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ABSTRACT

An avalanche of innovations in perceptual loss has advanced the super-resolution (SR) litera-
ture, enabling the synthesis of realistic and detailed high-resolution images. However, most
of these approaches rely on convolutional neural network (CNN)-based non-homeomorphic
transforms, which result in information loss during guidance and often necessitate complex
architectures and training procedures. To address these limitations—particularly the infor-
mation loss and unwanted harmonics introduced by CNNs—we propose a diffeomorphic
transform—based variant of a computationally efficient invertible neural network (INN) for
a naive Multi-Granular High-Frequency (MGHF-n) perceptual loss, trained on ImageNet.
Building on this foundation, we extend the framework into a comprehensive variant (MGHF-
c) that integrates multiple constraints to preserve, prioritize, and regularize information
across several aspects: texture and style preservation, content fidelity, regional detail preser-
vation, and joint content—style regularization. Information is prioritized through adaptive
entropy-based pruning and reweighting of INN features, while a content—style consistency
regularizer regulates excessive texture generation and ensures content fidelity. To capture
intricate local details, we further introduce modulated PatchNCE on INN features as a local
information preservation (LIP) objective. As another thread in the tapestry, we present
the theoretical foundation, showing that (1) the LIP objective compels the SR network to
maximize the mutual information between super-resolved and ground-truth modalities,
and (2) a diffeomorphic transform-based perceptual loss enables more effective learning
of the ground-truth distribution manifold compared to non-homeomorphic counterparts.
Empirical results demonstrate that the proposed MGHF objective substantially improves
both GAN- and diffusion-based SR algorithms across multiple evaluation metrics, and the
code will be released publicly after the review process.

1 INTRODUCTION

Super-resolution (SR) aims to improve the detailed information in images degraded by down-sampling,
blurring, noise, and various real-world distortions (Wang et al., [2020)). Degraded images contain structural
information but lack high-frequency information Zhang et al.|(2024); |Chen et al.[(2022). Researchers employ
various generative models (Wu et al.| 2024aj Ledig et al.,[2017; Lugmayr et al.,[2020; [Lu et al.| 2022} |Guo
et al.,[2022; 'Wei and Zhang], [2023) and objective functions (Johson et al.} 2016} |Zhang et al., [2018}; |(Cheon
et al., 2018} [Kim et al., [2024a; Deng et al.,2019)) to enhance high-frequency features in the SR problem Kim
et al|(2016); Lugmayr et al.|(2020); [Wu et al.|(2024a)). The objective functions for SR can be categorized
as perceptual (Zhang et al.,[2018}; Johson et al., 2016)), content (Qin and Wang| 2024), style losses (Sajjadi
et al.,|2017), structural similarity measures (Wang et al.| 2004} [Singla et al.,|2024), and frequency domain
losses (Sims| [2020a; |Cai et al., |2021). Among these categories, naive perceptual losses (Johson et al., 2016}
Zhang et al., 2018) are widely used; however, while effective in capturing many characteristics of the source
image, they fall short of preserving complete details due to the inherent information approximation (Yarotsky,
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Figure 1: Performance comparison of different super-resolution models with and without MGHF framework. (a) Results on the DrealSR (Wei et al.|
2020) dataset showing the effectiveness of MGHF across different metrics. (b) Results on the RealSR (Cai et al.||2019) dataset demonstrate consistent
improvements.The dotted line of each color represents the baseline model, and the solid line of the same color represents the baseline model with the MGHF
framework.

2017; |Achille and Soattol 2018)) and lossy nature of CNN operations (Jacobsen et al., 2018)). In the SR litera-
ture (Deng et al.,[2019; [Fuoli et al., [2021; Zhang et al., 2018; |Sims|, 2020b)), several variants of information
approximation within the perceptual loss family have been implemented through diverse techniques such
as quantization (Gray and Neuhoff] [1998)), adversarial training (Liu et al., [2017), neural network feature
extraction (Yarotskyl 2017} [Lu et al.l 2017} Tishby and Zaslavskyl 2015} |Achille and Soatto, 2018), and
feature enhancement (Dai et al., 2018)). Some of these approximation approaches are: i) LPIPS (Zhang et al.|
2018), which employs learned feature map weighting to align with human perception; ii) FDPL (Sims| [2020b),
which applies quantization to discrete cosine transform (DCT) (Ahmed et al., [1974)) coefficients, despite
DCT’s inherent lossless nature; iii) Fourier space loss (Fuoli et al.| 2021)), which shifts generation toward
perceptually pleasing high-frequencies through adversarial training (Goodfellow et al.,2014); and iv) wavelet
domain style transfer (Deng et al.| 2019), which introduces feature enhancement through a selective wavelet
filter. Moreover, since OSEDiff (Wu et al.| | 2024a)) employs the LPIPS (Zhang et al.l 2018) objective based on
a non-homeomorphic CNN transform (Plastock, |1974) rather than a diffeomorphic (Earle and Eells, [1967)
invertible neural network (INN) (Dinh et al.| 2022}, which introduces information loss and approximation
errors in perceptual evaluation, our results in [Fig. T| show that the diffeomorphic transform-based multi-
granular high-frequency (MGHF) framework effectively mitigates these issues and improves performance
across several metrics.

Another inherent problem of several perceptual loss families during SR is the substantial complexity of the ar-
chitecture design (Kim et al.||2024a; |Rad et al.,2019) and training procedure (Ledig et al.,[2017)). For example,
SRGAN (Ledig et al.l [2017)) employs a relatively straightforward perceptual loss (Johson et al.,[2016) by using
VGG (Simonyan and Zisserman), 2014) features, and requires unstable adversarial training (Goodfellow et al.,
2014). SROBB (Rad et al.,|2019) significantly increases complexity by introducing region-specific perceptual
losses that process objects, backgrounds, and boundaries differently, requiring additional segmentation labels
and specialized loss calculations for each semantic region. SR4IR (Kim et al., 2024a)) presents the complex
training methodology with its alternate training framework that switches between updating the SR network
and the task network, combined with a specialized cross-quality patch mix data augmentation strategy. We
propose a naive version of MGHF perceptual loss that maintains an efficient architecture while delivering
effective results for the super-resolution task, addressing these complexity issues.

Perceptual losses (Johson et al.,[2016} Zhang et al., 2018) trained on the VGG (Simonyan and Zisserman),
2014) or AlexNet (Krizhevsky et al., [2012) backbone in ImageNet (Deng et al., [2009) and stable diffu-
sion (Rombach et al., 2022a) trained on billions of image-text pairs serve as important super-resolution
priors (Wu et al, [2024a} [Wang et al.l [2024a). We introduce a novel high-frequency perceptual loss based
on an invertible neural network (INN) trained on ImageNet as a new prior for SR. INNs have previously
been utilized in image super-resolution and rescaling (X1ao et al., 2020) literature in ways distinct from our
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approach. For instance, SRFlow (Lugmayr et al.| 2020) employs INN-based normalizing flows (Rezende and
Mohamed, 2015)) to learn conditional distributions of high-resolution images given low-resolution inputs,
while IRN (Xiao et al.| 2020) explicitly models downscaling or upscaling as forward or inverse operations
of an invertible network with Haar wavelet (Haar}, |[1910) transformation. HCFlow (Liang et al., 2021b)
creates bijective mappings between HR-LR image pairs where high-frequency components are hierarchically
conditional on low-frequency components through specially designed flow levels, and IARN (Pan et al.| [2023))
adapts the invertible framework by replacing Haar wavelet transforms with preemptive channel splitting and
embedding position-aware scale encoding, enabling arbitrary rescaling factors within a single model while
maintaining bidirectional invertibility. The authors (Wei et al., [2024) introduced invertible priors for image
rescaling through Invertible Feature Recovery Modules (IFRM), which establish bijective transformations be-
tween quantized features obtained by VQGAN (Esser et al.,|2021)) and low-resolution images using coupling
layers (Dinh et al.| 2022)). Extending this line of research, our work makes a distinct contribution by employing
an INN trained on ImageNet as a super-resolution (SR) prior. Furthermore, we underscore a fundamental
limitation of existing perceptual loss approaches (Johson et al.,|2016;|Zhang et al.,2018)): the information loss
and harmonic distortion introduced by non-homeomorphic transformations, such as MaxPooling and ReLU
layers in AlexNet and VGG backbones, when computing widely adopted perceptual losses. This observation
leads us to formulate the central research question: Can a lossless, diffeomorphism-based super-resolution
prior be established to facilitate more efficient and effective perceptual loss computation in comparison to
conventional non-homeomorphic transforms?

We propose a multi-granular high-frequency perceptual loss (MGHF) to overcome the aforementioned issues.
The naive version, MGHF-n, serves as an effective invertible neural network (INN) prior trained on ImageNet
to guide the super-resolution process. Building upon this foundation, our comprehensive version (MGHF-c)
addresses the perception-distortion tradeoff (Blau and Michaeli, 2018) and improves the SR performance
on several image quality metrics (Wang et al.| 2023} Ke et al., [2021} [Zhang et al., 2015) by both focusing
and regularizing essential detail information alongside the INN prior. To achieve these goals, MGHF-c
introduces an adaptive importance score based on normalized entropy to prioritize and select significant
INN features, which are then processed through a multifaceted approach that incorporates a modulated
PatchNCE (Zhan et al.,|2022)-based local information preservation objective to maintain intricate details,
while simultaneously preserving style and content information in the INN domain via Gram matrix and
mean-squared loss, respectively. Additionally, to overcome unnecessary style transfer and preserve content
information while guiding SR, we propose a correlation loss-based content-style consistency regularizer.
Our experiments demonstrate that the proposed MGHF objective significantly improves the performance
of three super-resolution algorithms: OSEDiff (Wu et al.| 2024a), SinSR (Wang et al.l [2024c), and BSR-
GAN (Zhang et al., 2021)), with the first two based on diffusion models, and the last on a GAN. Notably,
in SinSR (Wang et al., 2024c), even our simpler variant, MGHF-n, outperforms both LPIPS (Zhang et al.,
2018)) and the naive perceptual loss (Johnson et al.,[2016). Furthermore, our MGHF framework consistently
outperforms several image enhancement (Zhu et al.| 2024; |Qin et al., 2024) approaches and remains robust
across diverse degradation techniques (Wang et al., 2021cj|Yue et al., [2022; |Wang et al.| 20214} |Yao et al.}
2024) and scaling factors within OSEDiff. Also, our proposed INN feature extractor within the MGHF
framework requires 41 times fewer parameters than the VGG (Simonyan and Zisserman, 2014))-based feature
extractor typically used for calculating perceptual losses (Johson et al.,|2016} Zhang et al., 2018).We term our
approach the Multi-Granular High-Frequency (MGHF) perceptual loss, as it accounts for different levels of
information—specifically style, content, and consistency—while the diffeomorphic transformation—based
prior preserves high-frequency information during SR. The details of related works regarding SR methods
and perceptual objectives are discussed in Appendix [A]

2 METHODOLOGY

In this section, we introduce a diffeomorphic transform-based, multi-granular high-frequency perceptual
objective for super-resolution and establish its theoretical advantages over non-homeomorphic alternatives.
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Figure 2: The depiction of proposed MGHF perceptual loss, where the detail feature extractor (DFE) is based on an
invertible neural network. The vanilla high-frequency perceptual loss is calculated among feature maps of the DFE, while

the content-style consistency loss is calculated from the most informative pruned and reweighted DFE feature maps.

We then present an invertible neural-network-based detail feature extractor (DFE) and its adaptive weighted
variant (AWDFE), along with objectives for content—style consistency and local information preservation. We
provide a concise overview here; full details appear in the Appendix.

2.1 DETAIL FEATURE EXTRACTOR

We propose a detail feature extractor (DFE), trained on ImageNet [2009), to preserve texture,
fine-grained detail, and content correspondence between super-resolution and ground-truth images. The
DFE’s backbone is an invertible neural network built from affine coupling layers 2022); a brief
specification appears in Algorithm [T} The DFE adheres to the diffeomorphic principle, whereas conventional
perceptual losses rely on CNN feature spaces that employ non-injective operations (MaxPooling, ReLU),
which cause information loss and harmonic distortion (see Remark[T]and Corollary [T)). The advantages of
diffeomorphic over non-homeomorphic transforms are formalized in Proposition[T]and Theorem T}

2.1.1 THEORY OF SUPERIORITY OF DIFFEOMORPHIC INN OVER CNN IN PERCEPTUAL LOSS
CALCULATION

Proposition 1. [Information Preservation] The use of non-homeomorphic transform-based perceptual loss
results in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all
[frequency components during translation. Consequently, the latter facilitates superior performance in perceptual
loss calculation.

See proof in App. Using the first part of the proposition, the toy example in App. shows that
a diffeomorphic transform preserves information, whereas a non-homomorphic transform does not.

Remark 1. [Information Loss in CNN] The ReLU activation function and the MaxPooling operation are inherently
non-injective mappings. As a consequence, they introduce irreversible information loss within perceptual loss
[frameworks that rely on feature representations extracted from AlexNet and VGG networks.

These remarks can be explained by feature map visualization on where deeper layers of VGG lost
fine-grained details.
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Corollary 1. [Frequency distortion by ReLU operation] The output signal y(t) = ReLU(cos(wot)) contains
frequency components at integer multiples of wo that were not present in the input signal x(t) = cos(wot).

See proof in App. This proof demonstrates that the ReLU operation introduces unwanted
harmonics in a simple sinusoidal signal. While MaxPooling and ReL.U cause the generalization capacity
of CNNs (Brutzkus and Globerson, 2021} [Banerjee et al., 2019)), they also induce information loss and
harmonic distortion—effects that can be detrimental in applications where strict information preservation
is essential.

Theorem 1. [Superiority of diffeomorphic INN over CNN in perceptual loss calculation]. Invertible Neural
Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when used as perceptual
feature extractors. Formally, let f : R™ — R" denote a diffeomorphic INN and g : R™ — R a standard CNN
feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following contrasts
hold:

o Information conservation. INN: H(f(X)) = H(X) (entropy preserved due to bijectivity). CNN: H(g(X)) <
H (X)) (irreversible compression due to non-invertibility).

¢ Manifold preservation. INN.: diffeomorphic mappings preserve topology of the image manifold. CNN: distortion
mappings collapse neighborhoods and destroy manifold structure.

Statistical equivalence. INN: all statistical moments of X are preserved in f(X). CNN: higher-order moments
are altered or lost.

Spectral completeness. INN.: full frequency spectrum preserved, including high-frequency details. CNN.: effective
low-pass filtering due to pooling and convolution kernels.

Gradient stability. INN: Jacobians are well-conditioned (det Jy(z) # 0). CNN: singular Jacobians induce
unstable or vanishing gradients.

* Distribution matching. INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive
Wasserstein distance.

We provide the proof in App. Our experimental results on App. depict that the proposed
diffeomorphic transform-based MGHF-n outperforms naive perceptual losses (Zhang et al., 2018} Johson

et al.||2016).

Let Xgr and Xpr be the ground-truth and corresponding low-resolution image sample caused by
down-sampling, blur, and real-world degradation. Any super-resolution method can transform X to Xgg.
The DFE is used to extract detailed feature maps by:

G = DFE(X¢r), S = DFE(Xgp),  where 0
G ={G1,Gs,...,Gr}, S={51,5,..., Si}, L is the number of DFE feature maps.

The naive multi-granular high-frequency perceptual loss (MGHF-n) is calculated between DFE features
of GT and SR images in the following way:

Lycurn = Lumse(G, S). ()

2.2 ADAPTIVE AND WEIGHTED DETAIL FEATURE EXTRACTOR

The detail feature maps encompass various aspects of an image. However, some of the feature maps consist
of less informative and redundant information. To overcome these issues and improve robustness (Correia
et al.l 2019; Niculae and Blondell 2017) while calculating perceptual loss, we propose adaptive DFE filter
weighting and pruning strategies that utilize the entropy calculation on DFE feature maps. The importance
score (Leombined (j)) Of all the extracted DFE feature maps is calculated using entropy, which enables us to
select the most informative M feature maps from the L detailed feature maps by using Eq.[d} These M selected
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Algorithm 1 Pretraining of Detail Feature Extractor

Require: Invertible modules {+/ } &, CNN modules {C; }%_,, fully connected layers (FC), and convolution {Conv(3 — N channel)}.
Require: ImageNet training set Z
1: while not converged do

for [ < 1to L do

: Y41 + Cu(n)

10: end for

11: Yscore — Softmax(FC(Jr+1))

12: L+ CrOSSEntrOPY(yscorea yclass)

13: Update Conv, {¢x}, {C;}, FC by descending VL
14: end while

15: return embedding z rc

2: Sample Z ~ Z

3: zo + Conv(z)

4: for k < 1to K do
5: zp < Yr(zp—1)
6: end for

7: Y1  ZK

8:

9

%’ 0.458
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Figure 3: Visualization of feature maps of the detail feature extractor (DFE) Figure 4: Visualization of original DFE
and VGG. (Please zoom in on the figure for better perception.) and AWDEFE feature maps.

feature maps are then weighted by introducing an adaptive weighting strategy in Eq.[5]

(1 = Huorm(G3)) + (1 — Hyorm(S5)) (3)
2 I

Leombined (.7) =

where H,,,,m, is the normalized entropy in the range [0, 1]; and j = 1,2, ..., L feature maps from DFE.

M = {indices of top M feature maps}, (4)
G={Gi|ie M}={G,,,...,Gi,},and similarly, S is calculated.
A\ Y .
w; = (1 + - Icomhincd(z)) , 1EM,
GY =w; - Gi, SP'=wi-S;, i€M, o)

GY ={G,Gy,....GE Y, S ={S}, S0, ..., St s

i1

where G and S are the adaptive ground-truth and super-resolution pruned filters, respectively. w; is the
importance score of ¢-th pruned feature map, and o and y are constant. By prioritizing and pruning the detail
feature extractor’s (DFE) outputs based on importance scores, we obtain the adaptive and weighted feature
maps G* and S, constituting our AWDFE module.

2.3 CONTENT-STYLE CONSISTENCY

The content-style consistency objective preserves and regularizes the content and style features between
ground-truth and super-resolution AWDFE features. While style and content information preservation is
widely employed in super-resolution literature (Sajjadi et al.,2017; |Cheon et al.} 2018)), we specifically utilize
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Figure 5: Qualitative comparisons of different image enhancement methods in OSEDiff. Please zoom in for a better view. The values in the parenthesis
are the quantitative result measured by (MUSIQ1 (Ke et al.}|[2021); MANIQAT (Yang et al.}|2022)). Our MGHF achieves better MUSIQ and MANIQA

compared to others. However, the FlowIE (Zhu et al.| 2024), RAM (Qin et al}[2024), and UnifyFormer @) over-enhance the image.

style and content loss in the features of the AWDFE domain by applying the Gram matrix and mean squared
error loss. We propose content-style consistency regularization by utilizing the correlation loss between SR
and GT image pairs in the AWDFE domain. The total content-style consistency objective is denoted as (Lcsc)
in the following equation:

Lese = B1 - Luse(GY,8Y) + B2 - Leon(GY,8™) + B3 - Lram (G, 8Y), ©6)
where Leorr, LGram, and Lysg are content—style consistency regularizer style, and content loss, respectively.

1 Gy, Sy
[:corr(G Sw) =1- COV( 2t )7
]W — oGy -

L6am(G"Y,8") = Z |Gram(G¥) — Gram(S¥) 2. @)

2.4 LoOCAL INFORMATION PRESERVATION OBJECTIVE

Unpaired image-to-image domain translation is a well-known technique in the computer
vision literature for transferring modalities. We assume super-resolution and ground truth modalities as two
distinct modalities during the SR training procedure. To transfer GT to SR modality, we utilize the modulated
patch-wise noise contrastive estimation (MoNCE) (Zhan et al.} 2022)) that effectively facilitates regional
texture transfer. The proposed local information preservation (LIP) objective is calculated between DFE
feature maps of SR and GT modalities, which can be depicted as:

L
Lrip=+ Z MoncE(Gr; Sk),
k:

®)

e<5kz'gk1/7)

L N
Z Zl g (ski-gki/T) Nk (ski-gri/T) ’
k: o1 e(Ski'gri +Q(Nk — 1) 1 afje(skigks

J#i
where L is the number of feature maps from DFE, each feature map is divided into N}, patches, and each
patch is projected into the embedding space. a;; is the weighting factor for a negative patch that is calculated
through the Sinkhorn optimal transport plan (Cuturi, [2013)). [Thm. 2] demonstrates that our proposed LIP
objective enhances information maximization between the GT and SR modalities. The further details of the
mathematical formulations, and the parameter settings are provided in App. and App.
respectively.

2.4.1 THEORY OF ENHANCEMENT OF INFORMATION MAXIMIZATION BY LIP OBJECTIVE
Theorem 2. [Information maximization between SR and GT modalities]
The L11p objective provides a tighter lower bound on mutual information than standard InfoNCE.
I(G;S) > log Ny, — Lrrp > log Nk, — Linfonce &)

We present the detailed proof in App. while the experimental results in App. [Table 6| highlight the
significance of the LIP objective for super-resolution.
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2.5 ToOTAL OBJECTIVE

Our proposed MGHF-c framework optimizes the MGHF-n, content-style consistency, and local information
preservation objectives. The overall objective can be defined as:

Lyvchrc = T'1 - Lyeara + T2 - Lese + s - Lo, (10)

where I'y, I'2 and I'5 are hyperparameters to balance the overall super-resolution process in multifarious
granularity.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Compared methods. We analyze the performance of our proposed method with several super-resolution
algorithms, e.g., StableSR-s200 (Wang et al., [2024b)), RealSR-JPEG (Ji et al., [2020), DiffBIR-s50 (Lin
et al.;, 2023)), SeeSR-s50 (Wu et al.l 2024b), OSEDiff (Wu et al., [2024a), PASD-s20 (Yang et al., [2023),
ESRGAN (Wang et al., [2018)), ResShift (Yue et al., 2023), SinSR (Wang et al., [2024c)), BSRGAN (Zhang
et al.,[2021)), SwinIR (Liang et al., 2021a), RealESRGAN (Wang et al.| 2021c), DASR (Liang et al.,|[2022),
and LDM (Rombach et al.| [2022b). In addition, we evaluate MGHF against three contemporary image-
enhancement approaches—RAM (Qin et al.| [2024), FlowIE (Zhu et al 2024), and UnifyFormer (Yang et al.|
2024)—on the OSEDiff output.

Metrics. We employ PSNR, SSIM, DISTS (Ding et al., [2020), and LPIPS (Zhang et al., 2018)) metrics for
performance analysis on the testing dataset with reference images. Fréchet Inception Distance (FID) (Heusel
et al., 2017) measures the distribution distance between ground-truth and generated images. Furthermore,
we utilize five widely used non-reference image quality metrics to evaluate SR images’ realism and se-
mantic coherence: CLIPIQA (Wang et al.| 2023)), MUSIQ (Ke et al., 2021), MANIQA (Yang et al.}[2022),
QualiCLIP™ (Agnolucci et al.,[2024), and NIQE (Zhang et al., [2015).

3.2 EXPERIMENTAL RESULTS AND COMPARISON WITH STATE-OF-THE-ART

Quantitative comparisons on real-world datasets. We evaluate the performance of our proposed MGHF
framework on three real-world datasets: RealSR (Cai et al.l 2019), RealSet65 (Yue et al.l 2023), and
DrealSR (Wei et al., |[2020). We investigate the image perceptual quality of MGHF compared with other
state-of-the-art super-resolution algorithms in Table[T} and[2] As shown in Table 2] by applying our MGHF-n
to SinSR, we achieve the best CLIPIQA (Wang et al., 2023)) score among widely used GAN-, transformer-, and
diffusion-based SR algorithms on the RealSR and RealSet65 datasets. We also analyze various reference and
non-reference metrics of diffusion model-based approaches compared to ours on the DrealSRWei et al.| (2020)
and RealSRWau et al.|(2024a) datasets in Table|ll In the RealSR and DrealSR datasets, OSEDiff+MGHEF-c
achieves the best LPIPS, DISTS, and FID scores. Furthermore, we visualize several samples with and without
MGHEF on the baseline methods in App. [Fig. 8] and[Fig. 9

Quantitative comparisons on synthetic datasets. We investigate the reference-based fidelity metrics and
non-reference-based image quality metrics in the ImageNet-Test (Deng et al.,2009) and DIV2K-Val (Agusts+
son and Timofte| 2017) datasets. From Table [3] the SinSR+MGHF-n method achieves the best MUSIQ
and CLIPIQA scores and the second-best LPIPS score compared to the nine other SR approaches in the
ImageNet-Test dataset, though SinSR+MGHF-n lags slightly in PSNR and SSIM metrics. We also find on the
DIV2K-val dataset from Table[T]that MGHF-c significantly improves the performance on numerous metrics,
e.g., SSIM, LPIPS, DISTS, FID, when applied to the OSEDiff, SinSR, and BSRGAN baseline models.
Parameter and computational complexity of MGHEF. Our INN-based detailed feature extractor (DFE) pro-
vides substantial efficiency improvements compared to the conventional VGG16-based perceptual loss (Johson
et al.| 2016; Zhang et al.,|2018) model. A comprehensive depiction of the time and space complexity of the
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Table 1: Quantitative comparison with state-of-the-art SR methods (4 x scaling) on both synthetic and real-world benchmarks. s denotes the number of

diffusion reverse steps. Highlighted skyblue, lightgreen, and rows are variants of the SR algorithm with our MGHF framework.
Datasets Methods PSNRT SSIMT LPIPS| DISTS| FID] NIQE| MUSIQT MANIQAT CLIPIQAT
StableSR-5200 2326 05726 03113 02048 2444 47581 6592 0.6192 06771
DIffBIR-s50 2364 05647 03524 02128 3072 47042 6581 0.6210 0.6704
SeeSR-550 2368  0.6043 03194 01968 2590 48102  68.67 0.6240 0.6936
PASD-520 2304 05505 03571 02207 2920 43617 6895 0.6483 0.6788
DIVIK-Val ResShift-s15 2465 06181 03349 02213 3611 68212 6109 0.5454 0.6071
BSRGAN* 2267 05717 04428 02839 9074 46398  58.92 04231 0.6268
BSRGAN*+MGHF-c 2327 05922 03910 02569 69.16 39963  62.54 0.4949 05875
SinSR-s1 2441 06018 03240 02066 3557 60159  62.82 0.5386 0.6471
SinSR +MGHF-c 2425 06100 03393 02202 5078 56939 6253 0.5208 0.6708
OSEDiff-s1 2372 06108 02941  0.1976 2632 47097  67.97 0.6148 0.6683
OSEDiff +MGHF-c 2427 06294 02824 0.1936 2533 46985 68.5023  0.6200 06735
OSEDiff +RAM (Qin et al. 12024] 1761 05302 03655 02364 2869 57877 6547 0.5918 06410
OSEDiff +FlowIE (Zhu et al. | 2024] 2220 06157 03692 02398 4132 60190  64.18 0.5940 05711
OSEDiff +UnifyFormer {Yang et al.2024] | 23.76  0.6154 02982 02010 2661 4.8104 6854 06071 05798
StableSR-5200 2803 07536 03284 02269 14898 65239 5851 0.5601 06356
DiffBIR-550 2671 0.6571 04557 02748 16679 63124  61.07 0.5930 06395
SeeSR-s50 2817 07691 03189 02315 14739 63967  64.93 0.6042 0.6804
PASD-520 2736 07073 03760 02531 15613 55474 64.87 0.6169 0.6808
DrealSR ResShift-s15 2846 07673 04006 02656 17226 81249  50.60 0.4586 05342
BSRGAN* 2679 07580 04027 02839 22489 59202 5318 04334 0.6067
BSRGAN*+MGHF-c 27.66 07895 03454 02497 19854 59792 5820 0.4956 05552
SinSR-s1 2836 07515 03665 02485 170.57 69907 5533 0.4884 06383
SinSR +MGHF-c 2810 07759 03334 02488 18578 68817  57.51 0.4967 06813
OSEDiff-s1 2792 07835 02968 02165 13530 64902  64.65 0.5899 0.6963
OSEDff +MGHF-c 2887 08057 02713 02088 13252 68203  64.27 0.6012 0.6995
OSEDiff +RAM (Qin et al. J2024] 1831 06502 03928 02717 14096 7.1188  63.01 0.5734 06957
OSEDiff +FlowIE {Zh et al. | 2024] 2457 07805 02882 02347 161.88 80641  61.39 05714 05806
OSEDiff +UnifyFormer {Yang et al.J2024] | 27.97 07889 02928 02190 13732 65703 6533 0.5823 0.6180
StableSR-5200 2470 07085 03018 02288 12851 59122 6578 0.6221 06178
DIffBIR-s50 2475 06567 03636 02312 12899 55346  64.98 0.6246 0.6463
SeeSR-550 2518 07216 03009 02223 12555 54081  69.77 0.6442 0.6612
PASD-520 2521 06798 03380 02260 12429 54137  68.75 0.6487 06620
RealSR ResShift-s15 2631 07421 03460 02498 14171 72635 5843 0.5285 05444
BSRGAN* 2402 0.6830 03949 02716 21879 51710  59.67 0.4424 06350
BSRGAN"+MGHF-c 2495 07207 03416 02463 18526 52761  64.49 0.5314 05572
SinSR-s1 2628 07347 03188 02353 13593 62872 60.80 0.5385 06122
SinSR +MGHF-c 2582 07397 03069 02419 14888 59970  62.94 0.5430 0.6792
OSEDiff-s1 2515 07341 02921 02128 12349 56476  69.09 0.6326 0.6693
OSEDiff +MGHF-c 2601 07418 02731 02057 11154 56058 6832 0.6419 0.6673
OSEDIff +RAM (Qin et al. 12024] 1684 06025 03601 02666 13434 60761  68.34 0.6200 0.6761
OSEDff +FlowlE {Zhu et al. | 2024] 2319 07310 02784 02219 14845 72668 6433 05923 05279
OSEDIff +UnifyFormer (Yang et al.|2024] | 25.18 07387 02862 02157 12447 55983  69.56 0.6297 05666

components in the MGHF-c objective and the VGG-16 feature extractor is provided in App.
Comparisons with image enhancement methods. We qualitatively and quantitatively compare our MGHF
objective with different image enhancement methods in[Table 1]and [Fig. 3] Experimental results show the
performance gain of MGHF over some image enhancement approaches on OSEDiff.

Robustness under real-world degradations and blind SR. We conduct a quantitative assessment of the
MGHEF objective under different real-world degradation methods, e.g., haze, rain, ISP signal, noise, JPEG,
etc., in App. evidencing consistent robustness.

Ablation study of different objective functions in MGHEF. We thoroughly investigate the importance of
each loss function in the MGHF-c objective. A comprehensive experiment of each objective and its optimal

hyperparameter choice is discussed in App.[Table 6} and[Sec. C|

4 CONCLUSION AND LIMITATION

Despite the Cambrian explosion of perceptual objectives in the super-resolution (SR) literature,
diffeomorphism-based approaches to preserving high-frequency content remain largely unexplored. This
manuscript identifies limitations of existing non-homeomorphic transform-based perceptual losses and demon-
strates the theoretical and empirical advantages of diffeomorphic transforms. We also affirm that tighter lower
bounds on mutual information between ground truth and SR modalities enhance SR.

The MGHF framework demonstrates consistent improvements across OSEDiff, SinSR, and BSRGAN. In the
next stage, we aim to generalize MGHF to flow-, autoregressive-, transformer-, and neural-operator-based
super-resolution architectures. In CLIPIQA evaluations, our approach—along with several enhancement
baselines—shows a marginal degradation on OSEDiff. This observation motivates an analysis of biases in
CLIPIQA (Agnolucci et al., 2024} Miyatal, 2023), which we address using the QualiCLIP™ metric on test
sets (Wei et al.,[2020; |Agustsson and Timoftel 2017} [Cai et al., 2019) (see App.[Sec. C.2]and[Table 9).
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our empirical results and findings, we intend to make our code publicly
available in the final version. We describe all mathematical and algorithmic details necessary to reproduce our
results throughout this paper. In we outline the theoretical basis and mathematical framework
for our method. Furthermore, we provide pseudocode for our method in For our theoretical
contributions, we offer detailed proofs of theorems and propositions in[Sec. D[ [Sec. D.1} [Sec. D.3] [Sec. D.6]
and We provide experimental details in[Sec. 3land [Sec. C| We have utilized the large language
model (LLM) for grammatical correction of the manuscript and information collection from online sources.
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MGHF: Multi-Granular High-Frequency Perceptual Loss
for Image Super-Resolution

In the appendix, we provide the following materials:

» Related works regarding different image super-resolution and perceptual objectives on super-resolution.

Elaboration of the invertible neural network-based detail feature extractor.

Preliminary discussion of local information preservation objective, therefore, we discussed PatchNCE and
Modulated PatchNCE.

Visual comparisons of real-world and synthetic samples are shown under a 4 x scaling factor.

Ablation study in multifarious perspectives.

* Mathematical foundation and proofs of our proposed approach.

A APPENDIX: RELATED WORKS

A.1 IMAGE SUPER-RESOLUTION

Super-resolution is a well-known low-level computer vision problem widely used in many applications (Wang et al., 2020;
Dong et al.||[2015), such as surveillance (Aakerberg et al.l 2022), medical imaging (Qiu et al., [2024)), gaming (Dong et al.|
2022), virtual reality (Spagnolo et al., 2023)), photography (Park et al.l 2023)), face recognition (Chen et al., 2020), etc.
After the evolution of AlexNet (Krizhevsky et al.l[2012), researchers implemented deep learning-based super-resolution
approaches (Dong et al., 2015} |Johnson et al.,[2016). Following that, the generative adversarial network (GAN) evolved,
and the GAN-based SR algorithms (Ledig et al.,2017; |Wang et al.,|2018;|Zhang et al.| 2021) were mainstream in the
computer vision community (Dong et al.,2015). The SR-GAN (Ledig et al., 2017), ESRGAN (Wang et al.}|[2018)), and
RankSRGAN (Zhang et al.l|2019) are some well-known GAN-based super-resolution algorithms. The invertible neural
network-based SRFlow (Lugmayr et al., 2020) outperformed the GAN-based SR algorithms in 2020. Furthermore, the
transformer (Vaswani et al.| 2017)) is the dominant network for natural language processing, image classification, and
detection, which facilitates researchers to implement the transformer in super-resolution (Lu et al.||2022). Additionally,
the denoising diffusion model outperforms the GAN in various perceptual metrics within the generative computer
vision field (Dhariwal and Nicholl 2021). The first denoising diffusion model-based SR algorithm was introduced in
2021 (Saharia et al.| [2022). However, these early diffusion-based SR algorithms (Saharia et al.| 2022; Yue et al.l[2023)
initially faced challenges with slow sampling speeds and required many inference steps. Recently, researchers (Wang
et al.|[2024¢; |Wu et al.l 2024a; Zhang et al.,|2024) have successfully developed diffusion-based super-resolution methods
that can operate in a single step. Autoregressive models and neural operator-based SR algorithms (Guo et al., |2022; |Wei
and Zhang} 2023; Liu and Tang} 2024) have also been successfully employed in the SR domain. Our paper introduces a
novel family of perceptual loss objectives that improve several state-of-the-art SR algorithms (Wu et al., 2024a; Wang
et al.| [2024c} [ Zhang et al.||2021)) across different metrics.

A.2 PERCEPTUAL OBJECTIVES IN SUPER-RESOLUTION

In the super-resolution literature, various perceptual losses have been proposed to improve realistic texture and edge
generation. Initial works utilized a pretrained VGG network (Simonyan and Zisserman|, [2014)), alongside multiple
training strategies (Zhang et al.|,2018)) and the inclusion of adversarial loss (Ledig et al.,[2017). Wavelet domain style
transfer (Deng et al,2019) has improved the perception-distortion trade-off in SR by enhancing low-frequency features
and transferring style into the wavelet domain. Frequency domain perceptual loss emphasizes several frequency bands
of an image to depict its perceptual quality better (Sims| 2020a)). Targeted perceptual loss has been applied in SR,
utilizing semantic information (object, background, boundary labels) across different image regions to compute perceptual
loss and enhance texture and edge quality (Rad et al.,|2019). Furthermore, Fourier loss introduces adversarial losses
directly in Fourier space to enable perception-oriented SR, allowing a smaller network to achieve comparable perceptual
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quality (Fuoli et al.} 2021)). Task-driven perceptual (TDP) loss guides SR networks in restoring high-frequency details
relevant to specific recognition tasks (Kim et al.,[2024b). The authors (Mechrez et al.,[2019) demonstrate that contextual
loss approximates KL divergence as a statistical comparison tool for a more effective super-resolution strategy. The
authors of EnhanceNet (Sajjadi et al.,2017) argue that traditional SR methods optimize for pixel-wise accuracy (PSNR)
but tend to produce blurry images during SR. Consequently, the authors propose combining adversarial training with
perceptual loss and a novel texture-matching loss to facilitate the generation of more realistic textures. Perceptual content
losses (Cheon et al., 2018)) utilize various perceptual loss functions, including discrete cosine transform coefficient loss
and differential content loss, in conjunction with adversarial networks for super-resolution. The SSDNet (Zhao et al.,
2023b) maps RGB and depth features to spherical space for improved feature decomposition, then fuses and refines
the information to achieve depth map super-resolution. The Discrete Cosine Transform (DCT)-based perceptual loss
emphasizes structural information that is sensitive to the human visual system (Sekhavaty-Moghadam et al., [2024).
FregNet (Cai et al., [2021)) uses the DCT to learn and reconstruct high-frequency details, the spatial extraction network
(SEN), which extracts and transforms spatial features from the low-resolution input image into frequency-domain
features, and a frequency reconstruction network (FRN), which reconstructs the high-frequency details. Our MGHF
framework prioritizes, preserves, and regularizes multi-granular information, including details, style, content, and regional
characteristics, during super-resolution.

In the subsequent section, we will discuss the different components of the MGHF framework: the invertible neural
network-based detailed feature extractor, adaptive filter pruning, and reweighting of the detailed features. We will also
address our content-style consistency approach that preserves and regularizes content and style information in the INN
domain.

B APPENDIX: ELABORATION OF DIFFERENT COMPONENTS IN MGHF

B.1 DETAIL FEATURE EXTRACTOR

We utilize an invertible neural network (INN) to capture high-frequency detail features in our proposed MGHF framework.
In the NICE paper (Dinh et al.| 2015), researchers first proposed the INN concept. The authors of ReaNVP (Dinh
et al., |2022) subsequently developed the affine coupling layer, which enabled more efficient and straightforward data
inversion. Utilizing 1x1 invertible convolution, the Glow paper (Kingma and Dhariwal, [2018)) demonstrated generation
of realistic high-resolution images. INNs have been applied beyond generation—they’ve improved classification tasks
through superior feature extraction capabilities and information-preserving properties (Finzi et al.,|2019). Moreover,
the INN-based detail feature extractor is also used in visible-infrared image fusion (Zhao et al.l [2023a) and sensor
fusion (Sami et al.; |2025)) literature. Let Xg7 and X r be the ground-truth and corresponding low-resolution image
sample caused by down-sampling, blur, and real-world degradation. Any super-resolution method transforms X, r to
Xsr. The DFE is used to extract detailed feature maps by:

G = DFE(X), S = DFE(X), where

11
G={G,G,...,G}, S={S,S,...,5}, L is the number of DFE feature maps. an

where GG and S represent detail features extracted from the ground-truth and super-resolution images, respectively. The
invertible module in the DFE consists of affine coupling layers (Dinh et al.| [2022). The illustration of the invertible
module is in Figure@ In this figure, wﬁ 1[1:¢] is the first ¢ channels of the input feature at the {-th invertible layer, where
l =1,---, L. The arbitrary mapping functions in each invertible layer are: Z;, Zo, and Z3. We utilize the shallow
diffeomorphic module (Earle and Eells, |1967)) as an arbitrary mapping function in the invertible module. Moreover,
G = ¢r1,1.(Xgr). Finally, the extraction of S = DFE(Xsr) = ¢5,.(Xsr) can be calculated in the same way as G.

B.2 PATCHNCE OBJECTIVE

We introduce a local information preserving (LIP) objective in our MGHF framework. The building block of MGHF is the
modulated PatchNCE objective. To understand this, we will first discuss the naive PatchNCE objective. The CUT (Park
et al.| [2020) was one of the pioneering works that introduced a method to maximize the mutual information between the
input patch and the corresponding output patch to preserve the semantic content in an unpaired 121 translation (Zhu et al.|
2017) scheme by utilizing a contrastive learning framework. After that, several research studies (Zhan et al.| [2022} [Sami
et al.| 2023} Wang et al.| |2021b) have improved the CUT architecture. The PatchNCE objective maximizes the mutual
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Figure 6: The architecture of the invertible module in the detail feature extractor (DFE) when calculating the multi-
granular high-frequency perceptual framework. The DFE consists of L cascaded invertible modules (Dinh et al., [2022).
Each invertible module has an affine coupling layer consisting of scaling and translation functions and a ® Hadamard
product. We use shallow diffeomorphic modules to conduct the scaling and translation operations. Each invertible module
contains three shallow diffeomorphic modules.

information, I(X,Y) = H(X) — H(X|Y), which is equivalent to minimizing the conditional entropy H(X|Y"). The
PachNCE objective can be denoted as:

N @2/

Lpatch— X, Y)=- l = - )
Patch NCE( ) ; Og[e(ya/‘r) +Z§\f:1€(y‘m/f)] 12)

where 7 is a temperature parameter, and Y and X are the generated target domain and ground truth images, respectively.
X = [z1,%2,...,zn5] and Y = [§1, T, . .., Yn]| represent encoded feature vectors from the 1st, 4th, 8th, 12th, and
16th layers of the encoder. Afterward, these features are passed through a two-layer MLP network (Rosenblatt, |1957;
Park et al.|[2020; |Zhan et al.;[2022)). Unlike PatchNCE, we introduce feature maps from every layer of the detail feature
extractor while calculating our proposed LIP objective |B.4

In the standard PatchNCE objective, N-class classification is performed where the anchor applies the same contrastive
force on all N — 1 negative patches, which is often too stringent and detrimental for convergence (Zhan et al., 2022). To
address this issue, we utilize the modulated contrast NCE loss (Zhan et al.|[2022)) when calculating our local information
preservation loss.

B.3 MODULATED PATCH-WISE NOISE CONTRASTIVE ESTIMATION OBJECTIVE

In the contrastive learning literature, the hardness of negative samples has been addressed adequately in (Robinson et al.,
2020; |Wang et al.| [2021b} |[Kalantidis et al.;[2020). In contrastive learning literature, hard negatives have facilitated the
learning of data representations (Robinson et al.,[2020). The hardness of negative patches in unpaired image translation
is defined by their similarity to the query (Zhan et al.,[2022). As shown in Eq.[T3] hard negative weighting defines the
similarity between a negative sample x; and an anchor ;:

G2 /8)

Qij = 72;.\[:16@%/5)»

(13)

where [ is the weighting temperature parameter. The modulated NCE objective employs reweighing procedures by
implementing the constraint represented by the following equation:

N N
> ay =1, ay=1;i,j€[1,N]. (14)
i=1 j=1
Considering the optimal transport (Peyré et al} [2019), Eq. [T5] provides the primary framework, subject to the constraints
of Eq.[14]
N N
min a;;.e7 =T ,
a,i,jE[l,N][;; ! ] (15)
J#i
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min(C, T) .t rTy=1,(1"T) =1, (16)
where (C, T') is the inner product of the cost matrix (C') and transport plan (7). In the unpaired I2I network and local
information preservation objective, the cost matrix is e¥*/8 where i # j;if i = j then C;; = oo. The Sinkhorn
[2013) algorithm is applied to Eq. [I6] for calculating the optimal transport plan. Furthermore, while calculating the
modulated contrastive objective in our LIP loss, we use every layer of feature maps of the detail feature extractor. The
examples of vanilla and modulated contrast are depicted in Figure[7(a)] and Figure[7(b)] The MoNCE objective(LaroncE)
can be expressed as:
N (g.2/7)
e
Lo =— lo — —
MoNCE z; g[e(y_z/f)_,_Q(N_l)zé_\’:laijey_zh]v 17)

=

where () denotes the weight of negative terms in the denominator and typically Q) = 1.

B.4 LoOCAL INFORMATION PRESERVATION OBJECTIVE

We assume super-resolution and ground truth modalities are two distinct modalities during the training. To transfer
GT to SR modality, we utilize the modulated patch-wise noise contrastive estimation (MoNCE) [2022)
that effectively facilitates regional texture transfer. The proposed local information preservation objective is calculated
between the detail feature extractor (DFE) feature maps of SR and GT modalities, which can be depicted as:

L
Liip= I ZﬁMoNCE(Gkvsk)7
k=1
= = — log
L o gt es:9/™) 4+ Q(Ny, — 1) Z%l afje(sg/‘r)
JF#

where L is the number of feature maps from DFE, each feature map is divided into N, patches, and each patch is projected
into the embedding space. a;; is the weighting factor for a negative patch that is calculated through the Sinkhorn optimal

transport plan 2013). The mathematical framework of MoNCE (Zhan et al| [2022) is elaborately described in ??.
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Figure 7: The depiction of modulated contrastive objective (Zhan et al.,|2022), which is utilized in our proposed local
information preservation objective for image super-resolution.
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C APPENDIX: EXPERIMENT AND RESULTS

Training Details. While training different models with the MGHF objective, we adopt the same model architecture and
parameter setup as their corresponding original baselines (Wang et al.| [2024cf Wu et al.||2024a}; /Zhang et al.,|2021])). For
all models, we follow the real-world degradation pipeline (Wang et al.l 2021c; |Zhang et al., [2021). We maintain the
original training protocols and datasets for each model: SinSR is trained on ImageNet (Deng et al.| |2009), while OSEDiff
uses the LSDIR (Li et al.,|2023)) dataset combined with the first 10K face images from FFHQ (Karras et al.,|2019). We
train OSEDiff+MGHF and SinSR+MGHF following the same procedure as in the original OSEDiff and SinSR papers,
respectively. For training both BSRGAN and BSRGAN+MGHF from scratch, we use the LSDIR (Li et al.| [2023) dataset
and the first 10K face images from FFHQ (Karras et al.||2019) for five epochs.

In the total objective equation we determine the optimal values of "1, ', and I'3 to be 2, 2, and 8 x 1072, respectively.
In we determine the optimal values of 81, 82, and (3 to be 6 X 1073,107 %, and 5 x 1074, respectively. Based
on empirical observations, we set & = 1.1 and v = /2 in A more detailed analysis of this objective is provided
in and illustrated in Our experiments are conducted on two workstations, each equipped with two
NVIDIA RTX A6000 GPUs.

Training Detail Feature Extractor. We train our detail feature extractor (based on an invertible neural network (Zhao
et al.l[2023a)) alongside convolutional and fully-connected layers to calculate MGHF perceptual loss. Initially, we use
a convolutional block (He et al.l 2016) to expand the image feature map from 3 to N(= 128). The N channel of an
image then passes through an invertible neural network. We take the output from the detail feature extractor to calculate
MGHF-n perceptual loss. This network is trained on the ImageNet (Deng et al.| |2009) dataset. We train this model for 20
epochs with a learning rate of 5e-4 with a batch size of 32 and an exponential scheduler with a factor of 0.95 every 5000
iterations. This model is optimized by Adam (Kingmal 2014) optimizer.

Qualitative comparisons. We visually compare four samples with and without the use of MGHF on OSEDiff (Wu et al.|
2024a)), SinSR (Wang et al| 2024c), and BSRGAN (Zhang et al| 2021) in[Fig. §|and[Fig. 9] From these comparisons, we
deduce that MGHF captures more details than the corresponding baseline approaches.

Datasets
Methods RealSR" RealSet65
CLIPIQAT  MUSIQT | CLIPIQAT  MUSIQT

ESRGAN 0.2362 29.048 0.3739 42369
RealSR-JPEG 0.3615 36.076 0.5282 50.539
BSRGAN 0.5439 63.586 0.6163 65.582
SwinIR 0.4654 59.636 0.5782 63.822
RealESRGAN 0.4898 59.678 0.5995 63.220
DASR 0.3629 45.825 0.4965 55.708
LDM-15 0.3836 49317 0.4274 47.488
ResShift-15 0.5958 59.873 0.6537 61.330
SinSR-1 0.6887 61.582 0.7150 62.169
SinSR-1 + MGHF-n 0.7240 61.897 0.7405 63.966

 RealSR is preprocessed with similar procedure as SinSR.

Table 2: Quantitative comparison among different super-resolution models on two real-world datasets. The best and the second best results among the SR
methods are highlighted in red and blue colors, respectively.

C.1 ABLATION STUDY

Effectiveness of naive multi-granular high-frequency (MGHF-n) perceptual loss.The effectiveness of the proposed
MGHF-n perceptual loss can be deduced from the quantitative comparison in Tables 2] 3] and[d] All these results depict
the efficacy of MGHF-n in the SinSR algorithm. Specifically, CLIPIQA (Wang et al., [2023) is significantly improved
by the naive MGHF objective. Also, from[Table 6 we observe that MGHF-n improves PSNR, SSIM, and LPIPS when
applied to OSEDiff.

Effectiveness of content-style consistency (CSC) and local information preservation (LIP) objective in MGHF.
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Methods Metrics
PSNR1 SSIMt | LPIPS| | CLIPIQAT | MUSIQt

ESRGAN 20.67 0.448 0.485 0.451 43.615
RealSR-JPEG 23.11 0.591 0.326 0.537 46.981
BSRGAN 2442 0.659 0.259 0.581 54.697
SwinIR 23.99 0.667 0.238 0.564 53.790
RealESRGAN 24.04 0.665 0.254 0.523 52.538
DASR 24.75 0.675 0.250 0.536 48.337
LDM-30 24.49 0.651 0.248 0.572 50.895
LDM-15 24.89 0.670 0.269 0.512 46.419
ResShift-s15 24.90 0.673 0.228 0.603 53.897
SinSR-s1 24.56 0.657 0.221 0.611 53.357
SinSR-1 +MGHF-n 24.31 0.645 0.225 0.660 55.323

Table 3: Quantitative comparison among widely used super-resolution models on InmageNet-Test. The best and second best results are highlighted in red
and blue, respectively.

We systematically add the content-style consistency (CSC) and local information preservation (LIP) objectives to the
MGHF-n framework while training on OSEDiff (Wu et al.| [20244). The effect of these objectives is depicted in Table[6]
Comparison of MGHF with LPIPS and naive perceptual loss.We compare the efficacy of the proposed MGHF-n and
MGHF-c with VGG-based naive perceptual loss (Johson et al.,|2016) and LPIPS (Zhang et al.,|2018) on DIV2K-Val,
RealSet65, and RealSR test sets. From Table ] we can deduce that simple MGHF-n outperforms both VGG-based
naive perceptual loss and LPIPS on these datasets when implemented in SinSR (Wang et al., [2024c)). This comparison is
performed using NIQE, MUSIQ, and CLIPIQA metrics across two real-world datasets and one synthetic dataset.
MGHEF’s performance gain on different downscaling factors. We investigated the robustness of MGHF across different
downscaling factors by applying it to OSEDiff. We downscaled the test set DrealSR (Wei et al.l 2020) by factors 2x,
4x, 8x using Real-ESRGAN (Wang et al.,[2021c)). We found that MGHF yields superior performance compared to the
original OSEDIff across almost every metric for 2, 4x, 8 x upscaling factors, as demonstrated in [Table 7]

MGHF’s performance gain under different degradation methods. We further evaluate the robustness of MGHF on
diverse degradation methods using the DRealSR dataset (Wei et al., [2020). Specifically, we adopt degradations generated
by Real-ESRGAN (Wang et al.,2021c)), NDR (Yao et al.| [2024), BSRDM (Yue et al.,|2022), and DASR (Wang et al.,
2021a)). Our results on show that OSEDiff+MGHEF consistently outperforms OSEDiff under degradations such as
rain, haze, noise, ISP signal, and real-world conditions.

Time and space complexity of each component of MGHF. We analyze the time and space complexity of each component
of the MGHF-c objective in[Table 3] The results show that the DFE feature extractor is more computationally efficient
than the VGG-16 feature extractor.

Effect of hyperparameters on the adaptive weighted detail feature extractor (AWDFE). We investigate the effect

of the hyperparameters o and «y (see on the feature maps shown in We found that ~ has a stronger

influence on the feature maps than «.. Based on empirical observations, we set &« = 1.1 and v = % in our experiments.
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Table 4: Ablation study of the proposed MGHF-n and widely used perceptual losses.

Datasets Methods NIQE| MUSIQT CLIPIQA?T
SinSR-s1 (Wang et al.}[2024c) 6.02 62.82 0.6471
DIV2K-Val SinSR—l + Perceptual Loss' 5.97 61.94 0.6713
SinSR-1 + LPIPS* 6.06 62.95 0.6638
SinSR-1 + MGHF-n 5.80 63.69 0.6822
SinSR-s1 (Wang et al.)[2024c) 5.98 62.17 0.7150
RealSet65 SinSR—l + Perceptual ];OSST 5.63 62.64 0.7343
SinSR-1 + LPIPS* 5.84 63.70 0.7295
SinSR-1 + MGHF-n 5.54 63.97 0.7405
SinSR-s1 (Wang et al.}[2024c) 6.29 60.80 0.6122
SinSR-1 + Perceptual ].dossT 6.15 62.43 0.6670
RealSR” SinSR-1 + LPIPS* 6.36 61.84 0.6580
SinSR-1 + MGHF-n 6.02 62.85 0.6740
' RealSR is pre-processed following |Wu et al.|(2024a).
T VGG-based perceptual loss Johnson et al.|(2016).
* LPIPS loss|Zhang et al.|(2018).
Objective GFLOPs Memory (MB) Params (M)
LIP Loss 21.402 819.96 0.139
Gram Loss 8.590 512.13 0.000
Correlation Loss 0.369 512.00 0.000
AWDFE MSE Loss 0.067 256.00 0.000
DFE MSE Loss 0.067 384.00 0.000
Detail Feature Extractor (DFE) 72.290 1.31 0.34
TOTAL 102.785 2499.89 0.479
VGG Feature Extractor 160.36 56.13 14.71

Table 5: Time and Space Complexity of the MGHF-c Algorithm.

Table 6: Ablation study of each objective contribution on MGHF-c while applying on OSEDiff.

Method Name PSNR 1 | SSIM 1 | LPIPS |
OSEDiff (original) 27.9200 | 0.7835 0.2968
MGHF-naive 28.4000 | 0.7980 0.2839
Correlation loss 28.5996 | 0.7923 0.2943
CSC 28.6432 | 0.7931 0.2845
Only AWDFE 28.5005 | 0.7971 0.2818
MGHEF-Naive+AWDFE MSE 28.4040 | 0.7991 0.2737
MGHF-naive+CSC 28.7218 | 0.7956 0.2813
LIP Only loss 28.6826 | 0.8008 0.2793
MGHF-¢ (MGHF-naive+LIP+CSC) | 28.8702 | 0.8057 0.2713

Table 7: Comparison of OSEDiff and OSEDiff+MGHF under different upscaling factors on DrealSR dataset.

Method

| PSNR | SSIM | [ LPIPS | [ DISTS | [ CLIPIQA { [ NIQE | | MUSIQ 1 | MANIQA + | FID |

2x Downscale by Real-ESRGAN (SR upscaling factor: 2x)

Original OSEDIff | 27.1099 | 0.7621 0.3240 0.2301 0.6947 6.3130 65.1418 0.5831 140.6872
OSEDiff+MGHF | 28.2440 | 0.8007 0.2815 0.2156 0.6601 6.7596 64.7557 0.5957 133.1088
4x Downscale by Real-ESRGAN (SR upscaling factor: 4x)

Original OSEDiff | 25.7130 | 0.7082 0.4219 0.2842 0.6184 6.6597 57.0138 0.5335 169.3852
OSEDiff+MGHF | 26.4370 | 0.7405 0.3545 0.2577 0.6309 6.7118 62.9601 0.5743 163.3906
8x Downscale by Real-ESRGAN (SR upscaling factor: 8x)

Original OSEDIff | 24.0767 | 0.6839 0.6058 0.4113 0.4688 9.0937 33.8054 0.4193 248.6803
OSEDiff+MGHF | 23.9231 | 0.6825 0.4926 0.3406 0.5526 6.9721 55.0441 0.5359 221.2790
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1153 Figure 8: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework.
1154 Zoom in for a clearer view.
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1155
1156
1157 Table 8: Different Degradation Method Ablation Study on DrealSR dataset.
1158
1159 Degradation SR Method PSNR1 SSIM{ LPIPS| DISTS| CLIPIQAT NIQE, MUSIQT MANIQA{ FID|
1160 OSEDiff 257130 07082 04219 02842 06184 66597 570138 05335  169.3852
Real.ESRGAN Cal |01
. e OSEDIffttMGHF 264370 07405 03545 02577 06309 67118 629601 05743 1633906
OSEDiff 203003 08203 02525 01973 07095 67410 669494  0.6238  108.4836
NDR (Yao ot al|2024]: Deh
1162 chaze OSEDIff+MGHF ~ 30.6512  0.8431 02322 0.1940 0.6760 71101 66.4416 0.6264 104.8985
1163 ) OSEDiff 284467 08016 02884 02107 06894 63463 654359 05967  117.4478
NDR (Yao et al|2024]: D
1164 enoise OSEDIfftMGHF  20.6504 0.8261 02517 02023  0.6781 66985 655262 06156  117.0953
_ OSEDiff 202999 08293 02525  0.1974 07093 67322 669490 06237  108.4542
NDR (Yao et al|2024]: D
1165 erain OSEDIff+MGHF 306535 0.8432 02321  0.1939  0.6764  7.1249 664288 06264  104.6391
1166 OSEDiff 235872 06722 03849 02503 06518 60765 622250 05426 1465159
BSRDM (Yue ot al|2022): Gaussian (n=25
1167 aussian (0=25)  (CEDIMGHE 239160 07023 03219 02311 0.6735 64936 642867 05988 1362164
OSEDiff 249658 07034 02974 02167 06864 62706 644699 05834 1268771
BSRDM {Yue et al|2022): JPEG
1168 OSEDIff+MGHF 254904 07207 02700 02105  0.6576 70892 639669  0.6004 1217394
1169 OSEDiff 247141 07012 02883 02083 06948 66281 653582 06030  118.5541
BSRDM (Yue ot al|2022): Signal : - - - - - : - i
1170 end OSEDIff+MGHF 252224 07184 02637 02002  0.6723 69913 649218 06062  110.6171
OSEDiff 202698 08219 02623 02029 07024 67434 662623 06138 1158055
DASR {al|R02Tal: Bicubi
171 foubie OSEDIfftMGHF 305273  0.8401 02373  0.1966  0.6588  7.0826 653810 06122  110.6456
1172 OSEDiff 274674 07835 02644 02032 06971 67787 661245 06121 1157809
DASR L0 Tal: s-fold d I : - - - - : - - :
1173 STOICCONMSAMPIET SEDIff+MGHF  28.1878 07954 02427  0.1980  0.6617  7.0105 655845 06146 1127479
1174
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Figure 9: Qualitative comparisons of three state-of-the-art (SOTA) methods with and without the MGHF framework.
Zoom in for a clearer view.
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Figure 10: Effect of o and  in|Eq. (5)[on the adaptive weighted detail feature extractor.
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Table 9: Comparison of OSEDiff and OSEDiff+MGHF on different datasets using QualiCLIP™ and CLIPIQA metrics.

Dataset Method QualiCLIP™ 1 | CLIPIQA
DIV2K-Val OSEDiff Original 0.6689 0.6680
OSEDiff + MGHF-c 0.6737 0.6735
DRealSR OSED:iff Original 0.6566 0.6964
OSEDiff + MGHF-c 0.6566 0.6955
RealSR OSED:iff Original 0.6643 0.6686
OSED:iff + MGHF-c 0.6672 0.6673

C.2 PERFORMANCE COMPARISON BETWEEN CLIPIQA AND QUALICLIP™ METRICS

CLIP-IQA (Wang et al.l[2023) is a widely used image quality metric, yet it has notable limitations. The primary short-
coming is its ability to only classify images as good or bad without providing explanations for its quality assessments.
This limitation stems from a broader challenge inherent in off-the-shelf CLIP models: their focus on high-level semantics
prevents them from generating quality-aware image representations, as they lack sensitivity to low-level image character-
istics such as noise and blur. To address these limitations, QualiClip (Agnolucci et al.} 2024) proposes a novel approach
that trains CLIP to rank degraded images by measuring their similarity to quality-related antonym text prompts.

In our experiment (, we observed that OSEDiff+MGHF outperforms OSEDIff in the QualiCLIP™" metric across
the DIV2K-Val (Agustsson and Timofte, |2017), DRealSR (Wei et al.| [2020), and RealSR (Cai et al., |2019) datasets.
However, when evaluated with the CLIP-IQA metric, OSEDiff+MGHF exhibits slightly lower or comparable performance
to OSEDiff on the DRealSR and RealSR datasets. Furthermore, as shown in[Table 1| MGHF improves performance
across most metrics when integrated with OSEDiff on these three datasets.

C.3 MORE PARAMETER DETAILS

In the detail feature extractor, before sending the image to the invertible neural network, we expand the image channels
from 3 to V. In our experiment, we set N = 128. Moreover, in our experiment, we set the number of invertible blocks in
the detail feature extractor to one. Finally, in the local information preservation objective, while calculating MoNCE (Zhan
et al.,2022), we use 32 x 32 patches with a stride of 24 for selecting the neighboring patches.
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D APPENDIX: PROOF

D.1 PROPOSITION 1

Proposition 1. [Information Preservation] The use of non-homeomorphic transform-based perceptual loss results
in information approximation, whereas a diffeomorphic transform-based perceptual loss preserves all frequency
components during translation. Consequently, the latter facilitates superior performance in perceptual loss
calculation.

Proof.
Note: We will combine foundational concepts from functional analysis (Hilbert spaces, unitary opera-
tors (Schwinger, [1960)), measure theory (change of variables), and signal processing (Plancherel’s theo-
rem (Yoshizawa, |1954))) with a clear application to the decision-theoretic framework of machine learning for
Justifying this proposition.
[Diffeomorphic perceptual losses preserve frequency information] Let @ C R? be a bounded open set and let
X = L?(Q) with inner product (f, g) = [, f(x)g(z) dz. Foramap T : X — 7 into a Hilbert space 7, define
the perceptual loss

Lr(f,9) = IT(f) —T(g)llx.

Then:

(i) If Thn is non-homeomorphic (in particular, non-injective) on X, there exist f # g with L7 (f, g) = 0.
Thus the loss performs only an information approximation, collapsing some distinctions between inputs.

(ii) Let¢: Q — Qbea C* diffeomorphism, and define the pullback operator

Usf)(y) = f(&~' () /| det D= (y)]-

Then Uy is unitary on L?(Q) and

Lu(f,9) = Ilf =gl
Consequently, by Plancherel’s theorem, the discrepancy energy across all Fourier frequencies is preserved;
no frequency component is lost under Ug.

(i) Non-homeomorphic case. Since Ty is not injective, by definition there exist f # g in X with Thn (f) = Tun(g).
Hence, the perceptual loss is zero:

L1 (f,9) = [Tan(f) — Tan(g)|l% = 0.

However, since f # g, their L? distance is non-zero:

If = gll2 > 0.

This demonstrates that the loss metric L7 cannot distinguish between distinct signals f and g, implying that
information is necessarily discarded or approximated.

(ii) Diffeomorphic case. Let ¢ € Diff(Q) be a C* diffeomorphism. The operator Uy is defined as the pullback, a

generalization of the change of variables in integration. To prove that Uy is unitary on L?(€2), we must show it
preserves the inner product. For f, g € L?(£2), we consider the inner product (Uy f, Usg):

(Usf, Usg) = / (UsH)®)) (Us9)w)) dy
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Substituting the definition of Uy, we get:

~ [ 167 et w) |det Do 1(3)| dy

- / F(6™)) 9(6™* () | det Do~ ()| dy.

Now, we perform a change of variables using x = ¢~ * (y). By the multi-variable change of variables formula, we
have dy = | det D¢)(x)| dz. Since ¢ is a diffeomorphism, D¢~ (y) = (De(x )) and thus | det Do~ (y)| =
| det(De(z))~ | = | det D (x)|~*. Therefore, dy = | det D¢ (x) dz. Using the change of

variables, the integral becomes:

|de = rm e

Usf,Usg) = f(x)g(z)dx.
()

Since ¢ : Q — Q is a diffeomorphism, it maps the domain 2 onto itself. Thus ¢(2) = €.

(Ust,Ues) = | 1(@) o(e)d = (1.9).
This proves that Uy is a unitary operator. A direct consequence of this is that the norm (and thus the distance) is

preserved:
Lu(f,9) = IUsf — Usgllz = If — gll2-

By Plancherel’s theorem, which relates the energy of a signal to the energy of its Fourier transform, we have:
2 & PPN
I£ =l = [ 1F©) -ate)] ae,

where f(ﬁ) is the Fourier transform of f. Since Lu (f, g) = ||f — gl|2, the perceptual loss directly measures the
total spectral energy of the difference between the signals. This means that no frequency component is ignored or
annihilated by the transformation, thus preserving all frequency information.

Conclusion for Part I:. Diffeomorphic transformations, by their unitary nature, lead to a perceptual loss that is
a perfect surrogate for the true L? distance, preserving all information including frequency components. Non-
homeomorphic transformations, being non-injective, necessarily discard information.

[Diffeomorphic perceptual losses are decision- theoretically superior] Let Q C R¢ be a bounded open set and

X = L?(Q) with inner product (f, g) = [, f( x) dx and norm || f||2 = /{(f, f). For a (measurable) feature
map 1" : X — H into a Hilbert space H, deﬁne the perceptual loss

Lr(f,9) = IT(f) = T(g)ll-

Given a distribution P on pairs (X,Y’) with Y € & and a hypothesis class 7{{ , of predictors h : dom(X) — X,

v

define the population (expected) risks:
R(h) :=E[|MX) = Y|3],  Re(h):=E[IT(A(X)) - TY)|%]-

(a) (Exact calibration) Let ¢ : Q@ — Qbea C! diffeomorphism and define the pullback Uy as before. Then
for all h, Ry (h) = R(h). Consequently, for every hypothesis class 'HT\/, arg minhey.”\/ Ru(h) =

arg minheHT\/R(h).
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(b) (Strict suboptimality of non-homeomorphic transforms) If 'I" is non-injective, there exist a distribution P
and a hypothesis class Ht , for which any minimizer of R has strictly larger true risk than a minimizer

of R.

(a) Exact calibration. As shown in the previous section, the operator Uy is unitary on L?(£2), which implies it is an
isometry, preserving distances: ||Uy f — Usg|l2 = ||f — gl|2. Applying this property to the risk functions, we have:

Ru(h) = E[|[Ush(X) — UpY|I3]
Since the norm is preserved, this simplifies to:
Ru(h) =E[|h(X) = Y|3] = R(h).

This shows the risks are identical for any predictor h. Therefore, the set of minimizers for the perceptual risk is
exactly the same as the set of minimizers for the true risk:

arg hg_il?\/ Ru(h) = arg hg_i{l:(l\/R(h).

This property is crucial as it guarantees that a model trained to minimize the perceptual loss will also be optimal
with respect to the true objective.

(b) Strict suboptimality. Because 7' is non-injective, there exist at least two distinct signals u, v € X such that
u # v but T'(u) = T(v). Let’s set a specific value for this collapsed point, T'(u) = T(v) =: z. We construct a
counterexample. Let the distribution P be a simple Bernoulli distribution on the pair (X, Y"), where X is arbitrary
and
y o with probability 1/2,
~ v, with probability 1/2.

Now, let the hypothesis class 71  be the set of constant predictors, h (-) = w, for any w € X.

v

First, consider the perceptual risk Rz (hw):
Rr(hw) = E[|T(h (X)) = T(Y)ll3]
= 3T (w) = T(u)ll7 + 31T (w) — T()|3
Since T'(u) = T'(v) = z, this simplifies to:
Rr(hw) = |1 T(w) = 2|3 + 31T (w) — 213 = 1T (w) — 2|l3.

This risk is minimized when T'(w) = z. Therefore, any constant predictor h., where T'(w) = z is a minimizer of
the perceptual risk. This includes h,, and h,,.

Next, consider the true risk R (hw):

R(hw) = E[|hw(X) = Y3] = 3llw — ull3 + 3llw —o]3.

We want to find the true risk of the minimizers of the perceptual loss. The perceptual minimizers are h,, and h,,.
The true risk for the minimizer h,, is:

2 2 2
R(hu) = 3llu—ullz + 3llu—vlz = 3llu—vll3.
The true risk for the minimizer h,, is:

2 2 2
R(ho) = zllv = ullz + zllv = vll2 = 5llu—vll2.
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Now, let’s find the true minimizer of R (h.,). To minimize §||w — u||3 + 3||w — v]|3, we can take the derivative

with respect to w and set it to zero, which gives the true optimal constant predictor as the mean w* = % The
minimum true risk is:

2 a
+§
2

2

2

2 2

u—+v
2

u—+v
2

v—Uu

2

u—v

2

R(hw) = 3

1 1
2 2

2 2

1 2 2 2
=3 gllu—vla+3- 7le—vlz = lle -l

4
We can compare the true risk of the perceptual minimizer h,, with the true optimal risk:

2 2 2 2
R(hu) = llu—vllz = fllu — vz + Fllu = vlls = R(hw) + Zllu —v]l3.

Since u # v, we have ||u — v||3 > 0, and thus the gap is strictly positive. This shows that the solution found by
minimizing the non-homeomorphic perceptual loss is strictly suboptimal for the true objective.

Summary. This proof provides that:

1. Diffeomorphic losses: The unitary nature of the transformation ensures the perceptual loss is exactly
equal to the true L? loss, for any signals, distributions, and hypothesis classes. This provides a guarantee
that the model learns the correct underlying objective.

2. Non-homeomorphic losses: Their non-injective nature means they can map distinct signals to the same
output. A model trained with such a loss can be "tricked" into finding a solution that appears optimal for
the loss function but is demonstrably and strictly suboptimal for the true objective, leading to a poorer
generalization or performance.

Therefore, a diffeomorphic transform-based invertible neural network is a theoretically superior choice than a
non-homomorphic transform-based CNN for perceptual losses.

O
D.2 Toy EXAMPLE OF INFORMATION PRESERVATION BY DIFFEOMOPHIC TRANSFORM

D.3 SWIRLED TRANSFORM

We define a swirled transformation that applies radially-dependent rotation around the center (zo, o). Given pixel
coordinates (x,y), we compute centered coordinates and polar representation, then apply quadratic angular displacement
proportional to distance-squared. This invertible transform preserves topological structure while introducing controlled
spiral distortion for data augmentation.

Te =T — X0, Ye =Y — Yo,
r=\/x%+ y2, 0 = atan2(ye, zc),
0 =0+kr’,

' =ax0+rcosh, y =uyo+rsind’.

D.4 COLLAPSED TRANSFORM

We introduce non-invertible collapse transformations for dimensionality reduction and feature compression. The radial
variant contracts points toward center (zo, yo) via scaling function g(r) € [0, 1], enabling controllable information
loss. Setting g(r) = 0 yields complete collapse, while g(r) < 1 provides partial compression. Orthogonal projection
represents the simplest linear collapse operation.
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&’ = zo + g(r) (z — x0),
¥ =yo+9(r) (y — o),
where 7 = \/(z — 20)2 + (y — y0)2, ¢:[0,00) — [0,1].

Simple collapse transform onto the x-axis:

(') = (2, 0).
In[Fig.T1] the diffeomorphic swirled transform preserves high-frequency noise during loss computation, whereas the
non-homomorphic collapsed transform fails to do so.
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Figure 11: Toy examples illustrating high-frequency preservation in diffeomorphic transforms, whereas non-homomorphic
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D.5 COROLLARY 1.

Corollary 1. [Frequency distortion by ReLU operation] The output signal y(t) = ReLU(cos(wot)) contains
frequency components at integer multiples of wo that were not present in the input signal x(t) = cos(wot).

Proof. Let y(t) = ReLU(cos(wot)). The complex Fourier series coefficients ¢, for y(t) are given by:

1
Cco = —
™
ClL =¢C = 1
1=c1 =7
cos(nm/2)
Cn = m for |n| > 1

The signal y(t) is periodic with period Ty = 27 /wo. The Fourier coefficients ¢, are calculated by the integral:
1 (T

= — te Imtgy
T ), y(t)

Cn

The function cos(wot) is positive on the interval [—Ty /4, Tp /4] within one period. Therefore, the integral simplifies
to: | T .
Cn = — cos(wot)e 7™ dt

To J_7/a

Using Euler’s formula, cos(0) = 1(e?? + e77%), we get:

1 T/4 ) .
Cn = T T/4(ewt +e 7N e I gt
1 T/4

- - ej(lfn)wt + 67j(1+n)wt)dt
2To 4/4(

For the case where n # £1, we can integrate directly:

1 [ ed@mwt  —iQ+n)wrT/4
“=an {ju —nwo (1 + n)wo] 14
- (e 2+ 2SR
- ﬁ(a + n)sin(/2 — nm/2) + (1 — ) sin(r/2 + nr/2)) (19)
- ﬁ(a + ) cos(nm/2) 4 (1 — ) cos(um(2))

2cos(nm/2)  cos(nw/2)

27(1 —n?) — 7w(l —n?2)

The special cases for n = 0 and n = 1 must be calculated separately, yielding co = 1/7 and c4+1 = 1/4.

The output signal y(¢) = ReLU(cos(wot)) contains frequency components at integer multiples of wo that were not
present in the input signal z(t) = cos(wot).
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The input signal z(t) is band-limited, containing only frequencies at +wq. From|[Eq. (19)} we can evaluate the
coefficients ¢, for |n| > 1. For example, for the second harmonic (n = 2):

cos () -1 1
= — = = — 0
2= TA-0 " T3 37
And for the fourth harmonic (n = 4):
) — cos(2m) 1 £0

S w(l1—16) —157m

Since ¢y, is non-zero for even integers n > 2, the Fourier series representation of y(¢) contains terms for frequencies
2w, 4wo, . . . . These are new high-frequency components.

Applying the ReLU activation function to a band-limited signal can produce an output signal that is not band-limited
to the original frequency range.

Let z(t) = cos(wot) be a signal band-limited to the frequency wp. Its Fourier Transform contains energy only
at w = two. Let y(t) = ReLU(z(t)). By the Fourier series of y(t) contains non-zero coefficients
corresponding to frequencies nwo for even integers n > 2. The existence of these harmonics implies that the
Fourier Transform of y(¢) is non-zero for frequencies |w| > wo. Therefore, the output signal y(¢) is no longer
band-limited to the original frequency wo, proving that the ReLU function has introduced new higher-frequency
components.

D.6 THEOREM 1

Theorem 1. [Superiority of INN over CNN in perceptual loss calculation]

Invertible Neural Networks (INNs) offer theoretical advantages over Convolutional Neural Networks (CNNs) when

used as perceptual feature extractors. Formally, let f : R™ — R"™ denote a diffeomorphic INN and g : R" — R™ a

standard CNN feature map with non-invertible operators (pooling, ReLU, strided convolutions). Then, the following

contrasts hold:

* Information conservation. INN: H(f(X)) = H(X) (entropy preserved due fo bijectivity). CNN: H(g(X)) <
H (X)) (irreversible compression due to non-invertibility).

Manifold preservation. INN: diffeomorphic mappings preserve topology of the image manifold. CNN.: distortion
mappings collapse neighborhoods and destroy manifold structure.

Statistical equivalence. INN: all statistical moments of X are preserved in f(X). CNN: higher-order moments
are altered or lost.

Spectral completeness. INN: full frequency spectrum preserved, including high-frequency details. CNN: effective
low-pass filtering due to pooling and convolution kernels.

Gradient stability. INN: Jacobians are well-conditioned (det J¢(x) # 0). CNN: singular Jacobians induce
unstable or vanishing gradients.

Distribution matching. INNs theoretically achieve perfect distribution matching, whereas CNNs exhibit positive
Wasserstein distance.

Proof. D.6.1 INFORMATION CONSERVATION

[CNN Information Destruction]

Any CNN with non-invertible operations (pooling, ReLU) necessarily destroys information. Specifically, for CNN
function g : R" — R™:
H(X) > H(g9(X)) (20)

where H () denotes differential entropy.

Consider max pooling operation Pooling : R* — R defined as Poolin(z1, T2, 23, r4) = max{z1, T2, T3, T4 }.
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The mapping is not injective since multiple inputs map to the same output. For example, (4, 1,2, 3) and (4,0, 1, 2)
both map to 4.

By the data processing inequality:
I(X; Pooling(X)) < I(X; X) = H(X) 1)
Since P is not invertible, the inequality is strict: I(X; Pooling(X)) < H(X).

For ReLU activation o (z) = max(0, =), the function maps all negative values to zero, creating information loss
quantified by:

0
HO) = HE(X)) = [ px(@)logpx(@)ds >0 @2)
where px is the probability density of X.

[Information Preservation in INNs]
For any invertible neural network f and random variable X:

H(f(X)) = H(X) (23)
Since f is invertible with inverse f~*, we have:

H(f(X)) = —/Pf(x>(y) log prix)(y) dy (24

=~ [t faet( 2 os(pxtr et (L) Jau o

Using the change of variables = = f~*(y), dz = ‘det (%) ’dy:

of

= —/px(x) log px () da:f/px(x) log det(%)‘dm 27)

of\ !
det(%> ] 28)

of
det (%) H 29)

For coupling layers in INNs, the Jacobian determinant is designed to have unit absolute value, making the
expectation zero, thus H(f(X)) = H(X).

(7)) = = [ px(a)1og (pxcr)

= H(X) — Ex |log

= H(X)+Ex {mg

D.6.2 MANIFOLD PRESERVATION THEORY

[Natural Image Manifold Preservation] Let M C R"™ be the natural image manifold. INNs preserve manifold
structure while CNNs create distortions.

For INN f : M — M, since f is bijective and differentiable:

1. f is a homeomorphism preserving topological structure

2. The tangent space structure is preserved: Ty (o) M = df. (T M)
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3. Geodesic distances are preserved up to the Riemannian metric transformation

For CNN g : M — M’ where dim(M") < dim (M) due to information loss:
Jz1,22 € M : 21 # x2 but g(z1) = g(x2) (30)

This violates injectivity and creates manifold collapse, fundamentally distorting the natural image structure.

D.6.3 STATISTICAL DISTRIBUTION THEORY
[Moment Preservation in INNs] For invertible function f and random variable X:

E[X"] =E[(f T (f(X)*] =E[X*], VkeN (€2))

Since f is invertible, f ' (f(X)) = X almost surely. Therefore:
E[(f~(F())"] = E[X"] (32)

This preservation extends to all statistical moments, ensuring complete distributional equivalence.

[CNN Moment Distortion] For CNN with information-destroying operations, higher-order moments are not
preserved:

E[X*] # E[(g' (9(X)))"] for k > 2 33)

where g represents the pseudo-inverse reconstruction.
Perceptual Loss Optimality [INN Perceptual Loss Optimality] INN-based perceptual loss achieves theoretical
minimum distortion:

D = inf E[|[X — f7(f(0)[3] =0 (34)

For perfect invertible reconstruction:

Diw =E[||X — £ (O3] (35)
= E[|X — X|2] (36)
=0 37

In contrast, for CNNs with pseudo-inverse g':
2
Dow = E[|X — g (g(X)|| ] > 0 (38)
This limitation arises from the information loss of CNN, as shown in[Sec. D.6.1}

D.6.4 SPECTRAL PROPERTIES OF CNNS vs. INNs

The difference in how CNNs and INNs handle frequency information stems from their core mathematical designs:
CNNs use non-bijective operations, while INNs rely on bijective transformations.

CNN: Low-Pass Filtering
The primary culprit for a CNN’s low-pass filtering behavior is the pooling layer, which performs non-invertible
downsampling.
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Let’s consider a simple 2 x 2 average pooling operation on a discrete signal z[n, m]. The output signal y[n, m] is
given by:

11
1 ’
y[n,m] = 1 E E z[2n + i, 2m + j]

i=0 j=0

This operation discards information. In the frequency domain, this downsampling without an anti-aliasing filter
causes high-frequency content to alias into the low-frequency spectrum. The new spectrum is a superposition of the
original spectrum and its shifted, aliased versions. Since this is a many-to-one mapping, the original high-frequency
details cannot be recovered, leading to a permanent loss of information. This fundamentally proves the low-pass
filtering effect.

INN: Spectral Completeness
INNS, by design, are composed of layers that perform bijective transformations. The key mathematical property is
that the Jacobian determinant for each layer is non-singular (i.e., non-zero).

Let f : R” — RP be a layer in an INN. Its Jacobian matrix is J; (2) = %Ef). For the mapping to be invertible,
the determinant of this matrix must be non-zero for all inputs x:

| det(Jy(x))] # 0

For a complete INN, which is a composition of NV such layers, fiorr = fnvo- - -0 f1, the overall Jacobian determinant
is the product of the individual layers’ determinants:

| det(Jfm (2))] = H | det(Jy(x))[ # O

This non-zero determinant ensures that the transformation is a diffeomorphism and that a unique inverse exists.
This means no information, including high-frequency content, is ever collapsed or destroyed. The original signal
can be perfectly reconstructed from the output, thus proving the spectral preservation of INNs.

D.6.5 GRADIENT FLOW STABILITY
[INN Gradient Preservation] INNs maintain gradient structure while CNNs suffer degradation:

Vol = Jf VL (39)
where J; is the Jacobian of the INN transformation f.

For invertible f with well-conditioned Jacobian:
Omin(Jf) > €>0 (40)

where, omin 1S the minimum singular value of a matrix. It’s a scalar value that comes from the Singular Value
Decomposition (SVD). The gradient transformation preserves magnitude:

Ouin (D) |V i@ Lll, < |7 V1)L, < oI Vs L “1)

For CNNs with potentially singular Jacobian .J; due to information loss:

with omin(Jg) — 0 causing gradient vanishing in certain directions.

J;‘FngLHQ < Omax (o) | Vo) L] 42)
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D.6.6 WASSERSTEIN DISTANCE ANALYSIS

[Distribution Matching Optimality] INNs achieve perfect distribution matching while CNNs exhibit positive
Wasserstein distance:

Wi(Px, Pf,l(f(X))) =0 (INN) (43)
Wi(Px, Pt (g X))) >0 (CNN) (44)

For INNs, since f~*(f(X)) = X almost surely:

W1<PX, Pf”(f(X))) = Wi(Px, Px) =0. 45)
For CNNs with information loss, the distributions differ:
Wi (Px, Bt (g(x)) = / [Fx (&) = Fyr(g(x)) ()1t > 0 €9

where F' denotes cumulative distribution functions.

D.7 THEORY 2

Theorem 2. The £1.;p objective provides a tighter lower bound on mutual information than standard InfoNCE.

I(G;S) > log Nk, — Lr1p > 108 Ni, — LinfoncE (48)

Proof. Step 1: Setup. For one feature map k£ with Ny, patches, define the modulation

L Jj=1
m(Ski, Grj) = {Q(Nk _ 1)(1?]_7 i (49)
where afj € [0, 1] are Sinkhorn OT weights and @ is a scalar. Define
r(s,g) = m(s,g) exp(% sTg)- (50)
The per-query loss is N
Lix = — E[log 7(Ski, gi) — 10gz 7Sk, gkj):| . 51
j=1

Step 2: AM-GM bound on the log-sum. By the arithmetic—geometric mean inequality,

N N 1/N
> r(s,gy) > Nk<Hr(s,gj)> : (52)
j=1

j=1
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Taking logs,
N 1 N
1og;r(s,gj) > log N + - ;bgr(s,gj) (53)
Therefore,
N 1 &
E 10g]; T(Ski7gkj):| 2 log Ny + ;Elog 7 (ki Gkj)]- (54

Step 3: Lower bound on log N, — L; ;. Substituting into the definition of L; j,

10g27“(8ki,9kj)}
]

log Ni, — L; ;s = log Ni + E[log 7(ski, gri)] — E

(55)
1 &
> Ellog 7(Ski, gri)] — A ;E[log 7 (Skis Gj)]-
If negatives {gx; } ;= are i.i.d. from the marginal p(g), then
log Nk — Lii, > E[log r(ski, ri)] — Es [Egmp(q)[log 7(skis 9)]]- (56)
Step 4: Split into InfoNCE part and a gain term. Expanding (s, g),
log Ny — L > (E[% S;crigki] —E [Eq[2 s;g]])
(57)
+ (Ellog m(sks, gro)] — Ex [Eqflog m(ss, 9)]]).
The first parenthesis is exactly the InfoNCE lower bound. Denote the second parenthesis by A. Thus
log Nk — Lii, > (log Ni — L) + A. (58)

Step 5: Evaluate A for LIP. For LIP, m(s, g) = 1if g is the positive pair and m(s, g) = Q(Ni — 1)a}; otherwise.
Hence

A = —E[log(Q(Nk — 1)aky)]. (59)
Choosing @ = 5 gives A = —E[log af;] > 0, with strict inequality whenever P(af; < 1) > 0.

Step 6: Conclude. Averaging over all patches and feature maps,
I(G;S) > logNi— Lup > log Nk — LufoncE, (60)

with an additional non-negative gap A. Therefore, LIP provides a strictly tighter lower bound than InfoNCE. [J
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