
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING FREE GUIDED FLOW MATCHING WITH OP-
TIMAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Controlled generation with pre-trained Diffusion and Flow Matching models has
vast applications. One strategy for guiding ODE-based generative models is through
optimizing a target loss R(x1) while staying close to the prior distribution. Along
this line, some recent work showed the effectiveness of guiding flow model by
differentiating through its ODE sampling process. Despite the superior perfor-
mance, the theoretical understanding of this line of methods is still preliminary,
leaving space for algorithm improvement. Moreover, existing methods predomi-
nately focus on Euclidean data manifold, and there is a compelling need for guided
flow methods on complex geometries such as SO(3), which prevails in high-stake
scientific applications like protein design. We present OC-Flow, a general and
theoretically grounded training-free framework for guided flow matching using
optimal control. Building upon advances in optimal control theory, we develop
effective and practical algorithms for solving optimal control in guided ODE-based
generation and provide a systematic theoretical analysis of the convergence guaran-
tee in both Euclidean and SO(3). We show that existing backprop-through-ODE
methods can be interpreted as special cases of Euclidean OC-Flow. OC-Flow
achieved superior performance in extensive experiments on text-guided image
manipulation, conditional molecule generation, and all-atom peptide design.

1 INTRODUCTION AND RELATED WORK

SDE and ODE-based generative models such as diffusion and continuous normalizing flow (CNF)
have exhibited excellent performance on various domains such as images (Ho et al., 2020; Esser
et al., 2024), audio (Zhang et al., 2023; Défossez et al., 2022), and discrete data (Lou et al., 2023;
Cheng et al., 2024). Particularly, the simplicity of Riemannian Flow Matching on SO(3) manifold
(Chen & Lipman, 2023) empowers de novo generation of small molecules (Song et al., 2024; Xu
et al., 2023) and proteins (Yim et al., 2023; Bose et al., 2023; Li et al., 2024), leading to enormous
advancement in biomedicine. Controlled generation from pre-trained diffusion and flow matching
priors has gained growing interest in numerous fields, as it encompasses a wide range of practical
tasks including constrained generation (Giannone et al., 2023), solving inverse problems (Liu et al.,
2023; Ben-Hamu et al., 2024), and instruction alignment (Black et al., 2023; Esser et al., 2024).

There are several lines of work for guiding diffusion and flow models. Classifier-free guidance (CFG)
(Ho & Salimans, 2022) trains conditional generative models that take conditions as input. Reward
fine-tuning approaches update the generative model parameters to align with certain target objective
functions (Black et al., 2023). Both methods require specialized training routines which are costly
and not extendable to new tasks. Training-free guidance on diffusion (Kawar et al., 2022; Chung
et al., 2024; Song et al., 2023) alters the scores in the SDE generation process with the gradients from
the target function to achieve posterior sampling. These guidances often rely on strong assumptions
of the denoising process and require estimating target function gradients w.r.t noised samples which
are often intractable. Accurate posterior sampling is only guaranteed for a limited family of objective
functions such as linear. Therefore, efforts that deploy such guidance to flow models by bridging the
ODE path and SDE path share similar constraints (Pokle et al., 2023; Yim et al., 2024).

Notably, two recent works showed the effectiveness of guiding pre-trained flow models by differ-
entiating through the ODE sampling process, outperforming popular guidance-based approaches.
Particularly, Ben-Hamu et al. (2024) differentiates a loss R(x) through the forward-ODE w.r.t the ini-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tial noise x0, which induces implicit regularization by projecting the gradient onto the “data manifold”
under Gaussian path assumption. This strong confinement to the prior might hinder optimization
when the target reward function diverges from the prior distribution. Liu et al. (2023) formulates
an optimal control problem where a control term ut at each timestep is solved to guide the ODE
trajectory. However, the gradient decomposition trick used in Liu et al. (2023) ignores the running
cost of control terms and thus could lead to suboptimal behavior. Despite the good performance, there
is a lack of systematic theoretical analysis on the convergence behavior and explicit regularization of
the differentiate-through-ODE approaches to better guide algorithm design in this space. Furthermore,
existing works predominantly focus on the Euclidean manifold due to its simplicity, and there is a
compelling need for a theoretically grounded guided flow matching framework on more complex
geometries such as SO(3) which is heavily used in scientific applications.

To fill the gap between the practical applications of guided generation and theoretical grounds, we
propose OC-Flow, a general, practical, and theoretically grounded framework for training-free guided
flow matching under optimal control formulation. Our key contributions are as follows:

1. We formulate “controlled generation with pre-trained ODE-based priors” as an optimal control
problem with a control term ut and a running cost that regulates the trajectory proximity to the prior
model while optimizing for target loss. Building upon advances in optimal control theory, we develop
effective optimization algorithms for both Euclidean and SO(3) space through iterative updates of a
co-state flow and control term, with theoretical guarantees under continuous-time formulation.

2. In Euclidean space, we show that running cost bounds the KL divergence between prior and
OC-Flow-induced joint distribution. We develop a simple algorithm for OC-Flow through iterative
gradient update and provide convergence analysis. We further demonstrate that Dflow and Flow-grad
can be interpreted as special cases of Euclidean OC-Flow, providing a unified view of the problem.

3. We present one of the first guided flow-matching algorithm on the SO(3) manifold with theoretical
grounds. Our approach extends the Extended Method of Successive Approximations (E-MSA) to
SO(3) with a rigorous convergence analysis. Additionally, we propose approximation techniques to
enable computationally efficient OC-Flow on SO(3).

4. We provide an efficient and practical implementation of OC-Flow, by introducing the vector-
Jacobian product and asynchronous update scheme. We show the effectiveness of our method with
extensive empirical experiments, including text-guided image manipulation, controllable generation
of small molecules on QM9, and energy optimization of flow-based all-atom peptide design.

2 PRELIMINARIES AND PERSPECTIVES ABOUT FLOW MATCHING

Euclidean Flow Matching. Flow matching (Lipman et al., 2022; Liu et al., 2022) provides an
efficient framework for training a generative model by approximating the time-dependent vector field
associated with the flow represented as ψt : [0, 1]×Rd → Rd. This vector field ut : [0, 1]×Rd → Rd

defines a probability path of the evolution of an initial noisy distribution, denoted by p0, towards
a target distribution, p1, with the pushforward probability as pt := (ψt)∗p0. The dynamics of the
vector field that governs this flow can be described by the flow ordinary differential equation (ODE)
of the form ẋt = ut(xt), where we follow the convention to use Newton’s notation with respect
to time t and the state at time t is given by xt := ψt(x0). Lipman et al. (2022) demonstrates
that a tractable flow matching objective can be obtained by conditioning on the target data x1.
The primary goal of conditional flow matching is to train a model, fpt : [0, 1] × Rd → Rd, such
that it minimizes the difference between its output and the ground truth conditional vector field as
LCFM = Et,p(x0,x1)∥f

p
t (xt) − ut(xt | x1, x0)∥2. The trained model fp can be employed as the

marginal vector field during the inference phase. In this context, once a noise sample x0 is drawn, the
system’s evolution can be described by the following differential equation:

ẋt = fpt (xt), x0 ∼ p0(x). (1)

Rotation Group SO(3). The formulation of flow matching can naturally extend to Riemannian
manifolds (Chen & Lipman, 2023). In a Riemannian manifold, a flow is defined as a time-dependent
diffeomorphisms φt : G → G, which describe the continuous evolution of points on the manifold
over time, generated by a vector field V , with V (p) ∈ TpG for each p ∈ G where Tp is the tangent
space at point p ∈ G. The flow evolves according to: d

dtxt = V (xt) = Lxt
V (e). The CFM objective

in Equation 1 can also be adapted for Riemannian flow matching, in which the ground truth vector
field can be calculated as the time derivative using the exponential and logarithm maps. Details about

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Comparison of backpropagation-through-ODE algorithms. For D-Flow (left) and FlowGrad
(middle), the black curves represent the state trajectory at the k-th iteration, while the red curves show
the updated trajectories at the (k + 1)-th iteration, using gradient updates (blue dashed arrows). D-
Flow updates the state at t0 only, while FlowGrad propagates updates across all time steps. OC-Flow
(right) incorporates the running cost and reward-weighting factor α into the terminal reward. The
co-state flow µt (green curves) combines gradient information and system dynamics to iteratively
update the control terms {θt}, which in turn updates the states.

rotation group SO(3) can be found in Appendix A. In this work, we focus specifically on the SO(3),
the Riemannian manifold of all 3D rotations equipped with the canonical Frobenius inner product.
In previous flow-based protein design models, each amino acid is associated with a rotation that
defines its orientation (Yim et al., 2023; Bose et al., 2023; Li et al., 2024). Guiding such pre-trained
generative models toward the desirable protein properties can potentially have a profound impact on
the pharmaceutical industry.

3 OPTIMAL CONTROL FRAMEWORK FOR GUIDED FLOW MATCHING

The key challenge in guided generation is balancing optimization and faithfulness to the prior
distribution. To address such a need, we propose the following framework. Given a pre-trained flow
model, fpt (x), parameterized by a neural network, our goal is to determine the optimal control terms
θt that maximize the reward R(x) while maintaining the proximity of the resulting vector field to
the original vector field induced by fpt (x). The reward can be customized for diverse tasks such
as inverse problem R = ∥H(x) − y∥2, conditional generation R = (f(x) − c)2, and constrained
generation R = ∥x− y∥2. To ensure proximity, we incorporate a penalty on the state trajectory or
control terms

∫ T

0
L(θt), also known as the running cost. Optionally, one may also introduce a metric

d(·, ·) to penalize the deviation between the new terminal state xθ1 and the prior terminal state xp1.
The modified terminal reward function is then defined as: Φ(xθ1) = R(xθ1)− d(xθ1, x

p
1). and scaling

the terminal reward by a constant α, we can formulate the problem as a standard optimal control task:

J(θ) := αΦ(xθT) +

∫ T

0

L(θt) dt subject to ẋθt = ht(x
θ
t , θt). (2)

A fundamental result in optimal control theory is Pontryagin’s Maximum Principle (PMP) (Pon-
tryagin (2018)), which provides the necessary conditions for optimal solutions in control problems.
Specifically, at the core of PMP is the introduction of the Hamiltonian function, H . This Hamiltonian
is defined in terms of the state of the system, the control, and a new entity called the co-state µ, which
resides in the cotangent space of the state manifold.

H(t, x, µ, θ) = ⟨µ, ht(xθt , θt)⟩ − L(θ) (3)

The co-state µt, also known as the adjoint variable, encodes the influence of the terminal cost function.
Their evolution captures how the sensitivity of the system impacts the cost function, ensuring that the
state variables evolve in accordance with the system dynamics. Consequently, in optimal control, the
Hamiltonian must be maximized by jointly evolving the states and costates according to a system of
coupled differential equations. The details of PMP conditions can be found in Appendix B.1.

3.1 OC-FLOW ON EULIDEAN MANIFOLD

We first develop the algorithm and theoretical analysis for OC-flow in Euclidean space. One of the
simplest choices for the control term is an additive control (Kobilarov & Marsden (2011)), which

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

directly perturbs the prior trajectory. In fact, with the linear expansion, the additive control could be
seen as a general case and is widely used in optimal control. Specifically, with θt representing the
control input, the new state dynamics and the corresponding running cost can be defined as:

ẋt = ht(x
θ
t , θt) = fpt (xt) + θt L(θt) = −1

2
||θt||2 (4)

The running cost effectively acts as a constraint on the trajectory to encourage proximity to the
original prior distribution. To better understand the effect of running costs on the guided distribution,
we provide following proposition to formally prove that it can control deviation from prior distribution
measured by KL-divergence.

Proposition 1. For Affine Gaussian Probability Path, the expectation of the running cost upper
bounds the KL divergence between the prior joint distribution p1(xp, x1) = p1(x

p|x1)pdata(x1) and
the joint distribution after guidance p1(xθ, x1) = p1(x

θ|x1)pdata(x1), with x1 ∼ pdata, xp induced
by prior conditional vector field upt (x|x1) and xθ sampled by applying control θt(x1) on upt .

Ex1∼pdata(x1)

[
1

2

∫ 1

0

∥θt(x1)∥2dt
]
≥ C · KL(p1(xθ, x1)∥p1(xp, x1)).

Furthermore, for square-shaped data x with non-zero probability path, the expectation of the running
cost, combined with the L1-distance between the prior sample xp1 and the corresponding guided
sample xθ1, upper bounds the KL divergence between the marginal distributions of the prior model pp1
and the guided model pθ1:

Exp
1∼pp

1(x)

[
A∥xp1 − xθ1∥+B

∫ 1

0

∥θt(xp1)∥2dt
]
≥ KL(pp1 ∥ pθ1)

Algorithm 1 OC-Flow on Euclidean Space
1: Given: Pre-trained model: fp, initial state: x0
2: Initialize: Control terms θ0, learning rate η,

weight decay β
3: for k = 0 to MaxIterations do
4: Solve for the state trajectory:

Xθk

t+∆t = Xθk

t +
(
fp(t,Xθk

t) + θk
)
∆t

5: Update control:
θk+1
t = βθkt + η∇xt

Φ(Xk
1)

6: end for

One effective approach for directly apply-
ing PMP to optimal control tasks is the Ex-
tended Method of Successive Approximations
(E-MSA) Li et al. (2018). E-MSA builds
upon the basic MSA algorithm (Chernousko &
Lyubushin (1982)), which iteratively updates
the terms in the PMP conditions (Appendix
B.2). The primary enhancement of E-MSA over
the basic MSA is its ability to extend conver-
gence guarantees beyond a limited class of linear
quadratic regulators (Aleksandrov (1968)).

A key assumption is the global Lipschitz condition for the functions involved. However, note
that this assumption can be relaxed to a local Lipschitz condition if we can demonstrate that xθt
is bounded, which can be safely assumed provided that appropriate regularization techniques are
applied. Furthermore several prior work has shown the Lipschitz continuity for the deep learning
models. (Gouk et al. (2021),Khromov & Singh (2024))

When the E-MSA algorithm is applied to the guided controlled generation task on Euclidean space,
the trajectory of the co-states µt can be calculated in closed form. Specifically, they can be expressed
as ∇xtΦ(X

k
1) which enables us to derive the following update rule with convergence guarantees:

Theorem 2: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Utilizing the E-MSA, for each iteration k, for each
constant γ > 2C with C is a function of L, such that under the addictive control and the running
cost defined in Equation 4, the optimal update is following:

θk+1
t =

γ

1 + γ
θkt +

α

1 + γ
∇xtΦ(X

k
1). (5)

This update rule for the control term θt guarantees an increase in the objective function defined in
equation 2.

J(θk+1)− J(θk) ≥
(
1− 2C

γ

)
ϵkγ , ϵkγ ≥ 0 (6)

In practice, solving continuous ODEs requires discretization. The discretized version of the proposed
algorithm is outlined in Algorithm 1. In this formulation, the weight decay term is parameterized

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

as β = γ
1+γ , and the learning rate is defined as η = α

1+γ . As demonstrated in Appendix C.3, the
discretization error introduced by the Euler method is of the order O(∆t). This error diminishes as
the number of ODE steps increases, ensuring the algorithm converges to the global optimum.

3.2 PRACTICAL IMPLEMENTATION AND ACCELERATION

3.2.1 ADJOINT METHOD AND VECTOR-JACOBIAN PRODUCT

A significant portion of the computational time in the OC-Flow algorithm is spent on evaluating
the gradient ∇xt

Φ(x1). The computational cost of directly back-propagating through ODE with
vanilla Autograd requires saving all intermediate computation value which result in a demanding
memory complexity of O(ND2) (Pan et al., 2023; Chen et al., 2018) where N is the ODE steps. We
instead employ the adjoint method where the gradient ∇xt

Φ(x1) is computed using a vector-Jacobian
product by the double-backwards trick, which reduce the memory cost to O(D2).

∇xk/N
Φ =

(
∇x(k+1)/N

Φ
)
· Φx(k+1)/N

(
xk/N

)
.

3.2.2 ASYNCHRONOUS SETTING FOR FLEXIBLE UPDATE SCHEDULING

In practice, discretization techniques are employed to simulate the ODEs governing both the state
trajectory xt and the co-states µt and operate in a synchronous setting, where the number of time
steps for the state trajectory xt coincides with the number of control terms θt.

Here we show that OC-Flow can be extended to an asynchronous framework, providing greater
flexibility in scheduling. We subdivide the time interval ∆t into N equally spaced subintervals. Let
{xt} denote the state trajectory over the time interval [t, t+∆t], and {xθt } represent the trajectory
when the control term θt is applied in the first subinterval. The trajectory can be approximated as
follows:

xt+∆t = xt +
∆t

N

N−1∑
l=1

fp(xθ
t+ l∆t

N
) +

∆t

N
θt ≈ xt +∆t

(
1

N

N−1∑
l=1

fp(xt+ l∆t
N

) +
1

N
θt

)
(7)

Consequently, the asynchronous setting allows the algorithm to be applied without modification while
enabling finer updates to both the control terms and state trajectories by adjusting the frequency N of
control term updates relative to the state trajectory simulation (see Appendix C.4 for the proof and
justification of the approximations in Equation 7). In our peptide design experiment, asynchronous
setting is applied for efficient computing.
Table 1: Comparison of runtime and memory complexity of different methods used in backprop-
through guided-ODE in Euclidean and SO(3) manifold. For complexity, N is the number of ODE
steps, n is the number of effective control terms with synchronized and in the range [1, N] and D2 is
the complexity of computing 1-step gradient (VJP or Autograd), D depends on data and model size.

Number of Running Memory Runtime Convergence Generalization
Control Terms Cost Complexity Complexity to Optimal to SO(3)

OC-Flow n ∥θ2t ∥ O(D2) O(nD2) ✓ ✓
FlowGrad n 0 O(D2) O(nD2) ✗ ✗
D-Flow 1 Implicit O(ND2) O(ND2) ✗ ✗

3.3 CONNECTION TO OTHER BACKPROP-THROUGH GUIDED-ODE APPROACHES

Several previous works discussed backprop-through-ODE guidance in flow-matching models. Notable
examples include D-Flow (Ben-Hamu et al., 2024) and FlowGrad (Liu et al., 2023). An illustration
of their algorithms and ours is shown in Figure 1. In this section, we demonstrate that our framework
is more general, and both of these methods can be viewed as special cases of our algorithm.

FlowGrad formulates the optimization task in a manner similar to our optimal control target in
Equation 2. Specifically, it directly applies gradient descent to the control variables:

θk+1
t = θkt + α∇θtΦ(X

k
1) = θkt +

α

N
(∇xt

Xt+∆t)
−1∇xt

Φ(Xk
1),

which can be interpreted as a limiting case of our algorithm in Equation 5, where γ → ∞ and given
with dt→ 0, ∇xt

Xt+∆t → I. However, as shown in Equation 6, the convergence rate is a complex
function of γ, so in practice, γ is treated as a tunable parameter. FlowGrad’s setting γ → ∞ may
undermine the convergence speed.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

D-Flow optimizes the reward by applying gradient descent to the initial noise x0:

Xk+1
0 = Xk

0 + LBFGS(∇x0Φ(X
k
1)).

In fact, with the update rule xδt = x0+f(x0)δt+θtδt, the update of θ0 can be seen as an increment to
x0. The LBFGS algorithm provides a dynamic learning rate, aligning with our framework, where γ is
allowed to vary across iterations. Hence, D-Flow can be viewed as a special case of our asynchronous
algorithm when the number of control terms is 1. A more detailed comparison of the algorithms can
be found in Table 6 and additional discussion on computation efficiency is in Appendix C.7.

4 OPTIMAL CONTROL FRAMEWORK FOR GUIDED FLOW MATCHING IN SO(3)

Most optimization algorithms are primarily designed for Euclidean spaces and face significant
challenges when applied to non-Euclidean settings, such as the SO(3) manifold, which plays a crucial
role in drug discovery and peptide design (Huguet et al. (2024)). This section extends the E-MSA
algorithm to the SO(3) manifold and presents a rigorous proof of its convergence.

4.1 OC-FLOW FOR SO3

To begin, we define the vector field governing the system dynamics. The state trajectory, influenced
by control terms θt ∈ so(3), evolves according to the following differential equation:

ẋt
θ = xθt

(
ft(x

θ
t) + θt

)
(8)

In this work, the left-invariant vector field is utilized, under which the Hamiltonian can be shown to
reduce to a linear functional in so(3)∗ (Jurdjevic (1996), Colombo & Dimarogonas (2020)). Given
the co-state µt ∈ so(3)∗, the Hamiltonian function H : [0, T] × SO(3) × so(3)∗ × so(3) → R is
redefined as:

H(t, x, µ, θ) = µt

(
ft(x

θ
t) + θt

)
− L(θ) (9)

A direct approach to apply PMP conditions on the SO(3) manifold involves iteratively updating the
cotangent vector µt and the state trajectory xt as shown in Step 4 and Step 5 in Algorithm 2 and then
apply an update rule to determine the control term θt for the subsequent iteration with weight decay
β and learning rate η the update for θt can be written as:

θk+1
t = βθkt + ηµ̃θk

t ,

where µ̃θk

t is defined by ⟨µ̃θk

t , v⟩ = µθk

t (v) with µ̃t ∈ so(3) for all v ∈ so(3). The existence of µ̃θk

t
can be derived from the Riesz Representation Theorem (Goodrich (1970)). This formulation leads to
the introduction of the OC-FLow algorithm on SO(3),as detailed in Algorithm 2.

Algorithm 2 OC-Flow on SO(3)

1: Given: Pre-trained model: fpe , initial state: x0
2: Initialize: Control term θ0 ∈ so(3), learning rate η, weight decay β
3: for k = 0 to MaxIterations do
4: Solve for the state trajectory: Ẋθk

t = Xθk

t

(
fp(t,Xθk

t) + θk
)
, Xθk

0 = x0

5: Solve for the adjoint variables: µ̇θk

t = −ad∗∂H
∂µ
µθk−(dLxθ

T
)∗ ∂H

∂x , µθk

T = (dLxθ
T
)∗∇Φ(xθT)

6: Update control: θk+1
t = βθkt + ηµ̃θk

t
7: end for

4.2 CONVERGENCE OF OC-FLOW ON SO3

To derive the proof of the convergence of our Algorithm 2, we first establish that under the PMP
conditions on SO(3), the objective function J(θ), as defined in equation 2, can be bounded. This is
formalized in the following proposition:

Proposition 3: Assume that the reward function, the prior model, and their derivatives satisfy
Lipschitz continuity, bounded by a Lipschitz constant L. Then, there exists a constant C > 0 such
that for any θ, ϕ ∈ so(3), the following inequality holds:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− C||ϕt − θt||2dt ≤ J(ϕ), (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Xθ and P θ satisfy the PMP conditions on SO(3) manifold, and ∆Hϕ,θ denotes the change in
the Hamiltonian, defined as:

∆Hϕ,θ(t) := H(t, xθt , µ
θ
t , ϕt)−H(t, xθt , µ

θ
t , θt).

Proposition 2 provides a lower bound for the difference in the objective function values under two
distinct control terms that satisfy the PMP conditions described by the Hamiltonian equations in
Appendix B.1.

However, applying this result directly as an optimization algorithm presents several challenges. First,
the difference in the Hamiltonian ∆Hϕ,θ(t) is not inherently bounded. Second, the term ||ϕ− θ||2 is
non-negative, which complicates the minimization process. To address these issues, inspired by the
method of E-MSA, we introduce a positive constant γ and defining an Extended-Hamiltonian:

H̃(t, x, µ, θ, ϕ) = H(t, x, µ, θ)− γ

2
||θ − ϕ||2 = ⟨µ, ft(x) + θ⟩ − 1

2
||θ||2 − γ

2
||θ − ϕ||2. (11)

The introduction of the Extended-Hamiltonian enables the combination of the original Hamiltonian
with the penalty term ||ϕ − θ||2 into a unified expression that can be optimized jointly. A natural
approach to achieve this is by updating θ to maximize the Extended-Hamiltonian. The resulting
update rule is given by:

θk+1
t = argmax

θ
H̃(t, xθ

k

, µθk

, θ, θk) =
γ

1 + γ
θk +

1

1 + γ
µθ
t = βθk + ηµθk

t (12)

By performing this maximization step at each iteration, we ensure that the change in the Extended-
Hamiltonian, ∆H̃ , is non-negative, indicating that the algorithm progresses towards an optimal
solution. Furthermore, we can show that when the update process converges, i.e., when ∆H̃ = 0 or
equivalently ∆H = 0, the algorithm has reached the optimal control point. These insights can be
formalized in the following proposition:

Proposition 4: Let Xθ and P θ satisfy the PMP conditions . If the update rule follows Algorithm 2,
we define ϵk :=

∫ 1

0
∆θk+1,θkH(t) dt, and ϵk is bounded as:

ϵk :=

∫ 1

0

∆θk+1,θkH(t) dt lim
k→∞

ϵk = 0. (13)

Furthermore, when ϵk = 0, we have θ = θ∗ := argmaxθ J(θ)

With these results, we can now extend the result in E-MSA to the SO(3) manifold and establish a
bound for the optimization algorithm based on the derived theoretical properties:

Theorem 5: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Let θ0 ∈ so(3) be any initial measurable control with
J(θ0) < +∞. Suppose also that infθ∈so(3) J(θ) > −∞. If the update of θ satisfies equation 12, for
sufficiently large γ, the following inequality holds for some constant D > 0:

Dϵk ≤ J(θk+1)− J(θk) (14)

Therefore, by invoking Proposition 3, we can conclude that after each update, the target function is
non-decreasing and when the update process terminates, the optimal solution has been attained. This
establishes the convergence of the OC-Flow algorithm on the SO(3) manifold.

4.3 PRACTICAL IMPLEMENTATION

In practice, directly optimizing Algorithm 2 using existing ODE methods is challenging due to the
nature of the adjoint variable µ̇t, which is a linear functional in the dual space so(3)∗. Instead, we
can optimize µ̃t as defined in Section 4.1. We can decompose ˙̃µt into its projections onto a set of
orthogonal bases within the so(3) group.

A frequently used choice for the basis in so(3) is the canonical basis {E1, E2, E3} (McCann et al.
(2023)) satisfying the condition ⟨v,Ei⟩ = 2 for all v ∈ so(3). Thus we can decompose the time
derivative of the adjoint variable ˙̃µt as: ˙̃µi = ⟨ ˙̃µ,Ei⟩ and ˙̃µ = 1

2

∑3
i=1

˙̃µiEi. Thus, with the closed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of text-guided generated faces with different expressions.

forms for the partial derivatives related to Hamiltonian, the practical update for µt in Algorithm 2 can
be written as follows. The vector-Jacobian method can be applied to compute the term ∂fp

t

∂x (xktEj) in
Algorithm 2, which significantly reduces complexity from O(D4) to O(D2). Meanwhile, the method
of asynchronous can also be applied. See Appendix C.4.

˙̃µk
t,i = −⟨µ̃k

t , [f
p
t + θt, Ei]⟩ − ⟨µ̃k

t ,
∂fpt
∂x

xktEi⟩, ⟨µ̃t,
∂fpt
∂x

xktEj⟩ = Tr

(
µ̃T
t

∂fpt
∂x

(xktEj)

)
µ̃k
t−∆t = µ̃k

t − ∆t

2

3∑
i=1

˙̃µk
t,iEi, µ̃k

T,i = ⟨∇Φ(xkT), x
k
TEi⟩. (15)

5 EXPERIMENTS

5.1 TEXT-GUIDED IMAGE MANIPULATION

We first validate our OC-Flow on the traditional text-to-image generation task. Previous work has
demonstrated the importance of alignment with the given text prompt using either automatic metrics
or human preference as the reward (Black et al., 2023; Esser et al., 2024). In our text-guided image
manipulation task, we want to guide the generative model pre-trained on the celebrity face dataset
CelebA-HQ (Karras, 2017) to text guidance {sad, angry, curly hair} showing different
facial expressions or traits. Following the same setup in Liu et al. (2023), given an input image xg , the
reward for alignment with the text prompt can be effectively evaluated by the CLIP model (Radford
et al., 2021) pre-trained in a contrastive way to score the similarity between arbitrary image-text pairs.
Following (Liu et al., 2023), we adopt the pre-trained Rectified Flow (RF) (Liu et al., 2022) as the
generative prior. Inspired by Proposition 1, for this image task where the square-like assumption
is satisfied, an extra terminal constraint xp1 − xθ1 is added as part of the terminal reward function.

Table 2: Comparison of methods on LPIPS,
ID, and CLIP metrics. Lower LPIPS and ID
indicate better performance, while higher ID
and CLIP values are preferred.

Method LPIPS ↓ ID ↑ CLIP ↑

CG + RF 0.346 0.643 0.292
CG + LDM 0.383 0.513 0.298
DiffusionCLIP 0.398 0.659 0.285
StyleCLIP + e4e 0.359 0.704 0.267

FlowGrad + RF 0.302 0.737 0.299
OC-Flow (Ours) 0.207 0.732 0.302

We choose two state-of-the-art text-guided image
manipulation baselines, StyleCLIP (Patashnik et al.,
2021) and FlowGrad (Liu et al., 2023). We run Style-
CLIP and FlowGrad with their official implementa-
tion and default parameter configurations. For ours,
we set time step of 100, step size η = 2.5, weight
decay of 0.995, the weight of the extra constraint of
0.4, and the number of optimization steps of 15.

For qualitative comparison, we show generated exam-
ples of different text-guided expressions in Figure 2.
Due to the large gap between reference and guided
distributions, StyleCLIP fails to manipulate with sad.
Lacking in regularization, FlowGrad may change the content too much with curly hair. Our
OC-Flow generally produces the best results with a good alignment with the text prompt while
preserving the generative prior so as to produce reasonable faces that are not distorted much.

5.2 MOLECULE GENERATION FOR QM9

We further instantiate our OC-Flow for controllable molecule generation on the QM9 dataset (Rud-
digkeit et al., 2012; Ramakrishnan et al., 2014), a commonly used molecular dataset containing small
molecules with up to 9 heavy atoms from C, O, N, F. Following Hoogeboom et al. (2022); Ben-Hamu
et al. (2024), we target for conditional generation of molecules with specified quantum chemical
property values including polarizability α, orbital energies εHOMO, εLUMO and their gap ∆ε, dipole

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of OC-Flow generated molecules with various dipole moments condition.

moment µ, and heat capacity cv. Such a conditional generation setting of molecules with desired
properties has profound practical applications in drug design and virtual screening. To define the
loss function, separate classifiers for each property are first trained to predict the property value
for the generated molecule (Hoogeboom et al., 2022), and the loss can be then calculated as the
mean absolute error (MAE) between the predicted and the reference property values. The pre-trained
unconstrained generative model is taken from Song et al. (2024) (EquiFM), a flow-based generative
model that uses an equivariant vector field parameterization for generating the atom coordinates and
types via the learned flow dynamics. To demonstrate the zero-shot guidance performance on such a
conditional generation task, we compare our approach with other gradient-based methods of D-Flow
(Ben-Hamu et al., 2024) and FlowGrad (Liu et al., 2023) on the same pre-trained EquiFM. To be
comparable to D-Flow, we follow its setting to use the L-BFGS optimizer with 5 optimization steps
with linear search. We generate 1000 molecules for each property and report the MAE in Table 3.
The unconditional EquiFM is also included as an upper bound for the guided models. It can be seen
that our approach consistently outperforms both of them with lower MAEs, which better balances
the reward optimization and the faithfulness to the prior. We provide guided generation samples in
Figure 3 with respect to different target dipole moments. A clear trend from hydrocarbons with more
symmetric structures to molecules with more high-electronegativity atoms of oxygen and nitrogen
can be observed, indicating an increase in the dipole moment.

Table 3: MAE for guided generations on QM9 (lower is better).
Property α ∆ε εHOMO εLUMO µ cv
Unit Bohr³ meV meV meV D cal

K·mol

OC-Flow(Ours) 1.383 367 183 342 0.314 0.819
D-Flow 1.566 355 205 346 0.330 0.893
FlowGrad 2.484 517 273 429 0.542 1.270
EquiFM 8.969 1439 622 1438 1.593 6.873

Classifier 0.095 64 40 35 0.046 0.041

As we have theoretically demon-
strated the impact of the regu-
larization strength from the op-
timal control perspective, we fur-
ther experiment with a differ-
ent γ and examine the quality
of the conditionally generated
molecules by evaluating addi-
tional metrics following Song
et al. (2024). Specifically, we cal-
culate the atom stability percentage (ASP), molecule stability percentage (MSP), and valid & unique
percentage (VUP). Ideally, these metrics should not be greatly lower than the pre-trained model, and
a higher strength of regularization should lead to higher scores. Indeed, as demonstrated in Table 4,
in which we provide these scores for two different settings of γ = 0.01 and 10, all scores are higher
with a higher strength of regularization at the cost of also a higher MAE. In this way, our OC-Flow
effectively prevents exploitation from direct gradient descent that may hack the loss function and
provides more flexible and fine-grained control over the guided generation.

Table 4: MAE and other evaluation metrics for our approach with γ = 0.01 / γ = 10.
Property α ∆ε εHOMO εLUMO µ cv

MAE ↓ 1.383 / 1.557 367 / 365 183 / 188 342 / 339 0.314 / 0.320 0.819 / 0.852
ASP ↑ 94.8 / 96.0 95.2 / 96.1 95.2 / 96.1 95.3 / 96.1 95.8 / 96.1 95.2 / 96.1
MSP ↑ 64.4 / 69.9 67.9 / 70.5 65.8 / 69.8 68.5 / 70.8 68.0 / 70.1 67.1 / 68.9
VUP ↑ 86.2 / 88.6 88.2 / 89.8 86.2 / 87.7 87.6 / 88.7 88.2 / 89.0 89.4 / 88.5

5.3 PEPTIDE DESIGN

We evaluate our OC-Flow approach for peptide Backbone design using a test set derived from
(Li et al., 2024), which includes 162 complexes clustered based on 40% sequence identity using
mmseqs2(Steinegger & Söding, 2017). Our experiments focus on PepFlow w/Bb, a model designed to
exclusively sample peptide backbones while optimizing translations in Euclidean space and rotations

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of OC-Flow generated peptide and unconditional generated peptide (5djd_C).
in SO(3) space. The model employs the MadraX force field (Orlando et al., 2024) for energy
optimization, and performance is evaluated using several key metrics. These metrics include MadraX
energy, which assesses the total energy of the generated peptide structures, along with Rosetta-based
measures of stability and affinity. Currently, our stability and affinity metrics are represented by their
respective means: stability quantifies the energy states of peptide-protein complexes, while affinity
measures the binding energies.

In addition, we employ an existing metric, denoted as IMP, which measures the percentage of
generated peptides that exhibit lower energy than the original ground truth. Additionally, we use the
root-mean-square deviation (RMSD) to evaluate structural accuracy by aligning the generated peptides
to their native structures and calculating the Cα RMSD. To further analyze structural characteristics,
we compute the secondary-structure similarity ratio (SSR), which reflects the proportion of shared
secondary structures, and the binding site ratio (BSR), which quantifies the overlap between the
binding sites of the generated and native peptides on the target protein. Structural diversity is
assessed using the average of one minus the pairwise TM-Score (Zhang & Skolnick, 2005) among
the generated peptides, representing their dissimilarities.

We compare our method to the pre-trained unconditional PepFlow model (Li et al., 2024), serving
as a baseline. We also include ablations where our model guides only translations (Euclidean) or
rotations (SO(3)). As shown in Table 5, our OC-Flow method, applied to both Euclidean and SO(3)
spaces, consistently outperforms the baseline, even though we only optimize for the Madrax target
function. This indicates that our algorithm not only achieves higher target function scores but also
captures more natural structural configurations. It generates peptide backbones that are more stable,
energetically favorable, and diverse, while improving key metrics such as stability, affinity, IMP,
diversity, SSR, and BSR. In comparison, optimizing in Euclidean space alone yields only marginal
improvements in IMP, while optimizing rotations alone achieves comparable performance.More
experimental details and ablation can be found in Appendix E.3.

Table 5: Evaluation of OC-Flow peptide design.
MadraX ↓ RMSD ↓ SSR % ↑ BSR % ↑ Stability ↓ Affinity ↓ Diversity ↑ imp(%) ↑

Ground-truth -0.588 - - - -84.893 -36.063 - -
PepFlow -0.195 1.645 0.794 0.874 -45.660 -26.538 0.310 14.3
OC-Flow(trans) -0.229 1.774 0.797 0.876 -48.380 -27.328 0.323 14.4
OC-Flow(rot) -0.221 1.643 0.794 0.872 -48.636 -27.211 0.310 14.5
OC-Flow(trans+rot) -0.263 2.127 0.797 0.869 -48.853 -27.468 0.338 15.0

6 CONCLUSIONS AND DISCUSSION

In this paper, we propose OC-Flow, a general and theoretically grounded framework for training-
free guided flow matching under optimal control formulation. Our framework provides a unified
perspective on existing backprop-through-ODE approaches and lays the foundation for systematic
analysis of the optimization dynamics of this setting. Extensive empirical experiments demonstrate
the effectiveness of OC-Flow. Future extensions of OC-Flow include generalizing beyond additive
control terms and bridging connection with fine-tuning regimes where control terms can be solved
as learning updates to the model parameters. Another extension could be scaling up the SO(3)
OC-Flow to guide generative tasks for larger molecular systems such as protein motif scaffolding.
One potential limitation of backprop-through-ode approaches, despite its superior result, is the higher
computation cost compared to posterior sampling approaches. Such tradeoff has been demonstrated
in Dflow/FlowGrad as well. Our practical implementations of OC-Flow improves the time and
memory complexity (see analysis in Appendix C.7), where sampling on image take 216s compared
to 15minutes in Dflow. We hope that our findings can guide algorithm design and motivate further
model improvement in guided flow matching.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vladimir V Aleksandrov. On the accumulation of perturbations in the linear systems with two
coordinates. Vestnik MGU, 3:67–76, 1968.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander Tong.
Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint arXiv:2310.02391,
2023.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv preprint
arXiv:2302.03660, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Chaoran Cheng, Jiahan Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical manifolds.
arXiv preprint arXiv:2405.16441, 2024.

Felix L Chernousko and AA Lyubushin. Method of successive approximations for solution of optimal
control problems. Optimal Control Applications and Methods, 3(2):101–114, 1982.

Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. Cfg++: Manifold-
constrained classifier free guidance for diffusion models. arXiv preprint arXiv:2406.08070, 2024.

Leonardo Jesus Colombo and Dimos V. Dimarogonas. Symmetry reduction in optimal control of
multiagent systems on lie groups. IEEE Transactions on Automatic Control, 65(11):4973–4980,
2020. doi: 10.1109/TAC.2020.3004795.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. arXiv preprint arXiv:2406.04843,
2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Lawrence C Evans. An introduction to mathematical optimal control theory version 0.2. Lecture
notes available at http://math. berkeley. edu/evans/control. course. pdf, 1983.

Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning optimization trajec-
tories with diffusion models for constrained design generation. Advances in Neural Information
Processing Systems, 36:51830–51861, 2023.

Robert Kent Goodrich. A riesz representation theorem. Proceedings of the American Mathematical
Society, 24(3):629–636, 1970.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural networks
by enforcing lipschitz continuity. Machine Learning, 110:393–416, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein backbone generation. arXiv
preprint arXiv:2405.20313, 2024.

Velimir Jurdjevic. Optimal problems on Lie groups, pp. 368–406. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1996.

Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

Bahjat Kawar, Roy Ganz, and Michael Elad. Enhancing diffusion-based image synthesis with robust
classifier guidance. arXiv preprint arXiv:2208.08664, 2022.

Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of
neural networks. In The Twelfth International Conference on Learning Representations, 2024.

Gwanghyun Kim and Jong Chul Ye. Diffusionclip: Text-guided image manipulation using diffusion
models. 2021.

Marin B. Kobilarov and Jerrold E. Marsden. Discrete geometric optimal control on lie groups. IEEE
Transactions on Robotics, 27(4):641–655, 2011. doi: 10.1109/TRO.2011.2139130.

Jiahan Li, Chaoran Cheng, Zuofan Wu, Ruihan Guo, Shitong Luo, Zhizhou Ren, Jian Peng, and
Jianzhu Ma. Full-atom peptide design based on multi-modal flow matching. In Proceedings of the
International Conference on Machine Learning (ICML), 2024.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1–29, 2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, and Qiang Liu. Flowgrad:
Controlling the output of generative odes with gradients. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24335–24344, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Brennan S McCann, Annika Anderson, Morad Nazari, David Canales, and Ryne Beeson. On-manifold
pose optimization on se (3) for spacecraft coverage maximization. In AAS/AIAA Astrodynamics
Specialists Conference, 2023.

Gabriele Orlando, Luis Serrano, Joost Schymkowitz, and Frederic Rousseau. Integrating physics in
deep learning algorithms: a force field as a pytorch module. Bioinformatics, 40(4):btae160, April
2024. doi: 10.1093/bioinformatics/btae160.

Jiachun Pan, Jun Hao Liew, Vincent YF Tan, Jiashi Feng, and Hanshu Yan. Adjointdpm: Adjoint
sensitivity method for gradient backpropagation of diffusion probabilistic models. arXiv preprint
arXiv:2307.10711, 2023.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
driven manipulation of stylegan imagery. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 2085–2094, 2021.

Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image
inversion via flows. arXiv preprint arXiv:2310.04432, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Alessandro Saccon, John Hauser, and A. Pedro Aguiar. Exploration of kinematic optimal control on
the lie group so(3)*. IFAC Proceedings Volumes, 43(14):1302–1307, 2010. ISSN 1474-6670. doi:
https://doi.org/10.3182/20100901-3-IT-2016.00237. URL https://www.sciencedirect.
com/science/article/pii/S1474667015371457. 8th IFAC Symposium on Nonlin-
ear Control Systems.

Jun John Sakurai and Jim Napolitano. Modern quantum mechanics. Cambridge University Press,
2020.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp. 32483–32498. PMLR, 2023.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. Advances in Neural Information Processing Systems, 36, 2024.

Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023.

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew YK Foong, Michael Gastegger, José Jiménez-
Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Frank Noé, et al. Improved
motif-scaffolding with se (3) flow matching. arXiv preprint arXiv:2401.04082, 2024.

Chenshuang Zhang, Chaoning Zhang, Sheng Zheng, Mengchun Zhang, Maryam Qamar, Sung-Ho
Bae, and In So Kweon. A survey on audio diffusion models: Text to speech synthesis and
enhancement in generative ai. arXiv preprint arXiv:2303.13336, 2023.

Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

13

https://www.sciencedirect.com/science/article/pii/S1474667015371457
https://www.sciencedirect.com/science/article/pii/S1474667015371457

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BACKGROUND OF RIEMANNIAN MANIFOLD AND SO(3) GROUP

A Lie group G is a smooth manifold equipped with group operations, such as multiplication and
inversion, which are smooth maps. Specifically, G is considered smooth when it possesses a C∞

differential structure. When G is endowed with a left-invariant Riemannian metric, it becomes a
Riemannian manifold, where the inner product of any two tangent vectors v, w ∈ ThG at a point
h ∈ G is preserved under left multiplication. This property is expressed as:

⟨Lh(v), Lh(w)⟩ = ⟨v, w⟩,
where Lh : G → G is the left multiplication map, and ⟨·, ·⟩ : TG× TG → R represents the inner
product. Moreover, the tangent space at any point x ∈ G is given by TxG = LxTeG, where TeG is
the tangent space at the identity element e, which is identified with the Lie algebra g. Consequently,
the full tangent bundle TG can be written as G× g.

At each point x ∈ G, a tangent space TxG is attached, representing the space of tangent vectors at
that point. The collection of these tangent spaces forms the tangent bundle TG, which itself is a
smooth manifold. Additionally, for any point h ∈ G, the cotangent space T ∗

hG is defined as the dual
space of ThG, consisting of linear functionals (co-states) that act on the tangent vectors.

Rotation Group SO(3): The special orthogonal group SO(3), describing 3D rotations, is a compact
3-dimensional Lie group. Its Lie algebra so(3) consists of skew-symmetric matrices. The group
SO(3) is defined as:

SO(3) = {r ∈ R3×3 : r⊤r = rr⊤ = I, det(r) = 1}
It is a matrix Lie group, and its Lie algebra is given by:

so(3) = {r ∈ R3×3 : r⊤ = −r}
Parametrizations of SO(3): The skew-symmetric matrices r ∈ so(3) can be uniquely represented
by a vector ω ∈ R3, such that for any v ∈ R3, rv = ω × v, where × denotes the cross product. This
vector is known as the rotation vector, where its magnitude ∥ω∥ represents the angle of rotation, and
its direction eω = ω

∥ω∥ defines the axis of rotation. The mapping from R3 to the skew-symmetric

matrix is referred to as the hat operation, (̂·).
Another common parametrization of SO(3) is through Euler angles, described using three angles
(ϕ, θ, ψ). In the x-convention, the rotation is expressed as a sequence of three rotations: a rotation
about the z-axis by ϕ, followed by a rotation about the updated x-axis by θ, and finally, a rotation
about the updated z-axis by ψ.

One common inner product on so(3) is the induced Frobenius inner product, given by:
⟨A,B⟩ = tr(A⊤B), ∀A,B ∈ so(3),

which equips SO(3) with a Riemannian structure. The manifold SO(3) has constant Gaussian
curvature and is diffeomorphic to a solid ball with antipodal points identified. The exponential map
exp : so(3) → SO(3), originating from the identity element, is defined as matrix exponentiation:

exp(A) =

∞∑
k=0

Ak

k!
, ∀A ∈ so(3)

and can be represented more compactly via Rodrigues’ rotation formula:

exp(A) = I +
sin θ

θ
A+

1− cos θ

θ2
A2, ∀A ∈ so(3)

where θ = ∥A∥so(3) = 1
2∥A∥F is the rotation angle. Similarly, the logarithm map log : SO(3) →

so(3), also originating from the identity, is the matrix logarithm:

log(R) =

∞∑
k=1

(−1)k+1 (R− I)k

k

or more compactly as:

log(R) =
θ

sin θ
A, ∀R ∈ SO(3)

where A = (R−R⊤)
2 ∈ so(3) and θ = ∥A∥so(3) is the rotation angle. In spherical geometry, the

geodesic distance between two rotations is given by d(R1, R2) = ∥ log(R⊤
1 R2)∥F , and interpolation

between rotations can be performed using exp(tA).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B BACKGROUND OF PMP AND E-MSA

In this section, we shall introduce the details of the Pontryagin’s Maximum Principle on both
Euclidean Space and SO(3) manifold as well as the algorithms of MSA and E-MSA.

B.1 PMP

As described in section 3, PMP offers a set of necessary conditions for an optimal control strategy.
PMP states that for an optimal trajectory, there exists a co-state trajectory µt such that the Hamiltonian
(Equation 3) is maximized (or minimized, depending on the problem) with respect to the control
at every time step. Additionally, the state and co-state evolve according to a system of coupled
differential equations, where the co-state variables evolve in the cotangent space of the state variables.

The governing differential equations are shown below:

Pontryagin’s Maximum Principle Let θ∗ ∈ U be an essentially bounded optimal control, i.e. a
solution to (2) with ess supt∈[0,T] ∥θ∗t ∥∞⟨∞ (ess sup denotes the essential supremum). Denote by
X∗ the corresponding optimally controlled state process. Then, there exists an absolutely continuous
co-state process P ∗ : [0, T] → Rd such that the Hamilton’s equations

Ẋ∗
t = ∇pH(t,X∗

t , P
∗
t , θ

∗
t), X∗

0 = x, (16)

Ṗ ∗
t = −∇xH(t,X∗

t , P
∗
t , θ

∗
t), P ∗

T = ∇Φ(X∗
T), (17)

are satisfied. Moreover, for each t ∈ [0, T], we have the Hamiltonian maximization condition

H(t,X∗
t , P

∗
t , θ

∗
t) ≥ H(t,X∗

t , P
∗
t , θ) for all θ ∈ Θ. (18)

The PMP conditions can be naturally generalised to the Lie Group. Pontryagin’s Maximum Principle
(PMP) for Lie groups (Saccon et al. (2010)) provides the conditions that govern the flow of the
state xt and its associated cotangent flow λ, describing the Hamiltonian equations that the optimal
state-adjoint trajectory must satisfy. Specifically, the Hamiltonian equations are given by:

X−1
t Ẋ∗

t =
∂

∂p
H(t,X∗

t , P
∗
t , θ

∗
t), X∗

0 = x,

µ̇θ
t = −ad∗∂H

∂µ
µθ
t − (dLxθ

t
)∗
∂

∂x
H∗, µθ

T = (dLxθ
T
)∗∇xΦ(x

θ
T). (19)

The dual map (dLg)
⋆ : T ⋆

ghSO(3) → T ⋆
hSO(3) pulls back a cotangent vector at gh to a cotangent

vector at h. The coadjoint representation ad∗X acts on so(3)∗ and is defined as:

⟨ad∗Xµ, Y ⟩ = −⟨µ, adXY ⟩,
where adXY = [X,Y] = XY − Y X for µ ∈ so(3)∗ and X,Y ∈ so(3). Additionally, for each
t ∈ [0, T], the Hamiltonian maximization condition is satisfied:

H(t,X∗
t , µ

∗
t , θ

∗
t) ≥ H(t,X∗

t , µ
∗
t , θ) for all θ ∈ Θ. (20)

B.2 EXTENDED-METHOD OF SUCCESSIVE APPROXIMATIONS (E-MSA)

B.2.1 METHOD OF SUCCESSIVE APPROXIMATIONS (MSA)

One numerical method for solving the Pontryagin Maximum Principle (PMP) is the Method of
Successive Approximations (MSA) Chernousko & Lyubushin (1982), an iterative approach that
alternates between propagation and optimization steps based on the PMP conditions. We first present
the simplest form of MSA.

Consider the general state dynamics:

Ẋ∗
t = f(t,X∗

t , θ
∗),

Given an initial guess θ0 ∈ U for the optimal control, for each iteration k = 0, 1, 2, . . ., we first solve
the state dynamics:

Ẋθk

t = f(t,Xθk

t , θkt), Xθk

0 = x,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

to obtain Xθk

, followed by solving the co-state equation:

µ̇θk

t = −∇xH(t,Xθk

t , µθk

t , θ
k
t), µθk

T = −∇Φ(Xθk

T),

to determine µθk

. Finally, the control is updated using the maximization condition:

θk+1
t = argmax

θ∈Θ
H(t,Xθk

t , µθk

t , θ),

for t ∈ [0, T]. This process is summarized in Algorithm 3.

Algorithm 3 Basic MSA
1: Initialize: θ0 ∈ U ;
2: for k = 0 to #Iterations do
3: Solve Ẋθk

t = f(t,Xθk

t , θkt), Xθk

0 = x;
4: Solve µ̇θk

t = −∇xH(t,Xθk

t , µθk

t , θ
k
t), µθk

T = −∇Φ(Xθk

T);
5: Set θk+1

t = argmaxθ∈ΘH(t,Xθk

t , µθk

t , θ) for each t ∈ [0, T];
6: end for

B.2.2 E-MSA

E-MSA introduces the augmented Hamiltonian

H̃(t, x, µ, θ, v, q) := H(t, x, µ, θ)− 1

2
ρ∥v − f(t, x, θ)∥2 − 1

2
ρ∥q +∇xH(t, x, µ, θ)∥2.

Then, they define the following set of alternative necessary conditions for optimality:

Proposition 3 (Extended PMP) Suppose that θ∗ is an essentially bounded solution to the optimal
control problem (2). Then, there exists an absolutely continuous co-state process µ∗ such that the
tuple (X∗, µ∗, θ∗) satisfies the necessary conditions

Ẋ∗
t = ∇µH̃(t,X∗

t , µ
∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t), X∗

0 = x

Ṗ ∗
t = −∇xH̃(t,X∗

t , µ
∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t), µ∗

T = −∇xΦ(X
∗
T)

H̃(t,X∗
t , µ

∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t) ≥ H̃(t,X∗

t , µ
∗
t , 0, Ẋ

∗
t , µ

∗
t), θ ∈ Θ, t ∈ [0, T]

The key contribution is that the control terms θ can be updated by iteration using the Extended-PMP
as shown below. Meanwhile, it is proven that under this update rule, for each iteration, the target
function J(θ) is non-deceasing.

Algorithm 4 Extended MSA
1: Initialize: θ0 ∈ U . Hyper-parameter: ρ;
2: for k = 0 to #Iterations do
3: Solve Ẋθk

t = f(t,Xθk

t , θkt), Xθk

0 = x;
4: Solve Ṗ θk

t = −∇xH(t,Xθk

t , P θk

t , θkt), P θk

T = −∇Φ(Xθk

T);
5: Set θk+1

t = argmaxθ∈Θ H̃(t,Xθk

t , P θk

t , θ, Ẋθk

t , Ṗ θk

t) for each t ∈ [0, T];
6: end for

C PROOFS AND THEOREMS

C.1 PROOF FOR PROPOSITION 1

C.1.1 PART 1

Proposition 1. For Affine Gaussian Probability Path, the expectation of the running cost upper
bounds the KL divergence between the prior joint distribution p1(xp, x1) = p1(x

p|x1)pdata(x1) and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the joint distribution after guidance p1(xθ, x1) = p1(x
θ|x1)pdata(x1), with x1 ∼ pdata, xp induced

by prior conditional vector field ut(x|x1) and xθ sampled by applying control θt(x1) on ut.

Ex1∼pdata(x1)[
1

2

∫ 1

0

∥θt(x1)∥2dt] ≥ C · KL(p1(xθ, x1)∥p1(xp, x1)).

Proof For Affine Gaussian Probability Paths, the conditional flow distribution of the prior vector field
can be written as: P p

t (x|x1) = N(µt(x1), σt(x1)
2I), the conditional vector field is written as:

ϕt(x) = µt(x1) + σt(x1)x

with its dynamics:
ϕ̇t(x) = µ̇t(x1) + σ̇t(x1)x

Or
ut(x|x1) = µ̇t(x1) +

σ̇t
σt

(x− µt(x1))

Although control terms θ(x1) are specifically derived for each ODE trajectory and are conditioned
on the target point x1, we can define a marginalized control term θt(x) =

∫
θ(x1)p(x1|x)dx1 to

assemble aggregated control from all possible controls applied to each target point. Adding that to
the marginal vector field can be thought of as effectively adding the target-conditioned controls into
the conditional vector field and then marginalize.

u(x) + θt(x) =

∫
(ut(x|x1) + θt(x1)) p(x1|x)dx1

Given the definition of the Gaussian path, we can derive that the additive control terms only alter the
mean of the distribution by denoting it as θt(x1) by noticing it is not proportional to x:

ϕ̇θt (x) = ut(ϕ(x)|x1) + θt(x1) = θt(x1) + µ̇t(x1) + σ̇t(x1)x

The resulting pushing-forward prob is equivalently:

P θ
t (x) =

∫
P θ
t (x|x1)q(x1)dx1

Pu
t (x|x1) = N(µθ

t (x1), σt(x1)
2I)

Usually, besides maximising the reward, we hope the new distribution not too much away from the
original distribution. One common constraint on the terminal state distribution is the the Kullback-
Leibler (KL) divergence.

Inspired by Variational Flow Matching (Eijkelboom et al. (2024)), we can (KL) divergence between
the joint distributions of the data point x1 and the prior terminal point xp, denoted as p1(xp, x1) =
p1(x

p|x1)pdata(x1), and that of the data point x1 and the controlled terminal point xθ, denoted as
p1(x

θ, x1):KL(P
p
1 (x, x1)||Pu

1 (x, x1))

The KL term can be simplified as:

KL(P p
1 (x, x1)||P θ

1 (x, x1)) =

∫ ∫
P p
1 (x|x1)q(x1)log(

P p
1 (x|x1)pdata(x1)
P θ
1 (x|x1)pdata(x1)

)dxdx1

= Ex1∼pdata(x1)[KL(P
p
1 (x|x1)||P θ

1 (x|x1))]

Given P p
1 (x|x1) and P θ

1 (x|x1) are two Gaussians with same variance but different mean, and when
we consdier the constraint per sample, the constraint can be written as:

1

2

||µθ
1(x1)− µp

1(x1)||2

σ1(x1)2

Given:

||µθ
1(x1)− µp

1(x1)||2 = ||
∫ 1

0

θtdt||2 ≤
∫ 1

0

∥θt∥2dt

Therefore, we have the following inequality:

Ex1∼pdata(x1)[
1

2

∫ 1

0

∥θt(x1)∥2dt] ≥
1

4σ1(x1)2
· KL(p1(xθ, x1)∥p1(xp, x1))

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.1.2 PART 2

Proposition 1. Part 2 For square-shaped data x with non-zero probability path, the expectation of
the running cost, combined with the L1-distance between the prior sample xp1 and the corresponding
guided sample xθ1, upper bounds the KL divergence between the marginal distributions of the prior
model pp1 and the guided model pθ1:

A

∫ 1

0

∥θt∥ dt+B

∫ 1

0

∥θt∥2 dt ≥ KL(pp1 ∥ pθ1)

Proof Firstly, we can build a bound for the distance of terminal points of pre-trained model ϕpt (x)
and our controlled model ϕθt (x) given the same starting point.

Given dϕp
t (x)
dt = fp(x) with fp() is the prior model and dϕθ

t (x)
dt = fp(x) + θt, meanwhile as the θt

are defined per sample, we can see them as a function of x.
Given the ODEs governing ϕθt (x) and ϕpt (x) and use Lipschitz condition:

||ϕθt (x)− ϕpt (x)|| ≤
∫ 1

0

||fp(ϕθt (x))− fp(ϕpt (x)) + θt||dt ≤ L

∫ 1

0

||ϕθt (x)− ϕpt (x)||dt+
∫ 1

0

||θt||dt

By Gronwall’s inequality:

||ϕθ1(x)− ϕp1(x)|| ≤ eL
∫ 1

0

||θt||dt

From the bound we build above, we can set

ϕθ1(x)− ϕp1(x) = g(θt, x) with g(θt, x) ≤ eL
∫ 1

0

||θt||dt

and then by definition:
ϕ−1
θ,1(x) = ϕ−1

p,1(x− g)

Now we consider the push-forward functions and assume p() is non-zero for all x:

pp1(x) = p0(ϕ
−1
p,1(x))det[

∂ϕ−1
p,1

∂x
(x)]

pθ1(x) = p0(ϕ
−1
θ,1(x))det[

∂ϕ−1
θ,1

∂x
(x)]

Given the starting distribution is standard Gaussian, we can get the KL divergence as:

KL(pp1 ∥ pθ1) =
∫
p1(x)

−1

2
∥ϕ−1

p,1(x)∥2 +
1

2
∥ϕ−1

θ,1(x)∥
2 + log

det
∂ϕ−1

p,1

∂x (x)

det
∂ϕ−1

θ,1

∂x (x)

 dx
With Mean Value Theorem, we can find a point x̃ between x and x− g so that

ϕ−1
p,1(x)− ϕ−1

p,1(x− g) = (ϕ−1
p,1(x̃))

′
g

With (ϕ−1
p,1(x̃))

′ ≤ k:

−1

2
∥ϕ−1

p,1(x)∥2 +
1

2
∥ϕ−1

θ,1(x)∥
2 ≤ k∥g∥+ k2

2
∥g∥2

For the log term: With MVT again, there exists a point ξ on the line segment between x and x− g
such that:

h(x)− h(x− g) = ∇h(ξ) · g
Applying this to h(x) = log det f(x):

log det f(x)− log det f(x− g) = ∇(log det f)(ξ) · g

Thus,
|∆(x)| = |∇(log det f)(ξ) · g| ≤ ∥∇(log det f)(ξ)∥∥g∥

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To bound ∥∇(log det f)(ξ)∥, the gradient of log det f(x) with respect to x is:

∇(log det f(x)) = (det f(x))−1∇(det f(x))

Given the derivative of the determinant of a matrix-valued function assuming f(x) is square:

∇(det f(x)) = det f(x) · tr
(
f ′(x)−1f ′′(x)

)
Therefore:

∇(log det f(x)) = tr
(
f ′(x)−1f ′′(x)

)
Assuming that:

• ∥f ′(x)−1∥ ≤M for some constant M .

• ∥f ′′(x)∥ ≤ N for some constant N .

Then:
∥∇(log det f(x))∥ ≤ ∥f ′(x)−1∥ · ∥f ′′(x)∥ · n ≤MNn = K

Therefore:

log
det

∂ϕ−1
p,1

∂x (x)

det
∂ϕ−1

θ,1

∂x (x)
≤ K∥g∥

Overall, we can bound the KL divergence using the integration of θt and integration of square of θt:

KL(pp1 ∥ pθ1) ≤ Ex1∼pp
1(x)

[
(k +K)∥g∥+ k2

2
∥g∥2

]
≤ Ex1∼pp

1(x)

[
(k +K)eL∥x1 − xθ1(x1)∥+

k2

2
eL
∫ 1

0

∥θt∥2dt
]

C.2 PROOF FOR THEOREM 2

Since the Extended Method of Successive Approximations (E-MSA) is applied in this context, its
convergence properties are directly inherited. In this section, we focus on how our update rule is
derived from the E-MSA update rule, specifically under the framework of additive control terms and
running cost.

Define Hamiltonian H and Extended Hamiltonian H̃:

H(t, x, µ, θ) = µt · f(x, t) + µt · θt −
1

2
||θt||2

H̃(t, x, µ, θ, ẋ, µ̇) = µt · f(x, t) + µt · θk+1
t − 1

2
||θk+1

t ||2 − γ

2
||θk+1

t − θkt ||2

Apply Extended MSA:
ẋkt = θkt + f(xkt , t)

µ̇k
t = −∇xH(t, xk, µk, θk) = −∇xf(x

k
t , t)µ

k
t

µk
1 = α∇x1

Φ(xk1)

θk+1
t = argmaxθtH̃(t, x, µ, θ, ẋ, µ̇)

µk
t can be calculated in closed form as below, with T exp is the time-order exponential:

µk
t = T exp

(∫ 1

t

∇xf(x
k
s , s)ds

)
· α∇x1Φ(X

k
1)

Thus, the update rule of θt is:

θk+1
t =

γ

1 + γ
θkt +

α

1 + γ
T exp

(∫ 1

t

∇xf(x
k
s , s)ds

)
· ∇x1

Φ(Xk
1)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Further, the time-order exponential term can be simplified as following:

Evans (1983) provides method to calculate p(t) = ∇xt
x(1) efficiently by defining the adjoint and

using the following ODEs:
ṗ(t) = −∇xf(x

k
t , t)p(t)

p(1) = ∇x(1)x(1) = I

Sakurai & Napolitano (2020) provides an alternative viewpoint of the ajoint ODE, they show there
would be a closed form solution:

ṗ(t) = A(t)p(t)

p(t) = T exp

[
−
∫ 1

t

A(s)ds

]
p(1)

Thus, combine the closed form solution and the adjoint representation, we find that:

∇xtx(1) = T exp

[∫ 1

t

∇xf(x
k
s , s)ds

]
Given the linearity of the ODEs, multiply a constant to the terminal by change p(t) = ∇xtx(1) into
p(t) = ∇xtx(1)∇x1Φ(x1), the conclusions would not change, we have:

∇xt
x(1)∇x1

Φ(x1) = T exp

[∫ 1

t

∇xf(x
k
s , s)ds

]
∇x1

Φ(x1)

Therefore, our update rule is in fact:

θk+1
t =

γ

1 + γ
θkt + α∇xt

Φ(Xk
1)

The solutions can be naturally generalised to the space of RN if we use Tr(ATB) to replace A ·B.

C.3 DISCRETIZATION ERROR

Given the discretization method we are using is Euler step, we can show the error in terminal
states due to Euler method with turning continous setting ẋθt = ht(x

θ
t , θt) into discrete setting

xt+1 = xt + ht(x
θ
t , θt)∆t is bounded:

Consider the first update of the states:
Define the local truncation error as:

τk := x∗t+1 − x∗t − ht(x
θ
t , θt) ·∆t

By definition:

τk =

∫ tk+1

tk

hs(x
θ
s, θs)ds− ht(x

θ
t , θt) ·∆t

Given ∆t is small, with Taylor expansion:

hs(x
θ
s, θs) = ht(x

θ
t , θt) +

∂h

∂x
(xθs − xθt) +

∂h

∂t
(s− t) + higher order terms (21)

Similarly:
xθs − xθt = ht(x

θ
t , θt)(s− t) + higher order terms (22)

Put inside equation [7]:

hs(x
θ
s, θs) = ht(x

θ
t , θt) + (

∂ht
∂x

ht +
∂h

∂t
)(s− t) + higher order terms (23)

Therefore:∫ tk+1

tk

hs(x
θ
s, θs)ds = ∆t · ht(xθt , θt) +

∆t2

2
(
∂ht
∂x

ht +
∂h

∂t
) + higher order terms (24)

τk =
∆t2

2
(
∂ht
∂x

ht +
∂h

∂t
) + higher order terms

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Now we accumulate Local Errors to Global Error:
Define error in kth step:

ek = x∗(tk)− xk

ek+1 = x∗(tk+1)−xk+1 = (x∗(tk) + ∆t · f(x∗(tk), u∗(tk), tk) + τk)−(xk +∆t · f(xk, u∗k, tk))
(25)

Simplifying:
ek+1 = ek +∆t (f(x∗(tk), u

∗(tk), tk)− f(xk, u
∗
k, tk)) + τk (26)

Assuming f is Lipschitz continuous in x and u:

∥f(x∗(tk), u∗(tk), tk)− f(xk, u
∗
k, tk)∥ ≤ Lf∥x∗(tk)− xk∥ = Lf∥ek∥ (27)

Error Recurrence Inequality:

∥ek+1∥ ≤ ∥ek∥+∆t · Lf∥ek∥+ ∥τk∥ = (1 +∆t · Lf)∥ek∥+ ∥τk∥ (28)

Solving the Error Inequality given ∥τk∥ ≤ C(∆t)2, where C is a constant depending on f and its
derivatives.
We will solve the inequality:

ϵk+1 ≤ αϵk + C(∆t)2 (29)

where ϵk = ∥ek∥ and α = 1 +∆t · Lf . Thus:

ϵk+1 ≤ αk+1ϵ0 + C(∆t)2
k∑

j=0

αk−j (30)

Since ϵ0 = 0 (assuming x0 is exact), the first term drops out. The sum becomes:

Sk =

k∑
j=0

αk−j =
αk+1 − 1

α− 1
(31)

For small ∆t:
α ≤ e∆t·Lf (32)

αk+1 ≤ e(k+1)∆t·Lf = eLf tk+1 (33)

Compute the Sum Sk:

Sk ≤ eLf tk+1 − 1

e∆t·Lf − 1
≤ eLf tk+1 − 1

∆t · Lf
(34)

Final Bound on ϵk+1:

ϵk+1 ≤ C(∆t)2 · e
Lf tk+1 − 1

∆t · Lf
=
C∆t(eLf tk+1 − 1)

Lf
(35)

At the Final Time tf :

ϵN = ∥x∗(tf)− xN∥ ≤ C∆t(eLf tf − 1)

Lf
(36)

For multiple round of updates, the error would be accumulated, for the N+1th update, an additional
local error is added to τk:

εk,N+1 = x∗t,N − xt,N + (ht(x
∗
t,N , θ

t,∗
N)− ht(xt,N , θ

t
N)) ·∆t

As the magnitude of this additional term is still O(∆t2), the order of magnitude of τk does not
change, thus our conclusion does not change. The case in SO(3) manifold should be similar noticing
the discretization also uses Euler step.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.4 ASYNCHRONOUS SETTING AND VJP IN SO(3)

In practice, as described by equation 15, discretization techniques are employed to simulate the
ordinary differential equations (ODEs) governing both the state trajectory xt and the corresponding
cotangent vector µt. Most existing methods, as well as the algorithm presented earlier, operate under
a synchronous setting, where the number of time steps for the state trajectory xt matches the number
of control terms θt.

However, OC-Flow can be extended to an asynchronous framework by approximation to allow greater
flexibility in update scheduling.

Rather than employing the standard update rule xt+∆t = xt + f(t, xt, θt)∆t, we subdivide the time
interval ∆t into N equally spaced subintervals, applying the control term θt only during the first
subinterval. The update for xt+∆t is given by:

xt+∆t = xt +
∆t

N
f(xt, θt) +

∆t

N
fp(xθ

t+∆t
N
) + · · ·+ ∆t

N
fp(xθ(N−1)∆t

N

) (37)

Moreover, for intermediate steps, we define:

xt+ i∆t
N

= xt +
∆t

N
f(xt, θt) +

i−1∑
l=1

∆t

N
fp(xθ

t+ l∆t
N

),

where xt+ i∆t
N

denotes the state at the i-th subinterval.

Recall that f(xt, θt) = fp(xt) + θt, when we have ∆t
N is small enough, the update rule in equation 7

can be approximated as a case in Equation 4 by considering ∇θxt+∆t:

∇θxt+∆t =
∆t

N
+

∆t

N
∇θf

p(xθ
t+∆t

N
) + · · ·+ ∆t

N
∇θf

p(xθ
t+

(N−1)∆t
N

)

=
∆t

N
+ (

∆t

N
)2∇xf

p(xθ
t+∆t

N
) + · · ·+ (

∆t

N
)N∇xf

p(xθ
t+

(N−1)∆t
N

)

=
∆t

N
+O

(
(
∆t

N
)2
)

Therefore, if we denote xt as the trajectory of the state variable x over the time interval [t, t+∆t],
and xθt as the trajectory when the control term θt is applied in the first subinterval, it can be reasonably
approximated as:

xt+∆t ≈ xt +
∆t

N

i−1∑
l=1

fp(xt+ l∆t
N

) +
∆t

N
θt.

As a result, for asynchronous setting, the step 4 in algorithm 1 should be modified as:

Xθk

t+∆t =

(
1

N

i−1∑
l=1

fp(xt+ l∆t
N

) +
1

N
θk

)
∆t

For the case on the SO(3) manifold, the asynchronous setting can be deployed using the Taylor
expansion of the matrix exponential exp(A), and noting that when ∆t

N and ∆t are sufficiently small,
the terms become commutative. We can derive the approximation as follows:

xt+∆t =xt exp

(
∆t

N
f(xt, θt)

)
exp

(
∆t

N
fp(xθ

t+∆t
N
)

)
· · · exp

(
∆t

N
fp(xθ(N−1)∆t

N

)

)
≈xt exp

(
∆t

N

i−1∑
l=1

fp(xt+ l∆t
N

) +
∆t

N
θt

)
.

≈xt exp

(
∆t(fpe (xt) +

1

N
θt)

)
.

The vector-Jacobian method can also be applied to compute the term ∂fp
t

∂x (xktEj) in Algorithm 2:

⟨µ̃t,
∂fpt
∂x

xktEj⟩ = Tr

(
µ̃T
t

∂fpt
∂x

(xktEj)

)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.5 PROOF FOR PROPOSITION 3

The key inequality we used for the proof of proposition 3 is following:

⟨h, v⟩ ≤ ∥h∥∥v∥ ∥x∥ = 1

for h, v ∈ so(3) and x ∈ SO(3) Before prove the proposition 3, we firstly show that the cotangent
vector {µt} is also bounded.

Lemma2 Assume all functions satisfy Lipschitz condition. Then, there exists a constant K ′⟩0 such
that for any θ,

∥µθ
t ∥ ≤ K ′,

for all t ∈ [0, T].
Proof Using necessary condition and setting τ := T − t, µ̃θ

τ := µθ
T−τ we get

˙̃µθ
τ = ad∗∂H

∂µ
µ̃θ
τ + (dLx)

∗(∇x⟨µ̃θ
τ , f⟩) µ̃θ

0 = (dLxθ
T
)∗∇Φ(xθT)

With Lipschitz condition, we have ∥µ̃θ
0∥ ≤ ∥∇Φ(xθT)∥∥xθT ∥ ≤ K and ∥∇xf(t, x

θ
t , θt)∥ ≤ K and

∥ad∗∂H
∂µ

µ∥ ≤ ∥∂H
∂µ ∥∥µ∥ ≤ K∥µ∥. Hence,

∥ ˙̃µθ
τ∥ ≤ K∥µ̃θ

τ∥,

and

∥µ̃θ
τ∥ − ∥µ̃θ

0∥ ≤ ∥µ̃θ
τ − µ̃θ

0∥ ≤
∫ t

0

∥ ˙̃µθ
s∥ds ≤

∫ t

0

(K∥µ̃θ
τ∥)ds

and by Gronwall’s inequality,
∥µ̃θ

τ∥ ≤ ∥µ̃θ
0∥eKT =: K ′.

This proves the claim since it holds for any τ .

Now given all related terms are bounded, we can prove the proposition 2.

Proposition 3 Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Then, there exists a constant C⟩0 such that for any
θ, ϕ ∈ so(3), the following inequality holds:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− C||ϕt − θt||2dt ≤ J(ϕ), (38)

where Xθ and P θ satisfy the PMP conditions in equation 19, and ∆Hϕ,θ denotes the change in the
Hamiltonian, defined as:

∆Hϕ,θ(t) := H(t, xθt , µ
θ
t , ϕt)−H(t, xθt , µ

θ
t , θt).

Proof: Firstly, by the definition of Hamiltonina and PMP conditions, we always have:

I(xθ, µθ
t , θ) :=

∫ T

0

⟨µθ
t , f

θ
t ⟩ −H(t, xθt , µ

θ
t , θ)− L(θ)dt ≡ 0

Define δµt = µϕ
t − µθ

t and δft = fϕt − fθt , the difference in I can be decomposed as:

0 ≡I(xϕ, µϕ
t , ϕ)− I(xθ, µθ

t , θ)

=

∫ T

0

⟨µθ
t , δft⟩+ ⟨δµt, f

θ
t ⟩+ ⟨δµt, δft⟩dt

−
∫ T

0

H(t, xϕt , µ
ϕ
t , ϕ)−H(t, xθt , µ

θ
t , θ)dt

−
∫ T

0

L(ϕt)− L(θt)dt

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Now define U(t) =
∫ t

0
fsds = log(xtx

−1
0) and by integrating by parts:∫ T

0

⟨µθ
t , δft⟩dt = ⟨µθ

t , δUt⟩|T0 −
∫ T

0

⟨µ̇θ
t , δUt⟩dt∫ T

0

⟨δµt, δft⟩dt = ⟨δµt, δUt⟩|T0 −
∫ T

0

⟨ ˙δµt, δUt⟩dt

Now we have: ∫ T

0

⟨µθ
t , δft⟩+ ⟨δµt, f

θ
t ⟩dt

=⟨µθ
t , δUt⟩|T0 +

∫ T

0

⟨δµt,
∂Hθ

∂µ
⟩+ ⟨µθ

t , ad ∂Hθ

∂µ

δft⟩+ ⟨∂H
θ

∂x
, δftx

θ
t ⟩dt

Similarly, we get:∫ T

0

⟨δµt, δft⟩dt =
1

2

∫ T

0

⟨δµt, δft⟩dt+
1

2

∫ T

0

⟨δµt, δft⟩dt

=
1

2
⟨δµt, δUt⟩|T0 − 1

2

∫ T

0

⟨ ˙δµt, δUt⟩dt+
1

2

∫ T

0

⟨δµt, δft⟩dt

=
1

2
⟨δµt, δUt⟩|T0 +

1

2

∫ T

0

⟨µϕ
t , ad ∂Hϕ

∂µ

δUt⟩ − ⟨µθ
t , ad ∂Hθ

∂µ

δUt⟩dt

+
1

2

∫ T

0

⟨(dLxϕ
t
)∗
∂Hϕ

∂x
− (dLxθ

t
)∗
∂Hθ

∂x
, δUt⟩dt

+
1

2

∫ T

0

⟨δµt,
∂Hϕ

∂µ
− ∂Hθ

∂µ
⟩dt

With mean value theorem and x, µ are bounded by constant L, we can always find xγt between xϕt
and xθt , µγ

t between µϕ
t and µθ

t , γ between ϕ and θ, so that :∫ T

0

⟨(dLxϕ
t
)∗
∂

∂x
H(t, xϕt , µ

ϕ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt⟩dt

=

∫ T

0

⟨(dLxθ
t
)∗
∂

∂x
H(t, xθt , µ

θ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt⟩dt

+

∫ T

0

⟨∇x((dLxγ
t
)∗)xγt δUt∇xH(t, xϕt , µ

ϕ
t , ϕ), δUt⟩dt

+

∫ T

0

⟨(dLxθ
t
)∗∇2

xH(t, xγt , µ
ϕ
t , ϕ)x

γ
t δUt, δUt⟩dt

+

∫ T

0

⟨(dLxθ
t
)∗∇µ∇xH(t, xθt , µ

γ
t , ϕ)δµt, δUt⟩dt

≤
∫ T

0

⟨(dLxθ
t
)∗
∂

∂x
H(t, xθt , µ

θ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt⟩dt

+ C

∫ T

0

||δUt||2 + ||δµt||||δUt||dt

Using the same method we get:∫ T

0

⟨δµt, δft⟩dt ≤
1

2
⟨δµt, δUt⟩|T0 +

1

2

∫ T

0

⟨µϕ
t , ad ∂Hϕ

∂µ

δUt⟩ − ⟨µθ
t , ad ∂Hθ

∂µ

δUt⟩dt

+
1

2

∫ T

0

⟨ ∂
∂x
H(t, xθt , µ

θ
t , ϕ)−

∂

∂x
H(t, xθt , µ

θ
t , θ), δUtx

θ
t ⟩dt

+
1

2

∫ T

0

⟨ ∂
∂µ

H(t, xθt , µ
θ
t , ϕ)−

∂

∂µ
H(t, xθt , µ

θ
t , θ), δµt⟩dt

+ C

∫ T

0

||δUt||2 + ||δµt||||δUt||dt

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

With boundary conditions:

⟨µθ
t +

1

2
δµt, δUt⟩|T0 = ⟨µθ

T +
1

2
δµT , δUT ⟩

=⟨(dLxθ
t
)∗∇Φ(xθT), δUt⟩+

1

2
⟨(dLxϕ

t
)∗∇Φ(xϕT)− (dLxθ

t
)∗∇Φ(xθT), δUt⟩

≤Φ(xϕT)− Φ(xθT) +K||δUT ||2

Using same method to H(t, xϕt , µ
ϕ
t , ϕ)−H(t, xθt , µ

θ
t , θ), Thus we obtain:

[Φ(xθT) +

∫ T

0

L(θt)]− [Φ(xϕT) +

∫ T

0

L(ϕt)]

≤K||δUT ||2 −
∫ T

0

∆Hϕ,θ(t)dt+
1

2

∫ T

0

⟨µϕ
t , ad ∂Hϕ

∂µ

δUt⟩ − ⟨µθ
t , ad ∂Hθ

∂µ

δUt⟩dt

+
1

2

∫ T

0

⟨ ∂
∂x
H(t, xθt , µ

θ
t , ϕ)−

∂

∂x
H(t, xθt , µ

θ
t , θ), x

θ
t δUt⟩dt

+
1

2

∫ T

0

⟨ ∂
∂µ

H(t, xθt , µ
θ
t , ϕ)−

∂

∂µ
H(t, xθt , µ

θ
t , θ), δµt⟩dt

+ C

∫ T

0

||δUt||2 + ||δµt||||δUt||dt

By definition:

δUt =

∫ T

0

f(t, xϕT , ϕ)− f(t, xθT , θ)dt

and so

||δUt|| ≤
∫ t

0

||f(s, xϕs , ϕ)− f(s, xθs, θ)||ds

≤
∫ t

0

||f(s, xϕs , ϕ)− f(s, xθs, ϕ)||ds

+

∫ t

0

||f(s, xθs, ϕ)− f(s, xθs, θ)||ds

≤
∫ T

0

||f(s, xθs, ϕ)− f(s, xθs, θ)||ds

+K

∫ t

0

||δUs||ds

By Gronwall’s inequality:

||δUt|| ≤ eKT

∫ T

0

||f(s, xθs, ϕ)− f(s, xθs, θ)||ds

To estimate δµ, we use the same substitution as in Lemma 6 with τ = T − t,we get:

δµ̃τ = δµ̃0 +

∫ τ

0

(dLx̃ϕ
s
)∗∇xH(s, x̃ϕs , µ̃

ϕ
s , ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ)ds

+

∫ τ

0

ad∗∂H
∂µ
µ̃ϕ
τ − ad∗∂H

∂µ
µ̃θ
τds

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Using Lemma 1 and Liptichitz conditions:

||δµ̃τ || ≤ ||δµ̃0||+
∫ τ

0

||(dLx̃ϕ
s
)∗∇xH(s, x̃ϕs , µ̃

ϕ
s , ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ)||ds

+

∫ τ

0

||ad∗∂H
∂µ
µ̃ϕ
τ − ad∗∂H

∂µ
µ̃θ
τ ||ds

≤ K||δUT ||+KK ′
∫ T

0

||δUt||dt+K

∫ τ

0

||δµ̃s||ds

+

∫ T

0

||(dLx̃θ
s
)∗∇xH(s, x̃θs, µ̃

θ
s, ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ)||ds

≤ eKTK(||δUT ||+K ′
∫ T

0

||δUt||dt)

+ eKTK

∫ T

0

||∇xH(s, x̃θs, µ̃
θ
s, ϕ)−∇xH(s, x̃θs, µ̃

θ
s, θ)||ds

Using the bound of Ut, we obtain:

||δµ̃τ || ≤ K ′′(

∫ T

0

||f(s, xθs, ϕ)− f(s, xθs, θ)||ds)

+ eKTK

∫ T

0

||∇xH(s, x̃θs, µ̃
θ
s, ϕ)−∇xH(s, x̃θs, µ̃

θ
s, θ)||ds

Also we obtain:

1

2

∫ T

0

⟨µϕ
t , ad ∂Hϕ

∂µ

δUt⟩ − ⟨µθ
t , ad ∂Hθ

∂µ

δUt⟩dt

=
1

2

∫ T

0

⟨ad∗∂Hθ

∂µ

µϕ
t − ad∗∂Hθ

∂µ

µθ
t , δUt⟩dt

≤C
∫ T

0

||δµt||||δUt||dt

Finally we get:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

J(θ)− J(ϕ) ≤ −
∫ T

0

∆Hϕ,θ(t)dt

+
1

2
K ′′∥δUT ∥2

+K ′′
∫ T

0

(
∥δUt∥2 + ∥δµt∥2

)
dt

+
1

2

∫ T

0

∥δµt∥∥f(t, xθt , ϕt)− f(t, xθt , θt)∥dt

+
1

2

∫ T

0

∥δUt∥∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥dt

≤ −
∫ T

0

∆Hϕ,θ(t)dt

+ C

(∫ T

0

∥f(t, xθt , ϕt)− f(t, xθt , θt)∥dt

)2

+ C

(∫ T

0

∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥2dt

)2

≤ −
∫ T

0

∆Hϕ,θ(t)dt

+ C

∫ T

0

∥f(t, xθt , ϕt)− f(t, xθt , θt)∥2dt

+ C

∫ T

0

∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥2dt

Therefore, given the form of the addictive control terms and the running cost, we can derive the final
term of our claim:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− C||ϕt − θt||2dt ≤ J(ϕ), (39)

C.6 PROOF FOR PROPOSITION 4

Due to the similarity between the bound derived in Proposition 3 and the bound obtained from the
E-MSA method, the proofs of Proposition 4 and Theorem 5 follow the same reasoning as outlined in
Section 3.3 of Li et al. (2018). For the sake of completeness, we provide the full derivations here.

Proposition 4 Let Xθ and P θ satisfy the PMP conditions in equation 19. If the update rule follows
equation 12, we define ϵk :=

∫ 1

0
∆θk+1,θkH(t) dt, and ϵk is bounded as:

ϵk :=

∫ 1

0

∆θk+1,θkH(t) dt lim
k→∞

ϵk = 0. (40)

Furthermore, when ϵk = 0, we have θ = θ∗ := argmaxθ J(θ)To establish convergence, define

ϵk :=

∫ T

0

∆Hθk+1,θk(t)dt ≥ 0.

Proof By definition, if ϵk = 0, then from the update rule which maximizes the Hamiltonian, we must
have

0 = −ϵk ≤ −γ
2

∫ 1

0

∥θk+1 − θk∥2dt ≤ 0.

and so
max

θ
H̃(xθ

k

t , µ
θk

t , θ, ẋ
θk

t , µ̇
θk

t) = H̃(xθ
k

t , µ
θk

t , θ
k
t , ẋ

θk

t , µ̇
θk

t),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Therefore, we always have the quantity ϵk ≥ 0 and it measures the distance from the optimal solution,
and if it equals 0, then we reach the optimum.

C.7 PROOF FOR THEOREM 5

Theorem 5: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Let θ0 ∈ so(3) be any initial measurable control with
J(θ0) < +∞. Suppose also that infθ∈so(3) J(θ) > −∞. If the update of θ satisfies equation 12, for
sufficiently large γ, the following inequality holds:

Dϵk ≤ J(θk+1)− J(θk) (41)

for some constant D > 0

Proof Using Proposition 3 we have

J(θk)− J(θk+1) ≤ −ϵk + C

∫ T

0

∥θk+1 − θk∥2dt

From the Algorithm 2 maximazaing step, we know that

H(t,Xθk

t , P θk

t , θkt) ≤ H(t,Xθk

t , P θk

t , θk+1
t)− γ

2
∥θk+1 − θk∥2

Hence, we have

J(θk)− J(θk+1) ≤ −(1− 2C

γ
)ϵk.

Pick γ > 2C, then we shall have J(θk)− J(θk+1) ≤ −Dϵk with D = (1− 2C
γ) > 0.

Moreover, we can rearrange and sum the above expression to get

M∑
k=0

ϵk ≤ D−1
(
J(θM+1)− J(θ0)

)
≤ D−1

(
inf
θ∈U

J(θ)− J(θ0)

)
,

and hence
∑∞

k=0 ϵk < +∞, which implies ϵk → 0 and the algorithm converges to the optimum.

D COMPUTATIONAL EFFICIENCY

Table 6: Comparison of runtime and memory complexity of different methods used in backprop-
through guided-ODE in Euclidean and SO(3) manifold. For complexity, N is the number of ODE
steps, n is the number of effective control terms with synchronized and in the range [1, N] and D2 is
the complexity of computing 1-step gradient (VJP or Autograd), D depends on data and model size.
c is the deficiency introduced by L-BFGS optimizer.

Number Of Memory Runtime Convergence Generalization
Control Terms Complexity Complexity to Optimal to SO(3)

OC-Flow n O(D2) O(nD2) ✓ ✓
FlowGrad n O(D2) O(nD2) ✗ ✗
D-Flow N O(ND2) O(cND2) ✗ ✗
Red-Diff n/a O(D) O(LND) ✗ ✗

In terms of memory complexity, both our implementation and FlowGrad utilize the vector-Jacobian
approach, which allows solving differentiation through ODE-integral with the adjoint method,
significantly reducing memory from O(ND2)(Dflow) to O(D2). In comparison, Dflow does not
employ the adjoint method, significantly increasing the memory complexity to O(ND2), as detailed
in Table 6.

In terms of runtime, both FlowGrad and OC-Flow are predominantly influenced by the number of
control terms. Various strategies are implemented to reduce either the number of control terms (or
the effective time steps requiring back-propagation). Specifically, FlowGrad applies a straightening

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 7: Illustration how different methods decrease the runtime and memory complexity and enhance
model capacibility

Effective Memory Runtime Generalization
Timestep Complexity Complexity to SO(3)

OC-Flow n O(D2) O(nD2) ✗
w/o-asynchronous N O(D2) O(ND2) ✗
w/o-VJP (adjoint) N O(ND2) O(ND2) ✗
OC-Flow-SO(3) n O(D2) O(nD2) ✓
w/o-asynchronous N O(D2) O(ND2) ✓
w/o-VJP (adjoint) N O(ND4) O(ND4) ✓

technique, and in oc-flow, this concept is extended to an asynchronous setting. Consequently, the
runtime complexity is expressed as O(nD2) for both FlowGrad and oc-flow. In contrast, Dflow
does not imply an asynchorized setting, necessitating N steps of Autograd, resulting in O(ND2)
complexity. In addition, Dflow is heavily relying on L-BFGS optimizer (table 4), which also adds a
significant increase in runtime due to e.g., uncontrollable additional iteration of linear search, which
we estimate with a factor of constant c.

Table 7 provides a more direct comparison of the impact of the asynchronous setting and the vector-
Jacobian product (VJP) method.

Compared to optimization-based algorithms, in some methods such as Red-Diff and DPS, the gradient-
guidance can be approximated directly. These methods demonstrate significantly lower memory
complexity and faster runtime. However, their capability is notably constrained. As reported in
the Dflow paper, Red-Diff encounters difficulties in handling noise, even in simple linear inverse
problems involving images.

When oc-flow is adapted to the SO(3) manifold, an additional calculation is introduced for each
control term. Specifically, this involves computing the trace of the product of two D ×D matrices,
which adds a computational cost of O(D2). Despite this additional burden, the overall complexity
remains in the order of O(D2). The VJP method is also applied for oc-flow on the SO(3) manifold,
as shown in Equation 15, for the term ⟨µ̃k

t ,
∂fp

t

∂x x
k
tEi⟩, where ∂fp

t

∂x x
k
t is computed using VJP. This

additional complexity is justified by oc-flow’s improved convergence to optimal solutions on the
SO(3) manifold. Notably, the OC-Flow-SO3 involves computing full Jacobian which could induce
a complexity of O(D4) if directing computing it. Our Jacobian-Vector Product derivation signifi-
cantly reduces the complexity of OC-Flow-SO3 from O(D4) to O(D2), which enabled our efficient
implementation.

Table 8: Memory Usage and Runtime on Text-guided Image (256*256) Manipulation. Note: ODE
steps = 100, optimization steps = 15.

FlowGrad DFlow OC-Flow
Fast Simulation on off - on off
Peak GPU Mem (GB) 5.2 5.2 OOM 5.4 5.4
Runtime per Sample (s) 114.7 206.2 - 115.7 216.7

In Table 8 we show memory usage and runtime on high-dimensional images, evaluated on a single
A100 with 40G memory. We compare FlowGrad, DFlow, and OC-Flow on images. (Liu et al.,
2023) proposed fast simulation through skipping some Euler steps if the relative velocity change is
smaller than a threshold (1e-3 in (Liu et al., 2023)). We compare the 3 models with or without fast
simulation. As for DFlow, we encountered Out-Of-Memory error even on 40G GPU. (Ben-Hamu
et al., 2024) used gradient checkpoint to bypass the OOM error, however, due to the lack of code
and implementation details of DFlow, we are unable to fully reproduce their implementation. For
reference, DFlow takes 15 minutes per image (128*128) on a single 32GB V100 GPU, according to
their paper. Generally speaking, FlowGrad and OC-Flow have similar memory usage and runtime
except for DFlow.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 9: Memory Usage and Runtime Comparison of OC-Flow on Euclidean and SO(3).
SO(3) Euclidean

Peak GPU Mem (GB) 1.6 1.2
Runtime per Sample (s) 296.6 188.2

For peptides 9, since FlowGrad and DFlow are not applicable in SO(3), we only report results for
OC-Flow using our proposed asynchronous algorithm for efficient simulation, evaluated on a single
A100 with 40G memory. Comparing the results, rotation is computationally 0.5x more expensive
than translation due to the additional cost introduced by Eq. 15. However, as shown in Table 7,
the costs of rotation and translation remain within the same order of magnitude. It is important to
note that the extra cost of rotation is justified, as the additional computations required by Eq. 15 are
inherent to operations on the SO(3) manifold. Moreover, as demonstrated in Table 5, generation in
SO(3) is crucial for the task.

Table 10: Runtime Comparison on Molecule. Note: ODE steps = 50, SGD steps = 20, L-BFGS steps
= 5 with inner steps = 5.

EquiFM FlowGrad DFlow OC-Flow
Optimizer N/A SGD SGD L-BFGS SGD L-BFGS
Runtime per Sample (s) 2.4 37.6 31.3 102.8 38.1 103.7

In Table 10, we compare FlowGrad, DFlow, and OC-Flow on molecule, evaluated on a single A100
with 40G memory. For reference, we also list EquiFM model as used in our method. To align with
DFlow, we also adopt L-BFGS optimizer and find it crucial in performance yet slows down the
efficiency.

E EXPERIMENTAL DETAILS

E.1 TEXT-GUIDED IMAGE MANIPULATION

In our text-to-image generation experiment, we adopted the pipeline presented in Liu et al. (2023),
utilizing the generative prior from Liu et al. (2022). We employed standard evaluation metrics: LPIPS
and ID (face identity similarity) as introduced in Kim & Ye (2021) to assess the differences between
the original image and the manipulated image. Additionally, the CLIP score was used to evaluate the
alignment between the generated image and the provided text prompt.

To enforce consistency with the original image and inspired by Proposition 1, we introduced a
constraint term to the terminal reward function to penalize significant deviations from the original
image:

Φ(x1) = λCLIP(x1, T)− (1− η)|x1 − xp1|

Here, the hyperparameter λ was set to 0.7 across all experiments, and the Euler discretization step
was set to N = 100 and the number of optimization iterations M = 15. As discussed in Theorem 2,
increasing the learning rate η results in greater emphasis on the terminal reward, leading to a higher
CLIP score but lower LPIPS and ID scores. The weight decay is a function of γ, which is tuned to
maximize

(
1− 2C

γ

)
ϵkγ for iteration k. In this experiment, due to the limitation of storage, we set γ

the same for all k. In our implementation, the learning rate η was set to 2.5, and the weight decay β
was set to 0.995.

Baseline configurations were aligned with those reported in Liu et al. (2023), and the results presented
in Table 2 reflect the same experimental conditions. For quantitative comparison, we used the CelebA
dataset, randomly sampling 1,000 images, which were manipulated based on text guidance: {old, sad,
smiling, angry, curly hair}.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E.2 MOLECULE GENERATION

In our QM9 generation experiment, we mostly followed the conditional generation pipeline in
Hoogeboom et al. (2022). An equivariant geometric GNN was trained for each property on half of
the QM9 data as the classifier, which was then frozen during our training-free controlled generation.
The EquiFM (Song et al., 2024) checkpoint, trained on the whole QM9 training data, was loaded as
the generative prior. The test time properties were sampled from the whole training dataset, making
it slightly different from the settings in Ben-Hamu et al. (2024). Therefore, we reimplemented the
D-Flow algorithm with 5 optimizer steps and 5 inner steps each with a linear search using the L-BFGS
optimizer. The results roughly matched those reported in the D-Flow paper with slightly worse MAEs
as we included the whole training dataset for property sampling. Our proposed OC-Flow also used
the same optimization hyperparameters and also almost the same running time as the D-Flow. For
FlowGrad, we followed the suggestion in the original paper to use 20 SGD steps to update the
learnable parts, which ran slightly faster than OC-Flow and D-Flow.

For all properties, MAE was used as the optimization target and γ is the regularization coefficient
such that γ

∫ 1

0
∥θt∥2dt is the additional OC loss. For all optimization methods, we always used a

fixed number of 50 Euler steps so θ can be indexed by discrete indices. As the integral is done with
a step size of 1/50, any γ is effectively γ̃ = 2γ/50 = 0.04 when taking the derivative with respect
to θ or x. Therefore, γ = 10 effectively corresponds to γ̃ = 0.4, which is still a valid optimization
scheme.

We noted the difference in the optimizer in these settings in order to be consistent with the D-Flow
setup. We provide additional ablation studies on the effect of the optimizer, in which all guided
generation approaches used the SGD optimizer with 20 iterations and a learning rate of 1, following
the FlowGrad setup. The results are summarized in Table 11. It can be clearly demonstrated that
D-Flow performance is significantly worse than OC-Flow and even FlowGrad, the latter of which
is a special case of our OC-Flow. Indeed, we can safely conclude that the advantage of D-Flow
came solely from its optimizer of using L-BFGS. Using the SGD optimizer caused it to perform
even worse than the unconditional EquiFM baseline on the dipole moment µ. On the other hand,
OC-Flow achieved consistent improvements, using either the L-BFGS or the simple SGD optimizer,
demonstrating our superior performance.

Table 11: Ablation on optimizer. MAE for guided generations on QM9 (lower is better).
Property α ∆ε εHOMO εLUMO µ cv
Unit Bohr³ meV meV meV D cal

K·mol

OC-Flow(Ours) 1.907 346 187 300 0.362 0.972
D-Flow-SGD 5.753 1241 571 1195 1.639 2.982
FlowGrad 2.484 517 273 429 0.542 1.270

OC-Flow-LBFGS(Ours) 1.383 367 183 342 0.314 0.819
D-Flow-LBFGS (Ben-Hamu et al., 2024) 1.566 355 205 346 0.330 0.893

EquiFM 8.969 1439 622 1438 1.593 6.873

E.3 PEPTIDE DESIGN

In our peptide experiments, we adopted PepFlow (Li et al., 2024) as the baseline model, utilizing the
pre-trained checkpoint provided in the original PepFlow paper. The test dataset split was also based
on the one defined in the PepFlow framework. For hyperparameter tuning, we randomly selected 10
complexes from the dataset. After tuning, the full set of 162 complexes was used for guided sampling
and evaluation to ensure a comprehensive performance assessment.

To enable flexible update scheduling, we adopted an asynchronous setting in OC-Flow. This design
maintains the same ODE time steps as PepFlow while utilizing fewer control terms. Specifically, 200
time steps are used for ODE simulation, with 10 control terms, each controlling 20 time steps. As
shown in Table 7, this approach reduces memory and runtime complexity without compromising the
accuracy of the ODE simulation. Furthermore, for consistency and comparability across experiments,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

we strictly controlled the initial noise during reruns to ensure consistency and comparability across
experiments.

We used the pre-trained model as the initialization for our experiments, allowing us to build upon
the pre-trained weights and achieve consistent performance improvements through hyperparameter
adjustments. In OC-Flow(rot), we used α = 0.95 and β = 0.8; in OC-Flow(trans), α = 0.9 and
β = 1.2; and in OC-Flow(both), α = 0.95 and β = 2.0. For all methods, we followed the same
hyperparameter choices outlined in the PepFlow paper to ensure fairness.

For evaluation, in addition to MadraX, the reward function used and optimized during training, we
included several key metrics not used for training to comprehensively assess the physical validity and
overall performance of the generated structures:

• Stability: Calculated using Rosetta over five independent runs, averaged to reduce high
variance.

• Affinity: Measured by Rosetta to determine the binding energy of designed peptides, also
averaged over five runs.

• IMP (Improvement Percentage): The percentage of peptides with improved affinities
(lower binding energies) compared to the native peptides, aligning with the definition used
in PepFlow.

• Diversity: Calculated as the average of 1− TM-Score among generated peptides, reflecting
structural dissimilarities.

• SSR (Secondary-Structure Similarity Ratio): The proportion of shared secondary struc-
tures between the designed peptide and the native peptide.

• BSR (Binding Site Ratio): The overlapping ratio between the binding site of the generated
peptide and the native binding site on the target protein.

Due to the time-intensive nature of Rosetta evaluations, we drew 10 samples per pocket for our
experiments, in contrast to PepFlow’s use of 64 samples. This approach enabled us to achieve
reproducible and fair comparisons across methods without excessive computational costs. Moreover,
by employing OC-Flow with guidance, we demonstrated that superior performance can be achieved
with fewer samples while maintaining consistency in evaluation settings.

As shown in Table 5, we demonstrated the importance of optimization on the SO(3) manifold
for peptide design. To further evaluate the impact of using optimal control for updating rotations
compared to standard gradient descent as in Euclidean space, we implemented Naive-SO(3). In this
implementation, the gradient of the terminal reward with respect to the control terms is computed
directly and mapped to so(3), and gradient descent is used to update the control terms.

θk+1
t = βθkt + η[∇θk

t
Φ(xθ

k

1)]so(3)

ẋθ
k+1

t = (fp(xθ
k+1

t) + θk+1
t)xθ

k+1

t

For the experimental setup, we conducted a comparative study using a randomly selected subset of
30 pockets. Each peptide was tested under identical conditions, with the primary difference being the
parameterization and update method for rotations.

Table 12: Comparison of OC-Flow-SO3 and naive SO3 gradient descent
MadraX ↓ RMSD ↓ SSR % ↑ BSR % ↑ Stability ↓ Affinity ↓ Diversity ↑ imp(%) ↑

Ground-truth -0.610 - - - -91.107 -39.807 - -
PepFlow -0.157 1.932 0.788 0.882 -39.807 -28.080 0.322 11.6
Naive-SO(3) 0.275 5.206 0.769 0.748 75.842 -21.901 0.635 6.0
OC-Flow-SO(3) -0.191 1.943 0.794 0.874 -50.947 -29.027 0.332 14.0

As shown in Table 12, the results indicate that updating rotations on SO(3) using optimal control out-
performs the naive method in terms of energy optimization and stability. The significant performance
gap can be attributed to the accuracy loss during the projection of the gradient onto so(3), which may
disrupt the delicate dynamics of the SO(3) space. Furthermore, due to the complexity of the SO(3)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

manifold, gradient-based methods are more prone to becoming trapped in local optima, whereas the
optimal control-based algorithm provides a pathway toward achieving the global optimum.

Our efforts to reproduce the PepFlow baseline involved extensive steps, including reaching out to the
original authors to address the absence of certain scripts and obtaining partial instructions for the
evaluation pipelines. In the original PepFlow paper, affinity and stability are reported as percentages.
However, to facilitate more fine-grained comparisons, we opted to report absolute energy values
instead. Additionally, to ensure fairness in comparison, we included IMP (Interaction Metric for
Peptides) as an evaluation metric, aligning it with the affinity measure used in PepFlow. Furthermore,
our experiments were conducted using the latest version of MadraX, ensuring that our results are
both robust and reproducible. These updates provide a consistent and comprehensive framework for
evaluating and comparing future methods in peptide design.

33

	Introduction and related work
	Preliminaries and Perspectives about Flow Matching
	Optimal Control Framework for Guided Flow Matching
	OC-Flow on Eulidean manifold
	Practical implementation and acceleration
	Adjoint method and vector-jacobian product
	Asynchronous setting for Flexible Update Scheduling

	connection to other backprop-through guided-ODE approaches

	Optimal Control Framework for Guided Flow Matching in SO(3)
	OC-Flow for SO3
	Convergence of OC-Flow on SO3
	practical implementation

	Experiments
	Text-Guided Image Manipulation
	Molecule Generation for QM9
	Peptide Design

	Conclusions and Discussion
	Background of Riemannian Manifold and SO(3) Group
	Background of PMP and E-MSA
	PMP
	Extended-Method of Successive Approximations (E-MSA)
	Method of Successive Approximations (MSA)
	E-MSA

	Proofs and Theorems
	Proof for Proposition 1
	part 1
	part 2

	Proof for Theorem 2
	Discretization Error
	Asynchronous setting and VJP in SO(3)
	Proof for Proposition 3
	Proof for Proposition 4
	Proof for Theorem 5

	computational efficiency
	Experimental Details
	Text-Guided Image Manipulation
	Molecule Generation
	Peptide Design

