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Abstract

Most of the previous studies on sentence em-001
beddings aim to obtain a single representation002
per sentence. However, this approach is in-003
adequate for handling the semantic relations004
between sentences when a sentence has multi-005
ple interpretations. To address this problem, we006
propose a novel concept, interpretation embed-007
dings, which are representations of the interpre-008
tations of a sentence. We propose GumbelCSE,009
which is a contrastive learning method for learn-010
ing box embeddings of sentences. The inter-011
pretation embeddings are derived by measuring012
the overlap between the box embeddings of the013
target sentence and those of other sentences.014
We evaluate our method on three tasks: Recog-015
nizing Textual Entailment (RTE), Entailment016
Direction Prediction, and Ambiguous RTE. On017
the RTE and Entailment Direction Prediction018
tasks, GumbelCSE outperforms baseline sen-019
tence embedding methods in most cases. In the020
Ambiguous RTE task, it is demonstrated that021
the interpretation embeddings are effective in022
capturing the ambiguity of meaning inherent in023
a sentence.1024

1 Introduction025

Sentence embeddings are vector representations026

of the meaning of a sentence, and they have been027

well-studied in the field of natural language pro-028

cessing (NLP) (Reimers and Gurevych, 2019; Gao029

et al., 2021; Jiang et al., 2024). Most of the pre-030

vious studies aim to obtain one representation per031

sentence. However, this approach cannot handle032

the relations between sentences appropriately when033

a sentence has multiple interpretations. For exam-034

ple, the sentence “John and Anna are married” can035

be interpreted in two ways: “John and Anna are036

married to each other” and “John and Anna are037

both married.” The former contradicts the sentence038

1Our code will be made publicly available upon accep-
tance.

Figure 1: Conceptual diagram of interpretation embed-
dings

“John and Anna are not a couple,” while the latter 039

does not. 040

To address this problem, we propose interpreta- 041

tion embeddings, which are representations of the 042

interpretations of a sentence. As illustrated in Fig- 043

ure 1, in our approach, an embedding of a sentence 044

contains embeddings of multiple interpretations of 045

the sentence, where each of the interpretation em- 046

beddings represents the individual meaning of the 047

sentence. This allows us to compute the similarity 048

between sentences more appropriately, even when 049

a sentence has two or more meanings. 050

In this study, sentence embeddings are repre- 051

sented by box embeddings (Dasgupta et al., 2020), 052

which represent items as hyperrectangles in a vec- 053

tor space. Intuitively, the box embeddings represent 054

the meaning of a sentence not by a single point but 055

by an area in a high-dimensional space. Then, in- 056

terpretation embeddings are obtained by measuring 057

the overlap of the box embeddings of the ambigu- 058

ous sentence and other sentences, such as the sen- 059

tences between “John and Anna are married” and 060

“John and Anna are married to each other.” We pro- 061

pose GumbelCSE for learning box embeddings of 062

sentences; it is based on contrastive learning using 063

natural language inference (NLI) datasets. After 064

obtaining sentence embeddings that include mul- 065
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tiple interpretation embeddings, we also propose066

a method to extract the interpretation embeddings067

from the sentence embeddings.068

Our proposed method is evaluated by conduct-069

ing three experiments: Recognizing Textual Entail-070

ment (RTE), Entailment Direction Prediction (Yoda071

et al., 2024), and Ambiguous RTE. The effective-072

ness of our approach is demonstrated through these073

experiments.074

The contributions of this paper are summarized075

as follows:076

• We introduce a new concept, interpretation077

embeddings, which are the representations of078

interpretations to handle multiple meanings of079

a sentence.080

• We propose a new sentence embedding081

method to learn box embeddings of sentences082

and interpretations.083

• We empirically evaluate the effectiveness of084

our method through three different tasks.085

2 Related Work086

2.1 Sentence Embeddings087

There have been numerous efforts to develop meth-088

ods for learning sentence embeddings. For ex-089

ample, several methods using NLI datasets were090

proposed (Conneau et al., 2017; Reimers and091

Gurevych, 2019). Tsukagoshi et al. (2021) used092

definition sentences in a dictionary to train sentence093

embedding models.094

Recently, the contrastive learning framework095

(Chen et al., 2020) has become a popular approach096

for the learning of sentence embeddings. SimCSE2097

(Gao et al., 2021) is a representative example of098

this approach that will be explained in detail in099

subsection 3.1. Several methods utilized SimCSE100

to obtain enhanced sentence embeddings. Yoda101

et al. (2024) extended SimCSE to learn Gaussian102

embeddings of sentences. Li et al. (2024) applied103

matryoshka representation learning (Kusupati et al.,104

2022) to learn sentence embeddings, enabling the105

adjustment of not only the number of embedding106

dimensions but also the number of layers.107

Most recently, large language models (LLMs)108

have been used to learn sentence embeddings and109

achieved remarkable results. PromptEOL (Jiang110

2SimCSE has two kinds of settings: unsupervised and
supervised. In this paper, the term “SimCSE” refers to the
supervised version.

et al., 2024) defines the hidden state of the next to- 111

ken of a prompt, “This sentence: [text] means in 112

one word,” as the sentence embedding of a sentence 113

given as [text], inspired by Jiang et al. (2022). It 114

also has an in-context learning setting, which uses 115

the definition sentences in a dictionary, inspired by 116

Tsukagoshi et al. (2021). 117

The above sentence embedding methods define 118

a single representation for a given sentence. In 119

contrast, our method aims to represent a sentence 120

with multiple vector representations. 121

2.2 Sentence-Level Ambiguity 122

The ambiguity of a sentence’s meaning is an impor- 123

tant issue in many NLP tasks, such as question an- 124

swering (Min et al., 2020), event temporal relation 125

extraction (Hu et al., 2024), text-to-SQL (Bhaskar 126

et al., 2023), and machine translation (Lee et al., 127

2023; Pilault et al., 2023; Garg et al., 2024). 128

NLI is also a fundamental task in which the am- 129

biguity of meanings of sentences should be consid- 130

ered. The construction of an NLI dataset is often 131

accompanied by disagreement in the annotation 132

process, which is primarily attributed to ambiguity 133

at the sentence level (Jiang and de Marneffe, 2022). 134

Several attempts have been made to address this 135

issue. Jiang et al. (2023) and Weber-Genzel et al. 136

(2024) created NLI datasets annotated with labels 137

and their corresponding explanations, which pro- 138

vided insight into the rationale behind the chosen la- 139

bels. Pavlick and Kwiatkowski (2019) and Nie et al. 140

(2020) re-annotated existing NLI datasets with 141

many annotators and analyzed the relation between 142

model performance and inter-annotator agreement. 143

Meissner et al. (2021) and Zhou et al. (2022) pro- 144

posed the paradigm of predicting the distribution 145

of probabilities of the labels for a given pair of sen- 146

tences. Liu et al. (2023) created the multi-labeled 147

NLI dataset AMBIENT, which considered the inter- 148

pretations of the sentences. Havaldar et al. (2025) 149

created an NLI dataset where explicitly entailed, 150

implicitly entailed, contradicted, and neutral hy- 151

potheses are associated with a premise. In this 152

study, we use the NLI datasets created by Nie et al. 153

(2020) and Liu et al. (2023) to assess the effective- 154

ness of our interpretation embedding method in 155

handling the ambiguity of a sentence. 156

3 Proposed Method 157

We propose a new concept, interpretation embed- 158

dings, which are the representations of individual 159
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Figure 2: An explanation of interpretation embeddings
compared to the situation for words

interpretations of a sentence. In this study, an inter-160

pretation embedding is represented by the overlap161

of the box embeddings (Dasgupta et al., 2020) of162

two sentences. As shown in Figure 2, in the case163

of words, an overlap of box embeddings can be164

regarded as a representation of a word sense. Simi-165

larly, in the case of sentences, we propose that the166

overlap of box embeddings can be regarded as a167

representation of an interpretation. The box embed-168

dings of words are often studied (Onoe et al., 2021;169

Dasgupta et al., 2022; Oda et al., 2024), while those170

of sentences are not. In our proposed method, in-171

terpretation embeddings are obtained through two172

distinct steps. The first step involves training the173

box embeddings of sentences, which is explained174

in subsection 3.1. The second step entails retriev-175

ing the interpretation embeddings from the trained176

box embeddings of sentences, which is explained177

in subsection 3.2.178

3.1 Learning Sentence Embeddings179

We propose GumbelCSE, a sentence embedding180

method for learning box embeddings. First, we ex-181

plain the basic concepts of box embeddings in sub-182

section 3.1.1. Second, we introduce related meth-183

ods, SimCSE (Gao et al., 2021) and GaussCSE184

(Yoda et al., 2024), in subsections 3.1.2 and 3.1.3,185

respectively. Finally, we explain GumbelCSE in186

subsection 3.1.4.187

3.1.1 Box Embeddings188

Box embeddings represent items as n-dimensional189

hyperrectangles. A box embedding b is con-190

structed from two vectors: a center vector c and191

an offset vector o. For each ith dimension, the192

area of a box embedding is defined as the interval193

[ci − oi, ci + oi]. Given two box embeddings bx194

and by, the asymmetrical similarity between them195

is defined as follows: 196

P (bx|by) =
Vol(bx ∩ by)

Vol(by)
. (1) 197

Here, Vol(b) is the function that calculates the 198

volume of b, while bx ∩ by is the overlap of bx 199

and by. In this study, Gumbel Box (Dasgupta et al., 200

2020) is used for the calculation of the volume of 201

box embeddings. More specifically, the Gumbel 202

distribution is employed to calculate the volumes of 203

box embeddings. This prevents the gradient from 204

becoming zero during the training phase, which 205

could occur if there is a lack of overlap between 206

the box embeddings. 207

3.1.2 SimCSE 208

SimCSE (Gao et al., 2021) is a representative con- 209

trastive learning method for sentence embeddings. 210

BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 211

2019) is used as an encoder that produces a vec- 212

tor representation of a sentence. This sentence 213

encoder is fine-tuned utilizing a set of contrastive 214

sentences. Each batch is constituted by M triplets 215

(si, s
+
i , s

−
i ), where si, s+i , and s−i indicate an in- 216

stance (sentence), a positive instance for si, and 217

a hard negative instance for si, respectively. Gao 218

et al. (2021) used the training sets of SNLI (Bow- 219

man et al., 2015) and MNLI (Williams et al., 2018) 220

for constructing the above triplets, namely, using a 221

premise as si, its entailment hypothesis as s+i , and 222

its contradiction hypothesis as s−i . The loss for the 223

ith instance is calculated by 224

−log
esim(hi,h

+
i )/τ∑M

j=1

(
esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ

) , (2) 225

where h is the embedding of s, sim(hi,hj) is the 226

cosine similarity between hi and hj , and τ is the 227

temperature. 228

3.1.3 GaussCSE 229

GaussCSE (Yoda et al., 2024) is an extension of 230

SimCSE. It is designed to learn Gaussian embed- 231

dings of sentences, whereby each sentence is repre- 232

sented as a Gaussian distribution. A Gaussian em- 233

bedding N is constructed from two vectors: a mean 234

vector µ and a variance vector σ. These two vectors 235

are the outputs of two linear layers, which are con- 236

nected to the hidden state of the [CLS] token3 in 237

the final layer of BERT. Gaussian embeddings can 238

3The special token of the beginning of a sentence ⟨s⟩ when
RoBERTa is used.
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represent asymmetric relations between two sen-239

tences si and sj using the following asymmetric240

similarity score:241

sim(si||sj) =
1

1 +DKL(Ni||Nj)
. (3)242

Here, DKL(Ni||Nj) is the Kullback-Leibler diver-243

gence from Nj to Ni.244

The configuration of the triplets for training245

GaussCSE is identical to that of SimCSE, while the246

loss for the ith instance is calculated using Equa-247

tion (7):248

VE =
∑M

j=1
esim(s+j ||si)/τ , (4)249

VC =
∑M

j=1
esim(s−j ||si)/τ , (5)250

VR =
∑M

j=1
esim(si||s+j )/τ , (6)251

li = −log
esim(s+i ||si)/τ

VE + VC + VR
. (7)252

The objective of this loss function is to train Gaus-253

sian embeddings so that the similarity sim(sj ||si)254

becomes close to 1 for a pair (si, sj) of a premise255

and its entailment hypothesis, while it is 0 for other256

sentence pairs.257

3.1.4 GumbelCSE258

We propose GumbelCSE, an extension of SimCSE259

for learning box embeddings of sentences. A box260

embedding bs of a sentence s is the output of a261

linear layer, which is connected to the hidden state262

of the [CLS] token in the final layer of BERT. Here,263

cs and os are obtained by splitting bs in half. The264

asymmetric similarity between two box embed-265

dings bsi and bsj is defined as Equation (1).266

The triplets for training GumbelCSE are con-267

structed in the same manner as those of SimCSE268

and GaussCSE. The loss for the ith instance is de-269

fined as Equation (12):270

VE =
∑M

j=1
e
P (b+

sj
|bsi )/τ , (8)271

VC =
∑M

j=1
e
P (b−

sj
|bsi )/τ , (9)272

VR1 =
∑M

j=1
e
P (bsi |b

+
sj
)/τ

, (10)273

VR2 =
∑M

j=1
e
P (bsi |b

−
sj
)/τ

, (11)274

li = −log
eP (b+

si
|bsi )/τ

VE + VC + VR1 + VR2

. (12)275

The design of this loss function draws inspiration 276

from the work of Yoda et al. (2024). The probabil- 277

ity P (bsj |bsi) becomes close to 1 for a pair (si, sj) 278

of a premise and its entailment hypothesis, while it 279

is 0 for other pairs. In addition, a modification is 280

made to obtain better box embeddings of sentences. 281

We add VR2 to learn the relation between a sentence 282

and its hard negative sentence more clearly. 283

3.2 Extraction of Interpretation Embeddings 284

Let bs be a box embedding of a sentence s. We 285

extract Us, a set of box embeddings of multiple 286

interpretations of the sentence s, from bs. As pre- 287

viously stated, we assume that bs includes embed- 288

dings of multiple interpretations of s, and each 289

interpretation can be represented by an overlap of 290

box embeddings of s and another sentence. 291

First, a set of reference sentences, denoted as 292

T , is prepared. For each ti ∈ T , the overlap of 293

bs and bti , denoted as b(s,ti), is obtained as in- 294

terpretation (box) embeddings. Obviously, all of 295

b(s,ti) does not represent appropriate interpreta- 296

tion embeddings. Therefore, Us is formed by the 297

part of b(s,ti) that meets the following condition: 298

P (b(s,ti)|bs) is greater than α1 and smaller than 299

α2. That is, Us is formalized as follows: 300

Us = {b(s,ti) | α1 < P (b(s,ti)|bs) < α2}. (13) 301

P (b(s,ti)|bs) measures how much the two box em- 302

beddings overlap. α1 and α2 are hyperparameters, 303

which are optimized using the development set. 304

The motivation for our method of extracting in- 305

terpretation embeddings is as follows. As shown 306

in Figure 3 (b), when the overlap of bs and bti is 307

small, the meanings of these two sentences are ex- 308

tremely different, so the overlap may not represent 309

an interpretation of s. As shown in Figure 3 (c), 310

when the overlap of bs and bti is large, the mean- 311

ings of the two sentences are similar and b(s,ti) is 312

almost the same as bs; thus, b(s,ti) is unlikely to 313

be an interpretation embedding. When a moderate 314

overlap is found, as shown in Figure 3 (a), we add 315

b(s,ti) to Us. 316

4 Experiments 317

Our proposed method is evaluated by three tasks: 318

RTE, Entailment Direction Prediction (Yoda et al., 319

2024), and Ambiguous RTE. The experimental se- 320

tups are described first in subsection 4.1; then, the 321

details of the experiments are presented in the fol- 322

lowing subsections. 323
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Figure 3: Extraction of interpretation embeddings

4.1 Setup324

The pre-trained BERT model (Devlin et al., 2019)325

bert-base-uncased4 and RoBERTa model (Liu326

et al., 2019) roberta-base5 are utilized through-327

out all experiments. The number of dimensions of328

the output of the linear layer connected to the pre-329

trained model is set to 128, thereby enabling the330

training of the 64-dimensional box embeddings.6331

During the training, the batch size is set to 512,332

the learning rate is 5e−5, and the temperature is333

0.05; these are the same settings used in the train-334

ing of SimCSE (Gao et al., 2021). The model is335

trained for 5 epochs using the training sets of SNLI336

(Bowman et al., 2015) and MNLI (Williams et al.,337

2018) prepared by Gao et al. (2021), which consist338

of 275,601 triplets in total. The model is validated339

every 100 steps, and the optimal model is chosen340

based on Area Under the Precision-Recall Curve341

(AUPRC) of the RTE task; these are the same set-342

tings for the training of GaussCSE (Yoda et al.,343

2024). For the RTE and Entailment Direction Pre-344

diction tasks, we use the model that is optimized345

using the development set of SNLI. On the other346

hand, for the Ambiguous RTE task, we use the347

model that is optimized using MNLI-mismatched7348

because the test set of Ambiguous RTE task in-349

cludes a part of the development set of SNLI.350

4.2 RTE351

Task definition RTE is a task that involves clas-352

sifying a pair consisting of a premise and a hy-353

4https://huggingface.co/google-bert/
bert-base-uncased

5https://huggingface.co/FacebookAI/
roberta-base

6The influence of the number of dimension is addressed in
Appendix C.

7MNLI provides two development sets, MNLI-matched
and MNLI-mismatched, which respectively comprise sam-
ples of domains that are consistent and inconsistent with the
training data.

pothesis, (p, h), into two classes: entailment or 354

non-entailment. 355

Datasets Following Yoda et al. (2024), we use 356

the test set of SNLI, MNLI-mismatched8, and the 357

test set of SICK (Marelli et al., 2014) for evaluation. 358

As they are NLI datasets, the labels “neutral” and 359

“contradiction” are converted to “non-entailment,” 360

while “entailment” remains unchanged. The num- 361

ber of instances in the test sets of SNLI and SICK 362

is 10,000 and 4,927, respectively. 363

Method Following Yoda et al. (2024), Gum- 364

belCSE predicts the relation of (p, h) as entailment 365

if P (bh|bp) is greater than the threshold β; other- 366

wise, it is non-entailment. β is optimized by the 367

development set of SNLI. 368

Baselines We prepare three baseline models: 369

LINEAR, SimCSE, and GaussCSE. LINEAR is 370

a model that comprises a two-dimensional linear 371

layer connected to the hidden state of the [CLS] 372

token in the final layer of BERT or RoBERTa. This 373

is an ordinary fine-tuning method for the RTE task. 374

SimCSE and GaussCSE predict the label in the 375

same way as our model, where the similarity be- 376

tween the premise and hypothesis is measured by 377

the cosine similarity and Equation (3), respectively. 378

Note that all models as well as our GumbelCSE are 379

trained or fine-tuned using the same dataset.9 380

Results The results of the RTE task are shown 381

in Table 1. Comparing three sentence embedding 382

methods, GumbelCSE achieves the best perfor- 383

mance on the average of the three datasets for 384

both BERT and RoBERTa. Given that the LIN- 385

EAR model is fine-tuned for the RTE task, it out- 386

performs the majority of CSE-based methods that 387

learn task-agnostic sentence embeddings. How- 388

ever, GumbelCSE with RoBERTa is better than 389

LINEAR, while GumbelCSE with BERT is almost 390

comparable to LINEAR. 391

4.3 Entailment Direction Prediction 392

Task definition Entailment Direction Prediction 393

is a task that involves the prediction of the entail- 394

ment direction between two given sentences s1 and 395

s2. This is a binary classification task, where the 396

8Recall that it is one of the development sets in MNLI,
consisting of 10,000 samples.

9The details of the implementation of the baselines are
described in Appendix A and B. These sections also describe
the implementation details of the baselines for the Entailment
Direction Prediction and Ambiguous RTE tasks.
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Model SNLI MNLI SICK Avg.

B

LINEAR 82.79 74.54 86.02 81.12
SimCSE 75.53 74.22 71.08 73.61
GaussCSE* 76.64 76.85 83.15 78.88
GumbelCSE 81.94 73.91 86.71 80.85

R

LINEAR 81.75 73.82 83.13 79.57
SimCSE 75.03 77.77 73.72 75.51
GaussCSE* 76.37 77.74 82.95 79.02
GumbelCSE 80.95 73.83 87.52 80.77

Table 1: Accuracy of RTE. “B” and “R” represent BERT
and RoBERTa, respectively. * indicates the results from
Yoda et al. (2024).

goal is to determine whether s1 entails s2 or s2397

entails s1.398

Datasets We use 3,368, 3,463, and 794 sentence399

pairs labeled with “entailment” in the test set of400

SNLI, MNLI-mismatched, and the test set of SICK,401

respectively. In SICK, the labels for NLI are anno-402

tated for each direction of the sentence pairs. In-403

stances labeled with the “entailment” tag for both404

directions have been excluded, following Yoda et al.405

(2024).406

Method Similar to Yoda et al. (2024), Gum-407

belCSE predicts that s1 entails s2 if P (bs2 |bs1)408

is greater than P (bs1 |bs2) and vice versa.409

Baselines We prepare two baseline models:410

LENGTH and GaussCSE. LENGTH is a simple411

rule-based method that predicts that a longer sen-412

tence entails a shorter one. GaussCSE predicts the413

entailment direction in the same way as our model,414

where the similarity between s1 and s2 is measured415

by Equation (3).416

Results The results of the Entailment Direction417

Prediction task are shown in Table 2. Both Gauss-418

CSE and GumbelCSE demonstrate superior perfor-419

mance compared to the naive baseline, LENGTH.420

Furthermore, GumbelCSE outperforms GaussCSE421

for all three datasets, substantiating the effective-422

ness of our GumbelCSE method in capturing asym-423

metric relations between sentences.424

4.4 Ambiguous RTE425

Task definition A new task, called Ambiguous426

RTE, is proposed to evaluate the effectiveness of427

interpretation embeddings. It is a task that involves428

classifying a pair consisting of a premise and a429

hypothesis into one of three classes: entailment,430

Model SNLI MNLI SICK Avg.
LENGTH* 92.63 82.64 69.14 81.47

B
GaussCSE* 97.38 91.92 86.22 91.84
GumbelCSE 98.01 92.93 90.18 93.70

R
GaussCSE* 97.44 93.10 88.43 92.99
GumbelCSE 98.19 93.76 90.05 94.00

Table 2: Accuracy of Entailment Direction Prediction.
“B” and “R” represent BERT and RoBERTa, respectively.
* indicates the results from Yoda et al. (2024).

non-entailment, or both. The class “both” means 431

that the relation between a premise and a hypothe- 432

sis is ambiguous due to multiple interpretations of 433

a sentence. 434

Datasets We use the test set of AMBIENT (Liu 435

et al., 2023) and ChaosNLI (Nie et al., 2020) for 436

evaluation and MNLI-mismatched for optimizing 437

parameters. In these datasets, multiple NLI labels 438

are given for each sentence pair, considering the 439

ambiguity of the interpretation of a sentence. For 440

example, the pair consisting of the premise “The cat 441

was lost after leaving the house” and the hypothesis 442

“The cat could not find its way” is labeled with 443

both “entailment” and “neutral” (when the premise 444

means “The cat is unable to be found”). These NLI 445

labels are simplified to the three aforementioned 446

coarse classes. 447

In ChaosNLI and MNLI-mismatched, the labels 448

are voted by 100 and 5 annotators, respectively. 449

Similar to the setting in Jiang and de Marneffe 450

(2022), only the labels supported by 20 votes are 451

used in ChaosNLI, while 2 votes are used in MNLI- 452

mismatched. 453

The test set of ChaosNLI is divided into 454

ChaosNLI-S and ChaosNLI-M, where the samples 455

are derived from the development set of SNLI and 456

MNLI-matched, respectively. The number of in- 457

stances in the test set of AMBIENT, ChaosNLI-S, 458

and ChaosNLI-M is 1,545, 1,514, and 1,599, re- 459

spectively. 460

Method First, the sets of interpretation embed- 461

dings of p and h, Up and Uh, are extracted as de- 462

scribed in subsection 3.2. Here, T (the set of refer- 463

ence sentences) is constructed from the n triplets 464

randomly sampled in the training set of Gum- 465

belCSE. Second, for all pairs of the interpretation 466

embeddings of p and h, namely (b(p,ti),b(h,tj)) ∈ 467

Up×Uh, P (b(h,tj)|b(p,ti)) is calculated. This prob- 468

ability evaluates how the interpretation embedding 469
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Model
ChaosNLI-S ChaosNLI-M AMBIENT

ent. non. both ent. non. both ent. non. both

BERT

LINEAR 48.69 81.81 38.67 37.52 62.68 40.53 28.17 61.25 25.74
SimCSE 24.54 70.40 – 34.36 56.72 – 26.50 51.86 –
GaussCSE 31.81 71.83 – 34.31 57.82 – 28.57 62.49 –
GumbelCSE-sen 38.63 73.22 – 32.05 56.14 – 32.56 66.83 –
GumbelCSE-int 27.92 66.06 47.14 30.88 49.72 28.15 26.79 70.28 1.43

RoBE
RTa

LINEAR 52.71 82.26 35.84 36.36 62.13 37.59 30.25 67.17 18.28
SimCSE 26.33 71.27 – 34.04 58.45 – 26.87 51.19 –
GaussCSE 31.74 71.37 – 32.01 57.60 – 27.97 61.13 –
GumbelCSE-sen 38.94 73.41 – 33.21 57.73 – 30.59 71.35 –
GumbelCSE-int 31.98 67.33 50.33 32.40 50.95 27.25 29.99 69.41 2.28

Table 3: F1-score of each class for Ambiguous RTE. Note that SimCSE, GaussCSE and GumbelCSE-sen are binary
classifiers that do not classify a sample as the “both” class.

b(h,tj) subsumes b(p,ti), indicating the possibility470

that p entails h. Finally, (p, h) is classified as fol-471

lows:472 

entailment
if ∀(b(p,ti),b(h,tj))∈Up×Uh P (b(h,tj)|b(p,ti))>β

non-entailment
if ∀(b(p,ti),b(h,tj))∈Up×Uh P (b(h,tj)|b(p,ti))<β

both
otherwise

.

(14)473

The parameter n, the number of triplets in T ,474

is set to 10,000. The parameters α1 and α2 are475

optimized using the development set through a grid476

search from 0.5 to 1.0 at intervals of 0.1. Also, β477

is optimized using the development set.478

To evaluate the effectiveness of the use of in-479

terpretation embeddings, two methods are com-480

pared: GumbelCSE-sen and GumbelCSE-int.481

GumbelCSE-int is the aforementioned method,482

while GumbelCSE-sen classifies sentence pairs483

into entailment or non-entailment classes using484

not interpretation embeddings but sentence embed-485

dings obtained by GumbelCSE.486

Baselines We prepare three baseline models:487

LINEAR, SimCSE and GaussCSE. LINEAR is a488

model that comprises a three-dimensional linear489

layer connected to the hidden state of the [CLS]490

token in the final layer of BERT or RoBERTa. It491

is fine-tuned in two steps. First, it is fine-tuned by492

the training set of GumbelCSE, where the label is493

entailment or non-entailment. Then, it is fine-tuned494

by MNLI-mismatched, where the label is one of495

three classes. SimCSE and GaussCSE predict the496

label in the way explained in subsection 4.2. The497

parameter β for these baselines is also optimized498

using the same development data of GumbelCSE.499

Results The results of the Ambiguous RTE 500

task are shown in Table 3. The F1-scores of 501

GumbelCSE-int for the “entailment” and “non- 502

entailment” classes are almost comparable to those 503

of GumbelCSE-sen, while GumbelCSE-int is addi- 504

tionally capable of classifying an ambiguous sen- 505

tence pair as “both.” This demonstrates the ef- 506

fectiveness of interpretation embeddings in com- 507

prehending the ambiguity of sentences. However, 508

GumbelCSE-int could not outperform LINEAR 509

except for ChaosNLI-S, which is especially fine- 510

tuned for the Ambiguous RTE task. The compari- 511

son among SimCSE, GaussCSE, and GumbelCSE- 512

sen is similar to the comparison on the RTE task, 513

i.e., GumbelCSE-sen outperforms SimCSE and 514

GaussCSE in most cases. 515

For GumbelCSE-int with both BERT and 516

RoBERTa, α1 and α2 are optimized to 0.5 and 517

0.6, respectively, using the development data. This 518

finding validates the effectiveness of our approach 519

to derive interpretation embeddings by employing 520

moderately similar sentences, as discussed in 3.1.4. 521

5 Analysis 522

5.1 Ablation Study 523

An ablation study is conducted to investigate the 524

effectiveness of the components in the loss func- 525

tion in Equation (12). Tables 4 and 5 present the 526

accuracy of the GumbelCSE models trained with 527

several loss functions for the RTE and Entailment 528

Direction Prediction tasks, respectively. These re- 529

sults demonstrate the effectiveness of the newly 530

introduced VR2 for the BERT-based GumbelCSE. 531

In addition, it is found that VC and VR1 can also 532

contribute to learn better representations. 533
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Loss function SNLI MNLI SICK Avg.

B

VE 76.98 65.14 81.14 74.42
VE+VC 80.53 73.78 84.86 79.72
VE+VC+VR1 80.42 72.88 85.00 79.43
VE+VC+VR1+VR2 81.94 73.91 86.71 80.85

R

VE 77.17 66.72 81.88 75.26
VE+VC 80.11 74.26 86.81 80.39
VE+VC+VR1 81.53 74.52 86.97 81.01
VE+VC+VR1+VR2 80.95 73.83 87.52 80.77

Table 4: Accuracy of RTE for several loss functions. “B”
and “R” represent BERT and RoBERTa, respectively.

Loss function SNLI MNLI SICK Avg.

B

VE 97.98 92.29 86.65 92.31
VE+VC 97.95 91.51 88.29 92.58
VE+VC+VR1 97.80 92.20 88.41 92.81
VE+VC+VR1+VR2 98.01 92.93 90.18 93.70

R

VE 97.95 93.16 89.17 93.43
VE+VC 97.86 92.52 89.55 93.31
VE+VC+VR1 97.89 93.94 90.18 94.00
VE+VC+VR1+VR2 98.19 93.76 90.05 94.00

Table 5: Accuracy of Entailment Direction Prediction
for several loss functions.

5.2 Impact of Number of Reference Sentences534

In our GumbelCSE method, interpretation embed-535

dings are obtained by measuring the overlap be-536

tween two box embeddings of the target sentence537

and reference sentences, where the set of refer-538

ence sentences is denoted as T . We analyze how539

the number of reference sentences influences the540

performance of the Ambiguous RTE task. The541

number of dimensions of the box embedding is set542

to 16 to reduce the memory and time costs asso-543

ciated with extracting interpretation embeddings.544

As mentioned in subsection 4.4, T is formed by545

sentences in triplets randomly sampled from the546

training data. The number of triplets, n, is varied547

over {5,000, 10,000, 50,000, 100,000, 200,000}.548

Since each triplet comprises three sentences and549

duplicate sentences are removed, the number of550

reference sentences (|T |) is approximately 3× n.551

The parameter α1 is changed from 0.5 to 0.9 with552

a step size of 0.1, while α2 is fixed at 1.0 to reduce553

the computational time required for analysis.554

Figure 4 presents the macro-F1-scores of the555

Ambiguous RTE task of the models with different556

settings where BERT is used as the base model.557

The best macro-F1-score is obtained when n =558

Figure 4: The macro-F1-scores obtained while varying
α1 from 0.5 to 0.9 in five settings

10, 000 and α1 = 0.6. This demonstrates that a 559

large number of reference sentences is not neces- 560

sary to obtain a sufficient number of appropriate 561

interpretation embeddings, resulting in the reduc- 562

tion of the computational cost. When α1 is set to 563

a relatively small value (i.e., 0.5), the macro-F1- 564

score is significantly reduced as n increases. This 565

is because the increase in the number of interpreta- 566

tion embeddings provides the opportunity for the 567

“otherwise” condition in Equation (14) to be ful- 568

filled, resulting in a substantial bias towards the 569

“both” class. In contrast, when α1 is set to a large 570

value, the performance of the Ambiguous RTE task 571

remains stable with respect to the number of refer- 572

ence sentences, due to the decrease in the number 573

of interpretation embeddings. 574

6 Conclusion 575

In this paper, we introduced a new concept inter- 576

pretation embeddings, which represent the interpre- 577

tations of a sentence. The interpretation embedding 578

is created by overlapping the box embeddings of 579

two sentences. Furthermore, we proposed Gum- 580

belCSE, which is a contrastive learning method 581

for learning box embeddings of sentences, and the 582

method for extracting interpretation embeddings 583

of a sentence from the box embedding of a sen- 584

tence. We evaluated our method on three tasks: 585

RTE, Entailment Direction Prediction, and Am- 586

biguous RTE. On the RTE and Entailment Direc- 587

tion Prediction tasks, GumbelCSE outperformed 588

other sentence embedding methods in most cases. 589

On the Ambiguous RTE task we proposed, it was 590

demonstrated that interpretation embeddings are 591

effective for understanding the multiple interpre- 592

tations of a sentence. In the future, we plan to 593

apply our method to more challenging tasks such 594

as understanding metaphors or pragmatics. 595
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Limitations596

The bottleneck of our method is the substantial597

memory and time required for calculating the over-598

lap of box embeddings to obtain interpretation em-599

beddings. To mitigate this problem, the number of600

dimensions of box embeddings is set to a relatively601

low value (i.e., 16) in this paper. However, increas-602

ing this value could facilitate the representation of603

more subtle meanings of sentences. Another limi-604

tation is that our method has not yet been applied605

to real applications such as information retrieval.606
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A Implementation Details of Baselines845

SimCSE is implemented with the same settings as846

the original paper (Gao et al., 2021). The epoch, the847

batch size, the learning rate, and the temperature848

are set to 3, 512, 5e−5, and 0.05, respectively. We849

validate the model every 250 steps on the develop-850

ment set of STS-B (Cer et al., 2017) and choose the851

best checkpoint. The best validation score (Spear-852

man’s correlation) achieved by our implemented853

SimCSE, where BERT serves as the base model, is854

86.1, which is almost the same as the score 86.2855

described in (Gao et al., 2021).856

GaussCSE is also implemented with the same857

settings as the original paper (Yoda et al., 2024).858

The epoch, the learning rate, and the temperature859

are set to 3, 16, 5e−5, and 0.05, respectively. The860

dimensions of both the mean vector and the vari-861

ance vector are set to 768. We validate the model862

every 3200 steps on the RTE task using the devel-863

opment set of SNLI and choose the best checkpoint.864

The best validation scores (AUPRC) achieved by865

our implemented GaussCSE based on BERT and866

RoBERTa are 66.19 and 66.91, respectively. These867

scores are almost the same as 66.21 and 66.31 re-868

ported in (Yoda et al., 2024).869

LINEAR in the RTE task is implemented as fol-870

lows. The epoch, the batch size, and the learning871

rate are set to 5, 512, and 5e−5, respectively. The872

Box dim. 16 32 64 128 256
AUPRC 75.86 77.41 77.95 77.10 76.23

Table 6: Validation scores for several dimensions of box
embeddings

cross-entropy loss is chosen as the loss function. 873

We validate the model every 100 steps on the RTE 874

task using the development set of SNLI and choose 875

the best checkpoint. The best validation scores (ac- 876

curacy) of the LINEAR models obtained by fine- 877

tuning BERT and RoBERTa are 83.18 and 82.01, 878

respectively. 879

LINEAR in the Ambiguous RTE task is imple- 880

mented as follows. First, the model is trained using 881

relatively large SNLI and MNLI datasets with the 882

same settings as for the RTE task. Second, it is re- 883

trained using the small MNLI-mismatched dataset. 884

The epoch, the batch size, and the learning rate are 885

set to 5, 128, and 5e−5, respectively. The cross- 886

entropy loss is chosen as the loss function. In the 887

second training phase, the model is not validated 888

using the development data; instead, the model 889

obtained after the final epoch is used. 890

B Training Time 891

All models described in section 4 are trained us- 892

ing a single GPU, NVIDIA RTX A6000 48GB. 893

The time required to complete the training of Gum- 894

belCSE, GaussCSE, and SimCSE are about 120, 895

200, and 20 minutes, respectively. The fine-tuning 896

of LINEAR in the RTE task takes approximately 897

60 minutes, while the second fine-tuning of LIN- 898

EAR in the Ambiguous RTE task using the MNLI- 899

mismatched dataset takes about one minute. 900

C Influence of Dimensions of Box 901

Embeddings 902

This section investigates how the dimensions of box 903

embeddings influences the performance of Gum- 904

belCSE. Table 6 shows AUPRC of GumbelCSE, 905

where BERT is used as the base model, in the vali- 906

dation data of the RTE task when the dimensions of 907

bs is set to {16, 32, 64, 128, 256}. It is found that 908

a moderate size of box embeddings, specifically 64, 909

achieves the best AUPRC. 910
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