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Abstract

Despite rapid advances in large language models (LLMs), low-resource languages
remain excluded from NLP, limiting digital access for millions. We present
PunGPT?2, the first fully open-source Punjabi generative model suite, trained on
a 35GB corpus covering literature, religious texts, news, social discourse etc.
PunGPT?2 captures Punjabi’s syntactic and morphological richness through a tok-
enizer optimized for Gurmukhi and Shahmukhi scripts. We introduce Pun-RAG, a
retrieval-augmented framework integrating PunGPT?2 with a FAISS retriever over
a curated Punjabi knowledge base, and Pun-Instruct, an instruction-tuned vari-
ant using QLoRA for robust zero-shot summarization, translation, and question
answering. Our key innovation, Quantum-RAG, fuses sparse, dense, and quan-
tum kernel embeddings for efficient, context-aware retrieval with low memory
overhead, marking the first practical quantum-inspired retrieval in a low-resource
LLM. Our models outperform multilingual baselines (mBERT, mT5, MuRIL,
BLOOM) on FLORES-200, IndicGenBench, and a new PunjabiEval suite. This
work advances inclusive NLP and offers a scalable framework for underrepre-
sented languages. Quantum-RAG yields +7.4 Recall@10 over FAISS and +3.5
BLEU over mT5 on PunjabiEval. We publicly release all training scripts, hyper-
parameters, and evaluation pipelines to ensure full reproducibility and transparent
comparison.

We release the full 35 GB Punjabi corpus, the PunjabiEval benchmark, and
all model weights. Quantum-RAG yields +7.4 Recall@10 over FAISS and
+3.5 BLEU over mT5 on PunjabiEval, establishing new state-of-the-art re-
sults for Punjabi language generation and retrieval.

1 Introduction

Punjabi, spoken by over 100 million people worldwide, remains severely underrepresented in nat-
ural language processing (NLP). For instance, it constitutes less than 0.01% of the mT5 training
corpus, leading to vocabulary fragmentation and high perplexity. This underrepresentation exem-
plifies broader systemic biases in multilingual NLP, where low-resource languages are consistently
overshadowed by English and other high-resource languages.

Recent breakthroughs in large language models (LLMs) such as GPT-2, LLaMA, and GPT-3 have
demonstrated remarkable progress. However, multilingual transformers like mBERT, mT5, and
MuRIL continue to underperform on Punjabi, primarily due to tokenization inefficiencies and lim-
ited contextual grounding.

To address these challenges, we present PunGPT2, the first decoder-only Punjabi model trained on
a curated 35GB corpus spanning folktales, news, religious texts, and online discourse. To improve
factual grounding, we introduce Pun-RAG (retrieval-augmented generation) and Pun-Instruct (in-
struction tuning with QLoRA). Our central innovation is Quantum-RAG, a hybrid retriever that
integrates sparse, dense, and quantum-inspired similarity kernels to enhance contextual relevance
with minimal computational overhead. In addition, we release PunjabiEval, a benchmark suite
designed for robust evaluation of Punjabi NLP systems.



Our Contributions

* PunGPT2: the first GPT-2-based Punjabi LLM, trained on a 35GB curated dataset.
* Pun-RAG: a dense retrieval-augmented generation framework for Punjabi.
* Pun-Instruct: an instruction-tuned model using QLoRA for alignment and efficiency.

* Quantum-RAG: a novel hybrid retriever combining sparse, dense, and quantum-inspired
similarity kernels.

* PunjabiEval: a benchmark suite for translation, summarization, and cultural fidelity eval-
uation.

2 Related Work

Multilingual pre-trained models such as XLM-R and mBERT significantly expanded the coverage of
NLP across many languages. However, their performance degrades on low-resource languages due
to poor representation quality. Indic-focused models, including MuRIL, IndicBERT, and L3Cube-
Indic SBERT, provide improved embeddings for Indian languages, yet they often lose linguistic
nuances due to shared tokenization strategies.

For Punjabi specifically, prior research has been limited to isolated tasks such as speech recognition
and text classification. To date, no comprehensive pre-trained generative language models for Pun-
jabi have been introduced. Meanwhile, instruction tuning (e.g., TS, FLAN) and retrieval-augmented
generation (RAG) have emerged as effective paradigms in NLP, though their adaptation to low-
resource languages remains underexplored.

3 Dataset

We curate a culturally rich Punjabi dataset totaling 35GB, comprising diverse sources such as re-
ligious texts, classical and modern literature, news articles, social media discourse, and digitized
manuscripts. This corpus significantly surpasses the scale of previous Punjabi datasets (e.g., In-
dicBERT).

After preprocessing—including deduplication (8.7%), cleaning, normalization, and language iden-
tification filtering—the final split is as follows: 32GB for training, 2GB for validation, and 1GB for
testing. Table 1 summarizes the dataset composition.

Table 1: Comparison of Punjabi Language Support Across Models and Benchmarks

Model/Benchmark Language Coverage Architecture Punjabi Support
BERT (Devlin et al!, 2019) Multilingual (104+)  Encoder-only Limited

GPT-2 (Radford et al/, 2019) English-only Decoder-only None

mBERT (Devlin et all, 2019) 104 languages Encoder-only Basic

XLM-R (Conneau et all, 2020) 100 languages Encoder-only Basic

MuRIL (Khanuja et all, 2021)) 17 Indian languages Encoder-only Moderate
IndicBERT (Kakwani et all, 2020) 12 Indian languages Encoder-only Moderate
IndicGLUE (Chauhan et all, 2020) 11 Indian languages Benchmark Basic
IndicMMLU-Pro (Imani et al}, 2023) 9 Indian languages =~ Benchmark Comprehensive
PunGPT2 (Ours) Punjabi only Decoder-only Extensive
Pun-RAG (Ours) Punjabi only Decoder-only + Dense Retriever Extensive
Pun-Instruct (Ours) Punjabi only Decoder-only (QLoRA) Extensive
Quantum-RAG (Ours) Punjabi only Hybrid (Sparse + Dense + Quantum)  Extensive

4 Methodology

We develop a high-quality Punjabi generative language model capturing linguistic and cultural nu-
ances. Our approach builds on the GPT-2 autoregressive transformer (Radford et al., 2019), ex-



Table 2: Detailed Composition of the 35.5GB Punjabi Pretraining Corpus Dataset

Source Size (GB) Number of Documents Example Sources

News Websites 12 1,200,000  Ajit, Jagbani, Daily Punjabi Tribune

Folk Tales & Literature 6 150,000 Panjab Digital Library, Punjabi Kahaniyan

Social Media Comments 5 2,500,000 Facebook, YouTube, Twitter (Punjabi users)
Religious Texts 5 100,000  Sri Guru Granth Sahib, SikhNet Gurbani
Manuscripts & Archives 0.5 50,000 Punjabi University Archives, Handwritten Scripts
Available Public Datasets 7 800,000 Wikipedia (pa), OSCAR, Al4Bharat corpus

Total 35.5 4,800,000 —

tended with retrieval-based and instruction-tuning components for improved factual grounding and
task adaptability (Figure ).

Figure 1: An overview of the PunGPT training and evaluation pipeline, illustrating the stages from
data collection and preprocessing to model training, retrieval augmentation, and final evaluation.

4.1 Model Architecture

PunGPT?2 uses twelve GPT-2 decoder layers with hidden size 768, twelve attention heads, totaling
124M parameters. This configuration balances capacity and efficiency, allowing full 35GB corpus
training on a single A100 GPU. The autoregressive design is well-suited for morphologically rich
languages like Punjabi.

5 Training Procedure

We pretrained PunGPT2 from scratch using causal language modeling (CLM). Inputs were tokenized
with BPE optimized for Punjabi morphology (Sennrich et al!, 2016), producing a 50,000 subword
vocabulary with <2% OOV rate. Maximum context length was 1024 tokens.

Training used AdamW (81 = 0.9,82 = 0.98, ¢ = le—8) with linear warmup—decay (peak LR
2e—4, warmup 5%), global batch size 128, processing ~7.5B tokens. Mixed-precision and gradient
accumulation enabled efficient training on a single A100 40GB (MIG 3g.20gb), completing in 48
hours.

The pipeline leverages Hugging Face’s Transformers, Accelerate, Datasets, and PEFT for
QLoRA. Checkpoints were saved every 5,000 steps.



Hyperparameter  Value

Context length 1024 tokens
Vocabulary size 50,000 BPE tokens
Batch size (global) 128

Tokens processed  ~7.5B

Optimizer AdamW (8; = 0.9, B2 = 0.98)
Peak learning rate  2e—4 (linear warmup—decay)
Precision FP16

Training duration 48 hours

Hardware 1 x A100 40GB (MIG 3g.20gb)
Checkpointing Every 5,000 steps

Table 3: Training hyperparameters for PunGPT?2.

6 Retrieval-Augmented Generation: Pun-RAG

Pun-RAG is a retrieval-augmented variant of PunGPT2 inspired by (Lewis et al., 2020), designed
to ground generation in external factual knowledge. Using a dense FAISS-based retriever (Johnson
et al), 2019), it indexes a Punjabi knowledge base compiled from the pretraining corpus.

During inference, relevant passages are retrieved and appended to the model input, enabling more
accurate, grounded, and less hallucinated outputs in tasks like question answering and summariza-
tion. This is particularly impactful in low-resource settings, where pre-trained knowledge alone often
lacks depth and breadth.

7 Quantum-Aware Retrieval: Quantum-RAG

To further enhance retrieval fidelity and semantic depth, we introduce Quantum-RAG, a hybrid
framework that integrates sparse retrieval (BM25), dense retrieval (FAISS), and a quantum-inspired
semantic similarity kernel. Unlike classical methods that rely solely on dot product or cosine similar-
ity, Quantum-RAG leverages amplitude-based embeddings and quantum kernel functions to capture
interference-like effects in meaning representation.

7.1  Quantum Embedding Representation

Given a query ¢ represented by feature vector z € R%, we construct a normalized amplitude embed-
ding:
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where ¢(q) € R? has unit length and can be interpreted as a quantum state vector.

(q)i =

7.2 Quantum Kernel Similarity

We generalize cosine similarity by adding a phase-interference term:

Unlike cosine similarity, our kernel introduces an interference term. Let z,y € R¢ be non-
negative feature vectors. Cosine similarity uses C(z,y) = (£, 7). Our quantum kernel is de-
fined as
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where 0; are phase offsets learned during retrieval tuning. When 0, = 0 for all i, K (x,y) =
C(z,y)?. In practice, the learned phases yield constructive/destructive interference, producing
richer similarity patterns than squared cosine. Section 7.6 ablates this effect.




This reduces to the squared cosine similarity when 6; = 0, but allows constructive and destructive
interference otherwise.

7.3 Hybrid Fusion Mechanism

The final retrieval score is a weighted combination of sparse, dense, and quantum similarities:
S(g,d) = o BM25(q, d) + f3 - cos(q, d) +v - K (g, d)

where o, 3, are hyperparameters tuned via validation. This ensures that Quantum-RAG balances
lexical overlap, contextual embeddings, and quantum kernel-based semantic matching.

Figure 3 illustrates the hybrid fusion mechanism.

Quantum-RAG Hybrid Retrieval Pipeline

~
Sparse (BM25) |
Branch Dense (FAISS)
Branch Quantum

]
Kernel Branch Hybrid Fusion
Retrieval using Block
BM25 Retrieval using

algorithm FAISS Retrieval using
algorithm quantum kernel  Fusion of
methods results from all Final ranked
branches results from
the fusion

Figure 2: Hybrid fusion mechanism combining BM25, FAISS, and Quantum kernel scores.

7.4  Algorithmic Workflow

Algorithm 1: Quantum-RAG Retrieval Pipeline

Input: Query g, document collection D, parameters «, 3,y

Output: Top-k ranked documents

: Compute BM25 scores for g over D;

: Encode g and D with dense embeddings (FAISS);

: Normalize embeddings to obtain amplitude-based states ¢(q), ¢(d);
: Compute quantum kernel K (¢, d) = |[(¢(q), ¢(d))|?;

: Fuse scores: S(q,d) = - BM25+ (- cos(q,d) + v - K(q,d);

: Return Top-k documents ranked by S(q, d);

AN AW —

7.5 Complexity and Practicality
Quantum-RAG remains deployable on classical hardware. Compared to dense-only retrieval

(FAISS), it adds only an O(d) normalization and inner product step, resulting in minimal memory
and compute overhead.

7.6 Hyperparameter Sensitivity

We sweep a, 5,7 € {0.1,0.3,0.5} and plot Recall@10 in Figure 5. Quantum-RAG remains
stable over a broad range, unlike FAISS-only which degrades sharply.

7.7 Ablation Studies
To isolate the contribution of quantum similarity, we evaluate four retrieval settings:

1. Sparse-only (BM25).
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Figure 3: Recall@]10 sensitivity to hyperparameters «, 3, .

2. Dense-only (FAISS).
3. Quantum-only (K (g, d)).
4. Hybrid (BM25 + FAISS + Quantum).

Results (see Table [f) show that the hybrid model consistently achieves the best Recall@10, MRR,
and downstream generation quality, validating the utility of quantum-aware retrieval in low-resource
NLP.

8 Instruction Tuning: Pun-Instruct

Recognizing the growing demand for instruction-following capabilities in modern LLMs (Ouyang
et all, 2022; Chung et all, 2022), we fine-tune PunGPT2 with a curated set of task-specific
instruction—output pairs to produce Pun-Instruct.

Our instruction dataset comprises 75,000 examples: 50,000 synthetic, 20,000 FLAN-translated,
5,000 manually curated culturally-relevant tasks. Table X details each category. We compare
with mTS5-FLAN fine-tuned on the same prompts (Table Y).

Table 4: Composition of Instruction Tuning Dataset

Source Examples
Synthetic prompts 50,000
FLAN translated 20,000
Manual Punjabi tasks 5,000

We leverage QLoRA, a memory-efficient fine-tuning method (Dettmers et all, 2023), which quan-
tizes model weights to 4-bit precision while freezing most parameters. This allows low-resource
adaptation without sacrificing performance, enabling training on commodity GPUs.

Pun-Instruct demonstrates robust zero- and few-shot generalization across summarization, transla-
tion, and question answering. In human evaluation (10 Punjabi speakers, 1000 prompts each), it
outperformed PunGPT?2 in fluency (+0.3), adequacy (+0.4), and cultural fidelity (+0.5) on a 5-point
Likert scale, with inter-annotator agreement « = 0.71. This flexibility makes Pun-Instruct ideal for
building accessible Punjabi NLP applications in education, media, and citizen services.



Table 5: Capability Matrix of Proposed Punjabi Language Models

Capability PunGPT2 Pun-RAG Pun-Instruct Quantum-RAG
Datasets v v v v
Custom Models v v v v
Custom Prompting X X v .
Production Optimization . . v °
Quantization X X v X

v'=Fully Supported X =Not Supported e = Partially/Hybrid Supported

9 Evaluation

For under-resourced languages like Punjabi, careful evaluation is essential to establish both practical
relevance and cultural reliability. We designed a varied assessment protocol covering three main
dimensions: language modeling quality, downstream task performance, and human-centered
evaluation of cultural integrity. We additionally include retrieval-specific metrics and ablation
studies to isolate the contribution of Quantum-RAG.

Performance Score
~

Evaluation
Criteria

Quantum-RAG Baseline Quantum-RAG Baseline Quantum-RAG Baseline
Relevance Relevance Factuality Factuality Coherence Coherence

Human evaluation results with 95%
confidence intervals

Figure 4: Performance comparison of PunGPT2 variants against multilingual baseline models
(mBERT, MuRIL, mT5) across perplexity, ROUGE-L, and human-evaluated cultural fidelity.
Quantum-RAG achieves the strongest improvements across all metrics.

9.1 Language Modeling Metrics
We measure perplexity and training loss to quantify how well models generalize beyond their training

data (Jelinek et all, 1977; Merity et al|, 2018). Lower perplexity indicates closer alignment with
Punjabi’s natural distribution. Results are shown in Table f.

9.2 Downstream Task Evaluation
Beyond intrinsic metrics, we evaluate on summarization, translation, and question answering using

ROUGE-L and BLEU. We additionally benchmark on FLORES-200 (translation) and IndicGen-
Bench (generation), ensuring comparability with multilingual baselines.

9.3 Human Evaluation and Cultural Fidelity

Automatic scores alone do not capture cultural nuance.



Table 6: Comparative performance of Punjabi language models on perplexity and training loss.

Model Perplexity |  Training Loss |
mBERT (Devlin et all, 2019) 45.2 3.92
MuRIL (Khanuja et all, 2021) 42.1 3.85
mT5 (Xue et all, 2021)) 28.5 291
PunGPT2 (Ours) 2.24 0.85
Pun-RAG (Ours) 2.10 0.80
Pun-Instruct (Ours) 2.15 0.82
Quantum-RAG (Ours) 2.05 0.78

Table 7: Comparative performance on ROUGE-L and cultural fidelity (Likert scale 1-5).

Model ROUGE-L 1  Cultural Fidelity 1
mBERT (Devlin et al/, 2019) 28.7 3.4/5
MuRIL (Khanuja et al{, 2021)) 30.9 3.7/5
mT5 (Xue et all, 2021) 33.2 3.9/5
PunGPT2 (Ours) 37.4 4.4/5
Pun-RAG (Ours) 38.5 4.6/5
Pun-Instruct (Ours) 39.2 4.7/5
Quantum-RAG (Ours) 40.1 4.8/5

Table 8: Extended Baseline Comparison

Model ROUGE-L 1  Cultural Fidelity 1
LLaMA-2-7B (zero-shot) 25.6 3.1/5
BLOOM-176B (zero-shot) 27.3 3.3/5
mT5-Punjabi fine-tuned 35.1 4.2/5
Quantum-RAG (ours) 40.1 4.8/5

We expanded human evaluation to 10 native Punjabi speakers rating 1,000 generations each.
We report mean +95% confidence intervals (CIs) using bootstrapping. Figure 6 shows average
scores with error bars across fluency, adequacy, factuality, and cultural fidelity.

9.4 Retrieval Quality Metrics
Since retrieval is central to RAG systems, we evaluate with standard information retrieval metrics:

Recall@10, Mean Reciprocal Rank (MRR), and normalized Discounted Cumulative Gain (nDCQG).
As shown in Table ], Quantum-RAG consistently outperforms both sparse and dense baselines.

Table 9: Retrieval quality comparison across retrievers.

Retriever Recall@10 1 MRR 1T nDCG T
BM25 only 55.2 0.41 0.46
FAISS only 62.7 0.48 0.52
Quantum only 64.3 0.49 0.55
Hybrid (Quantum-RAG) 70.1 0.54 0.60

9.5 Robustness and Generalization

We further test model robustness across multiple genres: classical literature, contemporary news,
and social media discourse. This ensures the models are not overfitted to formal registers and remain
resilient across diverse styles (Hendrycks et all, 202 1)). Pun-Instruct and Quantum-RAG in particular
showed stronger generalization in informal and conversational settings.
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Figure 5: Evaluation results

9.6 Components and Ablation Effect

To disentangle contributions, we conducted ablation experiments isolating retrieval strategies
(BM25, FAISS, Quantum-only, Hybrid) and instruction tuning. Removing Quantum-RAG’s kernel
similarity resulted in a 6-point drop in Recall@10 and lower human preference scores, confirming
its role in grounding retrieval. Likewise, disabling instruction tuning reduced zero-shot accuracy on
QA and summarization by 4-6%, validating Pun-Instruct’s efficiency gains.

10 Novelty and Social Impact

PunGPT?2 represents the first large-scale Punjabi decoder-only language model. Our Quantum-
RAG framework introduces quantum-inspired retrieval mechanisms specifically designed for low-
resource settings. In combination with Pun-RAG and Pun-Instruct, these models reduce halluci-
nations, enable instruction-following, and preserve cultural fidelity in generated text.

The open release of these models and datasets enables diverse applications for over 100 million Pun-
jabi speakers, including education, journalism, healthcare, and the preservation of cultural heritage.

11 Summary

In this work, we introduced PunGPT2, Pun-RAG, Pun-Instruct, and Quantum-RAG, along with
the PunjabiEval benchmark. Our models consistently outperform strong baselines in metrics such
as perplexity, summarization quality, and human-rated cultural fidelity, establishing state-of-the-art
resources for Punjabi NLP. These contributions provide a scalable framework for extending equitable
NLP research to other under-resourced languages.
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A Appendix: Sample Outputs from PunGPT Variants
Prompt: »A UA™g AISTg 26 Wi 15t et fd 7S 1 viams 3 ysedl|

PunGPT Response: fefenrggin 3 miftrvryat feg fiet-at YEifafanr 2ue § s adt 31 aet
Yt 3 Bai & foa fx feg Srsr ag At »r famr | Agst €t Agret €t Afast €t st df fidh

Prompt: fagur sga drmdt &g s aaret fgd fan @9 fex fael »i3 féa d3m de
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Pun-Instruct Response: f&a 279 €1 31 3 fa fia fidt w3 fea J37 i It ot few afde mes1 8
@ gg o B3t 3, g feg Bo B3 g 18| 2at & s 993 Ad Agd o3 mi3 ffa-gA et Hee dist

Prompt: @gﬁ?fﬁWFﬂéﬁ??WSﬁﬂﬁ?

Quantum-RAG Response: 8" 2 fu3™ it & &4 g1g 391 gorea #t /I € & iy arafhdg wr3ar
néeyd Arfag m3 ot f£9 grardt]

Table 10: Culturally Nuanced QA Example
Question FAISS Answer Quantum-RAG Answer

gig fde w2 Rzt &7 Wrong/ambiguous “Guru Tegh Bahadur Ji”
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