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Abstract

Proactive intention decoding remains a critical yet underex-
plored challenge in brain—machine interfaces (BMlIs), espe-
cially under naturalistic, self-initiated behavior. Existing sys-
tems rely on reactive decoding of motor cortex signals, re-
sulting in substantial latency. To address this, we leverage the
common marmoset’s spontaneous vocalizations and develop a
high-resolution, dual-region ECoG recording paradigm target-
ing the prefrontal and auditory cortices and a neural decoding
framework that integrates shapelet-based temporal encoding,
position-aware attention, frequency-aware channel masking,
contrastive clustering and a minimum error entropy-based
robust loss. Our approach achieves 91.9% accuracy up to
200 ms before vocal onset—substantially outperforming 13
competitive baselines. Our model also uncovers a functional
decoupling between auditory and prefrontal regions. Further-
more, joint modeling in time and frequency domains reveals
novel preparatory neural signatures preceding volitional vo-
cal output. Together, our findings bridge the gap between
foundational neuroscience and applied BMI engineering, and
establish a generalizable framework for intention decoding
from ecologically valid, asynchronous behaviors.

Code — https://github.com/kkkiland/Marmoset-ECoG

Introduction

In recent years, brain—machine interfaces (BMIs) have ad-
vanced significantly in enabling neural control of external
devices, with applications in assistive robotics, neuropros-
thetics, and communication aids (Tonin et al. 2022; Rupp
et al. 2015; Meng et al. 2016). However, most existing sys-
tems adopt a reactive paradigm, decoding intentions from
sensorimotor signals after the intention has already been
formed or partially executed. As a result, system responses
often lag behind user behavior, undermining the seamless-
ness, reliability, and safety required for real-world deploy-
ment. This limitation stems from the reliance on movement-
related signals originating in the sensorimotor cortex—a
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downstream cortical region at the terminus of the percep-
tion—decision—action loop—which are inherently constrained
by delays in neural processing and motor execution. For ex-
ample, electroencephalography (EEG)- and electrocorticog-
raphy (ECoG)-based BMIs for finger movement decoding
typically exhibit latencies of 1.0-1.2 s (Ding et al. 2025),
well beyond the threshold for real-time interaction (LaRocco
and Paeng 2020; Skomrock et al. 2018). To overcome this
bottleneck, a shift toward proactive intention prediction is
essential—forecasting user intentions as early as possible
before action onset. Achieving this requires moving beyond
traditional motor cortices and incorporating higher-order cog-
nitive and sensory regions, such as the prefrontal, auditory,
and visual cortices, which are involved in early-stage per-
ception, volition, and decision-making. Neural signals from
these areas may encode predictive markers that precede overt
motor preparation. For instance, Tsunada and Eliades simul-
taneously recorded multi-channel activity from the frontal
and auditory cortices of common marmosets (Tsunada and
Eliades 2025), demonstrating that both regions exhibit sig-
nificant activation approximately 200—300 ms prior to spon-
taneous vocalizations. Notably, this pre-vocalization activ-
ity was predictive of subsequent acoustic features—such as
spectral dynamics—thereby offering an expanded temporal
window for predicting internal intentions.

Despite its critical importance, intention prediction re-
mains a critically underexplored frontier in BMI research.
The majority of existing work has centered on classifying
overt behaviors under structured, trial-based paradigms (Ding
et al. 2025; Nagashima et al. 2025), with only sporadic efforts
have addressed early or pre-movement decoding in naturalis-
tic settings—efforts that primarily reside within the domain of
basic neuroscience rather than applied BMI engineering (Liu
et al. 2022). While deep learning has considerably advanced
neural decoding capabilities (Wang et al. 2024; Zheng et al.
2024), major obstacles persist. These challenges originate
from limitations in neural recording, structural constraints in
experimental design, and fundamental barriers in decoding
algorithms and their interpretability:

Precise and real-time intention decoding. Spontaneous
behaviors such as vocalizations are inherently infrequent,
lack clear external cues, and unfold without structured trial
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Figure 1: Overall experimental pipeline. Wireless BCI systems were implanted in marmosets to record ECoG signals from A1
and PFC under an auditory stimulation paradigm. The process involved bad channel removal, dataset construction, and neural
decoding, achieving 91.9% accuracy for vocal onset prediction 200 ms ahead and interpretable vocalization-related patterns.

boundaries—resulting in sparse, noisy neural signals with
high temporal variability. These characteristics make antici-
patory decoding during the pre-movement phase extremely
challenging. In particular, conventional EEG-based methods
often perform at near-chance levels (40-50%) (Blankertz
et al. 2003), due to limited spatial resolution and low signal-
to-noise ratios. This limitation severely constrains the de-
velopment of real-time BMIs capable of proactive control
in ecologically valid scenarios, such as free movement or
natural communication.

Multi-region synergy mechanisms investigation. Al-
though localized neural activity—especially in the senso-
rimotor cortex—has long been associated with volitional
control, growing evidence suggests that intention emerges
from distributed and synergistic interactions across large-
scale networks, particularly involving the prefrontal and pari-
etal cortices (Gordon-Fennell et al. 2023). However, most
current decoding frameworks rely on region-specific features
and trial-structured paradigms, failing to model critical cross-
area dynamics. Without capturing these inter-regional depen-
dencies, it is difficult to improve decoding performance or
gain mechanistic insights into how intentions are generated
and propagated throughout the brain. Addressing this gap is
crucial for advancing both computational BMI design and
systems-level neuroscience.

Neural patterns for specific intention extraction. Iso-
lating neural representations that correspond to specific be-
havioral intentions is foundational for robust anticipatory
decoding. Yet, current models struggle to capture the rapid,
nonlinear evolution of neural dynamics underlying intent
formation. This challenge is compounded by limitations in
signal resolution, as well as the lack of frameworks capable
of modeling complex, multi-scale dependencies. As a result,
many intention-relevant patterns remain undercharacterized,
limiting both predictive performance and biological inter-
pretability. Developing more expressive and interpretable
models is therefore essential to unlock actionable intent sig-
natures from neural data.

To address these challenges, we leverage the marmoset—a
New World primate whose rich and spontaneous vocal be-
havior offers an ecologically valid model for studying voli-
tional communication. Unlike reflexive calls, marmoset vo-
calizations are self-initiated, context-dependent, and goal-
directed (Li, Aoi, and Miller 2024), providing an ideal sub-
strate for intention decoding research. Crucially, recent stud-
ies have shown that these vocalizations are consistently pre-
ceded by preparatory neural activity in both frontal and au-
ditory cortices (Tsunada and Eliades 2024; Grijseels et al.
2023), offering a reliable temporal window for proactive neu-
ral decoding. Moreover, we employ a ECoG-based neural
acquisition system implanted in the marmoset brain, which
enables high-resolution, stable, and high-SNR recordings of
cortical activity. This setup provides the high-fidelity neural
data essential for decoding fine-grained and distributed dy-
namics underlying volitional behavior. (Schwarz et al. 2014).

Building on this, we developed a vocalization-based ex-
perimental paradigm and a multi-region available neural de-
coding framework for predicting spontaneous vocalizations
from high-density ECoG recordings in marmosets. The exper-
imental paradigm captures naturally occurring, asynchronous
vocal behaviors without explicit task constraints, simultane-
ously recording neural activity from the auditory (A1) and
prefrontal cortices (PFC). To extract informative neural sig-
natures predictive of vocal onset, our framework combined
shapelet-based temporal feature extraction with a position-
aware attention mechanism to encode temporal dependencies.
Concurrently, frequency-aware channel masking and con-
trastive clustering were implemented, selectively aggregating
inter-channel relationships within distinct spectral bands. To
enhance robustness against acquisition and neural noises,
a minimum error entropy (MEE) loss derived from Rényi
entropy was adopted, effectively reducing prediction uncer-
tainty during model training (Li et al. 2021b). This framework
addresses a critical gap in BMI by enabling the extraction
of intention-relevant neural features from unstructured, self-
initiated behaviors—an underexplored yet essential capability
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Figure 2: Overall architecture of the decoding framework for marmoset vocalization intentions. In the pre-training stage,
class-relevant shapelets are extracted as informative temporal subsequences. In the training stage, transformer-based modules
incorporate shapelet information to refine temporal representations, while spectral features are learned through channel masking
attention and contrastive clustering, jointly capturing temporal and frequency-domain patterns.

for advancing naturalistic neural decoding.
To summarize, our main contributions are threefold:

1. Robust and interpretable neural decoding framework:
We formulate early vocal onset prediction as a multi-
variate time-series classification problem and introduce
a decoding architecture, which enables the extraction of
intention-relevant spatiotemporal and spectral features.
Our model achieves 91.9% accuracy up to 200 ms before
vocal onset, outperforming 13 state-of-the-art baselines.

2. Neuroscientific insight into cross-regional dynamics:
We show that multi-region neural signals substantially
enhance predictive performance and uncover a functional
decoupling between the prefrontal and auditory cortices
during spontaneous vocal behavior. These findings pro-
vide empirical evidence for top-down modulation mecha-
nisms and offer new avenues for intention-aware BMI.

3. Joint analysis of time- and frequency-domain patterns:
By first localizing a preparatory window via salient tem-
poral shapelets and then identifying statistically signifi-
cant frequency-specific activation patterns, our method
enables fine-grained characterization of volitional dynam-
ics. This dual-domain approach reveals previously inac-
cessible neural signatures preceding self-initiated vocal-
izations, providing a principled strategy for early-stage
intention decoding in naturalistic settings.

Related Work

Experimental Paradigms for Neural Decoding ECoG
offers markedly superior spatial and temporal resolution,
broader frequency bandwidth, and substantially higher SNR
compared to EEG, making it well suited for precise neural
decoding in both primate and non-primate models (Yan et al.
2023). Non-human primates such as marmosets provide a
compelling platform for investigating brain-wide dynamics

due to their smaller brains, distinct cortical architectures, and
more constrained behavioral repertoires.

Although studies in primates have extended to decoding
complex volitional behaviors including three-dimensional
movements (Hu et al. 2018) and reward-driven decision sig-
nals (Zabeh et al. 2023), decoding research in non-human
primates has largely focused on externally driven or con-
ditioned behaviors, such as simple motor tasks and reflex
responses (Jiricek et al. 2021; Cho et al. 2023). Recently,
increasing attention has shifted to spontaneous, internally
generated behaviors (Liu et al. 2022), which offer richer
opportunities to understand volitional control. However, de-
coding ECoG signals remains challenging due to signal spar-
sity, timing variability, and the need for models capable of
integrating distributed brain dynamics.

Deep Learning for Neural Time Series Decoding Recent
advances in deep learning have provided powerful tools for
neural decoding, particularly in modeling long-range tempo-
ral dependencies using transformer-based architectures (Zhou
et al. 2022). Shapelet-based models have been explored to
extract discriminative subsequences reflecting local task-
relevant dynamics (Li et al. 2021a; Le et al. 2024). In parallel,
spectral decomposition and multi-band filtering have enabled
the extraction of multi-scale neural features (Huang et al.
2025; Yi et al. 2024), while clustering and contrastive learn-
ing techniques have been used to discover structured latent
patterns and improve robustness (Wu et al. 2024).

Despite these advances, most approaches focus on mod-
eling either temporal or spectral structure in isolation and
are often limited to single-region analysis, which constrains
their ability to decode complex behaviors that rely on dis-
tributed neural processes. Furthermore, their outputs are fre-
quently implicit or continuous-valued, lacking categorical
interpretability crucial for linking neural activity to discrete
behavioral intentions.



Method
Experimental Paradigm and Problem Definition

To investigate the neural basis of spontaneous vocal planning,
we implemented an auditory stimulation paradigm in awake
marmosets implanted with ECoG electrode (128 electrodes,
1.0-1.52 mm spacing) covering Al (64 channels) and PFC
(64 channels), which were seated in a primate chair and pas-
sively exposed to pure tones at four frequencies (2,000, 4,000,
8,000, and 16,000 Hz; 200 ms duration; 5 s inter-stimulus in-
terval). Marmosets occasionally produced spontaneous phee
calls in response to tones. Simultaneous ECoG recordings
were acquired from a 128-channel array spanning the Al and
PFC, allowing us to examine distributed cortical dynamics
associated with volitional vocal behavior.

Marmosets occasionally produced phee calls—a stereo-
typed long-distance vocalization typically emitted in social
isolation (Zhao and Wang 2023). Pure-tone stimuli did not
acoustically trigger these calls but facilitated their sponta-
neous occurrence, which was otherwise rare. The calls were
not time-locked to stimulus onset and showed variable la-
tencies, suggesting endogenous rather than stimulus-driven
initiation. This asynchronous paradigm, where vocal onset is
decoupled from stimulus timing, is essential for non-human
primate studies and allowed ECoG recordings to capture cor-
tical dynamics underlying internally driven vocal behavior.

To transform the task of predicting spontaneous vocaliza-
tions into a multivariate time series classification problem,
we apply a sliding window approach to the continuous ECoG
recordings. Specifically, we segment the multivariate time
series using a fixed-length window of size 7" and a stride s.
Given a full recording X € RE*Tn where Ty denotes
the total duration of the recording and C' is the number of
channels, we extract a series of overlapping windows:

Tin — T
X; = Xpan]s, i-s:i-s+T),i =0,1,..., {“IJ (D)
S

where each segment X; € RE*T denotes an ECoG win-
dow, paired with a binary label ¥; € {0,1} indicating
whether it precedes a vocalization event, forming the dataset
D = {(X;,Y;)}M,, where M is the number of samples. The
prediction output is defined as ¥; = f(X;), where f(-) is a
trainable classifier to detect vocal onset.

Methodological Details

The overall architecture of our decoding framework is shown
in Fig 2, which captures both temporal and frequency-domain
neural patterns underlying marmoset vocalization intentions.
Firstly, pre-training stage employs a shapelet extractor to
generate a series of class-relevant temporal subsequences and
their weights (information gain scores g) with crucial infor-
mation. g are then refined through transformer-based encoder
that integrates correlation and spatiotemporal context for im-
proved temporal representation. In parallel, spectral features
are obtained via channel masking attention mechanism while
contrastive clustering loss is introduced to uncover frequency-
specific inter-channel patterns.

Pre-training Stage To effectively predict vocalization, it
is crucial to discover discriminative temporal patterns and
localize when such patterns emerge in the neural signal. This
motivates the incorporation of a pre-trained shapelet extrac-
tor inspired by (Le et al. 2024), which aims to identify in-
formative subsequences in multivariate time series. Specif-
ically, our method employs Perceptually Important Points
(PIPs) (Chung et al. 2001) to extract representative shapelet
candidates by preserving the essential structure of the original
signal. Candidates are formed from consecutive PIP triplets
based on reconstruction distance. To ensure efficiency, the
number of PIPs is set to nyp = 0.5 x T, yielding a man-
ageable number of candidates. Then, candidates are ranked
by their optimal information gain score g € R, obtained by
computing the Perceptual Subsequence Distance (PSD) (Le,
Tran, and Huynh 2022) and identifying the optimal split point
that maximizes inter-class separability. Given a shapelet S’
with length [ and X, the PSD is defined as:

T—1+1
PSD(X;, ') = min CID(X[j:j +1—1], shH, (@)
=
where CID denotes the Complexity-Invariant Dis-
tance (Batista, Wang, and Keogh 2011). The top candidates
per class are retained as shapelets for downstream learning.
Formally, a shapelet is defined as a univariate temporal
subsequence S' = [z, Tp 41, - - -, Tp, |, specified by its start
position p,, end position p;, channel index ¢, and score g.
It is extracted from a univariate signal X¢ € R”, which
corresponds to channel c of the input X;. These attributes
characterize the spatio-temporal localization and discrimina-
tive importance of the shapelet.

Shapelet-Driven Temporal Encoding To capture fine-
grained temporal dynamics, we propose a shapelet-based
encoding framework that matches input signals to learned
shapelets via Pearson’s correlation and aggregates the result-
ing features using a position-aware attention mechanism.

(1) Shapelet Matching Module (SMM): Inspired by the
interchannel temporal synchrony observed in ECoG signals,
we measure the similarity between shapelets and input sig-
nals based on Pearson’s correlation to capture discriminative
temporal patterns.

Specifically, each shapelet S’ is slid along X to identify
local temporal motifs that best align with the shapelet. This
matching process is formulated as:

th = argmtaxp(XtC:t+l—la Sl) )
SMM(X*¢, §') = Linear(X}.,,.,_,) — Linear(5"), (3)

where p(-, ) denotes the Pearson’s correlation between S
and the subsequence X, ,; ;. The index ¢ represents the
starting position of a temporal window within X ¢, and t*
corresponds to the window that yields the highest correlation
with S'. The most similar subsequence is then projected
through a linear layer, and its representation is normalized by
subtracting the projection of the shapelet itself.

(2) Position-Aware Attention Module (PAM): To effec-
tively aggregate the temporal positional information learned



from shapelets, we apply a position-aware attention module.
For input X, the temporal representation Z is defined as:

Z = Concat (SMM(X/*, S1), SMM(X/2,S2), ...,
SMM(XE", S,)) + PE, )

where PE = Emb(pg) + Emb(p;) + Emb(c) is the learn-
able position encoding derived from shapelet attributes. The
position-enhanced features Z are passed through a self-
attention module by computing query, key, and value pro-
jections (@, K,V). The attention output is computed as:

Attention(Z) = Softmax (Q—\I/%T) V, where d is the dimen-

sion of the key vectors, and the attention output is further
modulated by score g, which serves as a weighting factor for
each matched segment:

Att(Z) = LayerNorm (Z + Attention(Q, K, V)) x g. (5)

Finally, the attended features are passed through a feedfor-
ward network followed by a residual connection and layer
normalization, yielding the output:

Out(Z) = LayerNorm (Att(Z) + FeedForward(Att(Z))) .

(6)
To selectively preserve salient features and suppress noise,
max pooling is applied along the temporal dimension. In
parallel, the output is concatenated with that of a lightweight
Transformer variant designed to capture complementary
global temporal dependencies, as shown in Fig 2.

Channel-Aware Spectral Attention To extract frequency
domain features relevant to marmoset vocalization intentions,
neural signals were segmented into spectral patches, based on
the assumption that distinct frequency bands reflect different
cortical processes and inter-channel interactions. A channel-
aware attention mechanism, combined with a contrastive
clustering loss, was then employed to capture informative
spectral dependencies and enhance interpretability.

(1) Spectral Channel Attention: Firstly, each frequency-
domain patch F? € R*E» where L,, is the patch length, is
projected into query QP, key KP, and value VP. The atten-
tion scores between channels are modulated by a learnable
binary mask MP € RE*C | and frequency-domain features,
obtained via masked attention, are defined as:

p(KP)T
Masked Att(FP) = Softmax < MP O Q(K)) Ve,
Ve @)

where M? = (1 —Ic) © GS(WFP) + I, W is a learnable
projection, ® denotes element-wise multiplication, GS(-)
applies Gumbel-Softmax (Jang, Gu, and Poole 2016) for
differentiable binary sampling, and I~ is the identity matrix
that preserves self-connections. The output is then integrated
with time-domain features for final prediction.

(2) Contrastive Clustering Loss: To promote structured
frequency-domain representations, we employ a contrastive
clustering loss that encourages channels with similar modu-

lation patterns to be grouped. The loss for each patch is:

C
L Z M exp (Sim’i’j/T)
‘Cfluster = 76 Z 1Og ]:10 , (3
=1 exp (Sim}; /)
j=1

where M. 5 indicates whether channel j is a positive neighbor

of channel 7, S imf j denotes their similarity based on masked
attention, and 7 is a temperature hyperparameter controlling
the sharpness of the distribution. To improve interpretability,
we regularize the mask via a regularization loss:
=z |
cic-1)
Minimum Error Entropy Loss via Rényi Entropy To
enhance robustness against outliers—such as those intro-
duced by signal acquisition artifacts or unrelated neural activ-
ity—we adopt a MEE criterion based on Rényi entropy. Un-
like conventional losses (e.g., cross-entropy or MSE), which
typically assume Gaussian noise, MEE directly minimizes
the uncertainty of the error distribution, making it less sensi-
tive to outliers and non-Gaussian noise (Silvestrin, Yu, and

e — MP]|; . ©))

Hoogendoorn 2023).
Let e; = y; — y; denote the prediction error. The eigenval-
ues {\;}V, are obtained by solving K,, = \;v;, where

v; denotes the corresponding eigenvector. The Gaussian-
kernel Gram matrix K € RM*Y is defined as K;; =
exp (—|le; — ¢;]|?/o) and normalized by its trace, where
the smoothing parameter o controls the smoothness of the
similarity measure between errors. The Rényi entropy of
order o > 0, v # 1 is then approximated as:

1 N
—log, (Z Af‘) ) (10)
i=1
The overall training objective is defined as:

Etotal - L:CE + 6£MEE + (»Ccluster + Aﬁreg) P (1 1)

where Lcg is the cross-entropy loss. 3, -y, and A balance the
contributions of each component and are set to 0.2, 0.2, and
0.5, respectively.

ﬁMEE =

Experiments
Experimental Settings

Dataset We established a spontaneous vocalization dataset
from a single common marmoset (Callithrix jacchus, ID: BQ)
across four sessions, totaling 142 minutes of ECoG and au-
dio data. A total of 291 spontaneous calls were manually
annotated. Positive samples were defined as the 3.2-0.2 s
preceding vocal onset, with the 0.2 s cutoff chosen to allow
sufficient time for downstream responses while ensuring ad-
equate data processing and algorithmic inference. Negative
samples were drawn from non-vocal periods at least 10 s
away from any call. In total, we obtained 430 samples with a
1:1 ratio of positive to negative examples. Due to issues with
channel contact, 110 valid ECoG channels (52 A1, 58 PFC)
with 500 Hz sampling were retained and band-pass filtered
from 1-200 Hz. All samples were aligned using synchronized
neural and dual-channel audio recordings.



Models Accuracy Precision F1score AUROC AUPRC
SVM 75.14£2.8 70.6+6.7 75.44+1.9 81.842.5 76.9+3.8
Minirocket 75.2+1.2 86.840.8 70.5+1.0 74.9+1.1 71.940.9
EEGNet 72.842.0 73.6+1.8 72.04+1.9 69.3+1.5 48.2+2.1
TCAN 80.74+1.1 75.1£1.3 77.84+1.4 88.1+£0.9 84.24+1.2

ST-CCNet 65.0£2.5 81.942.2 54.74+3.0 65.6£1.8 63.842.1
SparseDGCNN 66.0+5.7 66.1£5.9 65.8£5.8 71.14+3.1 63.7+4.4
Transformer 70.6£1.3 70.84+1.1 70.5+1.0 69.3£0.9 69.04+1.0
Crossformer 84.240.7 86.4+0.6 83.54+0.7 87.8+0.5 88.94+0.6
Shapeformer  85.24+1.0 85.0+1.1 85.14+1.0 88.3+0.8 81.5£1.2
Autoformer 77.4+1.5 774414 77.3+£1.3 89.7£1.0 89.5+1.1
Informer 66.0£2.0 65.7+2.2 65.6+2.1 62.9+£1.8 61.74+2.0
iTransformer  79.6+0.9 80.84+1.0 79.6+0.8 87.64+0.7 88.9+0.9
Medformer 68.3£1.8 69.1+1.9 66.6+2.0 79.2£1.6 79.84+1.5

Ours 91.9+0.6 92.1£0.5 91.9+0.6 96.0+£0.9 93.1+2.6

Table 1: Performance comparison between the proposed
model and competing methods in %. Bold: best.

Metric  Backbone +Shapelet +FAM +MEE
CD +MG (Ours)

Accuracy 79.1+£1.5 86.0£1.0 89.5+£0.8 90.7+0.7 91.9£0.6
Precision 82.2+1.6 87.24+0.9 89.5£0.6 90.7£0.7 92.1+0.5
F1 score 78.2+1.4 85.8+0.9 89.5+£0.8 90.7+0.7 91.9£0.6
AUROC 86.5£1.2 89.04+0.9 90.8£0.8 92.84+0.8 96.0+0.9
AUPRC 84.7+1.4 88.5%1.0 88.7£1.1 90.3+1.4 93.1£2.6

Table 2: Ablation study with stepwise addition of modules
on the test set in %. Bold: best.

Implementation We evaluate all models using 5 standard
metrics: accuracy, precision, F1 score, area under the re-
ceiver operating characteristic curve (AUROC), and area
under the precision—recall curve (AUPRC). Model training
is performed using a fixed data split of 70%, 10%, and 20%
for training, validation, and testing, respectively. To initialize
shapelet extraction in the pretraining stage, 100 samples are
randomly selected from the training set. All experiments are
conducted on a single NVIDIA RTX 4090 GPU. Optimiza-
tion is performed using the Adam optimizer with a learning
rate of 5 x 1075 and a weight decay of 5 x 10~%. The batch
size is set to 16, and training proceeds for 100 epochs. All
reported results represent the average performance over five
runs with different random seeds on the test set.

Baselines We benchmarked our model against 13 base-
lines, including a classical machine learning method (fea-
ture extracted within frequency domain), a feature-based
method, an EEG-specific model, CNN-based models, a
GNN-based model, and Transformer-based architectures:
SVM, MiniRocket (Dempster, Schmidt, and Webb 2021),
EEGNet (Lawhern et al. 2018), TCAN (Hao et al. 2020),
ST-CCNet (Zhang et al. 2021b), SparseDGCNN (Zhang
et al. 2021a), Transformer (Vaswani et al. 2017), Cross-
former (Zhang and Yan 2023), Shapeformer (Le et al. 2024),
Autoformer (Wu et al. 2021), Informer (Zhou et al. 2021),
iTransformer (Liu et al. 2023), and Medformer (Wang et al.
2024).

Quantitative Results

Comparison Study Across all evaluation metrics, our
method consistently outperforms existing approaches, achiev-
ing the highest AUROC of 96.0% . Competitive baselines
such as Shapeformer (85.2% accuracy), which captures task-
relevant temporal subsequences, and Crossformer (84.2%
accuracy), which models cross-dimensional dependencies,
also perform relatively well. Nevertheless, our framework
surpasses them with a substantial improvement, reaching
91.9% accuracy—representing a 6.7% gain over the best-
performing baseline, indicating its superior prediction ability.

Multi-brain Region Analysis To evaluate the contribution
of distinct cortical areas to vocal intention decoding, we
compare 3 input configurations: dual-region input (A1l and
PFC), PFC-only, and Al-only. As shown in Fig 3a, the PFC-
only model performs better than the A1-only model (AUROC
0.930 vs. 0.899), indicating that prefrontal activity carries
more intention-relevant information. Notably, the dual-region
model consistently outperforms the single-region variants
across all evaluation metrics, suggesting that sensory and
executive cortices provide complementary information for
spontaneous vocal planning.

Ablation Study We conduct a step-by-step ablation study
to assess the contribution of each component by incremen-
tally integrating them into the Transformer-based backbone
(Table 2). Adding the shapelet-driven module, which signifi-
cantly improves performance, demonstrating its effectiveness
in capturing fine-grained, temporally discriminative local pat-
terns. Next, we incorporate the Frequency Attention Module
(FAM) with a contrastive loss to extract informative and dis-
tinctive spectral representations by modeling inter-channel
interactions, and further compare the proposed mask gen-
erator (MG) with the traditional channel dependency (CD)
modeling. The results demonstrate the superior performance
for above components. Finally, adding the MEE loss yields
the best overall results by enhancing the model’s robustness
to non-Gaussian noise and signal artifacts.

Interpretable Analysis

Temporal Analysis To assess the interpretability of learned
temporal representations, we visualized the shapelets ex-
tracted during pretraining stage (Fig.3b). These shapelets
were predominantly localized to the PFC and clustered within
the 0.8-0.4 s window preceding vocal onset, highlighting a
critical preparatory period. Time—frequency analysis during
this interval revealed significant modulation in the «, 6, and ¥
bands (Fig.4), with o and 6 changes most pronounced in PFC
channels—consistent with the spatial distribution of shapelets
(FDR-corrected). Prior studies have reported suppressed «
and 0 activity in the PFC during vocal preparation (Tsunada
and Eliades 2024), lending biological support to our findings.
These results indicate that the model captures task-relevant
spatiotemporal dynamics in a neurobiologically meaningful
manner.

Functional Decoupling Between Frontal and Auditory
Cortices To further investigate inter-regional and intra-
regional coordination patterns associated with marmoset vo-
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Figure 3: (a) Performance comparison: dual-region (A1+PFC), PFC-only, and Al-only. (b) Visualization of extracted shapelets
and their temporal distribution relative to vocal onset in PFC channels (53—110). (c¢) Pseudo-online vocalization prediction.
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Figure 4: Increases and decreases in power across three fre-
quency bands during 0.8-0.4 s before vocal onset.
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Figure 5: Channel-wise correlation matrix: (a) non-
vocalization trials; (b) vocalization trials; (c) Difference be-
tween vocalization and non-vocalization trials.

cal behavior, we analyzed the channel-wise correlation struc-
ture based on the frequency representations derived from
the FAM (Fig. 5). For each sample, we computed a cor-
relation matrix across channels, then separately averaged
these matrices across positive (pre-vocalization) and negative
(non-vocalization) samples. Subtracting the negative from
the positive sample average yielded a differential correla-
tion map. Notably, we observed an increased intra-regional
correlation within both PFC and A1, alongside a decrease
in inter-regional correlation between these two areas dur-
ing vocalization trials. This pattern suggests that during the
pre-vocal phase, local coordination within each region is en-
hanced, possibly reflecting region-specific processing such
as motor planning in the PFC and sensory modulation or pre-
diction in A1. Conversely, the reduced cross-area correlation
may reflect a functional decoupling between PFC and Al,

consistent with top-down suppressive signaling from PFC to
Al observed in previous neurophysiological studies (Tsunada
and Eliades 2024).

Pseudo-online Prediction on Unseen Session To assess
the applicability of our model in real-time scenarios, we con-
duct a pseudo-online prediction analysis using a held-out
session containing 95 spontaneous vocal onsets. We simulate
a streaming setting by continuously feeding the model with 3
s windows, shifted at 500 ms intervals. This setup generates
a time-resolved vocal prediction, mimicking the temporal dy-
namics of real-time decoding. Our model correctly detected
91 out of 95 vocalizations and achieves an average inference
time of 7.41 ms per sample, a throughput of 134.95 samples/s,
and a model size of 14.58 MB, demonstrating its efficiency
for real-time deployment. As shown in Fig. 3c, given the
presence of temporally clustered vocalizations in certain pe-
riods, only the 1 s pre-onset segments were visualized for
each vocal event. Notably, the average lead time for accurate
detections was 710.4 ms, demonstrating the capacity of our
model to anticipate vocal events. These results highlight the
high temporal precision of the model in intention prediction
and its potential for real-time decoding applications.

Conclusion

In this work, we propose a robust and interpretable neural
decoding framework for predicting spontaneous vocal in-
tentions from high-density dual-region ECoG recordings in
marmosets. By integrating shapelet-based temporal encod-
ing, spectral clustering, and entropy-regularized learning,
our model achieves 91.9% accuracy up to 200 ms before
vocalization—outperforming 13 baseline methods. Beyond
strong predictive accuracy, the model reveals interpretable
time—frequency neural patterns and functional decoupling
between auditory and prefrontal cortices, offering insights
into the distributed cortical dynamics underlying volitional
behavior. Despite these promising results, the current study
was conducted on a single marmoset, limiting the general-
izability of the findings across individuals and behavioral
variability. These efforts lay a critical foundation for the de-
velopment of intention-aware brain—-machine interfaces and
truly seamless human—machine interaction and also advance
our understanding of how goal-directed behavior is encoded
across distributed cortical networks.
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