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1 Background

1.1 Distributed LLM Training

Distributed training is widely used for accelerating LLM training, and there exist several parallel
training strategies.

Data Parallelism. Data Parallelism (DP) assigns training input of sequences to different devices in a
DP group, where the model states (parameters, gradients, and optimizer states) are duplicated and
gradients need to be reduced to ensure mathematical consistency. To alleviate the overhead of model
states, sharded data parallelism (SDP) techniques (e.g., DeepSpeed-ZeRO Rajbhandari et al. [2020]
and PyTorch FSDP Zhao et al. [2023]) further partition model states across devices. Accordingly,
gather and scatter communications are introduced to obtain complete parameters required for LLM’s
execution and reduce gradients, respectively. The gather and scatter communications in SDP can be
overlapped with computation.

Tensor Parallelism. Tensor Parallelism (TP) Narayanan et al. [2021b] partitions weight matrices of
linear projection along rows or columns in FFN and attention layers. An all-reduce communication
is performed to synchronize the results and maintain mathematical consistency. Megatron-SP Kor-
thikanti et al. [2022] replaces the all-reduce communication with a pair of reduce-scatter and all-gather
communications, reducing activation memory footprint without increasing communication cost.

Sequence Parallelism. Sequence Parallelism (SP) partitions sequences into multiple slices and dis-
tributes them among devices in an SP group, introducing communication for self-attention operations.
SP is typically categorized into two variants: Ulysses-style SP and Ring-style SP. DeepSpeed-
Ulysses Jacobs et al. [2023] proposes Ulysses-Style SP, which first performs three all-to-all com-
munications on query, key, and value to gather the complete sequence and distribute along the head
dimension, after which a head parallel attention is performed. An additional all-to-all communication
is finally required to redistribute the attention output along the sequence dimension. In contrast,
Ring-Style SP Liu et al. [2023a], Li et al. [2023], Brandon et al. [2023], Li et al. [2024] exemplified
by Context Parallelism (CP) performs self-attention through multiple steps, where the keys and values
of different slices are exchanged via p2p communication.

Pipeline Parallelism. Pipeline Parallelism (PP) horizontally partitions a model into several parts
(stages) that execute sequentially, requiring transmission of activation between two neighboring
parts. This transmission introduces negligible communication overhead as it occurs only once. To
enhance device occupancy, PP partitions training inputs into micro-batches, which categorizes PP
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Figure 1: Profiled peak memory footprint per stage of Seq1F1B (DAPPLE when Chunk is 1) to train GPT-7B
with a context of 16K tokens on 8 A800-80G GPUs, where “Chunk” refers to number of chunks to split a
sequence into. Statistics are simulated for DAPPLE due to the limited memory capacity.(adapted from Wang
et al. [2025a])
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Figure 2: Illustration of Token/Batch-Level Pipeline Parallelism. For Batch-Level PP, Nprefill is equal to
number of slices that a sequence is split into (1 for batch-level PP). (adapted from Wang et al. [2025a])

into two variants: 1) batch-level PP, like DAPPLE Fan et al. [2021] that divides input samples, and 2)
token-level PP exemplified by Seq1F1B Sun et al. [2024a] and TeraPipe Li et al. [2021] that further
splits a sequence into slices. For the sake of training stability, we focus on synchronous PP with
periodic pipeline flushes. Various batch-level pipeline schedules Fan et al. [2021], Li and Hoefler
[2021], pyt [2021], Narayanan et al. [2021a], Liu et al. [2023b] have been proposed. DAPPLE and
Seq1F1B’s schedule consisting of three distinct stages: warmup, steady, and cooldown. For the
token-level PP’s schedule, it’s worth noting that for each slice, the forward pass must be scheduled
after its preceding slices, while the backward pass must be scheduled after its subsequent slices, as
illustrated in Fig. 2. This is because the query of a token accesses only preceding tokens’ keys and
values in the forward pass, thus gradients of key and value of a token rely on those of subsequent
tokens in the backward pass. Token-level PP employs a finer-granularity micro-batch of slices,
exhibiting a lower memory footprint compared to batch-level PP, as shown in Fig. 1.

1.2 Sequence Packing

Techniques such as padding or packing are used to deal with sequences of different lengths. As
shown in Fig. 3, padding pads or truncates sequences to the same length, introducing unnecessary
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Figure 3: Illustration of sequence packing and padding’s difference in attention mask and activation arrange-
ment.(adapted from Wang et al. [2025a])
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Figure 4: Statistics of sequences grouped by length intervals. The upper subgraph presents the sample and
token distribution, while the bottom denotes the computation FLOPS distribution.(adapted from Wang et al.
[2025a])

computation overhead. In contrast, sequence packing Krell et al. [2021], which concatenates multiple
input sequences into a single sequence and adjusts attention masks to prevent cross-attention between
unrelated tokens from different sequences, emerges as a more modern and efficient alternative.

1.3 Gradient Checkpointing

Gradient checkpointing is a widely adopted technique in LLM training that trades computation
for activation memory footprint reduction. Specifically, intermediate activations are freed after the
forward pass, but recomputed in the backward pass for gradient computation if checkpointing is
applied.

1.4 Gradient Accumulation

To train LLM at a large batch size with limited memory capacity, gradient accumulation is proposed,
which updates parameters once using the reduced gradients accumulated from multiple micro-batches
and yields the same optimization trajectory.

1.5 Skewness Distribution of Sequence Length

Sequence length distribution of the real-world dataset exhibits skewness, as shown in Fig. 4. Take
GitHub for example, 91.5% of the sequences have no more than 8K tokens, with only 0.6% of the
sequences whose lengths exceed 64K or more. However, these 0.6% sequences contribute to 21.6%
of the total tokens and a substantial amount of computation FLOPs. Moreover, recently released
LLMs Yang et al. [2025], Dubey et al. [2024], Li et al. [2025] adopt a mixture of long and short
sequences for context extension. Llama3 Dubey et al. [2024] indicates that mixing 0.1% of long-
context data with short-context data optimizes performance across both short-context and long-context
benchmarks. The workload heterogeneity reveals an optimization opportunity for workload-aware
dynamic pipeline schedule. Previous works Jiang et al. [2024], Ge et al. [2025], Zhao et al. [2025]
only study dynamic pipeline schedules for batch-level PP, restricting the applicability in long-context
training scenarios with limited resources.

2 Problem Definition

Long context training is crucial for LLM’s context extension. Its substantial memory footprint and
computational overhead necessitates distributed training to accelerate the process, where it’s of
significant importance to reduce the communication overhead and memory footprint. As mentioned
in § 1.5, workload variety of sequence length is introduced, resulting in suboptimal performance of
static parallel training strategy. Moreover, we prefer to apply optimal checkpointing configuration
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that minimizes computational overhead while adheres to hardware memory capacity. To this end,
four questions emerge for efficient long-context training on varied-length corpus:

• What’s the best parallel strategy given a training cluster and input training data?

• If the optimal parallel strategy is determined, what’s the best checkpointing configuration?

• It’s there any interference between checkpointing and parallelism?

• Due to the dynamic nature of workload, how to efficiently switch parallelism strategies?

3 Proposed Method

Motivation. The limitations of existing works FlexSP Wang et al. [2025b] and InfiniPipe Wang
et al. [2025a] motivate us to employ the strengths of each work and tackle the problems encountered
when combining them together. Specifically, FlexSP adopts Flexible Sequence Parallelism (FSP)
for efficient communication of varied-length sequences. However, it ignores the optimization
opportunity of pipeline parallelism, harming the scalability to larger-scale training clusters. On the
other hand, InfiniPipe proposes Elastic Pipeline Parallelism (EPP), where dynamic pipeline schedule
and gradient checkpointing configuration for workload variety is co-optimized. However, it considers
only SP and PP, resulting in suboptimal performance deployed on larger-scale cluster. To be concrete,
the enlarged SP degree introduces costly inter-node communication while the enlarged PP degree
requires more micro-batches to reduce pipeline bubbles. To this end, we aim to further improve
the training scalability by adopting the strengths of FlexSP’s Flexible Sequence Parallelism and
InfiniPipe’s Elastic Pipeline Parallelism.

Solution: 3D Dynamic Parallelism. We partition the parallelism strategy horizontally and vertically,
where EPP is adopted for vertical parallelism and FSP is chosen for horizontal parallelism. Generally
speaking, three parallelisms: data parallelism, sequence parallelism and pipeline parallelism are
considered. Moreover, a 3D hierarchical processing of training input is employed. Besides InfiniPipe’s
approach that splits long sequences into short slices and packs short sequences together, HelixTrain
further designates different micro-batches to sequence parallel groups in a data parallel manner. The
workload balance of these micro-batches should be ensured to reduce idle time of devices. To our best
knowledge, 3D Dynamic Parallelism exhibits the most flexible and data-centric parallelism pattern.

4 Related Work

Long Context Training

Many sequence parallelism patterns for long context training have been proposed Liu et al. [2023a],
Brandon et al. [2023], Li et al. [2023]. Other works Wang et al. [2025b], Ge et al. [2024] observe the
skewness distribution of sequence length and aim to address workload heterogeneity. FlexSP Wang
et al. [2025b] observes the skewness distribution of sequence length and proposes flexible sequence
parallelism to improve communication efficiency.

Pipeline Parallelism Optimization

Recent works like AdaPipe Sun et al. [2024b], Mario Liu et al. [2025], and SPPO Chen et al.
[2025] have explored checkpointing and offloading optimizations with PP. However, these works
assume homogeneous workloads, but we focus on heterogeneous workloads with varied-length
input. ChunkFlow Yuan et al. [2025] introduces hierarchical processing for varied-length sequences.
ByteScale Ge et al. [2025] and WLB-LLM Wang et al. [2025c] optimize workload balance of
batch-level PP for heterogeneous workload. InfiniPipe Wang et al. [2025a] co-optimizes dynamic
pipeline schedule and gradient checkpointing policy, effectively employing pipeline parallelism in
long-context training scenario.
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