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ABSTRACT

The policy gradient (PG) methods are being extensively used in practice. How-
ever, their theoretical convergence guarantees require strict regularity conditions.
Such conditions are unnatural and generally not satisfied in practice, causing such
techniques to get stuck in a sub-optimal local maximum (rewards). Tree search
(TS) methods, have been recently shown to enjoy strong empirical performance
in related planning tasks. In this work, we attempt at first theoretical analysis of
Tree search-based policy gradient and its convergence properties. Specifically,
we show that for a large tree length, the number of local maxima decreases, and
therefore in the limiting case, PG converges to a global optimal solution.

1 INTRODUCTION

In reinforcement learning, the agent learns to maximize the return by interacting with the envi-
ronment. Policy gradient methods in reinforcement learning have been widely studied in multiple
variants (Sutton et al., 1999; Schulman et al., 2015b;a; Sutton et al., 2000; Puterman, 2014). Policy
gradient (PG) is the first-order gradient of the cumulative return w.r.t. the policy. Hence, at every
step, the policy gradient is directed towards the direction of greedy one-step improvement. The re-
turn function is highly non-concave in the policy space. Therefore, PG is bound to get stuck in a
local maximum. Dynamic programming approach, on the other hand, mitigates this issue (Sutton &
Barto, 2018). However, it requires the updating value function at all states at each time, which gets
computationally intractable in practice (curse of dimensionality).

Tree Search methods have been studied in the context of value iteration (Efroni et al., 2019) and
with PG (Silver et al., 2017a;b). In the context of PG, while the empirical performance of the tree-
search methods has been impressive, there are still gaps in the theoretical convergence guarantees.
Moreover, Dalal et al. (2023) proposes a soft-tree-max policy, a variant of combining tree search and
policy gradient. It established that the soft-tree-max policy has a lower variance than the standard
policy gradient. Hence it may lead to better stability.

The convergence of the tree search method with policy gradient has been an open question. This
work attempts to theoretically explain the convergence of Policy Gradient with Tree Search (PGTS).
We show that the quality of the convergence point improves with the tree search length. That is, as
the tree search length increases, the number of local maxima decreases. To the best of our knowl-
edge, this is the first work that establishes this connection.

2 METHOD

A Markov Decision Process is a tuple (S,A, P,R, γ, µ) where the notations are as follows S,A
state and action spaces; , P ∈ (∆S)

S ×A : transition kernel; R ∈ RS ×A : reward function;
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γ ∈ [0, 1) : discount factor; µ ∈ ∆S : initial distribution; and ∆X : probability simplex over
the set X (Puterman, 2014; Sutton & Barto, 2018). Π is the set of policies π ∈ Π, where π(a|s)
denotes the probability of action a at state s. Furthermore, P (s′|s, a) denotes the probability of
transition to state s′ from the state s under action a, and Pπ(s′|s) =

∑
a π(a|s)P (s′|s, a), Rπ(s) =∑

a π(a|s)R(s, a) are shorthand. The objective is to find the policy π ∈ Π, that maximizes the
return ρπ := µT (I − γPπ)−1Rπ . The first-order (one step gradient) is given by is given by

∂ρπ

∂π(a|s) = dπ(s)Qπ(s, a), where dπ := µT (I − γPπ)−1 is occupancy measure, Qπ = R + γPvπ

is Q-value function and vπ := (I − γPπ)−1Rπ is value function (Sutton et al., 1999). Thus the
first-order policy gradient update rule is given by:

πt+1 = projΠ

(
πt + η

∂ρπt

∂π

)
, (1)

where
∂ρπ

∂π(a|s)
= dπ(s)Qπ(s, a).

This rule has been proven to converge to a globally optimal solution, given mins µ(s) > 0 and for
appropriate step size η (Agarwal et al., 2021; Xiao, 2022). The assumption on the initial distribution
is difficult to satisfy in practice, especially for large state spaces, unless we are able to visit all states
by specifically designed exploration policy. The following simple example illustrates that the above
policy gradient update rule may get stuck into a local maxima without the assumption on the initial
distribution.
Example 1. The ladder MDP as illustrated below has reward zero in all states ex-
cept unit reward at the state s4. There are two possible actions, ’left’ and ’right’.

s0 s1 s2 s3 s4

left
right

left

right

left

right

left

right

left

right

Now let the initial state be s0 ( that is µ(s0) = 1), and the policy π0 be the initial policy that always
plays the action ’left’. It is easy to see that this policy is the local maximum, that is, ∂ρπ0

∂π = 0. This
implies standard policy gradient will get stuck at π0, which is a local minimum, while the global
optimal policy is always playing the action ’right’.

The reason the PG is zero at π0 is because the one-step gradient, that is, PG looks only one step
ahead in search of better action, and there are better policy is not visible from π0 by one-step look
ahead.

We address this issue by proposing a tree search inspired m−step look-ahead gradient:

∇m
π (s, a) = dπ(s) max

a1,··· ,am

E
[ m−1∑

n=0

γnR(sn, an) + γmQπ(sm, am) | s0 = s, a0 = a, P
]
. (2)

Let T be optimal Bellman operator defined as (TQ)(s, a) = R(s, a) +
γ
∑

s′ P (s′|s, a)maxa′ Q(s′, a′).

Lemma 1. The above can be written compactly as,

∇m
π (s, a) = dπ(s)(TmQπ)(s, a).

Theorem 1. (Limiting case Convergence) For the limiting case m = ∞ and η = ∞ in the update
rule πt+1 = Proj[πt + η∇m

πt
], we have global convergence in S steps, i.e. ρπS = ρ∗ := maxπ ρ

π .

The result can be easily extended for finite learning rate η. However, its extension to finite tree
search length is left for future work.

Example 1 together with Theorem 1 establishes that the number of local maxima decreases to zero
as the tree search length increases in PG (since with m = 0 as in Example 1 we have multiple
maxima, whereas, with m = ∞, the number of non-global local maxima is exactly zero)
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3 DISCUSSION

We showed standard PG can get stuck in local maxima, however combining it with TS, can help us
find better solutions.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.
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A APPENDIX

Lemma. The above can be written compactly as,

∇m
π (s, a) = dπ(s)(TmQπ)(s, a).

Proof. From definition, we have

∇m
π (s, a) =dπ(s) max

a1,··· ,am

E
[ m−1∑

n=0

γnR(sn, an) + γmQπ(sm, am) | s0 = s, a0 = a, P
]
,

=dπ(s) max
a1,··· ,am

E
[ m−2∑

n=0

γnR(sn, an) + γm−1
[
R(sm−1, am−1)+

γ
∑
sm

P (sm|sm−1, am−1)Q
π(sm, am)

]]
=dπ(s) max

a1,··· ,am−1

E
[ m−2∑

n=0

γnR(sn, an) + γm−1
[
R(sm−1, am−1)+

γ
∑
sm

P (sm|sm−1, am−1)max
am

Qπ(sm, am)
]]

=dπ(s) max
a1,··· ,am−1

E
[ m−2∑

n=0

γnR(sn, an) + γm−1
(
TQπ

)
(sm−1, am−1)

]]
.

Proceeding recursively, we get the desired result.

Theorem. (Limiting case Convergence) For the limiting case d = ∞ and η = ∞ in the update rule
πt+1 = Proj[πt + ηt∇m

πt
], then ρπS = ρ∗.

Proof. At d = ∞, we have

∇∞
θ =

∑
s,a

dπθ (s)∇θπ(a|s)(T∞Qπθ )(s, a) (3)

=
∑
s,a

dπθ (s)∇θπ(a|s)Q∗(s, a). (4)

We note that if dπt(s) > 0 then
πt+1(·|s) = π∗(·|s).

Now, let St = {s ∈ S | dπt(s) > 0} and St = |St|. Then it is easy to see: St+1 ≥ St + 1 or St =
{s ∈ S | dπ∗

(s) > 0}. If the later is true then, πt+1(·|s) = π∗(·|s),∀s ∈ {s ∈ S | dπ∗
(s) > 0} that

implies ρπt+1 = ρ∗. If the former is true, then this iterates has to terminate at max at S iterates.
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