

A Practical Unified Network for Localization and
Recognition of Arbitrary-oriented Container code and

type

Jian Zhao, Ning Jia, Xianhui Liu, Gang Wang, and Weidong Zhao

Abstract—The fast and accurate recognition of the container code
and type is very important to speed up the passage of trucks
through the gate and improve the efficiency of port. In this paper,
a Practical Unified Network (PUN) is proposed for the first time
to recognize arbitrary-oriented container code and type. The
model is based on the encoder-decoder network, which integrates
the detection of the second part of container code, the semantic
segmentation of the three parts of container code and type, and the
classification of single character features of container code and
type. The ablation experiments verified the performance of each
part of PUN, and obtained a stable and reliable model. The
comparison experiments compare PUN with state-of-the-art text
detection and end-to-end text recognition algorithms, and the
results show that PUN achieves almost the best performance in
both container code and type detection and end-to-end recognition.
The proposed algorithm has only 15.53M parameters, with a FPS
of 4.86 with a input size of 768×768, which meets the company's
needs. Our model has been deployed and running in multi smart
gates of Shanghai Port for nearly a year, showed certain practical
application capabilities.

Index Terms—container code and type, end-to-end recognition,
detection, semantic segmentation, classification.

I. INTRODUCTION
n recent years, with the increasing requirements of logistics
market on container terminal handling efficiency, terminal
operator safety and cost, a surge of automated terminals has

been set off in ports around the world. In this boom, automatic
identification technology is the top priority of automated
terminals. The smart gate is the earliest field in the process of
port intelligence, and its main role is to maximize the passage
efficiency of container trucks through automatic identification
technology to recognize and compare the license plate number
of container trucks and the container code and type. Compared
with the traditional one person one gate mode, smart gate
managers can perform one-to-many efficient management
remotely, reducing labor costs, while being safe and efficient.

The gate working scenario is shown in Fig. 1. Four high-
speed cameras are installed at the gate to take pictures of the
truck passing through the gate from the front, back, left and
right angles, and identify the relevant information in the

Jian Zhao, Ning Jia (Corresponding author), Xianhui Liu, and Weidong Zhao
are all with the College of Electronics and Information Engineering,
Department of Computer Science and Technology, Tongji University, Shanghai
201804, China. e-mail: zjtju1919@gmail.com; 1510501@tongji.edu.cn;
1910678@tongji.edu.cn; wd@tongji.edu.cn. Gang Wang is with the Institute
of Data Science and Statistics, School of Statistics and Management, Shanghai
University of Finance and Economics, Shanghai 200433, China. e-mail:
gwang.cv@gmail.com.

pictures in real time to achieve the goal of smart gate.

Fig. 1. Gate working scenario. For the convenience of observation, the
container code and type in the picture has been enlarged.

Fig. 2. Meaning of the container code and type.

This paper carries on the recognition of container code and
type in gate working scenario. According to ISO 6346,
container code and type are composed of 11 and 4 characters,
respectively. The character set includes 26 uppercase English
letters and 10 Arabic numerals, a total of 36 categories. As
shown in Fig. 2, the 11 characters of container code is divided
into three parts, the first part consists of four English letters, the
first three represent the Owner code, and the fourth represents
the Category identifier, which can only be U, J or Z, and U is
the most common. The next 6 Arabic digits in the second part
represents the Registration code, and the third part is the Check
digit, which is an Arabic digit. The 4 characters in container
type are composed of letters or digits.

Previous work on container code recognition is divided into
two stages: character region detection and recognition.
Traditional character detection methods distinguish character

I

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

and non-character regions by extracting pixel-level features of
images. These features generally include contours, gray levels
[1], masks [2], histogram information from grayscale images,
and distribution of wavelet or discrete cosine transform
coefficients [3]. Because of high density of edges and contours,
low gradients above and below text, these pixel-level feature
differences help to distinguish character regions from non-
character regions. Before character recognition, the detected
text needs to be separated into single characters. With the help
of high-pass filter [4] or connected components analysis [5], the
single character area in the text can be obtained. Further, single
character recognition is carried out based on SVM [8] classifier
or template matching [6],[7] or other methods.

With the development of deep learning, many text detection
and recognition methods have emerged. EAST [9] can detect
text regions of different angles, PSENet [11] based on region
extension can detect arbitrary shaped text, DB [10] was
designed for fast detection, DETR [28] performs text detection
by extracting CNN features, and then transformer was used for
text encoding and decoding, achieving very good text detection
results. For text recognition, the classical CRNN [12] model can
recognize strings of arbitrary length. MTv3 [13], ABCv1 [14],
ABCv2 [15], TESTR [29] and DeepSolo [30] are end-to-end
methods that integrate text region detection and recognition.
With the help of these deep learning methods, [16] conducted
medical records named entity recognition, [17] conducted
integrated circuit markings recognition. For container code
recognition, [18] and [19] designed a framework that first
detects and then recognizes, while [20] designed an end-to-end
recognition model. The drawback is [18] and [19] can only
recognize horizontal container code, and [20] can only identify
vertical ones, and the images are manually cropped with the
container code area, so these methods cannot identify container
code with complex background noise in real application
scenarios.

It is very difficult to recognize the container code and type in
real working scene. The first influence is the background noise.
The background of the photos taken by the camera is complex,
including roads, street lamps, trees and workers. Moreover,
there are also many other texts on the container surface, which
affect the detection of container code and type. The second is
the effect of shooting angle. Since the camera does not shoot
the container surface vertically, the container code and type will
be deformed, as shown in the bottom left and bottom right of
Fig.1. Finally, the positions of the three parts of container code
and type are changeable, some are vertical, some are horizontal,
some are 1 row/column, some are 2 rows/columns or 3
rows/columns, as shown in Fig. 4. In addition, changes in
weather and illumination in the working scene will be troubles
too.

Our algorithm is based on the Shanghai Port Smart Gate
Project, and the working scenario is shown in Fig. 1. We
designed a Practical Unified Network for localization and
recognition of arbitrary-oriented container code and type. In the
localization step, the text detection method [18], [19], [20] will
detect all the texts in the image, and then judge whether they
are container codes, this operation is very cumbersome. We

adopt the method of object detection to perform the coarse
location of the container code, and further use the method of
semantic segmentation to accurately segment the container
code and type. In the recognition step, we abandon the
traditional CRNN [12] text recognition model. Considering that
the length of container code and type are fixed, we directly
perform average cutting of CNNs features, and then use
classification model to classify single characters. This method
is simpler, and can identify container code and type in any
direction. In addition, we design a very efficient RoIResize
module to connect the detection, semantic segmentation and
classification modules, to achieve end-to-end container code
and type recognition.

The contributions are summarized as follows.
1) We design an end-to-end network, whose core structure is

an encoder-decoder for input feature learning. We also design
the rough detection module for detection of the second part of
contain code, the accurate location module for contain code and
type localization, and a classification module for recognition.
In addition, an efficient RoIResize module that does not require
learning is introduced and used to bridge the three modules to
realize the error backward propagation and construct an end-to-
end PUN model.

2) Compared with other text detection and recognition
models, our PUN has obvious advantages. Parameter size of our
model is only 15.53M, which takes up little GPU memory and
is suitable for deployment in industrial scenarios. At the same
time, when the size of input image is 768 × 768, the FPS reaches
4.86, which meets the requirements of smart gate of Shanghai
Port. In addition, our model can recognize both horizontal and
vertical container code and type. Our model has been deployed
and running in multi smart gates of Shanghai Port for nearly a
year, showed certain practical application capabilities.

3) We design a dataset for smart gate container code and type
recognition. The dataset contains 5877 images of the gate
working scene with a size of 1080×1920 including horizontal
and vertical container code and type. And we also have
annotated all the images, the annotations include 4 coordinates
and string content of the three parts of container code and
container type.

The rest of this article is organized as follows. Section II
introduces the details of the proposed framework. Section III
conducts ablation experiments, as well as comparative
experiments with other text detection and recognition models,
and Section IV concludes this article.

II. PROPOSED METHOD
The core structure of the proposed PUN is an encoder-

decoder as shown in Fig. 3, the Rough detection and Accurate
location head are designed for container code and type
localization, the Classification head is used for container code
and type recognition. Accurate location head contains a
Segmentation head and an Isolation operation. Through
semantic segmentation, the three parts of the container code and
type can be classified at the pixel level, and the position
information of the single character can be obtained through the
isolation module which only be used in the inference phase. The

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

RoIResize module is designed to connect the encoder and
decoder, as well as the decoder and classification head, to obtain
an end-to-end trainable container code and type recognition
model.

Fig. 3 shows the process of forward propagation and error
back propagation in the PUN training phase. The Encoder-
Decoder, Rough detection head, Segmentation head and
Classification head in the PUN model are trainable, and the
RoIResize and Isolation module do not need to be learned. The
Rough locations and Accurate locations in the training phase

are provided by the input annotations. The forward propagation
process with the information pass process in Fig. 3 are the
inference process. The Rough locations and Accurate locations
in the inference stage are provided by the Rough detection head
and Accurate location head respectively.

In the following, we will introduce the Rough detection in
Section II-A, the RoIResize operation in Section II-B, the
Segmentation in Section II-C, Isolation in Section II-D, and the
Classification in Section II-E.

Fig. 3. Structure of the proposed PUN. Encoder and Decoder are used for input feature learning, Rough detection head and Accurate location head are for container
code and type localization. Segmentation head and Isolation operation are contained in Accurate location head, used for the three parts of container code and type
segmentation and single character isolation respectively. RoIResize is introduced to bridge them to an end-to-end model.

A. Rough detection
It is difficult to directly detect the container code and type

from the images taken at the working gates. We adopt a step-
by-step strategy, first making a rough detection of the container
code, and then using semantic segmentation to accurately locate
the three sub-parts of container code and type.

The ability of the detection module is to detect the rough
position of container code in the input image, but there are many
different arrangements of container code and type, including
one row or one column, two rows or two columns, three rows,
etc., so choosing the appropriate detection objects is very
important. By observing the positional relationship between
three parts of container code and container type of a large
number of containers, we found that there are only 10 relative
arrangements as shown in Fig. 4. Since the sub-parts of
container codes are relatively close, the container code and type
can be obtained by detecting the most significant area among
the three parts of the container code and then expanding the
area. We select the second part of the container code as this
rough detection object, therefore, we divide the detection
objects into two categories, the second part of horizontal
container code was marked as “hx”, and the second part of
vertical container code was marked as “sx”, as shown in Fig. 4.

Rough detection module consists of an Encoder and a rough
detection head as shown in Fig. 5. Encoder first encodes an
RGB image of size H × W to obtain the 4-stage CNN features.
On the one hand, these 4-stage features are input into the rough

detection head for rough localization of the second part of
container code, and on the other hand, they are used as shared
features for subsequent accurate location and recognition of
container code and type. In the rough detection head, the
dimensions and feature size of the 4-stage CNN features of
encoder are first adjusted through convolution and up-sampling
operation. After this adjustment, the dimensions of the 4-stage
CNN features will be the same as the dimension of stage 2 of
the encoder, and the feature size will be equal to the size of stage
1 of the encoder. Then the adjusted 4-stage CNN features are
spliced through Concat operation, and finally the output Odet
sized of ¼H × ¼W with 2 feature dimensions are obtained
through convolution operation. We use the first dimension of
Odet to detect the second part of the container code, and the
second dimension to classify the horizontal and vertical
container code, so we design the following loss function

lobj = MSE(Odet[0], maskobj) (1)
lcate = MSE(Odet[1], maskcate) (2)

In formula (1), MSE(·) represents the mean square error, Odet[0]
represents the first dimension of Odet, and maskobj is the ground
truth for the second part of the container code, where the value
of the second part of the container code is 1, and the rest are 0.
In Formula 2, Odet[1] represents the second dimension of Odet,
maskcate is the category label of “hx” and “sx” container code,
where the value of the second part of the horizontal and vertical
container code is 1 and 2, respectively, and the rest are 0.

So, the loss for the training of rough detection module is

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

Ldet = lobj + lcate (3)
It should be noted that the rough detection head we designed

only obtains the pixel blocks of the second part of the container
code. During the test process, we need to further obtain the
specific coordinates of the second part of the container code
based on post-processing steps such as cv2.minAreaRect and
cv2.boxPoints.

Fig. 4. 10 kinds of positions of container code and type. The chosen detection
objects are shown in the light blue area for horizontal container codes and light
yellow for vertical ones.

Fig. 5. Structure of Rough detection module in Fig. 3.

B. RoIResize
The RoIResize module is a bridge connecting rough

detection module, accurate location module and classification
module. It returns fixed size feature maps by performing crop
and resize operations on feature maps of a specific area, which
facilitates the end-to-end training of the network. Next, we will
introduce how RoIResize is used in connecting encoder and
decoder in Fig. 3.

The detection result of rough detection module is the second
part of container code, which we called initial RoI. We need to
expand the initial RoI to get the feature area that contains the
whole container code and type, and then obtain the fixed size
feature maps through RoIResize module. As shown in Fig. 6,
we set the height of the initial RoI to h and width to w. The
position coordinates of the initial RoI are obtained through
ground truth during training process while through the rough
detection module during inference. We expand the initial RoI
by observing the 10 positional relationships of container code
and type in Fig. 4. For horizontal initial RoI, we extend it by w

to the left, 0.4w to the right, and 2h to the bottom and top. For
vertical cases, we extend it by w to the left, 3w to the right, 1.0h
to the top, and 0.3h to the bottom to obtain the RoI.

We will up-sample the shared features of the 4 stages in
encoder to 384 × 384, 192 × 192, 96 × 96 and 48 × 48,
respectively, and perform RoIResize operation on the 4 up-
sampled features as shown in Fig. 6. Assuming the size of the
output of semantic segmentation in accurate location module is
Hs × Ws, the size of the 4 up-sampled features after RoIResize
will be 1 2# Hs × 1 2# Ws, 1 4# Hs × 1 4# Ws, 1 8# Hs × 1 8# Ws and 1 16# Hs ×
1
16# Ws, respectively. Fig. 6. shows the operation on the shared

features of the first stages.

Fig. 6. Operations of RoIResize module between encoder and decoder. The
initial RoI and RoI are the light blue and yellow background areas in the left
CNN features, respectively. Note that the above operations are all on feature
maps, but images are used here for the convenience of expression.

Our RoIResize designed with reference to RoIRotate [23],
but more concise. According to the actual tilt angle of the text,
RoIRotate crops a fixed size area from feature maps, and further
uses CRNN to recognize horizontal text. In our model, the
semantic segmentation and classification module can handle a
certain inclined text area. Moreover, the container code and
type with an inclined angle can increase the diversity of the
training dataset, making the model more robust. Therefore, we
don’t need to correct the tilt angle of container code and type.

There are two steps involved in RoIResize. First, calculate
the affine transformation matrix between the RoI area
coordinates (x, y) and coordinates (x’, y’) after RoIResize.
Assumes that the RoI area coordinates as (xmin, ymin), (xmax, ymin),
(xmax, ymax), (xmin, ymax), we need to map these 4 points into (0,
0), (sx, 0), (sx, sy), (0, sy). For the shared CNN features of the 4
stages after RoIResize, (sx, sy) is (1 2# Hs, 1 2# Ws), (1 4# Hs, 1 4# Ws),
(1 8# Hs, 1 8# Ws) and (1 16# Hs, 1 16# Ws), respectively. This process
can be computed by an affine transformation as follows:

 (4)

Where is the affine transformation matrix, which

can be calculated by the corresponding coordinates between
(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax) and (0, 0), (sx, 0),

0
0

1

x
x a b

y
y c d

é ù
¢é ù é ù ê ú=ê ú ê ú ê ú¢ë û ë û ê úë û

0
0
a b
c d

é ù
ê ú
ë û

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

(sx, sy), (0, sy). Then, other transformated coordinates of the
points in RoI can be obtained based on formula (4).

Second, the results of RoIResize could obtained by bilinear
sampling from RoI based on the corresponding relationship
between (x’, y’) and (x,y).

C. Segmentation
The string length of the three parts of container code and

container type is fixed, so the individual characters can be
obtained through average cutting of responding regions, and the
container code and type could be recognized by classification
module, but the precondition is that the parts of container code
and type could be identified. Semantic segmentation can
classify the 9 different objects, we assign the three parts of the
horizontal container code and container type to categories 1-4,
and categories 5-8 to vertical ones, with category 0 as the
background. In this way, we can identify the three parts of
container code and type by semantic segmentation.

Unet [25] is a very well-known semantic segmentation
network. It is an encoder-decoder network structure. The first
half is used for feature extraction, and the second half is spliced
to realize the fusion of the underlying location information and
deep semantic information, and further achieve the same size as
the input through layer-by-layer up-sampling. The encoder of
our semantic segmentation module is shared with the backbone
of rough detection module, and the decoder is implemented
with reference to Unet++ [26]. The decoder uses “up-sampling
+ concat + CBL” (“CBL” is a block with one convolution layer,
one BatchNorm and one Leaky Relu activation layer) to form
the basic decoding unit. It should be noted that the
Segmentation Head structure in Fig. 3 is very simple, we only
use a CBL to match the dimension 32 of the outputs of decoder
and classification category number 9 of semantic segmentation
module.

The losses of the Segmentation module consist of two parts,
the pixel-level cross-entropy loss lCE and Dice loss [24] that
measures the degree of overlap between prediction and ground
truth, namely lDice, as shown below:

Lseg = lCE + lDice (5)

Fig. 7. Operation steps of isolation module. The above operations are all on
feature maps, but images are used here for the convenience of expression.

D. Isolation
Semantic segmentation is a pixel-level classification method,

it will set each pixel a value from 0 to 8. As shown in Fig. 7, the
semantic segmentation can distinguish the three parts of

container code and container type very well, but the coordinates
of these parts cannot be directly obtained. The isolation module
is designed to obtain these coordinates from the semantic
segmentation results.

Fig. 7 shows the operation steps of isolation module. The
input of segmentation module is the CNN features after
RoIResize from Fig. 6. Segmentation module has the ability to
classify pixels, so the values of the three parts of container code
and container type are 5, 6, 7, and 8, respectively. First, we need
to calculate the coordinates of each bounding boxes. These
coordinates can be obtained by the ground truth during training.
For inference, the minimum bounding boxes of each pixel
blocks with value of 5, 6, 7, 8 can be obtained respectively
through the cv2.minAreaRect algorithm in Opencv. Further,
coordinates of four point of each minimum bounding rectangle
can be obtained through cv2.boxPoints. Due to the large
inclination angle of some container codes, the minimum
bounding rectangle obtained cannot reflect the most appropriate
container code area. Therefore, we need to adjust these
coordinates obtained from Opencv. We first calculate the ratio
of the number of pixels in the text area to the area of ABCD, if
it is less than the threshold of 0.95, the coordinates need to be
improved, otherwise there is no need to adjust the coordinates.
For the situation that needs to be adjusted, we first calculate
whether the sum of the 8 neighborhood pixels of the four points
A, B, C and D is greater than 0. If it is greater than 0, it means
that this point is within the text area, otherwise this point needs
to be moved along the short side of the rectangle. For vertical
container code as shown in Figure 7, it is obvious that the sum
of the 8 neighborhood pixels of point B and D is 0, while the
sum is greater than 0 for point A and C, so we need to move B
toward A along BA, and D toward C along DC. The movement
of B and D is carried out at the same time, and the movement
interval is 3 pixels. After each movement, it is necessary to
check whether the sum of the 8 neighborhood pixels of Bi and
Di is greater than 0. If the sum of Bi or Di are greater than 0,
then treat Bi and Di as the new text boundary points. As shown
in Fig. 7, after adjustment, the text area becomes ABnCDn.

Next, we equally divide the 4 blocks into 4, 6, 1, and 4 pieces
according to actual length of the parts to obtain single character
locations, and with these locations, we could get the
corresponding single character feature maps. Fig. 7 shows the
operations on character ‘1’ from the second part of container
code. We take the minimum (xmin, ymin) and maximum (xmax, ymax)
values of the coordinates of four points to obtain the RoI with
red dotted box area, and finally through RoIResize module to
get the CNN features of the character ‘1’ with a size of 32 × 32.

E. Classification
After the operations of isolation module, all single character

features can be obtained, so single character classification can
be performed through the Classification Head. The encoder and
decoder in Fig. 3 have already extracted the features of
container code and type very well, so the structure of
Classification Head is very simple, consisting of “CBL +
Pooling(32) + fc(16,36)”. The Pooling layer realizes the
dimensionality reduction of single character features, the fully
connected layer fc maps the 16 dimensions features to the 36
categories of the single character, and we use CE loss here for
the feature classification module, that is

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

 Lcla = lCE (6)
The loss for the whole PUN model for training is as follows:

 (7)

III. EXPERIMENTAL RESULTS

A. Dataset and Experiments Setup
Our experimental data contains 5877 RGB photos of size

1080×1920 taken by the cameras of the Shanghai Port smart
gate working scene. We use labelme software to annotate all
images. The annotations are divided into two levels. The first
level is the classification of horizontal and vertical container
code, which does not contain coordinate information. The
horizontal and vertical container code are marked as “hx” and
“sx”, respectively. The second level is used to mark the three
parts of container code and container type, including the
coordinates of four points and the text contents. The second
level annotations are shown in Fig. 8. It should be noted that the
labeling is done on the 1080×1920 image, and only the
container code and type area is provided here for convenience
of display.

Fig. 8. (a) The second level annotations of horizontal container code and type.
The bottom right corner of figure (a) shows the text of the four parts; (b) The
four coordinates of “ZCSU”.

We divided 5877 pictures into a training set and a testing set
at a ratio of 9:1, which are 5286 and 591 respectively. During
the training process, all images will be resized to 768 × 768, so
the width W and height H of input images are both set to 768.
We have used a variety of data augmentation methods based on
albumentations, including position transformation
augmentation methods HorizontalFlip, VerticalFlip, Transpose,
and color gamut augmentation methods RandomBrightness,
HueSaturationValue, CoarseDropout, and Blur.

We implement the proposed algorithm using Torch 1.10.2,
and all experiments are conducted on a server consists of two
2080Ti GPUs with 11 GB memory each. We train our PUN
model from scratch using Adam with a weight decay of 5×10-4.
The maximum training epochs is 80. Since the existing project
cannot perform parallel training on multiple GPUs, we can only
set a small batch size of 2, and in the following experiments, the
metric of FPS reflecting the speed of the model is obtained on
a single 2080Ti GPU.

B. Ablation Study for the backbone of detection module
The purpose of the rough detection module is to roughly

locate the second part of the container code and provide features
for the decoder. We selected ResNet [21], ResNeXt [22] and
EfficientNet [31] series as backbone for comparative

experiments. The evaluation metrics are consistent with [20],
which are mAP, Precision (abbreviated as Prd), Recall
(abbreviated as Red) and F1. Considering the industrial
application scenario, it is necessary to ensure that the backbone
has a smaller parameter amount and a faster inference speed, so
we also calculated the model parameter size and FPS. From the
experimental results in Table I, we can see that the detection
performance of ResNet is better than both ResNeXt and
EfficientNet, and ResNeXt is better than EfficientNet. For
ResNet18 and ResNet50, the latter performs better than the
former on mAP, Prd, Red and F1, with 2.12%, 0.83%, 1,23%
and 1.04% higher, respectively. For #Params and FPS, the
EfficientNet has the smallest number of model parameters, but
the speed is not the fastest. ResNeXt18 also has very few model
parameters, only 0.33M more than EfficientNet0, and the FPS
is the highest, reaching 42.11, but the detection performance is
not that much good. After comprehensive consideration, we
choose the ResNet series as the backbone. For ResNet18 and
ResNet50, although the latter has better detection results than
the former, the number of model parameters is about twice that
of the former, and the inference speed is about 70% of the
former. Later, we will further select the final backbone through
comparative experiments between ResNet18 and ResNet50.

TABLE I
RESULTS OF ABLATION STUDY FOR BACKBONE USED IN ENCODER
Backbone #Params

(M)
mAP
(%)

Prd
(%)

Red
(%)

F1
(%) FPS

ResNet18 11.32 91.36 96.96 94.22 95.57 36.01
ResNet50 23.63 93.48 97.79 95.45 96.61 25.41

ResNeXt18 5.62 90.06 96.51 93.01 94.73 42.11
ResNeXt50 25.02 90.06 96.03 93.59 94.79 24.65

EfficientNet0 5.29 87.00 94.68 91.77 93.20 34.34
EfficientNet3 12.23 84.89 94.38 89.62 91.94 25.34

C. Ablation Study for the methods of segmentation module
In Section II-C, we have introduced Unet++ as the

segmentation method for the three parts of container code and
type. Here we conduct an ablation experiment of the
segmentation method to further show the advantages of Unet++
over others, such as PAN [32], FPN [33] and Unet. As different
segmentation methods have different model structure and
parameter amount, so besides mIoU for evaluating the
segmentation performance, we also consider the metrics of
#Params and PFS. It should be noted that the model parameter
includes not only the parameters of the decoder and the accurate
segmentation head, but also the parameter of the convolution
operation between the decoder and the decoder to adjust the
feature dimension. Because the dimension of the 4-stage
features of Resnet18 and ResNet50 are different, for the same
segmentation method, when the encoder uses different
backbone, the number of parameters is also different. In
addition, since the CNN features of the decoder are shared
features of the segmentation head and classification head,
which will affect the performance of the classification module,
we also consider the metric of Acc, which is the ratio of the
number of correctly recognized single characters to the total
number of characters. We set Hs and Ws both to 512 here for
experiments.

As shown in Table II, for the same segmentation method,
since the decoder remains unchanged, even if the encoder uses
different backbones, the segmentation performance does not

det seg claL L L L= + +

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

change significantly. This is particularly obvious in PAN,
where mIoU of ResNet50 only increased by 0.01% compared
to ResNet18. For Acc, since ResNet50 learns input images
more comprehensively than ResNet18, the classification ability
has improved, which could be seen from FPN, the Acc
increased from 98.37% to 98.79%. In terms of #Params and
FPS, ResNet50 has approximately 2 times the number of
parameters as ResNet18, and the inference speed is slower. For
different segmentation methods, when the backbone of encoder
selects ResNet18, the mIoU and Acc of Unet++ are the best,
reaching 90.48% and 98.70% respectively. Although PAN has
the smallest number of parameters, only 1.24M, its
segmentation performance and Acc are the worst. Unet is the
fastest, but mIoU and #Params have no advantages over
Unet++.

TABLE II
RESULTS OF ABLATION STUDY FOR

 MODEL USED IN SEGMENTATION MODULE
Model #Params (M) mIoU (%) FPS Acc (%)

Res18 Res50 Res18 Res50 Res18 Res50 Res18 Res50
PAN 1.24 4.74 90.22 90.23 180.98 141.75 97.58 97.97
FPN 2.89 6.38 90.34 90.60 207.91 170.01 98.37 98.79
Unet 3.05 6.54 90.24 90.39 238.16 187.30 98.23 98.47

Unet++ 3.39 6.89 90.48 90.41 198.52 161.62 98.70 98.73
Considering the practicality of the algorithm, we need to

choose a better segmentation method with fewer parameters
and faster speed, which can greatly reduce the consumption of

GPU memory and the demand for high performance hardware
in industrial scenarios, so we finally select ResNet18 as the
backbone of encoder, and Unet++ as the segmentation method.

D. Ablation Study for the output size of segmentation module
Since the size of the decoder output will affect the

performance of the segmentation module and classification
module, ablation experiments are performed here on Hs and Ws.
As shown in Table III, we set Hs = Ws, when the size increases
from 128 to 640, the mIoU of segmentation model first
increases and then decreases, and the Acc of classification
model basically shows an increasing trend. When the size is 416,
mIoU reaches the maximum 91.45%, and Acc also reaches the
ideal 98.57%, so we set the decoder output Hs × Ws to 416 ×
416.

TABLE III
RESULTS OF ABLATION STUDY
FOR OUTPUT SIZE OF DECODER
size mIoU (%) Acc (%)
128 90.92 97.82
224 91.27 98.14
320 91.42 98.46
416 91.45 98.57
512 90.48 98.70
640 90.54 98.55

TABLE IV
RESULTS OF THE PROPOSED FRAMEWORK AND THE STATE-OF-THE-ART MODELS

Method Backbone #Params
(M)

Detection End-to-End Recognition
FPS Prd

(%)
Red
(%)

F1
(%)

Prr
(%)

Rer
(%)

H-mean
(%)

EAST (CVPR2017) ResNet50 26.21 87.88 92.51 89.13 - - - 4.69
DB (AAAI2020) ResNet18 12.27 91.77 95.04 92.29 - - - 4.41

PSENet (CVPR2019) ResNet18 15.56 95.87 96.80 95.74 - - - 1.87
DETR (AAAI2023) ResNet50-ViT 45.75 95.79 99.39 97.06 - - - 7.18
MTv3 (ECCV2020) ResNet50 45.47 94.43 74.94 80.00 63.39 59.56 61.69 2.20
ABCv1 (CVPR2020) ResNet50 36.88 93.91 97.88 95.21 58.46 93.42 69.12 9.26
ABCv2 (TPAMI2022) ResNet50 47.97 96.56 94.95 95.25 86.90 89.72 88.07 4.65
TESTR (CVPR2022) ResNet50-ViT 49.48 95.44 99.06 96.57 90.46 93.47 91.72 6.81

DeepSolo (CVPR2023) ViTAEv2-S 33.75 94.66 97.92 95.47 93.19 96.70 94.68 8.13
Our PUN ResNet18 15.53 98.51 96.98 97.43 97.01 97.05 96.99 4.86

E. Comparison with the State-of-the-Art methods
In this section we compare the PUN model with state-of-the-

art text detection algorithms and end-to-end text recognition
algorithms. The compared text detection algorithms include
CNN-based methods EAST [9], DB [10], PSENet [11] and
transformer-based DETR [28], the compared end-to-end text
recognition algorithms include CNN-based methods, such as
MTv3 [13], ABCv1 [14] and ABCv2 [15], and transformer-
based methods, such as TESTR [29] and DeepSolo [30]. All
comparative experiments are conducted on the source code
corresponding to the paper.

CNN-based EAST, DB, PSENet are trained from scratch on
5286 training sets, but transformer-based DETR are pretrained
on multi very large text detection datasets and then finetuned
on our container dataset, and all comparison algorithms are
tested on 591 testing sets for text detection. Since there are
currently few end-to-end algorithms that can perform horizontal
and vertical text recognition at the same time, and MTv3,

ABCv1 and ABCv2 can only handle horizontal strings, so we
found out all images containing only horizontal container code
and type from original dataset to obtain a new training set and
testing set with 2207 and 275 images. The training process of
CNN-based MTv3, ABCv1, ABCv2 and transformer-based
TESTR, DeepSolo will first import the model parameters
trained on multi large-scale text recognition datasets mentioned
in the corresponding papers, then fine-tune on the 2207 images
with horizontal container code and type and test on the 275
images. Our model is directly trained from scratch on the
training set with 5286 images and test with 591 images.

The detection objects here are the three parts of container
code and container type, and further through the isolation
operation, the end-to-end recognition can be achieved, so
container code and type that has not been detected will not be
recognized. The metrics of detection module are Prd, Red and
F1. Since MTv3, ABCv1 and ABCv2 models use CRNN
network as the main structure of the recognition module, the

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

length of the recognition results is not fixed, we didn’t use Acc
here, but the edit distance to evaluate the substitution, insertion
and deletion errors to obtains the same evaluation metrics as
[17], namely Precision (Prr), Recall (Rer) and H-mean.

As shown in Table IV, our PUN has certain advantages over
existing methods in container code and type detection and end-
to-end recognition. For detection, the transformer-based
methods are better than the CNN-based methods in Red and F1,
and Prd is almost the same as the best CNN method. Although
our PUN is also a CNN-based method, the starting point of PUN
is not text detection, but the detection of the second part of
container code, and then the area is expanded to the entire
container code, and through segmentation to obtain the accurate
location of container code and type, so the proposed PUN can
better locate container code and type. The Prd and F1 of our
PUN are better than all text detection methods and end-to-end
text recognition algorithms, Prd is 1.95% higher than the second
best ABCv2, and F1 is 0.37% higher than the second best
DETR, but Red is not the best.

For end-to-end recognition, PUN performs better than other
CNN-based and transformer-based methods in Prr, Rer and H-
mean. The Prr, Rer and H-mean of our PUN are 3.82%, 0.35%
and 2.31% higher than the second best DeepSolo. MTv3,
ABCv1, ABCv2 and DeepSolo all use CTC-based decoding to
recognize strings. CTC decoding assumes that each feature
patch is independent of each other, which will cause difficulty
in identifying adjacent characters with the same label. Methods
such as DeepSolo use a dictionary containing the real text of the
test set for decoding during the recognition process, our PUN
does not require such a dictionary. TESTR uses the method of
classifying CNN features to realize character recognition,

which is similar to our classification model, but TESTR does
not have the isolation module to obtain the accurate CNN
features of a single character, so its classification performance
is worse than ours.

Our PUN is also very competitive for #Params and FPS.
Under the working conditions of the smart gate of Shanghai
Port, our algorithm can only be deployed on one computer with
one 1660Ti NVIDIA GPU, which requires our algorithm to be
lightweight. Considering that more model parameters need
more GPU memory consumption, we chose ResNet18 as the
backbone of the encoder, Unet++ as the segmentation method,
and only one fully-connected layer for classification module, so
our PUN has only 15.53M parameters, which is about twice less
than DeepSolo, the end-to-end recognition model with the
second smallest number of parameters. For FPS, although our
PUN is slower than ABCv1, TESTR and DeepSolo, it is faster
than ABCv2 and MTv3. As shown in Tables I and II, detection
and segmentation process of PUN is very fast, but the final FPS
is only 4.86, which is mainly due to the isolation module. The
premise of single character classification is that the model can
extract CNN features well, but the encoding and decoding
network with limited parameters cannot fully learn the
characteristics of single characters, so we designed the isolation
module to accurately obtain the area of single characters, which
avoids the interference of surrounding characters on the
classification model, and improves the recognition accuracy of
container code and type. However, the isolation module is not
calculated on GPU, so the speed of PUN is slower than ABCv1,
TESTR and DeepSolo, but 4.86 FPS meets the needs of smart
gate of Shanghai Port.

Fig. 9. The results of Robustness experiments. 4 images of blur, rainy day, rainy night and noisy conditions with image quality of 75, 25 and 5 are tested. Rough
detection results of the second part of container code, segmentation results of the three parts of container code and type, and end-to-end recognition of container
code and type are showed.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

F. Robustness experiments of PUN
Due to the complexity and variety of smart gate working

scenarios, in order to verify the stability of our model, this part
will conduct robustness tests. From the test set, we select blurry
images caused by inaccurate camera focus to simulate fog
weather, images of rainy day and rainy night environments to
verify different lighting and rainy weather, and images with
severe pollution on the surface of containers for verification of
the noisy situation. In addition, considering that the quality of
pictures taken by different cameras is different, we process each
chosen image through the PIL.Image library to obtain lower
quality pictures for testing. We selected four pictures, Blur,
Rainy day, Rainy night and Noisy, with quality value of 75 (the
picture quality value in PIL.Image ranges from 1 to 95, the
larger the value, the clearer the picture, the quality value of the
original picture is 75), and obtained two images corresponding
to four images with quality of 25 and 5 respectively. As shown
in Fig. 9, the quality value and kbyte are placed above each
picture. We show the detection results of the rough detection
module in the picture, “sx 0.88” means that this area is judged
to be vertical container code with a probability of 0.88. The
semantic segmentation results of the RoI are placed on the right
of the rough detection results, and we also place the end-to-end
recognition results on the upper right. As can be seen from Fig.
9, for the original image and the image with quality of 25, our
PUN can perform very good localization and recognition of the
three parts of container code and type in blur, day, night, rain or
noisy environments. When the image quality is further reduced
to 5, low-quality images do not affect the rough detection
module, but the semantic segmentation model is slightly
affected, which can be seen from the container type
segmentation of blur and noisy images, and low-quality images
also affect the single-character classification. The first part of
the container code “CAIU” in the blur image is recognized as
“CAHU”, the third part of the container code in the noisy image
is “4”, but we recognized as “7”, the container type is “42G1”,
we identified it as “2211”. It should be noted that the image
quality will not be so bad under actual working conditions, but
this shows that our model still has space for improvement in
low-quality image recognition.

IV. CONCLUSION

 We propose an encoder-decoder network structure, which
integrates detection, semantic segmentation and classification
modules to achieve end-to-end container code and type
recognition. Our model has been deployed and running in multi
smart gates of Shanghai Port for nearly a year, showed certain
practical application capabilities. The recognition rate and
inference time consumed have both met the requirements of the
port, and it is planned to be deployed on a large scale. In fact,
our algorithm has also carried out on the recognition of the
license plate of trucks collected in the smart gate, and it has also
achieved success. Although the inference speed of our
algorithm meets the requirements of the project, there is still
space for improvement compared to end-to-end text recognition

methods such as ABCv1, which will be one of our follow-up
research directions.

ACKNOWLEDGMENT
This work was supported by the National High Technology

Research, Development Program of China (2022YFB330570),
the Shanghai Innovation Action Project of Science and
Technology (21511104302).

REFERENCES
[1] M. Goccia, M. Bruzzo, C. Scagliola, and S. Dellepiane, “Recognition of

container code characters through gray-level feature extraction and
gradient based classifier optimization,” in Proc. 7th Int. Conf. Document
Anal. Recognit., Edinburgh, U.K., Aug. 2003, pp. 973-977. doi:
10.1109/TIM.2021.3115211.

[2] W. Al-Khawand, S. Kadry, R. Bozzo, and S. Khaled, “8-neighborhood
variant for a better container code extraction and recognition,” Int. J.
Comput. Sci. Inf. Secur., vol. 14, no. 4, pp. 182-186, Apr. 2016.

[3] Q. Ye, Q. Huang, W. Gao, and D. Zhao, “Fast and robust text detection in
images and video frames,” Image and Vision Computing, vol. 23, no. 6, pp.
565-576, 2005.

[4] W. Wu, Z. Liu, M. Chen, X. Yang, and X. He, “An automated vision system
for container-code recognition,” Expert Syst. Appl., vol. 39, no. 3, pp. 2842-
2855, Feb. 2012.

[5] T. Szabo and G. Horvath, “Finite word length computational effects of the
principal component analysis networks,” IEEE Trans. Instrum. Meas., vol.
47, no. 5, pp. 1218-1222, Oct. 1998.

[6] Z. He, J. Liu, H. Ma, and P. Li, “A new automatic extraction method of
container identity codes,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 1,
pp. 72-78, Mar. 2005.

[7] X. Zhao, Y. Wang, C. Xiao, Q. Zhu, X. Lu, H. Zhang, J. Ge, and H. Zhao,
“Automated visual inspection of class bottle bottom with saliency detection
and template matching,” IEEE Trans. Instrum. Meas., vol. 68, no. 11, pp.
4253-4267, Nov. 2019.

[8] Z. Ma, L. T. Yang, and Q. Zhang, “Support multimode tensor machine for
multiple classification on industrial big data,” IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3382-3390, May. 2021.

[9] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST:
An efficient and accurate scene text detector,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 2642-2651.

[10] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,M. Liao,
Z. Wan, C. Yao, K. Chen, and X. Bai, “Real-time scene text detection with
differential binarization,” in Proc. AAAI Conf. Artif. Intell., 2020, pp.
11474-11481.

[11] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao, “Shape robust
text detection with progressive scale expansion networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 9336-9345.

[12] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp.
2298-2304, Nov. 2017.

[13] M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask TextSpotter
V3: Segmentation proposal network for robust scene text spotting,” In
Proc. ECCV, vol. 12356, Aug. 2020, pp. 706-722.

[14] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “ABCNet: Realtime
scene text spotting with adaptive bezier-curve network,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9806-9815.

[15] M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai,Y. Liu, C. Shen, L.
Jin, P. Chen, C. Liu and H. Chen, “ABCNet v2: Adaptiive Bezier-curve
network for real-time endto-end text spotting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 11, pp. 8048-8064, Nov. 2022.

[16] N. Liu, Q. Hu, H. Xu, X. Xu, and M. Chen, “Med-BERT: A pretraining
framework for medical records named entity recognition,” IEEE Trans.
Ind. Informat., vol. 18, no. 8, pp. 5600-5608, Aug. 2022.

[17] Z. Chen, C. Zhang, L. Zuo, T. Xiahou, and Y. Liu, “An adaptive deep
learning framework for fast recognition of integrated circuit markings,”

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

IEEE Trans. Ind. Informat., vol. 18, no. 4, pp. 2486-2496, Apr. 2022.
[18] R. Zhang, Z. Bahrami, T. Wang, and Z. Liu, “An Adaptive Deep Learning

Framework for Shipping Container Code Localization and Recognition,”
IEEE Trans. Instrumentation and Measurement, vol. 70, pp., 2021, doi:
10.1109/TIM.2020.3016108.

[19] Y. Liu, T. Li, L. Jiang, and X. Liang, “Container-code recognition system
based on computer vision and deep neural networks,” Proceedings of the
2nd International Conference on Advances in Materials, Machinery,
Electronics. 2018.

[20] R. Zhang, Z. Bahrami, and Z. Liu, “A Vertical Text Spotting Model for
Trailer and Container Codes,” IEEE Trans. Instrumentation and
Measurement, vol. 70, pp.–, 2021, doi: 10.1109/TIM.2021.3115211.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770-778.

[22] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual
Transformations for Deep Neural Networks,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 5987-5995.

[23] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “FOTS: Fast
oriented text spotting with a unified network,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 5676-5685.

[24] F. Milletari, N. Navab, and S. Ahmadi, “V-Net: Fully convolutional neural
networks for volumetric medical image segmentation,” in Fourth
International Confernece on 3D Vision, 2016, pp. 565-.571.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput. Assisted Intervention, 2015, pp. 234-241.

[26] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A
nested U-Net architecture for medical image segmentation,” 4th Deep
Learning in Medical Image Analysis Workshop, 2018, pp. 3-11.

[27] A. G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial and channel
‘Squeeze & Excitation’ in fully convolutional netwroks,” 2018,
arXiv:1803.02579.

[28] M. Ye, J Zhang, S. Zhao, J Liu, B. Du, and D. Tao, “DPText-DETR:

towards better scene text detection with dynamic points in transformer,” in
Proc. AAAI Conf. Artif. Intell., 2023, pp. 3241-3249.

[29] X. Zhang, Y. Su, S. Tripathi, and Z. Tu, “Text Spotting Transformers,” in
Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2022, pp. 9519-9528.

[30] M. Ye, J. Zhang, S. Zhao, J. Liu, T. Liu, B. Du, and D. Tao, “DeepSolo:
Let Transformer Decoder with Explicit Points Solo for Text Spotting,” in
Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2023, pp. 19348-
19357.

[31] M. Tan, Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in Proceedings of the 36th International
Conference on Machine Learning, Long Beach, California, PMLR 97,
2019.

[32] H. Li, P. Xiong, J. An, and L. Wang, “Pyramid Attention Network for
Semantic Segmentation,” arXiv preprint arXiv:1805.10180, 2018.

[33] Kirirllov, R. Girshick, K, He, and P. Dollar, “Panoptic Feature Pyramid
Netgworks,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6399-6408.

Jian Zhao received his MS degree from
the College of Engineering in Huazhong
Agricultural University in 2019, Wuhan,
China. He is currently pursuing the PhD at
College of Electronic and Information
Engineering, Department of Computer
Science in Tongji University, Shanghai,
China. His research interests include image
processing, deep learning, and big data.

Ning Jia received the B.S. degree in
information management and information
systems and the M.S. degree in computer
technology from the Shandong University
of Science and Technology in 2012 and
2014, respectively, and the Ph.D. degree in
computer science and technology from
Tongji University, Shanghai, China, in

2019. He is currently a Post-Doctoral Researcher with the
College of Electronic and Information Engineering, Tongji
University. His current research interests include computer
vision and pattern recognition.

Xianhui Liu is an associate professor. He
received his PhD from Tongji University
in 2014. He is currently an associate
professor with the College of Electronic
and Information Engineering of Tongji
University, Shanghai, China. And he is
current deputy director of CAD Research
Center of Tongji University. He is also a

member of Artificial Intelligence Committee of Shanghai

Computer Association. His research topics include machine
learning, data mining, big data, and networked manufacturing.

Gang Wang received the Ph.D. degree in
computer science from Tongji University,
Shanghai, China, in 2016. He is currently
an Associate Professor with the School of
Statistics and Management, Shanghai
University of Finance and Economics,
Shanghai. His current research interests
include computer vision, pattern
recognition, and data analysis.

Weidong Zhao is a professor. He is a
member of China National Technical
Committee for Industrial Automation
Systems and Integration Standardization,
the chief expert on Information
Technology in Sci-Tech Engineering of
Manufacturing Industry during the
eleventh five-year project of the Ministry

of Science and Technology of China, and the team leader of
Information Technology Manufacturing Engineering of
Shanghai Municipal Science and Technology Commission.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3370750

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 28,2024 at 04:16:57 UTC from IEEE Xplore. Restrictions apply.

