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Abstract

Most of the previous studies on sentence em-
beddings aim to obtain a single representation
per sentence. However, this approach is in-
adequate for handling the semantic relations
between sentences when a sentence has multi-
ple interpretations. To address this problem, we
propose a novel concept, interpretation embed-
dings, which are representations of the interpre-
tations of a sentence. We propose GumbelCSE,
which is a contrastive learning method for learn-
ing box embeddings of sentences. The inter-
pretation embeddings are derived by measuring
the overlap between the box embeddings of the
target sentence and those of other sentences.
We evaluate our method on three tasks: Recog-
nizing Textual Entailment (RTE), Entailment
Direction Prediction, and Ambiguous RTE. On
the RTE and Entailment Direction Prediction
tasks, GumbelCSE outperforms baseline sen-
tence embedding methods in most cases. In the
Ambiguous RTE task, it is demonstrated that
the interpretation embeddings are effective in
capturing the ambiguity of meaning inherent in
a sentence.!

1 Introduction

Sentence embeddings are vector representations
of the meaning of a sentence, and they have been
well-studied in the field of natural language pro-
cessing (NLP) (Reimers and Gurevych, 2019; Gao
et al., 2021; Jiang et al., 2024). Most of the pre-
vious studies aim to obtain one representation per
sentence. However, this approach cannot handle
the relations between sentences appropriately when
a sentence has multiple interpretations. For exam-
ple, the sentence “John and Anna are married” can
be interpreted in two ways: “John and Anna are
married to each other” and “John and Anna are
both married.” The former contradicts the sentence

'Our code will be made publicly available upon accep-
tance.
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Figure 1: Conceptual diagram of interpretation embed-
dings

“John and Anna are not a couple,” while the latter
does not.

To address this problem, we propose interpreta-
tion embeddings, which are representations of the
interpretations of a sentence. As illustrated in Fig-
ure 1, in our approach, an embedding of a sentence
contains embeddings of multiple interpretations of
the sentence, where each of the interpretation em-
beddings represents the individual meaning of the
sentence. This allows us to compute the similarity
between sentences more appropriately, even when
a sentence has two or more meanings.

In this study, sentence embeddings are repre-
sented by box embeddings (Dasgupta et al., 2020),
which represent items as hyperrectangles in a vec-
tor space. Intuitively, the box embeddings represent
the meaning of a sentence not by a single point but
by an area in a high-dimensional space. Then, in-
terpretation embeddings are obtained by measuring
the overlap of the box embeddings of the ambigu-
ous sentence and other sentences, such as the sen-
tences between “John and Anna are married” and
“John and Anna are married to each other.” We pro-
pose GumbelCSE for learning box embeddings of
sentences; it is based on contrastive learning using
natural language inference (NLI) datasets. After
obtaining sentence embeddings that include mul-



tiple interpretation embeddings, we also propose
a method to extract the interpretation embeddings
from the sentence embeddings.

Our proposed method is evaluated by conduct-
ing three experiments: Recognizing Textual Entail-
ment (RTE), Entailment Direction Prediction (Yoda
et al., 2024), and Ambiguous RTE. The effective-
ness of our approach is demonstrated through these
experiments.

The contributions of this paper are summarized
as follows:

* We introduce a new concept, interpretation
embeddings, which are the representations of
interpretations to handle multiple meanings of
a sentence.

* We propose a new sentence embedding
method to learn box embeddings of sentences
and interpretations.

* We empirically evaluate the effectiveness of
our method through three different tasks.

2 Related Work
2.1 Sentence Embeddings

There have been numerous efforts to develop meth-
ods for learning sentence embeddings. For ex-
ample, several methods using NLI datasets were
proposed (Conneau et al., 2017; Reimers and
Gurevych, 2019). Tsukagoshi et al. (2021) used
definition sentences in a dictionary to train sentence
embedding models.

Recently, the contrastive learning framework
(Chen et al., 2020) has become a popular approach
for the learning of sentence embeddings. SimCSE?
(Gao et al., 2021) is a representative example of
this approach that will be explained in detail in
subsection 3.1. Several methods utilized SImCSE
to obtain enhanced sentence embeddings. Yoda
et al. (2024) extended SimCSE to learn Gaussian
embeddings of sentences. Li et al. (2024) applied
matryoshka representation learning (Kusupati et al.,
2022) to learn sentence embeddings, enabling the
adjustment of not only the number of embedding
dimensions but also the number of layers.

Most recently, large language models (LLMs)
have been used to learn sentence embeddings and
achieved remarkable results. PromptEOL (Jiang

2SimCSE has two kinds of settings: unsupervised and
supervised. In this paper, the term “SimCSE” refers to the
supervised version.

et al., 2024) defines the hidden state of the next to-
ken of a prompt, “This sentence: [text] means in
one word,” as the sentence embedding of a sentence
given as [text], inspired by Jiang et al. (2022). It
also has an in-context learning setting, which uses
the definition sentences in a dictionary, inspired by
Tsukagoshi et al. (2021).

The above sentence embedding methods define
a single representation for a given sentence. In
contrast, our method aims to represent a sentence
with multiple vector representations.

2.2 Sentence-Level Ambiguity

The ambiguity of a sentence’s meaning is an impor-
tant issue in many NLP tasks, such as question an-
swering (Min et al., 2020), event temporal relation
extraction (Hu et al., 2024), text-to-SQL (Bhaskar
et al., 2023), and machine translation (Lee et al.,
2023; Pilault et al., 2023; Garg et al., 2024).

NLI is also a fundamental task in which the am-
biguity of meanings of sentences should be consid-
ered. The construction of an NLI dataset is often
accompanied by disagreement in the annotation
process, which is primarily attributed to ambiguity
at the sentence level (Jiang and de Marneffe, 2022).
Several attempts have been made to address this
issue. Jiang et al. (2023) and Weber-Genzel et al.
(2024) created NLI datasets annotated with labels
and their corresponding explanations, which pro-
vided insight into the rationale behind the chosen la-
bels. Pavlick and Kwiatkowski (2019) and Nie et al.
(2020) re-annotated existing NLI datasets with
many annotators and analyzed the relation between
model performance and inter-annotator agreement.
Meissner et al. (2021) and Zhou et al. (2022) pro-
posed the paradigm of predicting the distribution
of probabilities of the labels for a given pair of sen-
tences. Liu et al. (2023) created the multi-labeled
NLI dataset AMBIENT, which considered the inter-
pretations of the sentences. Havaldar et al. (2025)
created an NLI dataset where explicitly entailed,
implicitly entailed, contradicted, and neutral hy-
potheses are associated with a premise. In this
study, we use the NLI datasets created by Nie et al.
(2020) and Liu et al. (2023) to assess the effective-
ness of our interpretation embedding method in
handling the ambiguity of a sentence.

3 Proposed Method

We propose a new concept, interpretation embed-
dings, which are the representations of individual
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Figure 2: An explanation of interpretation embeddings
compared to the situation for words

interpretations of a sentence. In this study, an inter-
pretation embedding is represented by the overlap
of the box embeddings (Dasgupta et al., 2020) of
two sentences. As shown in Figure 2, in the case
of words, an overlap of box embeddings can be
regarded as a representation of a word sense. Simi-
larly, in the case of sentences, we propose that the
overlap of box embeddings can be regarded as a
representation of an interpretation. The box embed-
dings of words are often studied (Onoe et al., 2021;
Dasgupta et al., 2022; Oda et al., 2024), while those
of sentences are not. In our proposed method, in-
terpretation embeddings are obtained through two
distinct steps. The first step involves training the
box embeddings of sentences, which is explained
in subsection 3.1. The second step entails retriev-
ing the interpretation embeddings from the trained
box embeddings of sentences, which is explained
in subsection 3.2.

3.1 Learning Sentence Embeddings

We propose GumbelCSE, a sentence embedding
method for learning box embeddings. First, we ex-
plain the basic concepts of box embeddings in sub-
section 3.1.1. Second, we introduce related meth-
ods, SimCSE (Gao et al., 2021) and GaussCSE
(Yoda et al., 2024), in subsections 3.1.2 and 3.1.3,
respectively. Finally, we explain GumbelCSE in
subsection 3.1.4.

3.1.1 Box Embeddings

Box embeddings represent items as n-dimensional
hyperrectangles. A box embedding b is con-
structed from two vectors: a center vector ¢ and
an offset vector o. For each ¢th dimension, the
area of a box embedding is defined as the interval
[ci — 0i,¢; + 0]. Given two box embeddings b,
and b, the asymmetrical similarity between them

is defined as follows:

Vol(b; N'by)

P(bafby) = — 5 (1)
Here, Vol(b) is the function that calculates the
volume of b, while b, N by, is the overlap of b,
and b,,. In this study, Gumbel Box (Dasgupta et al.,
2020) is used for the calculation of the volume of
box embeddings. More specifically, the Gumbel
distribution is employed to calculate the volumes of
box embeddings. This prevents the gradient from
becoming zero during the training phase, which
could occur if there is a lack of overlap between
the box embeddings.

3.1.2 SimCSE

SimCSE (Gao et al., 2021) is a representative con-
trastive learning method for sentence embeddings.
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019) is used as an encoder that produces a vec-
tor representation of a sentence. This sentence
encoder is fine-tuned utilizing a set of contrastive
sentences. Each batch is constituted by M triplets
(84, sj, s; ), where s;, sj, and s; indicate an in-
stance (sentence), a positive instance for s;, and
a hard negative instance for s;, respectively. Gao
et al. (2021) used the training sets of SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
for constructing the above triplets, namely, using a
premise as s;, its entailment hypothesis as sj, and
its contradiction hypothesis as s; . The loss for the
ith instance is calculated by

esim(hi,hj)/T

i i - ) (2)
Zj]\il (651m(hi,hj)/7' + 651m(hi,hj )/T>

—log

where h is the embedding of s, sim(h;, h;) is the
cosine similarity between h; and h;, and 7 is the
temperature.

3.1.3 GaussCSE

GaussCSE (Yoda et al., 2024) is an extension of
SimCSE. It is designed to learn Gaussian embed-
dings of sentences, whereby each sentence is repre-
sented as a Gaussian distribution. A Gaussian em-
bedding N is constructed from two vectors: a mean
vector p and a variance vector o. These two vectors
are the outputs of two linear layers, which are con-
nected to the hidden state of the [CLS] token? in
the final layer of BERT. Gaussian embeddings can

3The special token of the beginning of a sentence (s) when
RoBERTa is used.



represent asymmetric relations between two sen-
tences s; and s; using the following asymmetric
similarity score:

1
T+ Dxu(NHIN;)

sim(s;][s;) 3)
Here, Dkr,(N;||N;) is the Kullback-Leibler diver-
gence from N; to N;.

The configuration of the triplets for training
GaussCSE is identical to that of SImCSE, while the
loss for the ith instance is calculated using Equa-
tion (7):

M sim(s¥||s;)/7

Vi = Zj:l eSim(s;[si)/ ’ 4)
M . “Ns:) /T

o= X e
M

Vi = ijl e

sim(stsi)/T

Sim(SiHSj—)/’T’ (6)

e
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(7N
The objective of this loss function is to train Gaus-
sian embeddings so that the similarity sim(s;||s;)
becomes close to 1 for a pair (s;, s;) of a premise
and its entailment hypothesis, while it is O for other
sentence pairs.

3.1.4 GumbelCSE

We propose GumbelCSE, an extension of SimCSE
for learning box embeddings of sentences. A box
embedding b, of a sentence s is the output of a
linear layer, which is connected to the hidden state
of the [CLS] token in the final layer of BERT. Here,
cs and o, are obtained by splitting b, in half. The
asymmetric similarity between two box embed-
dings b, and bsj is defined as Equation (1).

The triplets for training GumbelCSE are con-
structed in the same manner as those of SimCSE
and GaussCSE. The loss for the ith instance is de-
fined as Equation (12):

Ve=3 0 S @
Vo= B )
Vi, = Zjil LT (10)
Vi =30, "

+
oPbbs)/7

I =—1 .
Ve + Vot Vi, + Vi,

(12)

The design of this loss function draws inspiration
from the work of Yoda et al. (2024). The probabil-
ity P(bg, |bs,) becomes close to 1 for a pair (s;, 5;)
of a premise and its entailment hypothesis, while it
is O for other pairs. In addition, a modification is
made to obtain better box embeddings of sentences.
We add Vg, to learn the relation between a sentence
and its hard negative sentence more clearly.

3.2 Extraction of Interpretation Embeddings

Let b, be a box embedding of a sentence s. We
extract Us, a set of box embeddings of multiple
interpretations of the sentence s, from bg. As pre-
viously stated, we assume that b, includes embed-
dings of multiple interpretations of s, and each
interpretation can be represented by an overlap of
box embeddings of s and another sentence.

First, a set of reference sentences, denoted as
T, is prepared. For each t; € T, the overlap of
b and by, denoted as by, ), is obtained as in-
terpretation (box) embeddings. Obviously, all of
b(s,) does not represent appropriate interpreta-
tion embeddings. Therefore, U, is formed by the
part of b, ;,) that meets the following condition:
P(b(s,)|bs) is greater than a; and smaller than
. That is, U is formalized as follows:

Us = {b(s 1) | a1 < P(bgplbs) < as}. (13)

P(b(s,)|bs) measures how much the two box em-
beddings overlap. a1 and a9 are hyperparameters,
which are optimized using the development set.

The motivation for our method of extracting in-
terpretation embeddings is as follows. As shown
in Figure 3 (b), when the overlap of b, and by, is
small, the meanings of these two sentences are ex-
tremely different, so the overlap may not represent
an interpretation of s. As shown in Figure 3 (c),
when the overlap of b, and by, is large, the mean-
ings of the two sentences are similar and b, ;,) is
almost the same as by; thus, b(, ;) is unlikely to
be an interpretation embedding. When a moderate
overlap is found, as shown in Figure 3 (a), we add
b(s,ti) to Us.

4 Experiments

Our proposed method is evaluated by three tasks:
RTE, Entailment Direction Prediction (Yoda et al.,
2024), and Ambiguous RTE. The experimental se-
tups are described first in subsection 4.1; then, the
details of the experiments are presented in the fol-
lowing subsections.
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Figure 3: Extraction of interpretation embeddings

4.1 Setup

The pre-trained BERT model (Devlin et al., 2019)
bert-base-uncased* and RoBERTa model (Liu
et al., 2019) roberta-base’ are utilized through-
out all experiments. The number of dimensions of
the output of the linear layer connected to the pre-
trained model is set to 128, thereby enabling the
training of the 64-dimensional box embeddings.°
During the training, the batch size is set to 512,
the learning rate is 5e >, and the temperature is
0.05; these are the same settings used in the train-
ing of SimCSE (Gao et al., 2021). The model is
trained for 5 epochs using the training sets of SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018) prepared by Gao et al. (2021), which consist
of 275,601 triplets in total. The model is validated
every 100 steps, and the optimal model is chosen
based on Area Under the Precision-Recall Curve
(AUPRC) of the RTE task; these are the same set-
tings for the training of GaussCSE (Yoda et al.,
2024). For the RTE and Entailment Direction Pre-
diction tasks, we use the model that is optimized
using the development set of SNLI. On the other
hand, for the Ambiguous RTE task, we use the
model that is optimized using MNLI-mismatched’
because the test set of Ambiguous RTE task in-
cludes a part of the development set of SNLI.

4.2 RTE

Task definition RTE is a task that involves clas-
sifying a pair consisting of a premise and a hy-

*https://huggingface.co/google-bert/
bert-base-uncased

5h’ctps ://huggingface.co/FacebookAI/
roberta-base

%The influence of the number of dimension is addressed in
Appendix C.

"MNLI provides two development sets, MNLI-matched
and MNLI-mismatched, which respectively comprise sam-
ples of domains that are consistent and inconsistent with the
training data.

pothesis, (p, h), into two classes: entailment or
non-entailment.

Datasets Following Yoda et al. (2024), we use
the test set of SNLI, MNLI-mismatched®, and the
test set of SICK (Marelli et al., 2014) for evaluation.
As they are NLI datasets, the labels “neutral” and
“contradiction” are converted to ‘“non-entailment,”
while “entailment” remains unchanged. The num-
ber of instances in the test sets of SNLI and SICK
is 10,000 and 4,927, respectively.

Method Following Yoda et al. (2024), Gum-
belCSE predicts the relation of (p, k) as entailment
if P(by|by) is greater than the threshold 3; other-
wise, it is non-entailment. ( is optimized by the
development set of SNLI.

Baselines We prepare three baseline models:
LINEAR, SimCSE, and GaussCSE. LINEAR is
a model that comprises a two-dimensional linear
layer connected to the hidden state of the [CLS]
token in the final layer of BERT or RoBERTa. This
is an ordinary fine-tuning method for the RTE task.
SimCSE and GaussCSE predict the label in the
same way as our model, where the similarity be-
tween the premise and hypothesis is measured by
the cosine similarity and Equation (3), respectively.
Note that all models as well as our GumbelCSE are
trained or fine-tuned using the same dataset.’

Results The results of the RTE task are shown
in Table 1. Comparing three sentence embedding
methods, GumbelCSE achieves the best perfor-
mance on the average of the three datasets for
both BERT and RoBERTa. Given that the LIN-
EAR model is fine-tuned for the RTE task, it out-
performs the majority of CSE-based methods that
learn task-agnostic sentence embeddings. How-
ever, GumbelCSE with RoBERTa is better than
LINEAR, while GumbelCSE with BERT is almost
comparable to LINEAR.

4.3 Entailment Direction Prediction

Task definition Entailment Direction Prediction
is a task that involves the prediction of the entail-
ment direction between two given sentences s; and
s2. This is a binary classification task, where the

8Recall that it is one of the development sets in MNLI,
consisting of 10,000 samples.

The details of the implementation of the baselines are
described in Appendix A and B. These sections also describe
the implementation details of the baselines for the Entailment
Direction Prediction and Ambiguous RTE tasks.
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Model SNLI MNLI SICK Avg. Model SNLI MNLI SICK Avg.
LINEAR 82.79 74.54 86.02 81.12 LENGTH* 92.63 82.64 69.14 81.47

B SimCSE 75.53 7422 71.08 73.61 B GaussCSE* |97.38 91.92 86.22 91.84
GaussCSE* | 76.64 76.85 83.15 78.88 GumbelCSE | 98.01 92.93 90.18 93.70
GumbelCSE | 81.94 73.91 86.71 80.85 R GaussCSE* |97.44 93.10 88.43 92.99
LINEAR 81.75 73.82 83.13 79.57 GumbelCSE | 98.19 93.76 90.05 94.00

R SImCSE 75037777 73.72 7551 Table 2: Accuracy of Entailment Direction Prediction.
GaussCSE* | 76.37 77.74  82.95 79.02 “B” and “R” represent BERT and RoBERTA4, respectively.
GumbelCSE | 80.95 73.83 87.52 80.77 * indicates the results from Yoda et al. (2024).

Table 1: Accuracy of RTE. “B” and “R” represent BERT
and RoBERTa, respectively. * indicates the results from
Yoda et al. (2024).

goal is to determine whether s; entails sg or so
entails sy.

Datasets We use 3,368, 3,463, and 794 sentence
pairs labeled with “entailment” in the test set of
SNLI, MNLI-mismatched, and the test set of SICK,
respectively. In SICK, the labels for NLI are anno-
tated for each direction of the sentence pairs. In-
stances labeled with the “entailment” tag for both
directions have been excluded, following Yoda et al.
(2024).

Method Similar to Yoda et al. (2024), Gum-
belCSE predicts that s; entails s if P(bs,|bs,)
is greater than P(bg, |bs,) and vice versa.

Baselines We prepare two baseline models:
LENGTH and GaussCSE. LENGTH is a simple
rule-based method that predicts that a longer sen-
tence entails a shorter one. GaussCSE predicts the
entailment direction in the same way as our model,
where the similarity between s; and so is measured
by Equation (3).

Results The results of the Entailment Direction
Prediction task are shown in Table 2. Both Gauss-
CSE and GumbelCSE demonstrate superior perfor-
mance compared to the naive baseline, LENGTH.
Furthermore, GumbelCSE outperforms GaussCSE
for all three datasets, substantiating the effective-
ness of our GumbelCSE method in capturing asym-
metric relations between sentences.

4.4 Ambiguous RTE

Task definition A new task, called Ambiguous
RTE, is proposed to evaluate the effectiveness of
interpretation embeddings. It is a task that involves
classifying a pair consisting of a premise and a
hypothesis into one of three classes: entailment,

non-entailment, or both. The class “both” means
that the relation between a premise and a hypothe-
sis is ambiguous due to multiple interpretations of
a sentence.

Datasets We use the test set of AMBIENT (Liu
et al., 2023) and ChaosNLI (Nie et al., 2020) for
evaluation and MNLI-mismatched for optimizing
parameters. In these datasets, multiple NLI labels
are given for each sentence pair, considering the
ambiguity of the interpretation of a sentence. For
example, the pair consisting of the premise “The cat
was lost after leaving the house” and the hypothesis
“The cat could not find its way” is labeled with
both “entailment” and “neutral” (when the premise
means “The cat is unable to be found”). These NLI
labels are simplified to the three aforementioned
coarse classes.

In ChaosNLI and MNLI-mismatched, the labels
are voted by 100 and 5 annotators, respectively.
Similar to the setting in Jiang and de Marneffe
(2022), only the labels supported by 20 votes are
used in ChaosNLI, while 2 votes are used in MNLI-
mismatched.

The test set of ChaosNLI is divided into
ChaosNLI-S and ChaosNLI-M, where the samples
are derived from the development set of SNLI and
MNLI-matched, respectively. The number of in-
stances in the test set of AMBIENT, ChaosNLI-S,
and ChaosNLI-M is 1,545, 1,514, and 1,599, re-
spectively.

Method First, the sets of interpretation embed-
dings of p and h, U,, and U},, are extracted as de-
scribed in subsection 3.2. Here, T (the set of refer-
ence sentences) is constructed from the n triplets
randomly sampled in the training set of Gum-
belCSE. Second, for all pairs of the interpretation
embeddings of p and h, namely (b, 1,), B(t,)) €
Up X Up, P(B(p1,)|D(p,1,)) s calculated. This prob-
ability evaluates how the interpretation embedding



ChaosNLI-S ChaosNLI-M AMBIENT
Model
ent. non. both ent. non.  both ent. non.  both
LINEAR 48.69 81.81 38.67 | 37.52 62.68 40.53 | 28.17 61.25 25.74
SimCSE 24.54 70.40 - 3436 56.72 - 26.50 51.86 -
BERT | GaussCSE 31.81 71.83 - 3431 57.82 - 28.57 62.49 -
GumbelCSE-sen | 38.63 73.22 - 32.05 56.14 - 32.56 66.83 -
GumbelCSE-int | 27.92 66.06 47.14 | 30.88 49.72 28.15 | 26.79 70.28 1.43
LINEAR 52.71 8226 35.84 | 36.36 62.13 37.59 | 30.25 67.17 18.28
ROBE SimCSE 26.33  71.27 - 34.04 58.45 - 26.87 51.19 -
RTa GaussCSE 31.74 71.37 - 32.01 57.60 - 2797 61.13 -
GumbelCSE-sen | 38.94 73.41 - 3321 57.73 - 30.59 71.35 -
GumbelCSE-int | 31.98 67.33 50.33 | 3240 5095 2725|2999 6941 2.28

Table 3: Fl-score of each class for Ambiguous RTE. Note that SImCSE, GaussCSE and GumbelCSE-sen are binary

classifiers that do not classify a sample as the “both” class.

b(pt,) subsumes by, ;.y, indicating the possibility
that p entails h. Finally, (p, h) is classified as fol-
lows:

entailment
Y (D(p,t,)s Pehty)) EUp XUn P(B(n i) [Bp,e,)) > B
non-entailment

ifV(b(p’zi), b(h,tj)) Eup XUp P(b(h,tj) |b(p,ti)) <pB -

both
otherwise
(14)

The parameter n, the number of triplets in 7,
is set to 10,000. The parameters o; and a9 are
optimized using the development set through a grid
search from 0.5 to 1.0 at intervals of 0.1. Also, 3
is optimized using the development set.

To evaluate the effectiveness of the use of in-
terpretation embeddings, two methods are com-
pared: GumbelCSE-sen and GumbelCSE-int.
GumbelCSE-int is the aforementioned method,
while GumbelCSE-sen classifies sentence pairs
into entailment or non-entailment classes using
not interpretation embeddings but sentence embed-
dings obtained by GumbelCSE.

Baselines We prepare three baseline models:
LINEAR, SimCSE and GaussCSE. LINEAR is a
model that comprises a three-dimensional linear
layer connected to the hidden state of the [CLS]
token in the final layer of BERT or RoBERTa. It
is fine-tuned in two steps. First, it is fine-tuned by
the training set of GumbelCSE, where the label is
entailment or non-entailment. Then, it is fine-tuned
by MNLI-mismatched, where the label is one of
three classes. SImCSE and GaussCSE predict the
label in the way explained in subsection 4.2. The
parameter 3 for these baselines is also optimized
using the same development data of Gumbel CSE.

Results The results of the Ambiguous RTE
task are shown in Table 3. The Fl-scores of
GumbelCSE-int for the “entailment” and “non-
entailment” classes are almost comparable to those
of GumbelCSE-sen, while GumbelCSE-int is addi-
tionally capable of classifying an ambiguous sen-
tence pair as “both.” This demonstrates the ef-
fectiveness of interpretation embeddings in com-
prehending the ambiguity of sentences. However,
GumbelCSE-int could not outperform LINEAR
except for ChaosNLI-S, which is especially fine-
tuned for the Ambiguous RTE task. The compari-
son among SimCSE, GaussCSE, and GumbelCSE-
sen is similar to the comparison on the RTE task,
i.e., GumbelCSE-sen outperforms SimCSE and
GaussCSE in most cases.

For GumbelCSE-int with both BERT and
RoBERTa, a; and ap are optimized to 0.5 and
0.6, respectively, using the development data. This
finding validates the effectiveness of our approach
to derive interpretation embeddings by employing
moderately similar sentences, as discussed in 3.1.4.

5 Analysis
5.1 Ablation Study

An ablation study is conducted to investigate the
effectiveness of the components in the loss func-
tion in Equation (12). Tables 4 and 5 present the
accuracy of the GumbelCSE models trained with
several loss functions for the RTE and Entailment
Direction Prediction tasks, respectively. These re-
sults demonstrate the effectiveness of the newly
introduced Vg, for the BERT-based GumbelCSE.
In addition, it is found that V- and Vg, can also
contribute to learn better representations.



Loss function SNLI MNLI SICK Avg.

Ve 76.98 65.14 81.14 74.42
B VE+Ve 80.53 73.78 84.86 79.72
Ve+Vo+ Ve, 80.42 72.88 85.00 79.43
Ve+Vo+Vr, +Vr, |81.94 73.91 86.71 80.85
Ve 77.17 66.72 81.88 75.26
R Ve+Ve 80.11 74.26 86.81 80.39
Ve+Vo+Vr, 81.53 74.52 86.97 81.01
Ve+Ve+Vr, +Vr, 80.95 73.83 87.52 80.77

Table 4: Accuracy of RTE for several loss functions. “B”
and “R” represent BERT and RoBERTa, respectively.

Loss function SNLI MNLI SICK Avg.

Ve 97.98 92.29 86.65 92.31
B Ve+Ve 97.95 91.51 88.29 92.58
Ve+Ve+Vr, 97.80 92.20 88.41 92.81
Ve+Ve+Vr, +Vr, [98.01 92.93 90.18 93.70
Vi 97.95 93.16 89.17 93.43
R Ve+Ve 97.86 92.52 89.55 93.31
Ve+Ve+Vr, 97.89 93.94 90.18 94.00
Ve+Ve+Vr, + Vg, [98.19 93.76 90.05 94.00

Table 5: Accuracy of Entailment Direction Prediction
for several loss functions.

5.2 Impact of Number of Reference Sentences

In our GumbelCSE method, interpretation embed-
dings are obtained by measuring the overlap be-
tween two box embeddings of the target sentence
and reference sentences, where the set of refer-
ence sentences is denoted as 7. We analyze how
the number of reference sentences influences the
performance of the Ambiguous RTE task. The
number of dimensions of the box embedding is set
to 16 to reduce the memory and time costs asso-
ciated with extracting interpretation embeddings.
As mentioned in subsection 4.4, 7T is formed by
sentences in triplets randomly sampled from the
training data. The number of triplets, n, is varied
over {5,000, 10,000, 50,000, 100,000, 200,000}.
Since each triplet comprises three sentences and
duplicate sentences are removed, the number of
reference sentences (|77|) is approximately 3 x n.
The parameter «; is changed from 0.5 to 0.9 with
a step size of 0.1, while « is fixed at 1.0 to reduce
the computational time required for analysis.
Figure 4 presents the macro-F1-scores of the
Ambiguous RTE task of the models with different
settings where BERT is used as the base model.
The best macro-F1-score is obtained when n =

50
45
o #triplets
g 40 —— 5,000
g 10,000
—+— 50,000
35 —+— 100,000
—+— 200,000
0.5 0.6 0.7 0.8 0.9

[25]

Figure 4: The macro-F1-scores obtained while varying
ay from 0.5 to 0.9 in five settings

10,000 and oy = 0.6. This demonstrates that a
large number of reference sentences is not neces-
sary to obtain a sufficient number of appropriate
interpretation embeddings, resulting in the reduc-
tion of the computational cost. When «; is set to
a relatively small value (i.e., 0.5), the macro-F1-
score is significantly reduced as n increases. This
is because the increase in the number of interpreta-
tion embeddings provides the opportunity for the
“otherwise” condition in Equation (14) to be ful-
filled, resulting in a substantial bias towards the
“both” class. In contrast, when «; is set to a large
value, the performance of the Ambiguous RTE task
remains stable with respect to the number of refer-
ence sentences, due to the decrease in the number
of interpretation embeddings.

6 Conclusion

In this paper, we introduced a new concept inter-
pretation embeddings, which represent the interpre-
tations of a sentence. The interpretation embedding
is created by overlapping the box embeddings of
two sentences. Furthermore, we proposed Gum-
belCSE, which is a contrastive learning method
for learning box embeddings of sentences, and the
method for extracting interpretation embeddings
of a sentence from the box embedding of a sen-
tence. We evaluated our method on three tasks:
RTE, Entailment Direction Prediction, and Am-
biguous RTE. On the RTE and Entailment Direc-
tion Prediction tasks, GumbelCSE outperformed
other sentence embedding methods in most cases.
On the Ambiguous RTE task we proposed, it was
demonstrated that interpretation embeddings are
effective for understanding the multiple interpre-
tations of a sentence. In the future, we plan to
apply our method to more challenging tasks such
as understanding metaphors or pragmatics.



Limitations

The bottleneck of our method is the substantial
memory and time required for calculating the over-
lap of box embeddings to obtain interpretation em-
beddings. To mitigate this problem, the number of
dimensions of box embeddings is set to a relatively
low value (i.e., 16) in this paper. However, increas-
ing this value could facilitate the representation of
more subtle meanings of sentences. Another limi-
tation is that our method has not yet been applied
to real applications such as information retrieval.
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A Implementation Details of Baselines

SimCSE is implemented with the same settings as
the original paper (Gao et al., 2021). The epoch, the
batch size, the learning rate, and the temperature
are set to 3, 512, 5=, and 0.05, respectively. We
validate the model every 250 steps on the develop-
ment set of STS-B (Cer et al., 2017) and choose the
best checkpoint. The best validation score (Spear-
man’s correlation) achieved by our implemented
SimCSE, where BERT serves as the base model, is
86.1, which is almost the same as the score 86.2
described in (Gao et al., 2021).

GaussCSE is also implemented with the same
settings as the original paper (Yoda et al., 2024).
The epoch, the learning rate, and the temperature
are set to 3, 16, 5e 5, and 0.05, respectively. The
dimensions of both the mean vector and the vari-
ance vector are set to 768. We validate the model
every 3200 steps on the RTE task using the devel-
opment set of SNLI and choose the best checkpoint.
The best validation scores (AUPRC) achieved by
our implemented GaussCSE based on BERT and
RoBERTa are 66.19 and 66.91, respectively. These
scores are almost the same as 66.21 and 66.31 re-
ported in (Yoda et al., 2024).

LINEAR in the RTE task is implemented as fol-
lows. The epoch, the batch size, and the learning
rate are set to 5, 512, and 5e~°, respectively. The

11

Box dim. 16 32 64 128 256
AUPRC 75.86 77.41 77.95 77.10 76.23

Table 6: Validation scores for several dimensions of box
embeddings

cross-entropy loss is chosen as the loss function.
We validate the model every 100 steps on the RTE
task using the development set of SNLI and choose
the best checkpoint. The best validation scores (ac-
curacy) of the LINEAR models obtained by fine-
tuning BERT and RoBERTa are 83.18 and 82.01,
respectively.

LINEAR in the Ambiguous RTE task is imple-
mented as follows. First, the model is trained using
relatively large SNLI and MNLI datasets with the
same settings as for the RTE task. Second, it is re-
trained using the small MNLI-mismatched dataset.
The epoch, the batch size, and the learning rate are
set to 5, 128, and 5e 2, respectively. The cross-
entropy loss is chosen as the loss function. In the
second training phase, the model is not validated
using the development data; instead, the model
obtained after the final epoch is used.

B Training Time

All models described in section 4 are trained us-
ing a single GPU, NVIDIA RTX A6000 48GB.
The time required to complete the training of Gum-
belCSE, GaussCSE, and SimCSE are about 120,
200, and 20 minutes, respectively. The fine-tuning
of LINEAR in the RTE task takes approximately
60 minutes, while the second fine-tuning of LIN-
EAR in the Ambiguous RTE task using the MNLI-
mismatched dataset takes about one minute.

C Influence of Dimensions of Box
Embeddings

This section investigates how the dimensions of box
embeddings influences the performance of Gum-
belCSE. Table 6 shows AUPRC of GumbelCSE,
where BERT is used as the base model, in the vali-
dation data of the RTE task when the dimensions of
b, is set to {16, 32, 64, 128, 256}. It is found that
a moderate size of box embeddings, specifically 64,
achieves the best AUPRC.
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