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Abstract

Progress in the sensors field has enabled collection of biomedical signal data, such
as photoplethysmography (PPG), electrocardiogram (ECG), and electroencephalo-
gram (EEG), allowing for application of supervised machine learning techniques
such as convolutional neural networks (CNN). However, the cost associated with
annotating these biomedical signals is high and prevents the widespread use of
such techniques. To address the challenges of generating a large labeled dataset,
we adapt and apply semi-supervised learning (SSL) frameworks to a new problem
setting, i.e., artifact detection in PPG signal and verified its generalizability in ECG
and EEG as well. Our proposed framework is able to leverage unlabeled data to
achieve similar PPG artifact detection performance obtained by fully supervised
learning approach using only 75 labeled samples, or 0.5% of the available labeled
data.

1 Introduction

1.1 Background

Congenital Heart Disease (CHD) is the most common birth defect [1]. Critical Congenital Heart
Disease (CCHD) is the most severe form of CHD and the leading cause of birth-defect associated
infant death. Oxygen saturation (SpO2) screening is currently a mandated screen test for CCHD.
However, despite implementation of mandated screening it is estimated 4.5 CCHD-related early
infant deaths occur per 100,000 live-births in the United States [2].

With the challenge of improving CCHD detection in mind, a study developed a dual PPG collection
to gather more information from the newborn than traditional pulse oximetry measurement [3]. This
data was later used to train a Machine Learning (ML) classifier that outperformed SpO2 screening [4].
Other work developed an automated motion artifact detection classifier to aid in PPG collection in
newborns [5], which outperfomed signal processing methods. Despite these advances in PPG-based
CCHD detection, all studies employed supervised learning techniques [4,5]. These approaches
require labor-intensive expert annotations, and may introduce incorrect labels if the annotating task is
opaque or subjective. Semi-supervised learning (SSL) can combat this issue by leveraging unlabeled
data. It also aids with noisy labels, as the SSL framework learns from the signal and not label.

The main contribution of this paper is to adapt and apply SSL framework to a new dataset and
learning task: motion artifact detection in PPG signals. Our proposed SSL framework achieves
supervised learning performance with 0.5% of labels. We also demonstrate that our SSL framework
can generalize to other existing ECG and EEG classification tasks.
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1.2 Related Work

SSL frameworks such as FixMatch [6], FlexMatch [7], Unsupervised Data Augmentation (UDA)
[8], MixMatch [9], and Mean Teacher [10] were tested and succeeded in reducing labeling needs on
image domain datasets such as MNIST [11], CIFAR [12], and other specialized datasets that include
but are not limited to medical imaging datasets [13-15]. Compared to image domain, SSL applied to
Time Series Classification (TSC) data has not gained as much traction in the ML research community
[16]. The study of generalizable TSC SSL frameworks on biomedical signals showed benefits over
supervised learning [17,18]. Jawed et. al demonstrated the benefits of general TSC SSL on many
datasets including ECG signals [17]. Later, Cheng et. al applied their proposed SSL framework to
ECG and EEG signals [18].

The rest of the paper is organized as follow. Section 2 describes our dataset, SSL frameworks, and
data augmentation strategies employed in our experiments. Section 3 presents the results and Section
4 concludes the paper.

2 Methods

2.1 Problem Setups

This study performs 3-fold cross-validation of our SSL framework with varying percentages of
labeled data. We partition our dataset into training (including labeled and unlabeled) sets, and the
testing set at the subject level.

PPG This work uses an in-house PPG dataset collected from 472 newborns in their first few
days after birth. Each newborn had five minutes PPG waveform collected from hand and foot
simultaneously. Newborns spending additional days in the hospital would have repeat measurements
taken after each day. There are motion artifact annotations for 99 newborns’ PPG waveforms. Two
trained observers annotated the dataset. The annotators disagreed on 9.71% of the waveforms’
labels. Our learning task was to classify motion artifact. Each pulse was the segment between two
consecutive onsets. Every pulse considered artifact by either annotator was labeled as artifact. A total
of 1,443,208 pulses were collected, with 7.92% of these pulses being labeled. A total of 49.02% of
labels represented artifacts. This PPG dataset is larger than the ones used in prior artifact detection
work [5].

EEG This study obtained EEG data from the publicly available Motor Imagery Dataset [19]. A
cohort of 109 subjects performed and imagined hand and foot motion tasks while measured by a
64-channel EEG recording device [19]. For our evaluation purpose, we consider the same learning
task as described in [20], i.e., binary classification of hand and foot tasks, while ignoring waveforms
associated with resting. The entire 4s period of activity is used for classification. We applied a notch
filter at 60Hz, and band-pass filter in the 2Hz-60Hz range for noise reduction. Subjects 38, 88, 89, 92,
100, and 104 were removed from the experiment due to incorrect labels [20].

ECG We used the ECG data from the publicly available MIT-BIH Database [21]. Dual-lead
ECG recordings were collected from 47 subjects. There are 48 sets of 30-minute long ECG signals
collected. The dataset includes annotations for each heartbeat segment’s classification. We followed
the methodology in [22] and only used the MLII lead of each ECG signal for training and testing. We
used R-peak annotations from the metadata to determine heartbeat slices. We removed all patients with
paced heartbeats. We followed Association for the Advancement of Medical Instrumentation (AAMI)
recommendation of five classes: Non-ectopic (N), Ventricular Ectopic (VEB), Supraventricular
Ectopic (SVEB), Fusion (F), and Unknown (Q).

2.2 SSL Frameworks Evaluated

We will consider the following SSL framework where the entire data D contained a labeled training
set X = {(xi, yi)} and an unlabeled set U = {xj}. For every data point xi that is fed to the classifier
g(,̇θ) by the operation g(x, θ) = k, the maximum predicted confidence element in the vector k is
considered the label li given by the classifier g(,̇θ) to the data point xi. This operation did not change
the parameters θ.
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Figure 1: FixMatch and FlexMatch data augmentation strategies applied to ECG heartbeat segment.
The weakly-augmented sample had jitter and y-axis offset applied at random intensities. The strongly-
augmented sample had all four augmentations (cutout, jitter, x-axis offset, and y-axis offset) applied
at random intensities.

Pseudo-labeling Considered to be one of the simplest SSL frameworks, pseudo-labeling, or self-
training, uses the classifier’s own predictions on unlabeled data points as labels. Hence we can expand
the labeled training set U by using the following operation:

X = X ∪ (P, L(P)),

where P represents a set of data points from U . L(P) is a set of labels {L(x)}x∈U .

FixMatch [6] One of the most popular image-domain SSL framework, FixMatch combines pseudo-
labeling with consistency regularization to generate artificial labels during the training process.
FixMatch uses cross-entropy loss to “reward” the classifier that outputs the same label for strongly
and weakly augmented versions of the same data point, with the condition that prediction confidence
is above a 0.95 threshold for the weakly augmented sample.

FlexMatch [7] Similar to FixMatch, FlexMatch also seeks to “reward” models that output consistent
predictions for similar inputs through the use of weakly augmented and strongly augmented samples.
However, FlexMatch adapts a variable threshold instead of the fixed 0.95 value used by FixMatch.
This variable threshold is calculated for each individual class, allowing for underrepresented classes
to have more impact in the consistency regularization process through lower thresholds. FlexMatch
changes allow for improved performance in multi-class classification [7].

Unsupervised Data Augmentation (UDA) [8] The most general SSL framework tested by our
study, UDA has been successfully applied to both image-domain and text-domain. Its generalizability
is of interest to our study, as we seek to generalize these SSL frameworks to a different domain:
with time-series data. UDA uses consistency loss between the unlabeled sample xj and a augmented
version of the sample A(xj), where A(.) is a function that employs a random amount of augmentation
strategies at random intensities. Therefore, unlike FixMatch and FlexMatch, the augmentations are
done completely at random and do not follow a specific weakly augmented or strongly augmented
pattern.
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2.3 Data Augmentation Strategies

Data augmentation is employed by three out of the four SSL frameworks included in this study.
We considered data augmentation strategies that result with least interference in the physiological
information embedded in the biomedical signals. In our study, each biomedical signal slice could be
augmented using up to four strategie: cutout, jitter, x-axis offset, and y-axis offset. Cutout consists of
setting a consecutive slice of datapoints to zero. Jitter involves adding Gaussian modeled noise to
the entirety dataset slice. The x-axis and y-axis offset mean displacing the waveform by employing
re-sampling and proportional summing. As seen in Figure 1, weak augmentation is consisted of up to
two augmentation strategies simultaneously applied to input, while strong augmentation involves
applying three or all of the augmentation strategies simultaneously.

3 Results

3.1 Biomedical Signals SSL Proof-of-Concept

PPG When evaluating SSL frameworks on PPG we verified FlexMatch to be the best performing
framework. As seen in Figure 2, our study observed that SSL using 0.5% labeled data achieves
similar performance as fully supervised models using all the labeled data.

EEG When evaluating SSL frameworks on EEG, UDA as the best performing framework. We
observe in Figure 2 that the benefit of applying SSL to EEG. However, the performance of SSL with
reduced labeled dataset displays lower accuracy compared to fully supervised models using 100%
labeled dataset.

ECG FlexMatch is the best performing framework for ECG learning task. As stated through Figure
2, the scenario with highest improvement from SL to SSL in ECG is achieved at 15% labels.

Figure 2: Accuracy plot for all the SSL and SL frameworks experiments using varying amount of
labeled data. With 3-fold cross-validation, the 100% labeled scenario is equivalent to employing 67%
of labels as training, and 33% of the labels for validation in each fold.

4 Discussion and Conclusions

This study experimented with existing SSL frameworks applied to PPG motion artifact, a relevant
classification task in healthcare due to PPG’s noise prone nature. We successfully applied the
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proposed methods on an in-house PPG artifact detection dataset, where we observed improvement
with reduced labeled dataset, with 0.5% of labels.

We evaluated the same proposed frameworks on healthcare-relevant classification tasks using publicly
available EEG [19] and ECG datasets [21]. The results deviated from those observed on PPG.
While the EEG motor imagery classification benefited from SSL frameworks, the improvement
was smaller than seen in PPG. For the ECG dataset evaluation, the benefit of SSL is unclear. We
attribute the unclear results in ECG to the overfitting problem caused by data division and delabeling
process. There are few samples of SVEB and VEB heartbeats, and these samples are represented
in a small number of patients. Moreover, due to AAMI label standard, SVEB and VEB encompass
many different arrhythmic heartbeats. In some reduced-label folds, most of the SVEB and VEB
samples come from a small number of patients, thus potentially preventing extraction of cross-subject
generalizable features for those classes.

There are limitations to our study. First, we used the same data augmentation strategies for all problem
setups. Our proposed frameworks were designed to work "off the shelf" for any biomedical signal.
We acknowledge that signal-specific data augmentation strategies may increase the performance of
UDA, FixMatch, and FlexMatch. For example, Chen et. al proposed signal-specific augmentations
for EEG [18]. Additionally, our work has the limitation of distribution shift between labeled and
unlabeled set. In SSL, there is an assumption that the labeled and unlabeled data share an identical
class distribution, which may not be true in real-world scenarios. Since there are no annotations for
our in-house dataset, this assumption cannot be guaranteed for our PPG dataset. This assumption is
also not met for the MIT-BIH dataset, where the minority classes samples cannot be equally divided
between label and unlabeled set for cross-subject analysis.

In our future work, we plan to experiment with additional data augmentation strategies. Additionally,
we seek to address distribution shifts between labeled and unlabeled sets. Recent work are successful
in improving the performance of SSL frameworks under distribution shift [23], including FixMatch.
Applying and building upon these modifications [23] would be beneficial to our framework as
biomedical signals’ datasets are often imbalanced.
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A Appendix

Tables with detailed performance metrics for the experiments performed. The information of F1-
scores complement the accuracy previously presented.
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Table 1: PPG SL vs SSL

Framework SL Best SSL

Label % 0.5% 1% 10% 100% 0.5% 1% 10% 100%

Accuracy 71.4% ± 11.0 69.86% ± 2.6 78.43% ± 1.4 80.6% ± 1.4 79.2% ± 3.36 80.12% ± 4.2 79.76% ± 2.3 79.92% ± 1.2

Normal F1 0.7 ± 0.06 0.4 ± 0.14 0.65 ± 0.13 0.73 ± 0.07 0.66 ± 0.18 0.67 ± 0.14 0.68 ± 0.12 0.74 ± 0.08

Artifact F1 0.69 ± 0.19 0.8 ± 0.04 0.84 ± 0.01 0.84 ± 0.004 0.84 ± 0.02 0.85 ± 0.01 0.84 ± 0.01 0.83 ± 0.01

Results for cross-validation evaluation of in-house PPG artifact detection dataset. Best SSL refers to FlexMatch.

Table 2: EEG SL vs SSL

Framework SL Best SSL

Label % 0.5% 10% 50% 100% 0.5% 10% 50% 100%

Accuracy 59.1% ± 2.56 67.57% ± 0.2 68.67% ± 0.2 69.9% ± 1.2 61.5% ± 1.22 68.7% ± 0.85 72.2% ± 0.74 N/A

Hand F1 0.64 ± 0.02 0.67 ± 0.01 0.68 ± 0.01 0.69 ± 0.02 0.64 ± 0.01 0.69 ± 0.02 0.72 ± 0.01 N/A

Foot F1 0.52 ± 0.08 0.68 ± 0.01 0.68 ± 0.01 0.7 ± 0.01 0.58 ± 0.03 0.69 ± 0.02 0.72 ± 0.01 N/A

Results for cross-validation evaluation of EEG Motor Imagery dataset [21]. Best SSL refers to UDA.

Table 3: ECG SL vs SSL

Framework SL Best SSL

Label % 3.5% 15% 50% 100% 3.5% 15% 50% 100%

Accuracy 86.1% ± 5.32 82.92% ± 9.7 85.3% ± 4.36 84.8% ± 6.54 86.3% ± 13.1 85.49% ± 5.7 82.16% ± 2.7 N/A

N F1 0.93 ± 0.04 0.9 ± 0.06 0.92 ± 2.94 0.92 ± 0.04 0.93 ± 0.03 0.92 ± 0.04 0.9 ± 0.01 N/A

VEB F1 0.45 ± 0.39 0.56 ± 0.15 0.59 ± 0.14 0.64 ± 0.17 0.43 ± 0.37 0.67 ± 0.12 0.52 ± 0.07 N/A

SVEB F1 0.03 ± 0.02 0.03 ± 0.05 0.08 ± 0.06 0.08 ± 0.04 0.02 ± 0.02 0.03 ± 0.04 0.08 ± 0.08 N/A

Results for cross-validation evaluation of ECG MIT-BIH dataset [20]. Best SSL refers to FlexMatch.
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