR (Yao et al., 2024): Dehaze
OSEDiff 29.3003 0.8293 0.2525 0.1973 0.7095 6.7410 66.9494 0.6238 108.4836
OSEDiff+MGHF 30.6512 0.8431 0.2322 0.1940 0.6760 7.1101 66.4416 0.6264 104.8985

NDR (Yao et al., 2024): Denoise
OSEDiff 28.4467 0.8016 0.2884 0.2107 0.6894 6.3463 65.4359 0.5967 117.4478
OSEDiff+MGHF 29.6504 0.8261 0.2517 0.2023 0.6781 6.6985 65.5262 0.6156 117.0953

NDR (Yao et al., 2024): Derain
OSEDiff 29.2999 0.8293 0.2525 0.1974 0.7093 6.7322 66.9490 0.6237 108.4542
OSEDiff+MGHF 30.6535 0.8432 0.2321 0.1939 0.6764 7.1249 66.4288 0.6264 104.6391

BSRDM (Yue et al., 2022): Gaussian (n=25)
OSEDiff 23.5872 0.6722 0.3849 0.2503 0.6518 6.0765 62.2250 0.5426 146.5159
OSEDiff+MGHF 23.9160 0.7023 0.3219 0.2311 0.6735 6.4936 64.2867 0.5988 136.2164

BSRDM (Yue et al., 2022): JPEG
OSEDiff 24.9658 0.7034 0.2974 0.2167 0.6864 6.2706 64.4699 0.5834 126.8771
OSEDiff+MGHF 25.4904 0.7207 0.2700 0.2105 0.6576 7.0892 63.9669 0.6004 121.7394

BSRDM (Yue et al., 2022): Signal
OSEDiff 24.7141 0.7012 0.2883 0.2083 0.6948 6.6281 65.3582 0.6030 118.5541
OSEDiff+MGHF 25.2224 0.7184 0.2637 0.2002 0.6723 6.9913 64.9218 0.6062 110.6171

DASR (Wang et al., 2021a): Bicubic
OSEDiff 29.2698 0.8219 0.2623 0.2029 0.7024 6.7434 66.2623 0.6138 115.8055
OSEDiff+MGHF 30.5273 0.8401 0.2373 0.1966 0.6588 7.0826 65.3810 0.6122 110.6456

DASR (Wang et al., 2021a): s-fold downsampler
OSEDiff 27.4674 0.7835 0.2644 0.2032 0.6971 6.7787 66.1245 0.6121 115.7809
OSEDiff+MGHF 28.1878 0.7954 0.2427 0.1980 0.6617 7.0105 65.5845 0.6146 112.7479
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Figure 9: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework.
Zoom in for a clearer view.
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Effect of AWDFE feature maps by varying α and γ remain
constant.

Effect of AWDFE feature maps by varying γ and α
remain constant.

Figure 10: Effect of α and γ in Eq. (5) on the adaptive weighted detail feature extractor.
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Table 9: Comparison of OSEDiff and OSEDiff+MGHF on different datasets using QualiCLIP+ and CLIPIQA metrics.

Dataset Method QualiCLIP+ ↑ CLIPIQA ↑

DIV2K-Val
OSEDiff Original 0.6689 0.6680

OSEDiff + MGHF-c 0.6737 0.6735

DRealSR
OSEDiff Original 0.6566 0.6964
OSEDiff + MGHF-c 0.6566 0.6955

RealSR
OSEDiff Original 0.6643 0.6686
OSEDiff + MGHF-c 0.6672 0.6673

C.2 PERFORMANCE COMPARISON BETWEEN CLIPIQA AND QUALICLIP+ METRICS

CLIP-IQA (Wang et al., 2023) is a widely used image quality metric, yet it has notable limitations. The primary short-
coming is its ability to only classify images as good or bad without providing explanations for its quality assessments.
This limitation stems from a broader challenge inherent in off-the-shelf CLIP models: their focus on high-level semantics
prevents them from generating quality-aware image representations, as they lack sensitivity to low-level image character-
istics such as noise and blur. To address these limitations, QualiClip (Agnolucci et al., 2024) proposes a novel approach
that trains CLIP to rank degraded images by measuring their similarity to quality-related antonym text prompts.
In our experiment ( Table 9), we observed that OSEDiff+MGHF outperforms OSEDiff in the QualiCLIP+ metric across
the DIV2K-Val (Agustsson and Timofte, 2017), DRealSR (Wei et al., 2020), and RealSR (Cai et al., 2019) datasets.
However, when evaluated with the CLIP-IQA metric, OSEDiff+MGHF exhibits slightly lower or comparable performance
to OSEDiff on the DRealSR and RealSR datasets. Furthermore, as shown in Table 1, MGHF improves performance
across most metrics when integrated with OSEDiff on these three datasets.

C.3 MORE PARAMETER DETAILS

In the detail feature extractor, before sending the image to the invertible neural network, we expand the image channels
from 3 to N . In our experiment, we set N = 128. Moreover, in our experiment, we set the number of invertible blocks in
the detail feature extractor to one. Finally, in the local information preservation objective, while calculating MoNCE (Zhan
et al., 2022), we use 32× 32 patches with a stride of 24 for selecting the neighboring patches.
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D APPENDIX: PROOF

D.1 PROPOSITION 1

Proposition 1. [Information Preservation] The use of non-homeomorphic transform-based perceptual loss results
in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all frequency
components during translation. Consequently, the latter facilitates superior performance in perceptual loss
calculation.

Proof.
Note: We will combine foundational concepts from functional analysis (Hilbert spaces, unitary opera-
tors (Schwinger, 1960)), measure theory (change of variables), and signal processing (Plancherel’s theo-
rem (Yoshizawa, 1954)) with a clear application to the decision-theoretic framework of machine learning for
justifying this proposition.
[Diffeomorphic perceptual losses preserve frequency information] Let Ω ⊂ Rd be a bounded open set and let
X = L2(Ω) with inner product ⟨f, g⟩ =

∫
Ω
f(x)g(x) dx. For a map T : X → H into a Hilbert space H, define

the perceptual loss
LT (f, g) = ∥T (f)− T (g)∥H.

Then:

(i) If Tnh is non-homeomorphic (in particular, non-injective) on X , there exist f ̸= g with LT
nh

(f, g) = 0.
Thus the loss performs only an information approximation, collapsing some distinctions between inputs.

(ii) Let ϕ : Ω → Ω be a C1 diffeomorphism, and define the pullback operator

(Uϕf)(y) = f
(
ϕ−1(y)

)√∣∣ detDϕ−1(y)
∣∣.

Then Uϕ is unitary on L2(Ω) and
LU

ϕ

(f, g) = ∥f − g∥2.
Consequently, by Plancherel’s theorem, the discrepancy energy across all Fourier frequencies is preserved;
no frequency component is lost under Uϕ.

(i) Non-homeomorphic case. Since Tnh is not injective, by definition there exist f ̸= g in X with Tnh(f) = Tnh(g).
Hence, the perceptual loss is zero:

LT
nh

(f, g) = ∥Tnh(f)− Tnh(g)∥H = 0.

However, since f ̸= g, their L2 distance is non-zero:

∥f − g∥2 > 0.

This demonstrates that the loss metric LT
nh

cannot distinguish between distinct signals f and g, implying that
information is necessarily discarded or approximated.

(ii) Diffeomorphic case. Let ϕ ∈ Diff(Ω) be a C1 diffeomorphism. The operator Uϕ is defined as the pullback, a
generalization of the change of variables in integration. To prove that Uϕ is unitary on L2(Ω), we must show it
preserves the inner product. For f, g ∈ L2(Ω), we consider the inner product ⟨Uϕf, Uϕg⟩:

⟨Uϕf, Uϕg⟩ =
∫
Ω

(
(Uϕf)(y)

) (
(Uϕg)(y)

)
dy
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Substituting the definition of Uϕ, we get:

=

∫
Ω

f(ϕ−1(y)) g(ϕ−1(y))
√∣∣detDϕ−1(y)

∣∣2 dy
=

∫
Ω

f(ϕ−1(y)) g(ϕ−1(y))
∣∣ detDϕ−1(y)

∣∣ dy.
Now, we perform a change of variables using x = ϕ−1(y). By the multi-variable change of variables formula, we
have dy = |detDϕ(x)| dx. Since ϕ is a diffeomorphism, Dϕ−1(y) = (Dϕ(x))−1 and thus |detDϕ−1(y)| =
|det(Dϕ(x))−1| = | detDϕ(x)|−1. Therefore, dy = | detDϕ(x)| dx = 1

| detDϕ−1(y)| dx. Using the change of
variables, the integral becomes:

⟨Uϕf, Uϕg⟩ =
∫
ϕ(Ω)

f(x) g(x) dx.

Since ϕ : Ω → Ω is a diffeomorphism, it maps the domain Ω onto itself. Thus ϕ(Ω) = Ω.

⟨Uϕf, Uϕg⟩ =
∫
Ω

f(x) g(x) dx = ⟨f, g⟩.

This proves that Uϕ is a unitary operator. A direct consequence of this is that the norm (and thus the distance) is
preserved:

LU
ϕ

(f, g) = ∥Uϕf − Uϕg∥2 = ∥f − g∥2.
By Plancherel’s theorem, which relates the energy of a signal to the energy of its Fourier transform, we have:

∥f − g∥22 =

∫
Rd

∣∣f̂(ξ)− ĝ(ξ)
∣∣2 dξ,

where f̂(ξ) is the Fourier transform of f . Since LU
ϕ

(f, g) = ∥f − g∥2, the perceptual loss directly measures the
total spectral energy of the difference between the signals. This means that no frequency component is ignored or
annihilated by the transformation, thus preserving all frequency information.

Conclusion for Part I:. Diffeomorphic transformations, by their unitary nature, lead to a perceptual loss that is
a perfect surrogate for the true L2 distance, preserving all information including frequency components. Non-
homeomorphic transformations, being non-injective, necessarily discard information.

[Diffeomorphic perceptual losses are decision-theoretically superior] Let Ω ⊂ Rd be a bounded open set and
X = L2(Ω) with inner product ⟨f, g⟩ =

∫
Ω
f(x)g(x) dx and norm ∥f∥2 =

√
⟨f, f⟩. For a (measurable) feature

map T : X → H into a Hilbert space H, define the perceptual loss

LT (f, g) := ∥T (f)− T (g)∥H.

Given a distribution P on pairs (X,Y ) with Y ∈ X and a hypothesis class H†√ of predictors h : dom(X) → X ,

define the population (expected) risks:

R(h) := E
[
∥h(X)− Y ∥22

]
, RT (h) := E

[
∥T (h(X))− T (Y )∥2H

]
.

(a) (Exact calibration) Let ϕ : Ω → Ω be a C1 diffeomorphism and define the pullback Uϕ as before. Then
for all h, RU

ϕ

(h) = R(h). Consequently, for every hypothesis class H†√, argminh∈H†√ RU
ϕ

(h) =

argminh∈H†√ R(h).
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(b) (Strict suboptimality of non-homeomorphic transforms) If T is non-injective, there exist a distribution P
and a hypothesis class H†√ for which any minimizer of RT has strictly larger true risk than a minimizer

of R.

(a) Exact calibration. As shown in the previous section, the operator Uϕ is unitary on L2(Ω), which implies it is an
isometry, preserving distances: ∥Uϕf −Uϕg∥2 = ∥f − g∥2. Applying this property to the risk functions, we have:

RU
ϕ

(h) = E
[
∥Uϕh(X)− UϕY ∥22

]
Since the norm is preserved, this simplifies to:

RU
ϕ

(h) = E
[
∥h(X)− Y ∥22

]
= R(h).

This shows the risks are identical for any predictor h. Therefore, the set of minimizers for the perceptual risk is
exactly the same as the set of minimizers for the true risk:

arg min
h∈H†√

RU
ϕ

(h) = arg min
h∈H†√

R(h).

This property is crucial as it guarantees that a model trained to minimize the perceptual loss will also be optimal
with respect to the true objective.

(b) Strict suboptimality. Because T is non-injective, there exist at least two distinct signals u, v ∈ X such that
u ̸= v but T (u) = T (v). Let’s set a specific value for this collapsed point, T (u) = T (v) =: z. We construct a
counterexample. Let the distribution P be a simple Bernoulli distribution on the pair (X,Y ), where X is arbitrary
and

Y =

{
u, with probability 1/2,

v, with probability 1/2.

Now, let the hypothesis class H†√ be the set of constant predictors, hw(·) ≡ w, for any w ∈ X .

First, consider the perceptual risk RT (hw):

RT (hw) = E
[
∥T (hw(X))− T (Y )∥2H

]
= 1

2
∥T (w)− T (u)∥2H + 1

2
∥T (w)− T (v)∥2H.

Since T (u) = T (v) = z, this simplifies to:

RT (hw) =
1
2
∥T (w)− z∥2H + 1

2
∥T (w)− z∥2H = ∥T (w)− z∥2H.

This risk is minimized when T (w) = z. Therefore, any constant predictor hw where T (w) = z is a minimizer of
the perceptual risk. This includes hu and hv .

Next, consider the true risk R(hw):

R(hw) = E
[
∥hw(X)− Y ∥22

]
= 1

2
∥w − u∥22 + 1

2
∥w − v∥22.

We want to find the true risk of the minimizers of the perceptual loss. The perceptual minimizers are hu and hv .
The true risk for the minimizer hu is:

R(hu) =
1
2
∥u− u∥22 + 1

2
∥u− v∥22 = 1

2
∥u− v∥22.

The true risk for the minimizer hv is:

R(hv) =
1
2
∥v − u∥22 + 1

2
∥v − v∥22 = 1

2
∥u− v∥22.
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Now, let’s find the true minimizer of R(hw). To minimize 1
2
∥w − u∥22 + 1

2
∥w − v∥22, we can take the derivative

with respect to w and set it to zero, which gives the true optimal constant predictor as the mean w⋆ = u+v
2

. The
minimum true risk is:

R(hw ⋆) = 1
2

∥∥∥u+ v

2
− u
∥∥∥2
2
+ 1

2

∥∥∥u+ v

2
− v
∥∥∥2
2
= 1

2

∥∥∥v − u

2

∥∥∥2
2
+ 1

2

∥∥∥u− v

2

∥∥∥2
2

= 1
2
· 1
4
∥u− v∥22 + 1

2
· 1
4
∥u− v∥22 = 1

4
∥u− v∥22.

We can compare the true risk of the perceptual minimizer hu with the true optimal risk:

R(hu) =
1
2
∥u− v∥22 = 1

4
∥u− v∥22 + 1

4
∥u− v∥22 = R(hw ⋆) + 1

4
∥u− v∥22.

Since u ̸= v, we have ∥u− v∥22 > 0, and thus the gap is strictly positive. This shows that the solution found by
minimizing the non-homeomorphic perceptual loss is strictly suboptimal for the true objective.

Summary. This proof provides that:

1. Diffeomorphic losses: The unitary nature of the transformation ensures the perceptual loss is exactly
equal to the true L2 loss, for any signals, distributions, and hypothesis classes. This provides a guarantee
that the model learns the correct underlying objective.

2. Non-homeomorphic losses: Their non-injective nature means they can map distinct signals to the same
output. A model trained with such a loss can be "tricked" into finding a solution that appears optimal for
the loss function but is demonstrably and strictly suboptimal for the true objective, leading to a poorer
generalization or performance.

Therefore, a diffeomorphic transform-based invertible neural network is a theoretically superior choice than a
non-homomorphic transform-based CNN for perceptual losses.

D.2 TOY EXAMPLE OF INFORMATION PRESERVATION BY DIFFEOMOPHIC TRANSFORM

D.3 SWIRLED TRANSFORM

We define a swirled transformation that applies radially-dependent rotation around the center (x0, y0). Given pixel
coordinates (x, y), we compute centered coordinates and polar representation, then apply quadratic angular displacement
proportional to distance-squared. This invertible transform preserves topological structure while introducing controlled
spiral distortion for data augmentation.

xc = x− x0, yc = y − y0,

r =
√
x2c + y2c , θ = atan2(yc, xc),

θ′ = θ + k r2,

x′ = x0 + r cos θ′, y′ = y0 + r sin θ′.

D.4 COLLAPSED TRANSFORM

We introduce non-invertible collapse transformations for dimensionality reduction and feature compression. The radial
variant contracts points toward center (x0, y0) via scaling function g(r) ∈ [0, 1], enabling controllable information
loss. Setting g(r) = 0 yields complete collapse, while g(r) < 1 provides partial compression. Orthogonal projection
represents the simplest linear collapse operation.
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x′ = x0 + g(r) (x− x0),

y′ = y0 + g(r) (y − y0),

where r =
√

(x− x0)2 + (y − y0)2, g : [0,∞) → [0, 1].

Simple collapse transform onto the x-axis:
(x′, y′) = (x, 0).

In Fig. 11, the diffeomorphic swirled transform preserves high-frequency noise during loss computation, whereas the
non-homomorphic collapsed transform fails to do so.

Figure 11: Toy examples illustrating high-frequency preservation in diffeomorphic transforms, whereas non-homomorphic
transforms exhibit information loss.
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D.5 COROLLARY 1.

Corollary 1. [Frequency distortion by ReLU operation] The output signal y(t) = ReLU(cos(ω0t)) contains
frequency components at integer multiples of ω0 that were not present in the input signal x(t) = cos(ω0t).

Proof. Let y(t) = ReLU(cos(ω0t)). The complex Fourier series coefficients cn for y(t) are given by:

c0 =
1

π

c1 = c−1 =
1

4

cn =
cos(nπ/2)

π(1− n2)
for |n| > 1

The signal y(t) is periodic with period T0 = 2π/ω0. The Fourier coefficients cn are calculated by the integral:

cn =
1

T0

∫ T
0

0

y(t)e−jnω
0

tdt

The function cos(ω0t) is positive on the interval [−T0/4, T0/4] within one period. Therefore, the integral simplifies
to:

cn =
1

T0

∫ T
0

/4

−T
0

/4

cos(ω0t)e
−jnω

0

tdt

Using Euler’s formula, cos(θ) = 1
2
(ejθ + e−jθ), we get:

cn =
1

2T0

∫ T
0

/4

−T
0

/4

(ejω0

t + e−jω
0

t)e−jnω
0

tdt

=
1

2T0

∫ T
0

/4

−T
0

/4

(
ej(1−n)ω

0

t + e−j(1+n)ω
0

t
)
dt

For the case where n ̸= ±1, we can integrate directly:

cn =
1

2T0

[
ej(1−n)ω

0

t

j(1− n)ω0
− e−j(1+n)ω

0

t

j(1 + n)ω0

]T
0

/4

−T
0

/4

=
1

2T0

(
2 sin((1− n)π/2)

(1− n)ω0
+

2 sin((1 + n)π/2)

(1 + n)ω0

)
=

1

2π(1− n2)
((1 + n) sin(π/2− nπ/2) + (1− n) sin(π/2 + nπ/2))

=
1

2π(1− n2)
((1 + n) cos(nπ/2) + (1− n) cos(nπ/2))

=
2 cos(nπ/2)

2π(1− n2)
=

cos(nπ/2)

π(1− n2)

(19)

The special cases for n = 0 and n = ±1 must be calculated separately, yielding c0 = 1/π and c±1 = 1/4.

The output signal y(t) = ReLU(cos(ω0t)) contains frequency components at integer multiples of ω0 that were not
present in the input signal x(t) = cos(ω0t).

34



1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

The input signal x(t) is band-limited, containing only frequencies at ±ω0. From Eq. (19), we can evaluate the
coefficients cn for |n| > 1. For example, for the second harmonic (n = 2):

c2 =
cos(π)

π(1− 4)
=

−1

−3π
=

1

3π
̸= 0

And for the fourth harmonic (n = 4):

c4 =
cos(2π)

π(1− 16)
=

1

−15π
̸= 0

Since cn is non-zero for even integers n ≥ 2, the Fourier series representation of y(t) contains terms for frequencies
2ω0, 4ω0, . . . . These are new high-frequency components.

Applying the ReLU activation function to a band-limited signal can produce an output signal that is not band-limited
to the original frequency range.

Let x(t) = cos(ω0t) be a signal band-limited to the frequency ω0. Its Fourier Transform contains energy only
at ω = ±ω0. Let y(t) = ReLU(x(t)). By Eq. (19), the Fourier series of y(t) contains non-zero coefficients
corresponding to frequencies nω0 for even integers n ≥ 2. The existence of these harmonics implies that the
Fourier Transform of y(t) is non-zero for frequencies |ω| > ω0. Therefore, the output signal y(t) is no longer
band-limited to the original frequency ω0, proving that the ReLU function has introduced new higher-frequency
components.

D.6 THEOREM 1

Theorem 1. [Superiority of INN over CNN in perceptual loss calculation]
Invertible Neural Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when
used as perceptual feature extractors. Formally, let f : Rn → Rn denote a diffeomorphic INN and g : Rn → Rm a
standard CNN feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following
contrasts hold:
• Information conservation. INN: H(f(X)) = H(X) (entropy preserved due to bijectivity). CNN: H(g(X)) <
H(X) (irreversible compression due to non-invertibility).

• Manifold preservation. INN: diffeomorphic mappings preserve topology of the image manifold. CNN: distortion
mappings collapse neighborhoods and destroy manifold structure.

• Statistical equivalence. INN: all statistical moments of X are preserved in f(X). CNN: higher-order moments
are altered or lost.

• Spectral completeness. INN: full frequency spectrum preserved, including high-frequency details. CNN: effective
low-pass filtering due to pooling and convolution kernels.

• Gradient stability. INN: Jacobians are well-conditioned (det Jf (x) ̸= 0). CNN: singular Jacobians induce
unstable or vanishing gradients.

• Distribution matching. INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive
Wasserstein distance.

Proof. D.6.1 INFORMATION CONSERVATION

[CNN Information Destruction]

Any CNN with non-invertible operations (pooling, ReLU) necessarily destroys information. Specifically, for CNN
function g : Rn → Rm:

H(X) > H(g(X)) (20)

where H(·) denotes differential entropy.

Consider max pooling operation Pooling : R4 → R defined as Poolin(x1, x2, x3, x4) = max{x1, x2, x3, x4}.
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The mapping is not injective since multiple inputs map to the same output. For example, (4, 1, 2, 3) and (4, 0, 1, 2)
both map to 4.

By the data processing inequality:

I(X;Pooling(X)) ≤ I(X;X) = H(X) (21)

Since P is not invertible, the inequality is strict: I(X;Pooling(X)) < H(X).

For ReLU activation σ(x) = max(0, x), the function maps all negative values to zero, creating information loss
quantified by:

H(X)−H(σ(X)) =

∫ 0

−∞
pX(x) log pX(x) dx > 0 (22)

where pX is the probability density of X .
[Information Preservation in INNs]
For any invertible neural network f and random variable X:

H(f(X)) = H(X) (23)

Since f is invertible with inverse f−1, we have:

H(f(X)) = −
∫
pf(X)(y) log pf(X)(y) dy (24)

= −
∫
pX(f−1(y))

∣∣∣∣det(∂f−1

∂y

)∣∣∣∣ log(pX(f−1(y))

∣∣∣∣det(∂f−1

∂y

)∣∣∣∣)dy (25)

Using the change of variables x = f−1(y), dx =
∣∣∣det( ∂f −1

∂y

)∣∣∣dy:

H(f(X)) = −
∫
pX(x) log

(
pX(x)

∣∣∣∣det( ∂f−1

∂f(x)

)∣∣∣∣)dx (26)

= −
∫
pX(x) log pX(x) dx−

∫
pX(x) log

∣∣∣∣det( ∂f−1

∂f(x)

)∣∣∣∣dx (27)

= H(X)− EX

[
log

∣∣∣∣∣det
(
∂f

∂x

)−1
∣∣∣∣∣
]

(28)

= H(X) + EX

[
log

∣∣∣∣det(∂f∂x
)∣∣∣∣] (29)

For coupling layers in INNs, the Jacobian determinant is designed to have unit absolute value, making the
expectation zero, thus H(f(X)) = H(X).

D.6.2 MANIFOLD PRESERVATION THEORY

[Natural Image Manifold Preservation] Let M ⊂ Rn be the natural image manifold. INNs preserve manifold
structure while CNNs create distortions.

For INN f :M →M , since f is bijective and differentiable:

1. f is a homeomorphism preserving topological structure

2. The tangent space structure is preserved: Tf(x)M = dfx(TxM)
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3. Geodesic distances are preserved up to the Riemannian metric transformation

For CNN g :M →M ′ where dim(M ′) < dim(M) due to information loss:

∃x1, x2 ∈M : x1 ̸= x2 but g(x1) = g(x2) (30)

This violates injectivity and creates manifold collapse, fundamentally distorting the natural image structure.

D.6.3 STATISTICAL DISTRIBUTION THEORY

[Moment Preservation in INNs] For invertible function f and random variable X:

E[Xk] = E[(f−1(f(X)))k] = E[Xk], ∀k ∈ N (31)

Since f is invertible, f−1(f(X)) = X almost surely. Therefore:

E[(f−1(f(X)))k] = E[Xk] (32)

This preservation extends to all statistical moments, ensuring complete distributional equivalence.

[CNN Moment Distortion] For CNN with information-destroying operations, higher-order moments are not
preserved:

E[Xk] ̸= E[(g†(g(X)))k] for k ≥ 2 (33)

where g† represents the pseudo-inverse reconstruction.
Perceptual Loss Optimality [INN Perceptual Loss Optimality] INN-based perceptual loss achieves theoretical
minimum distortion:

D∗
INN = inf

f∈FINN
E[
∥∥X − f−1(f(X))

∥∥2
2
] = 0 (34)

For perfect invertible reconstruction:

D∗
INN = E[

∥∥X − f−1(f(X))
∥∥2
2
] (35)

= E[∥X −X∥22] (36)
= 0 (37)

In contrast, for CNNs with pseudo-inverse g†:

DCNN = E[
∥∥∥X − g†(g(X))

∥∥∥2
2
] > 0 (38)

This limitation arises from the information loss of CNNs, as shown in Sec. D.6.1.

D.6.4 SPECTRAL PROPERTIES OF CNNS VS. INNS

The difference in how CNNs and INNs handle frequency information stems from their core mathematical designs:
CNNs use non-bijective operations, while INNs rely on bijective transformations.

CNN: Low-Pass Filtering
The primary culprit for a CNN’s low-pass filtering behavior is the pooling layer, which performs non-invertible
downsampling.
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Let’s consider a simple 2× 2 average pooling operation on a discrete signal x[n,m]. The output signal y[n,m] is
given by:

y[n,m] =
1

4

1∑
i=0

1∑
j=0

x[2n+ i, 2m+ j]

This operation discards information. In the frequency domain, this downsampling without an anti-aliasing filter
causes high-frequency content to alias into the low-frequency spectrum. The new spectrum is a superposition of the
original spectrum and its shifted, aliased versions. Since this is a many-to-one mapping, the original high-frequency
details cannot be recovered, leading to a permanent loss of information. This fundamentally proves the low-pass
filtering effect.

INN: Spectral Completeness
INNs, by design, are composed of layers that perform bijective transformations. The key mathematical property is
that the Jacobian determinant for each layer is non-singular (i.e., non-zero).

Let f : RD → RD be a layer in an INN. Its Jacobian matrix is Jf (x) = ∂f(x)
∂x

. For the mapping to be invertible,
the determinant of this matrix must be non-zero for all inputs x:

|det(Jf (x))| ̸= 0

For a complete INN, which is a composition ofN such layers, ftotal = fN ◦· · ·◦f1, the overall Jacobian determinant
is the product of the individual layers’ determinants:

|det(Jftotal(x))| =
N∏
i=1

|det(Jf
i

(x))| ̸= 0

This non-zero determinant ensures that the transformation is a diffeomorphism and that a unique inverse exists.
This means no information, including high-frequency content, is ever collapsed or destroyed. The original signal
can be perfectly reconstructed from the output, thus proving the spectral preservation of INNs.

D.6.5 GRADIENT FLOW STABILITY

[INN Gradient Preservation] INNs maintain gradient structure while CNNs suffer degradation:

∇xL = JT
f ∇f(x)L (39)

where Jf is the Jacobian of the INN transformation f .

For invertible f with well-conditioned Jacobian:

σmin(Jf ) ≥ ϵ > 0 (40)

where, σmin is the minimum singular value of a matrix. It’s a scalar value that comes from the Singular Value
Decomposition (SVD). The gradient transformation preserves magnitude:

σmin(Jf )
∥∥∇f(x)L

∥∥
2
≤
∥∥∥JT

f ∇f(x)L
∥∥∥
2
≤ σmax(Jf )

∥∥∇f(x)L
∥∥
2

(41)

For CNNs with potentially singular Jacobian Jg due to information loss:∥∥∥JT
g ∇g(x)L

∥∥∥
2
≤ σmax(Jg)

∥∥∇g(x)L
∥∥
2

(42)

with σmin(Jg) → 0 causing gradient vanishing in certain directions.
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D.6.6 WASSERSTEIN DISTANCE ANALYSIS

[Distribution Matching Optimality] INNs achieve perfect distribution matching while CNNs exhibit positive
Wasserstein distance:

W1

(
PX , Pf−1(f(X))

)
= 0 (INN) (43)

W1

(
PX , Pg†(g(X))

)
> 0 (CNN) (44)

For INNs, since f−1(f(X)) = X almost surely:

W1

(
PX , Pf−1(f(X))

)
=W1(PX , PX) = 0. (45)

For CNNs with information loss, the distributions differ:

W1(PX , Pg†(g(X))
) =

∫
|FX(t)− F

g†(g(X))
(t)|dt > 0 (46)

W1

(
PX , Pf−1(f(X))

)
=W1(PX , PX) = 0 (47)

where F denotes cumulative distribution functions.

D.7 THEORY 2

Theorem 2. The LLIP objective provides a tighter lower bound on mutual information than standard InfoNCE.

I(G;S) ≥ logNk − LLIP ≥ logNk − LInfoNCE (48)

Proof. Step 1: Setup. For one feature map k with Nk patches, define the modulation

m(ski, gkj) =

{
1, j = i,

Q (Nk − 1) akij , j ̸= i,
(49)

where akij ∈ [0, 1] are Sinkhorn OT weights and Q is a scalar. Define

r(s, g) = m(s, g) exp
(

1
τ
s⊤g

)
. (50)

The per-query loss is

Li,k = −E

[
log r(ski, gki)− log

N
k∑

j=1

r(ski, gkj)

]
. (51)

Step 2: AM–GM bound on the log-sum. By the arithmetic–geometric mean inequality,

N
k∑

j=1

r(s, gj) ≥ Nk

(
N

k∏
j=1

r(s, gj)

)1/N
k

. (52)
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Taking logs,

log

N
k∑

j=1

r(s, gj) ≥ logNk +
1

Nk

N
k∑

j=1

log r(s, gj). (53)

Therefore,

E

[
log

N
k∑

j=1

r(ski, gkj)

]
≥ logNk +

1

Nk

N
k∑

j=1

E[log r(ski, gkj)]. (54)

Step 3: Lower bound on logNk − Li,k. Substituting into the definition of Li,k,

logNk − Li,k = logNk + E[log r(ski, gki)]− E

[
log
∑
j

r(ski, gkj)

]

≥ E[log r(ski, gki)]−
1

Nk

N
k∑

j=1

E[log r(ski, gkj)].

(55)

If negatives {gkj}j ̸=i are i.i.d. from the marginal p(g), then

logNk − Li,k ≥ E[log r(ski, gki)]− Es
ki

[
Eg∼p(g)[log r(ski, g)]

]
. (56)

Step 4: Split into InfoNCE part and a gain term. Expanding r(s, g),

logNk − Li,k ≥
(
E
[
1
τ
s⊤kigki

]
− Es

ki

[Eg[
1
τ
s⊤kig]]

)
+
(
E[logm(ski, gki)]− Es

ki

[Eg[logm(ski, g)]]
)
.

(57)

The first parenthesis is exactly the InfoNCE lower bound. Denote the second parenthesis by ∆. Thus

logNk − Li,k ≥
(
logNk − LInfoNCE

i,k

)
+ ∆. (58)

Step 5: Evaluate ∆ for LIP. For LIP,m(s, g) = 1 if g is the positive pair andm(s, g) = Q(Nk−1)akij otherwise.
Hence

∆ = −E
[
log
(
Q(Nk − 1)akij

)]
. (59)

Choosing Q = 1
N

k

−1
gives ∆ = −E[log akij ] ≥ 0, with strict inequality whenever P(akij < 1) > 0.

Step 6: Conclude. Averaging over all patches and feature maps,

I(G;S) ≥ logNk − LLIP ≥ logNk − LInfoNCE, (60)

with an additional non-negative gap ∆. Therefore, LIP provides a strictly tighter lower bound than InfoNCE.
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