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Abstract—The fast and accurate recognition of the container code 
and type is very important to speed up the passage of trucks 
through the gate and improve the efficiency of port. In this paper, 
a Practical Unified Network (PUN) is proposed for the first time 
to recognize arbitrary-oriented container code and type. The 
model is based on the encoder-decoder network, which integrates 
the detection of the second part of container code, the semantic 
segmentation of the three parts of container code and type, and the 
classification of single character features of container code and 
type. The ablation experiments verified the performance of each 
part of PUN, and obtained a stable and reliable model. The 
comparison experiments compare PUN with state-of-the-art text 
detection and end-to-end text recognition algorithms, and the 
results show that PUN achieves almost the best performance in 
both container code and type detection and end-to-end recognition. 
The proposed algorithm has only 15.53M parameters, with a FPS 
of 4.86 with a input size of 768×768, which meets the company's 
needs. Our model has been deployed and running in multi smart 
gates of Shanghai Port for nearly a year, showed certain practical 
application capabilities. 

Index Terms—container code and type, end-to-end recognition, 
detection, semantic segmentation, classification. 

I. INTRODUCTION 
n recent years, with the increasing requirements of logistics 
market on container terminal handling efficiency, terminal 
operator safety and cost, a surge of automated terminals has 

been set off in ports around the world. In this boom, automatic 
identification technology is the top priority of automated 
terminals. The smart gate is the earliest field in the process of 
port intelligence, and its main role is to maximize the passage 
efficiency of container trucks through automatic identification 
technology to recognize and compare the license plate number 
of container trucks and the container code and type. Compared 
with the traditional one person one gate mode, smart gate 
managers can perform one-to-many efficient management 
remotely, reducing labor costs, while being safe and efficient. 

The gate working scenario is shown in Fig. 1. Four high-
speed cameras are installed at the gate to take pictures of the 
truck passing through the gate from the front, back, left and 
right angles, and identify the relevant information in the 
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pictures in real time to achieve the goal of smart gate. 

 
Fig. 1. Gate working scenario. For the convenience of observation, the 
container code and type in the picture has been enlarged. 

 
Fig. 2. Meaning of the container code and type. 

This paper carries on the recognition of container code and 
type in gate working scenario. According to ISO 6346, 
container code and type are composed of 11 and 4 characters, 
respectively. The character set includes 26 uppercase English 
letters and 10 Arabic numerals, a total of 36 categories. As 
shown in Fig. 2, the 11 characters of container code is divided 
into three parts, the first part consists of four English letters, the 
first three represent the Owner code, and the fourth represents 
the Category identifier, which can only be U, J or Z, and U is 
the most common. The next 6 Arabic digits in the second part 
represents the Registration code, and the third part is the Check 
digit, which is an Arabic digit. The 4 characters in container 
type are composed of letters or digits. 

Previous work on container code recognition is divided into 
two stages: character region detection and recognition. 
Traditional character detection methods distinguish character 
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and non-character regions by extracting pixel-level features of 
images. These features generally include contours, gray levels 
[1], masks [2], histogram information from grayscale images, 
and distribution of wavelet or discrete cosine transform 
coefficients [3]. Because of high density of edges and contours, 
low gradients above and below text, these pixel-level feature 
differences help to distinguish character regions from non-
character regions. Before character recognition, the detected 
text needs to be separated into single characters. With the help 
of high-pass filter [4] or connected components analysis [5], the 
single character area in the text can be obtained. Further, single 
character recognition is carried out based on SVM [8] classifier 
or template matching [6],[7] or other methods. 

With the development of deep learning, many text detection 
and recognition methods have emerged. EAST [9] can detect 
text regions of different angles, PSENet [11] based on region 
extension can detect arbitrary shaped text, DB [10] was 
designed for fast detection, DETR [28] performs text detection 
by extracting CNN features, and then transformer was used for 
text encoding and decoding, achieving very good text detection 
results. For text recognition, the classical CRNN [12] model can 
recognize strings of arbitrary length. MTv3 [13], ABCv1 [14], 
ABCv2 [15], TESTR [29] and DeepSolo [30] are end-to-end 
methods that integrate text region detection and recognition. 
With the help of these deep learning methods, [16] conducted 
medical records named entity recognition, [17] conducted 
integrated circuit markings recognition. For container code 
recognition, [18] and [19] designed a framework that first 
detects and then recognizes, while [20] designed an end-to-end 
recognition model. The drawback is [18] and [19] can only 
recognize horizontal container code, and [20] can only identify 
vertical ones, and the images are manually cropped with the 
container code area, so these methods cannot identify container 
code with complex background noise in real application 
scenarios. 

It is very difficult to recognize the container code and type in 
real working scene. The first influence is the background noise. 
The background of the photos taken by the camera is complex, 
including roads, street lamps, trees and workers. Moreover, 
there are also many other texts on the container surface, which 
affect the detection of container code and type. The second is 
the effect of shooting angle. Since the camera does not shoot 
the container surface vertically, the container code and type will 
be deformed, as shown in the bottom left and bottom right of 
Fig.1. Finally, the positions of the three parts of container code 
and type are changeable, some are vertical, some are horizontal, 
some are 1 row/column, some are 2 rows/columns or 3 
rows/columns, as shown in Fig. 4. In addition, changes in 
weather and illumination in the working scene will be troubles 
too. 

Our algorithm is based on the Shanghai Port Smart Gate 
Project, and the working scenario is shown in Fig. 1. We 
designed a Practical Unified Network for localization and 
recognition of arbitrary-oriented container code and type. In the 
localization step, the text detection method [18], [19], [20] will 
detect all the texts in the image, and then judge whether they 
are container codes, this operation is very cumbersome. We 

adopt the method of object detection to perform the coarse 
location of the container code, and further use the method of 
semantic segmentation to accurately segment the container 
code and type. In the recognition step, we abandon the 
traditional CRNN [12] text recognition model. Considering that 
the length of container code and type are fixed, we directly 
perform average cutting of CNNs features, and then use 
classification model to classify single characters. This method 
is simpler, and can identify container code and type in any 
direction. In addition, we design a very efficient RoIResize 
module to connect the detection, semantic segmentation and 
classification modules, to achieve end-to-end container code 
and type recognition. 

The contributions are summarized as follows. 
1) We design an end-to-end network, whose core structure is 

an encoder-decoder for input feature learning. We also design 
the rough detection module for detection of the second part of 
contain code, the accurate location module for contain code and 
type localization, and a classification module for recognition. 
In addition, an efficient RoIResize module that does not require 
learning is introduced and used to bridge the three modules to 
realize the error backward propagation and construct an end-to-
end PUN model. 

2) Compared with other text detection and recognition 
models, our PUN has obvious advantages. Parameter size of our 
model is only 15.53M, which takes up little GPU memory and 
is suitable for deployment in industrial scenarios. At the same 
time, when the size of input image is 768 × 768, the FPS reaches 
4.86, which meets the requirements of smart gate of Shanghai 
Port. In addition, our model can recognize both horizontal and 
vertical container code and type. Our model has been deployed 
and running in multi smart gates of Shanghai Port for nearly a 
year, showed certain practical application capabilities. 

3) We design a dataset for smart gate container code and type 
recognition. The dataset contains 5877 images of the gate 
working scene with a size of 1080×1920 including horizontal 
and vertical container code and type. And we also have 
annotated all the images, the annotations include 4 coordinates 
and string content of the three parts of container code and 
container type. 

The rest of this article is organized as follows. Section II 
introduces the details of the proposed framework. Section III 
conducts ablation experiments, as well as comparative 
experiments with other text detection and recognition models, 
and Section IV concludes this article. 

II. PROPOSED METHOD 
The core structure of the proposed PUN is an encoder-

decoder as shown in Fig. 3, the Rough detection and Accurate 
location head are designed for container code and type 
localization, the Classification head is used for container code 
and type recognition. Accurate location head contains a 
Segmentation head and an Isolation operation. Through 
semantic segmentation, the three parts of the container code and 
type can be classified at the pixel level, and the position 
information of the single character can be obtained through the 
isolation module which only be used in the inference phase. The 
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RoIResize module is designed to connect the encoder and 
decoder, as well as the decoder and classification head, to obtain 
an end-to-end trainable container code and type recognition 
model.  

Fig. 3 shows the process of forward propagation and error 
back propagation in the PUN training phase. The Encoder-
Decoder, Rough detection head, Segmentation head and 
Classification head in the PUN model are trainable, and the 
RoIResize and Isolation module do not need to be learned. The 
Rough locations and Accurate locations in the training phase 

are provided by the input annotations. The forward propagation 
process with the information pass process in Fig. 3 are the 
inference process. The Rough locations and Accurate locations 
in the inference stage are provided by the Rough detection head 
and Accurate location head respectively. 

In the following, we will introduce the Rough detection in 
Section II-A, the RoIResize operation in Section II-B, the 
Segmentation in Section II-C, Isolation in Section II-D, and the 
Classification in Section II-E.

 
Fig. 3. Structure of the proposed PUN. Encoder and Decoder are used for input feature learning, Rough detection head and Accurate location head are for container 
code and type localization. Segmentation head and Isolation operation are contained in Accurate location head, used for the three parts of container code and type 
segmentation and single character isolation respectively. RoIResize is introduced to bridge them to an end-to-end model.  

A. Rough detection 
It is difficult to directly detect the container code and type 

from the images taken at the working gates. We adopt a step-
by-step strategy, first making a rough detection of the container 
code, and then using semantic segmentation to accurately locate 
the three sub-parts of container code and type. 

The ability of the detection module is to detect the rough 
position of container code in the input image, but there are many 
different arrangements of container code and type, including 
one row or one column, two rows or two columns, three rows, 
etc., so choosing the appropriate detection objects is very 
important. By observing the positional relationship between 
three parts of container code and container type of a large 
number of containers, we found that there are only 10 relative 
arrangements as shown in Fig. 4. Since the sub-parts of 
container codes are relatively close, the container code and type 
can be obtained by detecting the most significant area among 
the three parts of the container code and then expanding the 
area. We select the second part of the container code as this 
rough detection object, therefore, we divide the detection 
objects into two categories, the second part of horizontal 
container code was marked as “hx”, and the second part of 
vertical container code was marked as “sx”, as shown in Fig. 4. 

Rough detection module consists of an Encoder and a rough 
detection head as shown in Fig. 5. Encoder first encodes an 
RGB image of size H × W to obtain the 4-stage CNN features. 
On the one hand, these 4-stage features are input into the rough 

detection head for rough localization of the second part of 
container code, and on the other hand, they are used as shared 
features for subsequent accurate location and recognition of 
container code and type. In the rough detection head, the 
dimensions and feature size of the 4-stage CNN features of 
encoder are first adjusted through convolution and up-sampling 
operation. After this adjustment, the dimensions of the 4-stage 
CNN features will be the same as the dimension of stage 2 of 
the encoder, and the feature size will be equal to the size of stage 
1 of the encoder. Then the adjusted 4-stage CNN features are 
spliced through Concat operation, and finally the output Odet 
sized of ¼H × ¼W with 2 feature dimensions are obtained 
through convolution operation. We use the first dimension of 
Odet to detect the second part of the container code, and the 
second dimension to classify the horizontal and vertical 
container code, so we design the following loss function 

lobj = MSE(Odet[0], maskobj)                      (1) 
lcate = MSE(Odet[1], maskcate)                     (2) 

In formula (1), MSE(·) represents the mean square error, Odet[0] 
represents the first dimension of Odet, and maskobj is the ground 
truth for the second part of the container code, where the value 
of the second part of the container code is 1, and the rest are 0. 
In Formula 2, Odet[1] represents the second dimension of Odet, 
maskcate is the category label of “hx” and “sx” container code, 
where the value of the second part of the horizontal and vertical 
container code is 1 and 2, respectively, and the rest are 0. 

So, the loss for the training of rough detection module is 
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Ldet = lobj + lcate                                (3) 
It should be noted that the rough detection head we designed 

only obtains the pixel blocks of the second part of the container 
code. During the test process, we need to further obtain the 
specific coordinates of the second part of the container code 
based on post-processing steps such as cv2.minAreaRect and 
cv2.boxPoints. 

 
Fig. 4. 10 kinds of positions of container code and type. The chosen detection 
objects are shown in the light blue area for horizontal container codes and light 
yellow for vertical ones. 

 

Fig. 5. Structure of Rough detection module in Fig. 3.  

B. RoIResize 
The RoIResize module is a bridge connecting rough 

detection module, accurate location module and classification 
module. It returns fixed size feature maps by performing crop 
and resize operations on feature maps of a specific area, which 
facilitates the end-to-end training of the network. Next, we will 
introduce how RoIResize is used in connecting encoder and 
decoder in Fig. 3. 

The detection result of rough detection module is the second 
part of container code, which we called initial RoI. We need to 
expand the initial RoI to get the feature area that contains the 
whole container code and type, and then obtain the fixed size 
feature maps through RoIResize module. As shown in Fig. 6, 
we set the height of the initial RoI to h and width to w. The 
position coordinates of the initial RoI are obtained through 
ground truth during training process while through the rough 
detection module during inference. We expand the initial RoI 
by observing the 10 positional relationships of container code 
and type in Fig. 4. For horizontal initial RoI, we extend it by w 

to the left, 0.4w to the right, and 2h to the bottom and top. For 
vertical cases, we extend it by w to the left, 3w to the right, 1.0h 
to the top, and 0.3h to the bottom to obtain the RoI. 

We will up-sample the shared features of the 4 stages in 
encoder to 384 × 384, 192 × 192, 96 × 96 and 48 × 48, 
respectively, and perform RoIResize operation on the 4 up-
sampled features as shown in Fig. 6. Assuming the size of the 
output of semantic segmentation in accurate location module is 
Hs × Ws, the size of the 4 up-sampled features after RoIResize 
will be 1 2# Hs × 1 2# Ws, 1 4# Hs × 1 4# Ws, 1 8# Hs × 1 8# Ws and  1 16# Hs × 
1
16# Ws, respectively. Fig. 6. shows the operation on the shared 

features of the first stages. 

 
Fig. 6. Operations of RoIResize module between encoder and decoder. The 
initial RoI and RoI are the light blue and yellow background areas in the left 
CNN features, respectively. Note that the above operations are all on feature 
maps, but images are used here for the convenience of expression. 

Our RoIResize designed with reference to RoIRotate [23], 
but more concise. According to the actual tilt angle of the text, 
RoIRotate crops a fixed size area from feature maps, and further 
uses CRNN to recognize horizontal text. In our model, the 
semantic segmentation and classification module can handle a 
certain inclined text area. Moreover, the container code and 
type with an inclined angle can increase the diversity of the 
training dataset, making the model more robust. Therefore, we 
don’t need to correct the tilt angle of container code and type. 

There are two steps involved in RoIResize. First, calculate 
the affine transformation matrix between the RoI area 
coordinates (x, y) and coordinates (x’, y’) after RoIResize. 
Assumes that the RoI area coordinates as (xmin, ymin), (xmax, ymin), 
(xmax, ymax), (xmin, ymax), we need to map these 4 points into (0, 
0), (sx, 0), (sx, sy), (0, sy). For the shared CNN features of the 4 
stages after RoIResize, (sx, sy) is (1 2# Hs, 1 2# Ws), (1 4# Hs, 1 4# Ws), 
(1 8# Hs, 1 8# Ws) and (1 16# Hs, 1 16# Ws), respectively. This process 
can be computed by an affine transformation as follows: 

                                                     (4) 

Where  is the affine transformation matrix, which 

can be calculated by the corresponding coordinates between 
(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax) and (0, 0), (sx, 0), 
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(sx, sy), (0, sy). Then, other transformated coordinates of the 
points in RoI can be obtained based on formula (4). 

Second, the results of RoIResize could obtained by bilinear 
sampling from RoI based on the corresponding relationship 
between (x’, y’) and (x,y). 

C. Segmentation 
The string length of the three parts of container code and 

container type is fixed, so the individual characters can be 
obtained through average cutting of responding regions, and the 
container code and type could be recognized by classification 
module, but the precondition is that the parts of container code 
and type could be identified. Semantic segmentation can 
classify the 9 different objects, we assign the three parts of the 
horizontal container code and container type to categories 1-4, 
and categories 5-8 to vertical ones, with category 0 as the 
background. In this way, we can identify the three parts of 
container code and type by semantic segmentation. 

Unet [25] is a very well-known semantic segmentation 
network. It is an encoder-decoder network structure. The first 
half is used for feature extraction, and the second half is spliced 
to realize the fusion of the underlying location information and 
deep semantic information, and further achieve the same size as 
the input through layer-by-layer up-sampling. The encoder of 
our semantic segmentation module is shared with the backbone 
of rough detection module, and the decoder is implemented 
with reference to Unet++ [26]. The decoder uses “up-sampling 
+ concat + CBL” (“CBL” is a block with one convolution layer, 
one BatchNorm and one Leaky Relu activation layer) to form 
the basic decoding unit. It should be noted that the 
Segmentation Head structure in Fig. 3 is very simple, we only 
use a CBL to match the dimension 32 of the outputs of decoder 
and classification category number 9 of semantic segmentation 
module. 

The losses of the Segmentation module consist of two parts, 
the pixel-level cross-entropy loss lCE and Dice loss [24] that 
measures the degree of overlap between prediction and ground 
truth, namely lDice, as shown below: 

Lseg = lCE + lDice                                  (5) 

Fig. 7. Operation steps of isolation module. The above operations are all on 
feature maps, but images are used here for the convenience of expression. 

D. Isolation 
Semantic segmentation is a pixel-level classification method, 

it will set each pixel a value from 0 to 8. As shown in Fig. 7, the 
semantic segmentation can distinguish the three parts of 

container code and container type very well, but the coordinates 
of these parts cannot be directly obtained. The isolation module 
is designed to obtain these coordinates from the semantic 
segmentation results. 

Fig. 7 shows the operation steps of isolation module. The 
input of segmentation module is the CNN features after 
RoIResize from Fig. 6. Segmentation module has the ability to 
classify pixels, so the values of the three parts of container code 
and container type are 5, 6, 7, and 8, respectively. First, we need 
to calculate the coordinates of each bounding boxes. These 
coordinates can be obtained by the ground truth during training. 
For inference, the minimum bounding boxes of each pixel 
blocks with value of 5, 6, 7, 8 can be obtained respectively 
through the cv2.minAreaRect algorithm in Opencv. Further, 
coordinates of four point of each minimum bounding rectangle 
can be obtained through cv2.boxPoints. Due to the large 
inclination angle of some container codes, the minimum 
bounding rectangle obtained cannot reflect the most appropriate 
container code area. Therefore, we need to adjust these 
coordinates obtained from Opencv. We first calculate the ratio 
of the number of pixels in the text area to the area of ABCD, if 
it is less than the threshold of 0.95, the coordinates need to be 
improved, otherwise there is no need to adjust the coordinates. 
For the situation that needs to be adjusted, we first calculate 
whether the sum of the 8 neighborhood pixels of the four points 
A, B, C and D is greater than 0. If it is greater than 0, it means 
that this point is within the text area, otherwise this point needs 
to be moved along the short side of the rectangle. For vertical 
container code as shown in Figure 7, it is obvious that the sum 
of the 8 neighborhood pixels of point B and D is 0, while the 
sum is greater than 0 for point A and C, so we need to move B 
toward A along BA, and D toward C along DC. The movement 
of B and D is carried out at the same time, and the movement 
interval is 3 pixels. After each movement, it is necessary to 
check whether the sum of the 8 neighborhood pixels of Bi and 
Di is greater than 0. If the sum of Bi or Di are greater than 0, 
then treat Bi and Di as the new text boundary points. As shown 
in Fig. 7, after adjustment, the text area becomes ABnCDn. 

Next, we equally divide the 4 blocks into 4, 6, 1, and 4 pieces 
according to actual length of the parts to obtain single character 
locations, and with these locations, we could get the 
corresponding single character feature maps. Fig. 7 shows the 
operations on character ‘1’ from the second part of container 
code. We take the minimum (xmin, ymin) and maximum (xmax, ymax) 
values of the coordinates of four points to obtain the RoI with 
red dotted box area, and finally through RoIResize module to 
get the CNN features of the character ‘1’ with a size of 32 × 32. 

E. Classification 
After the operations of isolation module, all single character 

features can be obtained, so single character classification can 
be performed through the Classification Head. The encoder and 
decoder in Fig. 3 have already extracted the features of 
container code and type very well, so the structure of 
Classification Head is very simple, consisting of “CBL + 
Pooling(32) + fc(16,36)”. The Pooling layer realizes the 
dimensionality reduction of single character features, the fully 
connected layer fc maps the 16 dimensions features to the 36 
categories of the single character, and we use CE loss here for 
the feature classification module, that is 
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       Lcla = lCE                                     (6) 
The loss for the whole PUN model for training is as follows: 

                       (7) 

III. EXPERIMENTAL RESULTS 

A. Dataset and Experiments Setup 
Our experimental data contains 5877 RGB photos of size 

1080×1920 taken by the cameras of the Shanghai Port smart 
gate working scene. We use labelme software to annotate all 
images. The annotations are divided into two levels. The first 
level is the classification of horizontal and vertical container 
code, which does not contain coordinate information. The 
horizontal and vertical container code are marked as “hx” and 
“sx”, respectively. The second level is used to mark the three 
parts of container code and container type, including the 
coordinates of four points and the text contents. The second 
level annotations are shown in Fig. 8. It should be noted that the 
labeling is done on the 1080×1920 image, and only the 
container code and type area is provided here for convenience 
of display. 

 
Fig. 8. (a) The second level annotations of horizontal container code and type. 
The bottom right corner of figure (a) shows the text of the four parts; (b) The 
four coordinates of “ZCSU”. 

We divided 5877 pictures into a training set and a testing set 
at a ratio of 9:1, which are 5286 and 591 respectively. During 
the training process, all images will be resized to 768 × 768, so 
the width W and height  H of input images are both set to 768. 
We have used a variety of data augmentation methods based on 
albumentations, including position transformation 
augmentation methods HorizontalFlip, VerticalFlip, Transpose, 
and color gamut augmentation methods RandomBrightness, 
HueSaturationValue, CoarseDropout, and Blur. 

We implement the proposed algorithm using Torch 1.10.2, 
and all experiments are conducted on a server consists of two 
2080Ti GPUs with 11 GB memory each. We train our PUN 
model from scratch using Adam with a weight decay of 5×10-4. 
The maximum training epochs is 80. Since the existing project 
cannot perform parallel training on multiple GPUs, we can only 
set a small batch size of 2, and in the following experiments, the 
metric of FPS reflecting the speed of the model is obtained on 
a single 2080Ti GPU. 

B. Ablation Study for the backbone of detection module 
The purpose of the rough detection module is to roughly 

locate the second part of the container code and provide features 
for the decoder. We selected ResNet [21], ResNeXt [22] and 
EfficientNet [31] series as backbone for comparative 

experiments. The evaluation metrics are consistent with [20], 
which are mAP, Precision (abbreviated as Prd), Recall 
(abbreviated as Red) and F1. Considering the industrial 
application scenario, it is necessary to ensure that the backbone 
has a smaller parameter amount and a faster inference speed, so 
we also calculated the model parameter size and FPS. From the 
experimental results in Table I, we can see that the detection 
performance of ResNet is better than both ResNeXt and 
EfficientNet, and ResNeXt is better than EfficientNet. For 
ResNet18 and ResNet50, the latter performs better than the 
former on mAP, Prd, Red and F1, with 2.12%, 0.83%, 1,23% 
and 1.04% higher, respectively. For #Params and FPS, the 
EfficientNet has the smallest number of model parameters, but 
the speed is not the fastest. ResNeXt18 also has very few model 
parameters, only 0.33M more than EfficientNet0, and the FPS 
is the highest, reaching 42.11, but the detection performance is 
not that much good. After comprehensive consideration, we 
choose the ResNet series as the backbone. For ResNet18 and 
ResNet50, although the latter has better detection results than 
the former, the number of model parameters is about twice that 
of the former, and the inference speed is about 70% of the 
former. Later, we will further select the final backbone through 
comparative experiments between ResNet18 and ResNet50. 

TABLE I 
RESULTS OF ABLATION STUDY FOR BACKBONE USED IN ENCODER 
Backbone #Params 

(M) 
mAP 
(%) 

Prd 
(%) 

Red 
(%) 

F1 
(%) FPS 

ResNet18 11.32 91.36 96.96 94.22 95.57 36.01 
ResNet50 23.63 93.48 97.79 95.45 96.61 25.41 

ResNeXt18 5.62 90.06 96.51 93.01 94.73 42.11 
ResNeXt50 25.02 90.06 96.03 93.59 94.79 24.65 

EfficientNet0 5.29 87.00 94.68 91.77 93.20 34.34 
EfficientNet3 12.23 84.89 94.38 89.62 91.94 25.34 

C. Ablation Study for the methods of segmentation module 
In Section II-C, we have introduced Unet++ as the 

segmentation method for the three parts of container code and 
type. Here we conduct an ablation experiment of the 
segmentation method to further show the advantages of Unet++ 
over others, such as PAN [32], FPN [33] and Unet. As different 
segmentation methods have different model structure and 
parameter amount, so besides mIoU for evaluating the 
segmentation performance, we also consider the metrics of 
#Params and PFS. It should be noted that the model parameter 
includes not only the parameters of the decoder and the accurate 
segmentation head, but also the parameter of the convolution 
operation between the decoder and the decoder to adjust the 
feature dimension. Because the dimension of the 4-stage 
features of Resnet18 and ResNet50 are different, for the same 
segmentation method, when the encoder uses different 
backbone, the number of parameters is also different. In 
addition, since the CNN features of the decoder are shared 
features of the segmentation head and classification head, 
which will affect the performance of the classification module, 
we also consider the metric of Acc, which is the ratio of the 
number of correctly recognized single characters to the total 
number of characters. We set Hs and Ws both to 512 here for 
experiments. 

As shown in Table II, for the same segmentation method, 
since the decoder remains unchanged, even if the encoder uses 
different backbones, the segmentation performance does not 

det seg claL L L L= + +
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change significantly. This is particularly obvious in PAN, 
where mIoU of ResNet50 only increased by 0.01% compared 
to ResNet18. For Acc, since ResNet50 learns input images 
more comprehensively than ResNet18, the classification ability 
has improved, which could be seen from FPN, the Acc 
increased from 98.37% to 98.79%. In terms of #Params and 
FPS, ResNet50 has approximately 2 times the number of 
parameters as ResNet18, and the inference speed is slower. For 
different segmentation methods, when the backbone of encoder 
selects ResNet18, the mIoU and Acc of Unet++ are the best, 
reaching 90.48% and 98.70% respectively. Although PAN has 
the smallest number of parameters, only 1.24M, its 
segmentation performance and Acc are the worst. Unet is the 
fastest, but mIoU and #Params have no advantages over 
Unet++.  

TABLE II 
RESULTS OF ABLATION STUDY FOR 

 MODEL USED IN SEGMENTATION MODULE 
Model #Params (M) mIoU (%) FPS Acc (%) 

Res18 Res50 Res18 Res50 Res18 Res50 Res18 Res50 
PAN 1.24 4.74 90.22 90.23 180.98 141.75 97.58 97.97 
FPN 2.89 6.38 90.34 90.60 207.91 170.01 98.37 98.79 
Unet 3.05 6.54 90.24 90.39 238.16 187.30 98.23 98.47 

Unet++ 3.39 6.89 90.48 90.41 198.52 161.62 98.70 98.73 
Considering the practicality of the algorithm, we need to 

choose a better segmentation method with fewer parameters 
and faster speed, which can greatly reduce the consumption of 

GPU memory and the demand for high performance hardware 
in industrial scenarios, so we finally select ResNet18 as the 
backbone of encoder, and Unet++ as the segmentation method. 

D. Ablation Study for the output size of segmentation module 
Since the size of the decoder output will affect the 

performance of the segmentation module and classification 
module, ablation experiments are performed here on Hs and Ws. 
As shown in Table III, we set Hs = Ws, when the size increases 
from 128 to 640, the mIoU of segmentation model first 
increases and then decreases, and the Acc of classification 
model basically shows an increasing trend. When the size is 416, 
mIoU reaches the maximum 91.45%, and Acc also reaches the 
ideal 98.57%, so we set the decoder output Hs × Ws to 416 × 
416. 

TABLE III 
RESULTS OF ABLATION STUDY  
FOR OUTPUT SIZE OF DECODER 
size mIoU (%) Acc (%) 
128 90.92 97.82 
224 91.27 98.14 
320 91.42 98.46 
416 91.45 98.57 
512 90.48 98.70 
640 90.54 98.55 

TABLE IV 
RESULTS OF THE PROPOSED FRAMEWORK AND THE STATE-OF-THE-ART MODELS 

Method Backbone #Params 
(M) 

Detection End-to-End Recognition 
FPS Prd 

(%) 
Red 
(%) 

F1 
(%) 

Prr 
(%) 

Rer 
(%) 

H-mean 
(%) 

EAST (CVPR2017) ResNet50 26.21 87.88 92.51 89.13 - - - 4.69 
DB (AAAI2020) ResNet18 12.27 91.77 95.04 92.29 - - - 4.41 

PSENet (CVPR2019) ResNet18 15.56 95.87 96.80 95.74 - - - 1.87 
DETR (AAAI2023) ResNet50-ViT 45.75 95.79 99.39 97.06 - - - 7.18 
MTv3 (ECCV2020) ResNet50 45.47 94.43 74.94 80.00 63.39 59.56 61.69 2.20 
ABCv1 (CVPR2020) ResNet50 36.88 93.91 97.88 95.21 58.46 93.42 69.12 9.26 
ABCv2 (TPAMI2022) ResNet50 47.97 96.56 94.95 95.25 86.90 89.72 88.07 4.65 
TESTR (CVPR2022) ResNet50-ViT 49.48 95.44 99.06 96.57 90.46 93.47 91.72 6.81 

DeepSolo (CVPR2023) ViTAEv2-S 33.75 94.66 97.92 95.47 93.19 96.70 94.68 8.13 
Our PUN ResNet18 15.53 98.51 96.98 97.43 97.01 97.05 96.99 4.86 

E. Comparison with the State-of-the-Art methods 
In this section we compare the PUN model with state-of-the-

art text detection algorithms and end-to-end text recognition 
algorithms. The compared text detection algorithms include 
CNN-based methods EAST [9], DB [10], PSENet [11] and 
transformer-based DETR [28], the compared end-to-end text 
recognition algorithms include CNN-based methods, such as 
MTv3 [13], ABCv1 [14] and ABCv2 [15], and transformer-
based methods, such as TESTR [29] and DeepSolo [30]. All 
comparative experiments are conducted on the source code 
corresponding to the paper. 

CNN-based EAST, DB, PSENet are trained from scratch on 
5286 training sets, but transformer-based DETR are pretrained 
on multi very large text detection datasets and then finetuned 
on our container dataset, and all comparison algorithms are 
tested on 591 testing sets for text detection. Since there are 
currently few end-to-end algorithms that can perform horizontal 
and vertical text recognition at the same time, and MTv3, 

ABCv1 and ABCv2 can only handle horizontal strings, so we 
found out all images containing only horizontal container code 
and type from original dataset to obtain a new training set and 
testing set with 2207 and 275 images. The training process of 
CNN-based MTv3, ABCv1, ABCv2 and transformer-based 
TESTR, DeepSolo will first import the model parameters 
trained on multi large-scale text recognition datasets mentioned 
in the corresponding papers, then fine-tune on the 2207 images 
with horizontal container code and type and test on the 275 
images. Our model is directly trained from scratch on the 
training set with 5286 images and test with 591 images. 

The detection objects here are the three parts of container 
code and container type, and further through the isolation 
operation, the end-to-end recognition can be achieved, so 
container code and type that has not been detected will not be 
recognized. The metrics of detection module are Prd, Red and 
F1. Since MTv3, ABCv1 and ABCv2 models use CRNN 
network as the main structure of the recognition module, the 
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length of the recognition results is not fixed, we didn’t use Acc 
here, but the edit distance to evaluate the substitution, insertion 
and deletion errors to obtains the same evaluation metrics as 
[17], namely Precision (Prr), Recall (Rer) and H-mean.  

As shown in Table IV, our PUN has certain advantages over 
existing methods in container code and type detection and end-
to-end recognition. For detection, the transformer-based 
methods are better than the CNN-based methods in Red and F1, 
and Prd is almost the same as the best CNN method. Although 
our PUN is also a CNN-based method, the starting point of PUN 
is not text detection, but the detection of the second part of 
container code, and then the area is expanded to the entire 
container code, and through segmentation to obtain the accurate 
location of container code and type, so the proposed PUN can 
better locate container code and type. The Prd and F1 of our 
PUN are better than all text detection methods and end-to-end 
text recognition algorithms, Prd is 1.95% higher than the second 
best ABCv2, and F1 is 0.37% higher than the second best 
DETR, but Red is not the best. 

For end-to-end recognition, PUN performs better than other 
CNN-based and transformer-based methods in Prr, Rer and H-
mean. The Prr, Rer and H-mean of our PUN are 3.82%, 0.35% 
and 2.31% higher than the second best DeepSolo. MTv3, 
ABCv1, ABCv2 and DeepSolo all use CTC-based decoding to 
recognize strings. CTC decoding assumes that each feature 
patch is independent of each other, which will cause difficulty 
in identifying adjacent characters with the same label. Methods 
such as DeepSolo use a dictionary containing the real text of the 
test set for decoding during the recognition process, our PUN 
does not require such a dictionary. TESTR uses the method of 
classifying CNN features to realize character recognition, 

which is similar to our classification model, but TESTR does 
not have the isolation module to obtain the accurate CNN 
features of a single character, so its classification performance 
is worse than ours. 

Our PUN is also very competitive for #Params and FPS. 
Under the working conditions of the smart gate of Shanghai 
Port, our algorithm can only be deployed on one computer with 
one 1660Ti NVIDIA GPU, which requires our algorithm to be 
lightweight. Considering that more model parameters need 
more GPU memory consumption, we chose ResNet18 as the 
backbone of the encoder, Unet++ as the segmentation method, 
and only one fully-connected layer for classification module, so 
our PUN has only 15.53M parameters, which is about twice less 
than DeepSolo, the end-to-end recognition model with the 
second smallest number of parameters. For FPS, although our 
PUN is slower than ABCv1, TESTR and DeepSolo, it is faster 
than ABCv2 and MTv3. As shown in Tables I and II, detection 
and segmentation process of PUN is very fast, but the final FPS 
is only 4.86, which is mainly due to the isolation module. The 
premise of single character classification is that the model can 
extract CNN features well, but the encoding and decoding 
network with limited parameters cannot fully learn the 
characteristics of single characters, so we designed the isolation 
module to accurately obtain the area of single characters, which 
avoids the interference of surrounding characters on the 
classification model, and improves the recognition accuracy of 
container code and type. However, the isolation module is not 
calculated on GPU, so the speed of PUN is slower than ABCv1, 
TESTR and DeepSolo, but 4.86 FPS meets the needs of smart 
gate of Shanghai Port. 

 
Fig. 9. The results of Robustness experiments. 4 images of blur, rainy day, rainy night and noisy conditions with image quality of 75, 25 and 5 are tested. Rough 
detection results of the second part of container code, segmentation results of the three parts of container code and type, and end-to-end recognition of container 
code and type are showed.
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F. Robustness experiments of PUN 
Due to the complexity and variety of smart gate working 

scenarios, in order to verify the stability of our model, this part 
will conduct robustness tests. From the test set, we select blurry 
images caused by inaccurate camera focus to simulate fog 
weather, images of rainy day and rainy night environments to 
verify different lighting and rainy weather, and images with 
severe pollution on the surface of containers for verification of 
the noisy situation. In addition, considering that the quality of 
pictures taken by different cameras is different, we process each 
chosen image through the PIL.Image library to obtain lower 
quality pictures for testing. We selected four pictures, Blur, 
Rainy day, Rainy night and Noisy, with quality value of 75 (the 
picture quality value in PIL.Image ranges from 1 to 95, the 
larger the value, the clearer the picture, the quality value of the 
original picture is 75), and obtained two images corresponding 
to four images with quality of 25 and 5 respectively. As shown 
in Fig. 9, the quality value and kbyte are placed above each 
picture. We show the detection results of the rough detection 
module in the picture, “sx 0.88” means that this area is judged 
to be vertical container code with a probability of 0.88. The 
semantic segmentation results of the RoI are placed on the right 
of the rough detection results, and we also place the end-to-end 
recognition results on the upper right. As can be seen from Fig. 
9, for the original image and the image with quality of 25, our 
PUN can perform very good localization and recognition of the 
three parts of container code and type in blur, day, night, rain or 
noisy environments. When the image quality is further reduced 
to 5, low-quality images do not affect the rough detection 
module, but the semantic segmentation model is slightly 
affected, which can be seen from the container type 
segmentation of blur and noisy images, and low-quality images 
also affect the single-character classification. The first part of 
the container code “CAIU” in the blur image is recognized as 
“CAHU”, the third part of the container code in the noisy image 
is “4”, but we recognized as “7”, the container type is “42G1”, 
we identified it as “2211”. It should be noted that the image 
quality will not be so bad under actual working conditions, but 
this shows that our model still has space for improvement in 
low-quality image recognition. 

IV. CONCLUSION 

  We propose an encoder-decoder network structure, which 
integrates detection, semantic segmentation and classification 
modules to achieve end-to-end container code and type 
recognition. Our model has been deployed and running in multi 
smart gates of Shanghai Port for nearly a year, showed certain 
practical application capabilities. The recognition rate and 
inference time consumed have both met the requirements of the 
port, and it is planned to be deployed on a large scale. In fact, 
our algorithm has also carried out on the recognition of the 
license plate of trucks collected in the smart gate, and it has also 
achieved success. Although the inference speed of our 
algorithm meets the requirements of the project, there is still 
space for improvement compared to end-to-end text recognition 

methods such as ABCv1, which will be one of our follow-up 
research directions. 
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