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Abstract

While reinforcement learning (RL) holds great potential for decision making in the
real world, it suffers from a number of unique difficulties which often need specific
consideration. In particular: it is highly non-stationary; suffers from high degrees
of plasticity loss; and requires exploration to prevent premature convergence to
local optima and maximize return. In this paper, we consider whether learned opti-
mization can help overcome these problems. Our method, Learned Optimization
for Plasticity, Exploration and Non-stationarity (OPEN1), meta-learns an update
rule whose input features and output structure are informed by previously proposed
solutions to these difficulties. We show that our parameterization is flexible enough
to enable meta-learning in diverse learning contexts, including the ability to use
stochasticity for exploration. Our experiments demonstrate that when meta-trained
on single and small sets of environments, OPEN outperforms or equals tradition-
ally used optimizers. Furthermore, OPEN shows strong generalization across a
distribution of environments and a range of agent architectures.

1 Introduction

Reinforcement learning [1, RL] has undergone significant advances in recent years, scaling from
solving complex games [2, 3] towards approaching real world applications [4–7]. However, RL is
limited by a number of difficulties which are not present in other machine learning domains, requiring
the development of numerous hand-crafted workarounds to maximize its performance.

Here, we take inspiration from three difficulties of RL: non-stationarity due to continuously changing
input and output distributions [8]; high degrees of plasticity loss limiting model capacities [9, 10];
and exploration, which is needed to ensure an agent does not converge to local optima prematurely
[1, 11]. Overcoming these challenges could enable drastic improvements in the performance of
RL, potentially reducing the barriers to applications of RL in the real-world. Thus far, approaches
to tackle these problems have relied on human intuition to find hand-crafted solutions. However,
this is fundamentally limited by human understanding. Meta-RL [12] offers an alternative in which
RL algorithms themselves are learned from data rather than designed by hand. Meta-learned RL
algorithms have previously demonstrated improved performance over hand-crafted ones [13–15].

On a related note, learned optimization has proven successful in supervised and unsupervised learning
(e.g., VeLO [16]). Learned optimizers are generally parameterized update rules trained to outperform
handcrafted algorithms like gradient descent. However, current learned optimizers perform poorly in
RL [16, 17]. While some may argue that RL is simply an out-of-distribution task [16], the lack of
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consideration for, and inability to target, specific difficulties of RL in naïve learned optimizers leads
us to believe that they would still underperform even if RL were in the training distribution.

We propose an algorithm, shown in Figure 1, for meta-learning optimizers specifically for RL called
Learned Optimization for Plasticity, Exploration and Nonstationarity (OPEN). OPEN meta-learns
update rules whose inputs are rooted in previously proposed solutions to the difficulties above, and
whose outputs use learnable stochasticity to boost exploration. OPEN is trained to maximize final
return only, meaning it does not use regularization to mitigate the difficulties it is designed around.

In our results (Section 6), we benchmark OPEN against handcrafted optimizers (Adam [18], RMSProp
[19]), open-source discovered/learned optimizers (Lion [20], VeLO [16]) and baseline learned
optimizers trained for RL (Optim4RL [17], ‘No Features’). We show that OPEN can fit to single and
small sets of environments and also generalize in- and out-of-support of its training distribution. We
further find that OPEN generalizes better zero-shot than Adam [18] in our gridworld setting.

Figure 1: A visualization of OPEN. We train N agents, replacing the handcrafted optimizer of the
RL loop with ones sampled from the meta-learner (i.e., evolution). Each optimizer conditions on
gradient, momentum and additional inputs, detailed in Section 5.3, to calculate updates. The final
returns from each loop are output to the meta learner, which improves the optimizer before repeating
the process. A single inner loop step is described algorithmically in Appendix B.1.

2 Background

Reinforcement Learning The RL problem is formulated as a Markov Decision Process [1, MDP]
described by the tuple ⟨A,S, P,R, ρ, γ⟩. At discrete timestep t, the agent takes action at ∈ A
sampled from its (possibly stochastic) policy, π(·|st) ∈ Π, which conditions on the current state
st ∈ S (where s0 ∼ ρ). After each action, the agent receives rewardR(st, at) and the state transitions
to st+1, based on the transition dynamics P (st+1|st, at). An agent’s objective is to maximize its
discounted expected return, Jπ, corresponding to a discount factor γ ∈ [0, 1), which prevents the
agent making myopic decisions. This is defined as

Jπ := Ea0:∞∼π,s0∼ρ,s1:∞∼P

[ ∞∑
t=0

γtRt

]
. (1)

Proximal policy optimization [21, PPO] is an algorithm designed to maximize Jπ . It uses advantage,
Aπ(s, a), which is calculated from the state value function, V π = Eπ[

∑∞
t=0 γ

tRt|St = s], and state-
action value function, Qπ(s, a) = Eπ[

∑∞
t=0 γ

tRt|St = s,At = a]. It measures the improvement of
a specific action over the current policy and takes the form

Aπ(s, a) = Qπ(s, a)− V π(s). (2)
PPO introduces a loss for optimizing the policy, parameterized by θ, that prevents extreme policy
updates in gradient ascent. This uses clipping, which ensures there is no benefit to updating θ beyond
where the policy probability ratio, rt(θ) =

πθ(at|st)
πθold

(at|st) , exceeds the range [1± ϵ]. The clipped loss is

LCLIP (θ) = E [min(rt(θ)A
π(st, at), clip(rt(θ), 1± ϵ)Aπ(st, at))] . (3)

PPO is an actor-critic [1] method, where the policy and value functions are modeled with different
neural networks, or separate heads of the same neural network, conditioning on state. The PPO
objective to maximize combines the clipped loss, a value function error, and an entropy bonus into

Lt(θ) = E[LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)]. (4)
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Meta-Learning Optimizers in RL Algorithms like Adam [18] or RMSprop [19] are designed to
maximize an objective by updating the parameters of a neural network in the direction of positive
gradient with respect to the function. They are often applied with augmentations such as momentum
or learning rate schedules to better converge to optima. Learned optimizers offer an alternative:
parameterized update rules, conditioning on more than just gradient, which are trained to maximize
an objective [22, 16, 23]. For any parameterized optimizer optϕ, which conditions on a set of inputs
x, the update rule to produce update u can be described as a function, optϕ(x) → u.

We treat learning to optimize as a meta-RL problem [12]. In meta-RL, the goal is to maximize
Jπ over a distribution of MDPs P (M). For our task, an optimizer trained to maximize J (ϕ) =
EM

[
Jπ|optϕ

]
yields the optimal meta-parameterization optϕ∗ .

Evolution Strategies Evolution algorithms (EA) are a backpropagation-free, black-box method
for optimization [24] which uses a population of perturbed parameters sampled from a distribution
(here, θ̂ ∼ N (θ, σ2I)). This population is use to maximize a fitness F (·). EA encompasses a range
of techniques (e.g., evolution strategies (ES) [25, 26], genetic algorithms [27] or CMA-ES [28]).

Natural evolution strategies (NES) [29] are a class of ES methods that use the population fitness
to estimate a natural gradient for the mean parameters, θ. This can then be optimized with typical
gradient ascent algorithms like Adam [18]. Salimans et al. [25] introduce OpenAI ES for optimizing
θ using the estimator

∇θEϵ∼N(0,I)F (θ + σϵ) =
1

σ
Eϵ∼N(0,I){F (θ + σϵ)ϵ}, (5)

which is approximated using a population average. In practice, we use antithetic sampling (i.e., for
each sampled ϵ, evaluating +ϵ and −ϵ) [30]. Antithetic task sampling enables learning on a task
distribution, by evaluating and ranking each antithetic pair on different tasks [31].

Historically, RL was too slow for ES to be practical for meta-training. However, PureJaxRL [15] re-
cently demonstrated the feasibility of ES for meta-RL, owing to the speedup enabled by vectorization
in Jax [32]. We use the implementation of OpenAI ES [25] from evosax [33].

3 Related Work

3.1 Optimization in RL

Wilson et al. [34] and Reddi et al. [35] show that adaptive optimizers struggle in highly stochastic
processes. Henderson et al. [36] indicate that, unlike other learning regimes, RL is sufficiently
stochastic for these findings to apply, which suggests RL-specific optimizers could be beneficial.

The idea that optimizers designed for supervised learning may not perfectly transfer to RL is reflected
by Bengio et al. [37], who propose an amended momentum suitable for temporal difference learning
[38]. This is related to work by Sarigül and Avci [39], who explore the impact of different types of
momentum on RL. While these works motivate designing optimization techniques specifically for RL,
we take a more expressive approach by replacing the whole optimizer instead of just its momentum
calculation, and using meta-learning to fit our optimizer to data rather than relying on potentially
suboptimal human intuition.

3.2 Meta-learning

Discovering RL Algorithms Rather than using handcrafted algorithms, a recent objective in meta-
RL is discovering RL algorithms from data. While there are many successes in this area (e.g., Learned
Policy Gradient [13, LPG], MetaGenRL [14] and Learned Policy Optimisation [15, LPO]), we focus
on meta-learning a replacement to the optimizer due to the outsized impact a learned update rule can
have on learning. We also use specific difficulties of RL to guide the design of our method, rather
than simply applying end-to-end learning.

Jackson et al. [31] learn temporally-aware versions of LPO and LPG. While their approach offers
inspiration for dealing with non-stationarity in RL, they also rely on Adam [18], an optimizer designed
for stationarity that is suboptimal for RL [9]. Instead, we propose replacing the optimizer itself with
an expressive and dynamic update rule that is not subject to these problems.
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Learned Optimization Learning to optimize [22, 40, 41, L2O] strives to learn replacements to
handcrafted gradient-based optimizers like Adam [18], generally using neural networks (e.g., [23, 42–
44]). While they show strong performance in supervised and unsupervised learning [16, 45], previous
learned optimizers do not consider the innate difficulties of RL, limiting transferability. Furthermore,
while VeLO used 4000 TPU-months of compute [16], OPEN requires on the order of one GPU-month.

Lion [20] is a symbolic optimizer discovered by evolution that outperforms AdamW [46] using a
similar update expression. While the simplistic, symbolic form of Lion lets it generalize to RL better
than most learned optimizers, it cannot condition on features additional to gradient and parameter
value. This limits its expressibility, ability to target the difficulties of RL and, therefore, performance.

Learned Optimization in RL Learned optimization in RL is significantly more difficult than in
other learning domains due to the problems outlined in section 4. For this reason, SOTA learned
optimizers fail in transfer to RL [16]. Optim4RL [17] attempts to solve this issue by learning
to optimize directly in RL. However, in their tests and ours, Optim4RL fails to consistently beat
handcrafted benchmarks. Also, it relies on a heavily constrained update expression based on Adam
[18], and it needs expensive learning rate tuning. Instead, we achieve much stronger results with a
completely black-box setup inspired by preexisting methods for mitigating specific difficulties in RL.

4 Difficulties in RL

We believe that fundamental differences exist between RL and other learning paradigms which make
RL particularly difficult. Here, we briefly cover a specific set of prominent difficulties in RL, which
are detailed with additional references in appendix A. Our method takes inspiration from handcrafted
heuristics targeting these challenges (Section 5.3). We show via thorough ablation (Section 7) that
explicitly formulating our method around these difficulties leads to significant performance gains.

(Problem 1) Non-stationarity RL is subject to non-stationarity over the training process [1] as the
updating agent causes changes to the training distribution. We denote this training non-stationarity.
Lyle et al. [9] suggest optimizers designed for stationary settings struggle under nonstationarity.

(Problem 2) Plasticity loss Plasticity loss, or the inability to fit new objectives during training,
has been a theme in recent deep RL literature [9, 47, 48, 10]. Here, we focus on dormancy [47], a
measurement tracking inactive neurons used as a metric for plasticity loss [10, 49–51]. It is defined as

sli =
Ex∈D|hli(x)|

1
Hl

∑
k∈h Ex∈D|hlk(x)|

, (6)

where hli(x) is the activation of neuron i in layer l with input x ∈ D for distribution D. H l is the
total number of neurons in layer l. The denominator normalizes average dormancy to 1 in each layer.

A neuron is τ -dormant if sli ≤ τ , meaning the neuron’s output makes up less than τ of its layer’s
output. For ReLU activation functions, τ = 0 means a neuron is in the saturated part of the ReLU.
Sokar et al. [47] find that dormant neurons generally stay dormant throughout training, motivating
approaches which try to reactivate dormant neurons to boost plasticity.

(Problem 3) Exploration Exploration is a key problem in RL [1]. To prevent premature conver-
gence to local optima, and thus maximize final return, an agent must explore uncertain states and
actions. Here, we focus on parameter space noise for exploration [11], where noise is applied to the
parameters of the agent rather than to its output actions, like ϵ-greedy [1].

5 Method

There are three key considerations when doing learned optimization for RL: what architecture to use;
how to train the optimizer; and what inputs the optimizer should condition on. In this section, we
systematically consider each of these questions to construct OPEN, with justification for each of our
decisions grounded in our core difficulties of RL.

5.1 Architecture and Parameterization

To enable conditioning on history, which is required to express behavior like momentum, for example,
OPEN uses a gated recurrent unit [52, GRU]. This is followed by two fully connected layers with
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LayerNorm [53], which we include for stability. All layers are small; this is important for limiting
memory usage, since the GRU stores separate states for every agent parameter, and for maintaining
computational efficiency [43]. We visualize and detail the architecture of OPEN in Appendix B.

Update Expression We split the calculation of the update in OPEN into three stages, each of which
serves a different purpose. The first stage, which follows Metz et al. [23], is

ûi = α1mi expα2ei, (7)

where mi and ei are optimizer outputs for parameter i, and α(1,2) are small scaling factors used for
stability. This update can cover many orders of magnitude without requiring large network outputs.

(P3) Secondly, we augment the update rule for the actor only to increase exploration; there is no
need for the critic to explore. We take inspiration from parameter space noise for exploration [11],
since it can easily be applied via the optimizer. To be precise, we augment the actor’s update as

ûactor
i := ûactor

i + α3δ
actor
i ϵ. (8)

Here, α3 is a small, stabilizing scaling factor, δactor
i is a third output from the optimizer, and ϵ ∼

N (0, 1) is sampled Gaussian noise. By multiplying δactor
i and ϵ, we introduce a random walk of

learned, per-parameter variance to the update which can be used for exploration. Since δactor
i depends

on the optimizer’s inputs, this can potentially learn complex interactions between the noise schedule
and the features outlined in Section 5.3. Unlike Plappert et al. [11], who remove and resample noise
between rollouts, OPEN adds permanent noise to the parameters. This benefits plasticity loss (i.e.,
(P2)), in principle enabling the optimizer to reactivate dormant neurons in the absence of gradient.

Unfortunately, naïve application of the above updates can cause errors as agent parameters can grow
to a point of numerical instability. This can cause particular difficulty in domains with continuous
action spaces, where action selection often involves exponentiation to get a non-negative standard
deviation. Therefore, the final stage of our update stabilizes meta-optimization by zero-meaning, as

u = û− E[û]. (9)

While this limits the update’s expressiveness, we find that even traditional optimizers tend to produce
nearly zero-mean updates. In practice, this enables learning in environments with continuous actions
without harming performance for discrete actions. Parameter i is updated as p(t+1)

i = p
(t)
i − ui.

5.2 Training

We train our optimizers with OpenAI ES [25], using final return as the fitness. We apply the
commonly-used rank transform, which involves mapping rankings over the population to the range
[−0.5, 0.5], to the fitnesses before estimating the ES gradient; this is a form of fitness shaping [29, 25],
and makes learning both easier and invariant to reward scale.

For training on multiple environments simultaneously (i.e., multi-task training, Section 6), we evaluate
every member of the population on all environments. After evaluation, we: 1) Divide by the return
Adam achieves in each environment; 2) Average the scores over environments; 3) Do a rank transform.
Normalizing by Adam maps returns to a roughly common scale, enabling comparison between diverse
environments. However, this biases learning to environments where Adam underperforms OPEN. We
believe finding better curricula for multi-task training would be highly impactful future work.

5.3 Inputs

Carefully selecting which inputs to condition OPEN on is crucial; they should be sufficiently expres-
sive without significantly increasing the computational cost or meta-learning sample requirements of
the optimizer, and should allow the trained optimizers to surgically target specific problems in RL. To
satisfy these requirements, we take inspiration from prior work addressing our focal difficulties of RL.
In spirit, we distill current methods to a ‘lowest common denominator’ which is cheap to calculate.
We provide additional details of how these features are calculated in Appendix B.2.

(P1) Two training timescales Many learned optimizers for stationary problems incorporate some
version of progress through training as an input [16, 43, 44]. Since PPO learns from successively
collected, stationary batches of data [54], we condition OPEN on how far it is through updating with
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the current batch (i.e., batch proportion). This enables behavior like learning rate scheduling, which
has proved effective in stationary problems (e.g., [55, 56]), and bias correction from Adam to account
for inaccurate momentum estimates [18].

Inspired by Jackson et al. [31], who demonstrate the efficacy of learning dynamic versions of LPG
[13] and LPO [15], we also condition OPEN on how far the current batch is through the total number
of batches to be collected (i.e., training proportion). This directly targets training non-stationarity.

(P2) Layer Proportion Nikishin et al. [57, 58] operate on higher (i.e., closer to the output) network
layers in their attempts to address plasticity loss in RL. Furthermore, they treat intervention depth as
a hyperparameter. To replicate this, and enable varied behavior between the different layers of an
agent’s network, we condition OPEN on the relative position of the parameter’s layer in the network.

(P2) Dormancy As Sokar et al. [47] reinitialize τ -dormant neurons, we condition OPEN directly on
dormancy; this enables similar behavior by allowing OPEN to react as neurons become more dormant.
In fact, in tandem with learnable stochasticity, this enables OPEN to reinitialize dormant neurons, just
like Sokar et al. [47]. Since dormancy is calculated for neurons, rather than parameters, we use the
value of dormancy for the neuron downstream of each parameter.

6 Results

In this section, we benchmark OPEN against a plethora of baselines on large-scale training domains.

6.1 Experimental Setup

Due to computational constraints, we meta-train an optimizer on a single random seed without ES
hyperparameter tuning. This follows standard evaluation protocols in learned optimization (e.g.,
[16, 17, 45]), which are also constrained by the high computational cost of meta-learned optimization.
We detail our hyperparameters in Appendix C.3. We define four evaluation domains, based on Kirk
et al. [59], in which an effective learned optimization framework should prove competent:

Single-Task Training A learned optimizer must be capable of fitting to a single environment, and
being evaluated in the same environment, to demonstrate it is expressive enough to learn an update
rule. We test this in five environments: Breakout, Asterix, Space Invaders and Freeway from MinAtar
[60, 61]; and Ant from Brax [62, 63]. This is referred to as ‘singleton’ training in Kirk et al. [59].

Multi-Task Training To show an optimizer is able to perform under a wide input distribution,
it must be able to learn in a number of environments simultaneously. Therefore, we evaluate
performance from training in all four environments from MinAtar [60, 61].2 We evaluate the average
normalized score across environments with respect to Adam.

In-Distribution Task Generalization An optimizer should generalize to unseen tasks within its
training distribution. To this end, we train OPEN on a distribution of gridworlds from Jackson et al.
[64] with antithetic task sampling [31], and evaluate performance by sampling tasks from the same
distribution. We include details in Appendix D.

Out-Of-Support Task Generalization Crucially, an optimizer unable to generalize to new settings
has limited real-world usefulness. Therefore, we explore out-of-support (OOS) generalization by
testing OPEN on specific task distributions defined by Oh et al. [13], and a set of mazes from minigrid
[65], which do not exist in the training distribution, and with unseen agent parameters.

Baselines We compare against open-source implementations [66] of Adam [18], RMSProp [19],
Lion [20] and VeLO [16, 43]. We also learn two optimizers for the single- and multi-task settings:
‘No Features’, which only conditions on gradient and momentum; and Optim4RL [17] (using ES
instead of meta-gradients, as in Lan et al. [17]). Since Optim4RL is initialized close to sgn(Adam),
and tuning its learning rate is too practically expensive, we set a learning rate of 0.1× LRAdam based
on Lion [20] (which moves from AdamW to sgn(AdamW)). The optimizer’s weights can be scaled to
compensate if this is suboptimal. We primarily consider interquartile mean (IQM) of final return with
95% stratified bootstrap confidence intervals [67]. All hyperparameters can be found in Appendix C.

2Seaquest, which is a part of MinAtar [60], does not have a working implementation in gymnax [61].
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6.2 Single-Task Training Results
Figure 2 shows the performance of OPEN after single-task training. In three MinAtar environments,
OPEN significantly outperform all baselines, far exceeding previous attempts at learned optimization
for RL. Additionally, OPEN beat both learned optimizers in every environment. Overall, these
experiments show the capability of OPEN to learn highly performant update rules for RL.

Return curves (Appendix E) show that OPEN does not always achieve high returns from the start
of training. Instead, OPEN can sacrifice greedy, short-term gains in favor of long-term final return,
possibly due to its dynamic update rule. We further analyze the optimizers’ behavior in Appendix F.

58 60 62 64

OPEN
Adam

RMSprop
Lion

VeLO
Optim4RL

No Features

freeway

75 100 125 150 175

spaceinvaders

15 30 45 60

breakout

8 16 24 32 40

asterix

5.6 6.0 6.4 6.8
1e3

ant

Figure 2: IQM of final returns for the five single-task training environments, evaluated over 16 random
environment seeds. We plot 95% stratified bootstrap confidence intervals for each environment.
6.3 Multi-Task Training Results
Figure 3 shows each optimizer’s ability to fit to multiple MinAtar environments [61, 60], where
handcrafted optimizers are tuned per-environment. We normalize returns with respect to Adam, and
aggregate scores over environments to give a single performance metric. Here, we increase the size
of the learned optimizers, with details in Appendix B.5. In addition to IQM, we consider the mean
normalized return to explore the existence of outliers (which often correspond to asterix, where OPEN
strongly outperforms Adam), and optimality gap, a metric from Agarwal et al. [67] measuring how
close to optimal algorithms are. Unlike single-task training, where optimizers train until convergence,
we run multi-task experiments for a fixed number of generations (300) to limit compute.

OPEN drastically outperforms every optimizer for multi-task training. In particular, OPEN produces
the only optimizer with an aggregate score higher than Adam, demonstrating its ability to learn highly
expressive update rules which can fit to a range of contexts; no other learned optimizers get close to
OPEN in fitting to multiple environments simultaneously. As expected, OPEN prioritizes optimization
in asterix and breakout, according to the return curves (Appendix G); we believe better curricula
would help to overcome this issue. Interestingly, Optim4RL seems to perform better in the multi-task
setting than the single-task setting. This may be due to the increased number of samples.

0.75 0.90 1.05 1.20

OPEN
Adam

RMSprop
Lion

VeLO
Optim4RL

No Features

Mean

0.75 0.90 1.05 1.20

IQM

0.08 0.16 0.24 0.32

Optimality Gap

Figure 3: Mean, IQM and optimality gap (smaller = better), evaluated over 16 random seeds per
environment for the aggregated, Adam-normalized final returns after multi-task training on MinAtar
[60, 61]. We plot 95% stratified bootstrap confidence intervals for each metric.

6.4 Gridworld Generalization
Figure 4 shows OPEN’s ability to generalize. We explore in-distribution generalization on the left,
and OOS generalization on the right, where the top row (rand_dense, rand_sparse and rand_long) are
from LPG [13, 64] and the bottom row are 3 mazes from Minigrid [65, 64]. We explore an additional
dimension of OOS generalization in the agent’s network hidden size; OPEN only saw agents with
network hidden sizes of 16 in training, but is tested with larger and smaller agent networks. We
include similar tests for different, OOS training lengths in Appendix H. We normalize OPEN against
Adam, which was tuned for the same distribution and agent that OPEN learned for.

OPEN learns update rules that consistently outperform Adam in-distribution and out-of-support
with regards to both the agent and environment; in every OOS environment and agent size, OPEN
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Figure 4: IQM of return, normalized by Adam, in seven gridworlds, with 95% stratified bootstrap
confidence intervals for 64 random seeds. On the left, we show performance in the distribution OPEN
and Adam were trained and tuned in. On the right, we show OOS performance: the top row shows
gridworlds from Oh et al. [13], and the bottom row shows mazes from Chevalier-Boisvert et al. [65].
We mark Hidden Size = 16 as the in-distribution agent size for OPEN and Adam.

outperformed Adam. In fact, in all but rand_dense, its generalization improves compared to Adam
for some different agent widths, increasing its normalized return. In combination with our findings
from Section 6.3, which demonstrate our approach can learn expressive update rules for hard, diverse
environments, these results demonstrate the effectiveness of OPEN: if trained on a wide enough
distribution, OPEN has the potential to generalize across a wide array of RL problems.

7 Ablation Study

In this ablation, we explore how each constituent of OPEN contributes to improved performance. We
focus on two specific, measurable challenges: plasticity loss and exploration.

7.1 Individual Ablations

We ablate each individual design decision of OPEN in Figure 5. For each ablation, we train 17
optimizers in a shortened version of Breakout [60, 61] and evaluate performance after 64 PPO
training runs per optimizer. Further details of the ablation methodology are in Appendix I.

While measuring plasticity loss is important, dormancy alone is not an appropriate performance
metric; a newly initialized network has near-zero dormancy but poor performance. Instead, we
include dormancy here as one possible justification for why some elements of OPEN are useful.

(P1) Ablating training proportion directly disables the optimizer’s ability to tackle training non-
stationarity. Similarly, removing batch proportion prevents dynamic behavior within a (stationary)
batch. The corresponding decreases in performance show that both timescales of non-stationarity are
beneficial, potentially overcoming the impact of non-stationarity in RL.

(P2) Removing dormancy as an input has a drastic impact on the agent’s return, corresponding to a
large increase in plasticity loss. While dormancy plays no direct role in the optimizer’s meta-objective,
including it as an input gives the optimizer the capability to react as neurons grow dormant, as desired.

9.6 10.4 11.2 12.0 12.8
Final Return

OPEN
No Layer Proportion

No Dormancy
No Batch Proportion

No Training Proportion
No Stochasticity

No Features

16 24 32 40
Dormant Neurons [%]

Figure 5: IQM of mean final return for 17 trained optimizers per ablation, evaluated on 64 random
seeds each, alongside mean τ = 0 dormancy for optimizers in the interquartile range. We show 95%
stratified bootstrap confidence intervals.
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(P2) Not conditioning on layer proportion has a negative effect on final return. The increase in
dormancy from its removal suggests that allowing the optimizer to behave differently for each layer
in the network has some positive impact on plasticity loss.

(P2)/(P3) Stochasticity benefits are two-fold: besides enhancing exploration (Section 7.2), it notably
lowers dormancy. Though limited to the actor, this reduction likely also contributes to improve return.

7.2 Exploration
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Figure 6: IQM performance improvement of
an optimizer with learnable stochasticity over
one without. We plot 95% stratified bootstrap
confidence intervals over 128 random seeds.

(P3) We verify the benefits of learnable stochas-
ticity in Deep Sea, an environment from bsuite
[68, 61] designed to analyze exploration. This en-
vironment returns a small penalty for each right
action but gives a large positive reward if right is
selected for every action. Therefore, agents need to
explore beyond the local optimum of ‘left at each
timestep’ to maximize return. Deep Sea’s size can
be varied, such that an agent needs to take more
consecutive right actions to receive reward.

Naïvely applying OPEN to Deep Sea struggles; we
posit that optimizing towards the gradient can be
detrimental to the actor since the gradient leads to
a local optimum, whereas in the critic the gradient
always points to (beneficially) more accurate value
functions. Therefore, we augment OPEN to learn
different updates for the actor and critic (‘sepa-
rated’). In Figure 6, we show the disparity between
a separated optimizer trained with and without learnable stochasticity after training for sizes between
[4, 26] in a small number of generations (48), noting that larger sizes are OOS for the optimizer. We
include full results in Appendix I.2.

The optimizer with learnable stochasticity consistently achieves higher return in large environments
compared to without, suggesting significant exploration benefits. In fact, our analysis (Appendix F.5)
finds that, despite being unaware of size, stochasticity increases in larger environments. In other
words, the optimizer promotes more exploration when size increases. However, stochasticity does
marginally reduce performance in smaller environments; this may be due to the optimizer promoting
exploration even after achieving maximum reward, rather than converging to the optimal policy.

8 Limitations and Future Work

While OPEN demonstrates strong success in learning a multi-task objective, our current approach
of normalizing returns by Adam biases updates towards environments where Adam underperforms
learned optimizers. We believe developing better curricula for learning in this settings, akin to
unsupervised environment design [64, 69], would be highly impactful future work. Additionally, the
OPEN framework need not be limited to the specific difficulties we focus on here. Exploring ways to
include other difficulties of RL which can be measured and incorporated into the framework (e.g.,
sample efficiency or generalization capabilities of a policy) could potentially elevate the usefulness of
OPEN even further. Finally, we have constrained our experiments to PPO only; exploring the impact
of OPEN on other RL algorithms (e.g., SAC [70], A2C [71]) would be useful.

9 Conclusion

In this paper, we set out to address some of the major difficulties in RL by meta-learning update
rules directly for RL. In particular, we focused on three main challenges: non-stationarity, plasticity
loss, and exploration. To do so, we proposed OPEN, a method to train parameterized optimizers that
conditions on a set of inputs and uses learnable stochasticity in its output, to specifically target these
difficulties. We showed that our method outperforms a range of baselines in four problem settings
designed to show the expressibility and generalizability of learned optimizers in RL. Finally, we
demonstrated that each design decision of OPEN improved the performance of the optimizer in an
ablation study, and that the stochasticity in our update expression significantly benefited exploration.
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A Additional Details: Difficulties in RL

(Problem 1) Non-stationarity Igl et al. [8] highlights different sources of non-stationarity across a
range of RL algorithms. For PPO, non-stationary arises due to a changing state visitation distribution,
the target value function V π(s) depending on the updating policy and bootstrapping from the
generalized advantage estimate [72]. Since PPO batches rollouts, non-stationarity occurs between
each batch; within the same batch, the agent solves a stationary problem. As the non-stationarity
occurs over the course of training, we denote it training non-stationarity.

Optimizers designed for stationarity, like Adam [18], have been shown to struggle in non-stationary
settings [9] and techniques to deal with non-stationarity have been proposed. Asadi et al. [73] prevent
contamination between batches by resetting their optimizer state, including resetting their momentum.
However, this handcrafted approach is potentially too severe, as it fails to take advantage of potentially
useful commonality between batches.

(Problem 2) Plasticity loss Plasticity loss, which refers to an inability to fit to new objective over
the course of training, is an important problem in RL. As an agent learns, both its input and target
distributions change (i.e., nonstationarity, (P1)). This means the agent needs to fit new objectives
during training, emphasizing the importance of maintaining plasticity throughout training. Therefore,
there have been many handcrafted attempts to reduce plasticity loss in RL. Abbas et al. [51] find that
different activation functions can help prevent plasticity loss, Obando-Ceron et al. [74] suggest using
smaller batches to increase plasticity and Nikishin et al. [58] introduces new output heads throughout
training. Many have demonstrated the effectiveness of resetting parts of the network [75, 57, 76, 47],
though this runs the risk of losing some previously learned, useful information. Additionally, these
approaches are all hyperparameter-dependent and unlikely to eliminate plasticity loss robustly.

(Problem 3) Exploration Exploration in RL has a rich history of methodologies: [77–79], to name
a few. While there are simple, heuristic approaches, like ϵ-greedy [1], recent methods have been
designed to deal with complex, high dimensional domains. These include count based methods
[80, 81], learned exploration models [82, 83] or using variational techniques [84]. Parameter space
noise [11] involves noising each parameter in an agent to enable exploration across different rollouts
while behaving consistently within a given rollout. This inspired our approach to exploration since it
is algorithm-agnostic and can be implemented directly in the optimizer.
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B Optimizer Details

B.1 Algorithm

We detail an example update step when using OPEN. We use notation from Appendix B.2, and use
zGRU
t to refer to the GRU hidden state at update t. In this algorithm, we assume the dormancy for

each neuron has been tiled over the relevant parameters. In practice, we build our optimizer around
the library fromMetz et al. [43].

Algorithm 1: Example update step from OPEN.
Given: opt, Nbatch, Nminibatches, L, H , β, α1, α2, α3

Input: gt, mt−1, pt, t, dormanciest, h, zGRU
t−1

Output: (pt+1, mt, zGRU
t )

/* Compute new momentums */
for each β do

mβ
t = β ×mβ

t−1 + (1− β)× gt
end
/* Compute training and batch proportions */
TP = (t//(L ∗Nminibatches)/Nbatch

BP = ((t//Nminibatches) mod L)/L
/* Compute first stage of update */
for each parameter i in agent do

input = [sgn(g(t,i)), log(g(t,i)), sgn(m(t,i)), log(m(t,i)), p(t,i), TP,BP,D(t,i), hi]

GRUout, zGRU
(t,i) = optGRU (input, zGRU

(t−1,i))

mi, ei, δi = optMLP (GRUout)

ûi = α1mi expα2ei
if i in actor then

ûi = ûi + α3δiϵ
end

end
/* Zero-mean updates and apply them */
for each parameter i in agent do

ui = ûi − Ei [ûi]
p(t+1,i) = p(t,i) − ui

end
return (pt+1, mt, zGRU

t )

B.2 Input Features to the Optimizer

Our full list of features is concatenated and fed into the optimizer, as in algorithm 1 below. We use
some notation from Table 3. These features are:

• Gradient g, processed with the transformation g → {sign(g), log(g + ϵ)}.

• Momentum m calculated with the following β coefficients:
[0.1, 0.5, 0.9, 0.99, 0.999, 0.9999]. This is processed with the transformation
mi → {sign(mi), log(mi + ϵ)} for each βi.

• Current value of the parameter p.

• Training proportion, or how far the current batch is through the total number of batches.
Since the total number of batches is calculated as Nbatch = (T//Nsteps)//Nenvs, this is
defined as (t//(L ∗Nminibatches)/Nbatch, where t is the current update iteration. We use a
floor division operator as training proportion should be constant through a batch.

• Batch proportion, or how far the current update is through training with the same batch,
calculated as ((t//Nminibatches) mod L)/L.
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• Dormancy, D, calculated for the neuron downstream of the parameter using equation 6.
This is repeated over parameters with the same downstream neuron.

• Proportion of the current layer through the network, h/H .

The gradient, momentum and parameter value features are normalized to have a second moment
of 1 across the tensor, following Metz et al. [85, 43], as a normalization strategy which preserves
direction. Like Lan et al. [17], we process gradients and momentum as x→ {sign(x), log(x+ ϵ)} to
magnify the difference between small values.

B.3 Optimizer Architecture Figure

Figure 7 visually demonstrates the architecture of OPEN . Since only the actor is updated with learned
stochasticity (δactor), we multiply the sampled noise ϵ with a 1/0 mask for the actor/critic.

ψ θ
m
e

δactor

Gradient
Momentum

Features

Figure 7: A visualization of the architecture used by OPEN. ψ are parameters of a GRU and θ are
parameters of an MLP. Since δactor only applies to the actor’s update expression, we set the noise to
zero for the critic to keep its updates deterministic.

B.4 Single-Task and Gridworld Optimizer Architecture Details

The details of the layer sizes of OPEN in both the single-task and gridworld settings are in Table 1.

Table 1: Optimizer layer sizes for OPEN in the single-task and gridworld experiments.

Layer Type Dimensionality
GRU [19, 8]

Fully Connected [8, 16]
Layernorm –

Fully Connected [16, 16]
Layernorm –

Fully Connected [16, 3]

In our update rule, we let α1 = α2 = α3 = 0.001. We mask out the third output in the critic by
setting the noise (ϵ) to zero; otherwise, updates to our critic would be non-deterministic.

We use layers of the same size in ‘No Features’, but condition on less inputs (14) and do not have
the third output. We use the same architecture as Lan et al. [17] for Optim4RL, which includes two
networks, each comprising a size 8 GRU, and two size 16 fully connected layers.

B.5 Multi-Task Optimizer Architecture Details

When training optimizers for the multi-task setting (Section 6.3), we find increasing the network sizes
consistently benefits performance. We show the architecture for OPEN in this experiment in Table 2,
masking out the noise for the critic by setting ϵ = 0. We also enlarge No Features and Optim4RL by
doubling the GRU sizes to 16 and the hidden layers to size 32.

Table 2: Optimizer layer sizes for OPEN in the multi-task experiment.

Layer Type Dimensionality
GRU [19, 16]

Fully Connected [16, 32]
Layernorm –

Fully Connected [32, 32]
Layernorm –

Fully Connected [32, 3]
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C Hyperparameters

C.1 PPO Hyperparameters

PPO hyperparameters for the environments included in our experiments are shown in Table 3. For our
gridworld experiments, we learned OPEN and tuned Adam [18] for a PPO agent with W = 16, but
evaluated on widths W ∈ [8, 16, 32, 64, 128]. Hyperparameters for PPO are taken from [31] where
possible.

Table 3: PPO hyperparameters. All MinAtar environments used common PPO parameters, and are
thus under one header.

Hyperparameter Environment
MinAtar Ant Gridworld

Number of Environments Nenvs 64 2048 1024
Number of Environment Steps Nsteps 128 10 20

Total Timesteps T 1×107 5×107 3× 7
Number of Minibatches Nminibatch 8 32 16

Number of Epochs L 4 4 2
Discount Factor γ 0.99 0.99 0.99

GAE λ 0.95 0.95 0.95
PPO Clip ϵ 0.2 0.2 0.2

Value Function Coefficient c1 0.5 0.5 0.5
Entropy Coefficient c2 0.01 0 0.01

Max Gradient Norm 0.5 0.5 0.5
Layer Width W 64 64 16

Number of Hidden Layers H 2 2 2
Activation ReLU tanh tanh

C.2 Optimization Hyperparameters

For Adam, RMSprop and Lion, we tune hyperparameters with fixed PPO hyperparameters. For
each environment we run a sweep and evaluate performance over four seeds (eight in the gridworld),
picking the combination with the highest final return. In many cases, we found the optimizers to
be fairly robust to reasonable hyperparameters. For Lion [20], we search over a learning rate range
from 3-10× smaller than Adam and RMSprop as suggested by Chen et al. [20]. For Optim4RL [17],
hyperparameter tuning is too expensive; instead, we set learning rate to be 0.1× LRAdam following
the heuristic from [20].

For Adam, RMSprop and Lion, we also test whether annealing learning rate from its initial value to 0
over the course of training would improve performance.

A full breakdown of which hyperparameters are tuned, and their value, is shown in the following
tables. We use notation and implementations for each optimizer from optax [66].
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Table 4: Optimization hyperparameters for MinAtar environments. ‘Range’ covers the range of
values used in our hyperparameter tuning.

Optimizer Hyper Environment RangeParameter asterix freeway breakout space invaders

Adam
LR 0.003 0.001 0.01 0.007 {0.001, 0.01}
β1 0.9 0.9 0.9 0.9 {0.9,0.999}
β2 0.999 0.99 0.99 0.99 {0.9,0.999}

Anneal LR { , }

RMSprop LR 0.002 0.001 0.002 0.009 {0.001, 0.01}
Decay 0.99 0.999 0.99 0.99 {0.9, 0.999}

Anneal LR { , }

Lion
LR 0.0003 0.0003 0.0008 0.0008 {0.0001, 0.001}
β1 0.99 0.9 0.9 0.9 {0.9, 0.999}
β2 0.9 0.9 0.9 0.99 {0.9, 0.999}

Anneal LR { , }

Optim4RL LR 0.0003 0.0001 0.001 0.0007 {0.1× LRAdam}

Table 5: Optimization hyperparameters for Ant. ‘Range’ covers the range of values used in our
hyperparameter tuning.

Optimizer Hyperparameter Environment RangeAnt

Adam
LR 0.0003 {0.0001, 0.001}
β1 0.99 {0.9, 0.999}
β2 0.99 {0.9, 0.999}

Anneal LR { , }

RMSprop LR 0.0008 {0.0001, 0.005}
Decay 0.99 {0.9, 0.999}

Anneal LR { , }

Lion
LR 0.00015 {0.00001, 0.0005}
β1 0.9 {0.9, 0.999}
β2 0.9 {0.9, 0.999}

Anneal LR { , }

Optim4RL LR 0.00003 {0.1× LRAdam}

Table 6: Optimization hyperparameters for Gridworld. ‘Range’ covers the range of values used in
our hyperparameter tuning.

Optimizer Hyperparameter Environment RangeGridworld

Adam
LR 0.0001 {0.00005, 0.001}
β1 0.99 {0.9, 0.999}
β2 0.99 {0.9, 0.999}

Anneal LR { , }

C.3 ES Hyperparameters

Due to the length of meta-optimization, it is not practical to tune hyperparameters for meta-training.
We, however, find the following hyperparameters effective and robust for our experiments. We use
common hyperparameters when learning OPEN, Optim4RL and No Features.

For the single-task and gridworld settings, we train all optimizers for a number of generations after
their performance stabilizes, which took different times between optimizers, to ensure each learned
optimizer has reached convergence; this occasionally means optimizers were trained for different
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number of generations, but enables efficient use of computational resources by not continuing training
far past any performance gains can be realized. For the multi-task setting, due to the extreme cost of
training (i.e., having to evaluate sequentially on four MinAtar environments), we train each optimizer
with an equivalent level of compute (i.e., 300 generations) and pick the best performing generation in
that period.

We periodically evaluate the learned optimizers during training to find the one which generation
performs best on a small in-distribution validation set. Table 7 shows roughly how many generations
we trained each optimizer for, and the generation used at test time, which varied for each environment.
We find that in some environments, Optim4RL made no learning progress from the beginning of
training, with its performance being practically identical to its initialization.

Table 7: ES hyperparameters for meta-training. For MinAtar, the number of generations corresponds
to {Asterix, Breakout, Freeway, SpaceInvaders}. We show the max generations for each optimizer
(i.e., how long it was trained for), as well as the generation used (i.e., which training generation was
used at inference time).

Hyperparameter Environments
MinAtar Ant Multi-Task Gridworld

σinit 0.03 0.01 0.03 0.01
σdecay 0.999 0.999 0.998 0.999

Learning Rate 0.03 0.01 0.03 0.005
Learning Rate Decay 0.999 0.999 0.998 0.990

Population Size 64 32 64 64
Number of Rollouts 1 1 1 1
Max Gens (OPEN) ∼ {350, 500, 700, 450} ∼ 700 300 ∼ 350
Gen Used (OPEN) {336, 312, 648, 144} 168 234 333

Max Gens (Optim4RL) ∼ {500, 550, 300, 400} ∼ 700 300 N/A
Gen Used (Optim4RL) {288, 552, 216, 24} 480 288 N/A

Max Gens (No Features) ∼ {800, 850, 500, 600} ∼ 400 300 N/A
Gen Used (No Features) {456, 816, 408, 264} 240 270 N/A

Evaluation Frequency 24 24 9 9
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D Gridworld Details

We train OPEN on gridworlds by sampling environment parameters from a distribution. Here, we use
a distribution implemented by [64, 31] which is detailed in Table 8. In the codebase of Jackson et al.
[64], this is referred to as ‘all’.

Table 8: Distribution parameters for Gridworld. In training, the values for the experienced environ-
ment are sampled from the value range.

Parameter Value [range]
Max Steps in Episode [20, 750]

Object Rewards [−1.0, 1.0]
Object p(terminate) [0.01, 1.0]
Object p(respawn) [0.001, 0.1]
Number of Objects [1, 6]

Grid Size [4, 11]
Number of Walls 15

We also evaluate OPEN on three distributions from Oh et al. [13], and three mazes from Chevalier-
Boisvert et al. [65], which were not in the distribution of ‘all’. We run all experiments on 64 seeds
per gridworld. These are all detailed below, with the mazes also visualized.

Table 9: Distribution parameters for Gridworld. Curly brackets denote a list of the true values,
corresponding to each object, used in testing.

Name Parameter Values

rand_dense

Max Steps in Episode 500
Object Rewards (1.0, 1.0,−1.0,−1.0)

Object p(terminate) (0.0, 0.0, 0.5, 0.0)
Object p(respawn) (0.05, 0.05, 0.1, 0.5)
Number of Objects 4

Grid Size 11
Number of Walls 0

rand_sparse

Max Steps in Episode 50
Object Rewards (−1.0, 1.0)

Object p(terminate) (1.0, 1.0)
Object p(respawn) (0.0, 0.0)
Number of Objects 2

Grid Size 13
Number of Walls 0

rand_long

Max Steps in Episode 1000
Object Rewards (1.0, 1.0,−1.0,−1.0)

Object p(terminate) (0.0, 0.0, 0.5, 0.5)
Object p(respawn) (0.01, 0.01, 1.0, 1.0)
Number of Objects 4

Grid Size 11
Number of Walls 0
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Table 10: Distribution parameters for Gridworld. At inference, true values are sampled from the
given range, such that each seed is evaluated in a slightly different setting.

Name Parameter Value

standard_maze

Max Steps in Episode [25, 50]
Object Rewards [0.0, 1.0]

Object p(terminate) [0.01, 1.0]
Object p(respawn) [0.001, 0.1]
Number of Objects 3

Grid Size 13

sixteen_rooms

Max Steps in Episode [25, 50]

Object Rewards [0.0, 1.0]
Object p(terminate) [0.01, 1.0]
Object p(respawn) [0.001, 0.1]
Number of Objects 3

Grid Size 13

labyrinth

Max Steps in Episode [25, 50]

Object Rewards [0.0, 1.0]
Object p(terminate) [0.01, 1.0]
Object p(respawn) [0.001, 0.1]
Number of Objects 3

Grid Size 13

We visualize the three mazes in Figure 8.

Figure 8: The three mazes from minigrid [65] used for our OOS tests. From left to right, the mazes
are: ‘standard_maze’, ‘sixteen_rooms’ and ‘labyrinth’.
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E Single Environment Return Curves

In Figure 9, which shows return curves over training for the five ‘single-task’ environments (section
6), OPEN significantly beats 3 of the 5 baselines, performs similarly to Lion [20] in space invaders
and performs comparably to hand-crafted optimizers and ‘No Features’ in ant. OPEN is clearly able
to learn strongly performing update rules in a range of single-task settings.
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Figure 9: RL training curves comparing our learned optimizers and all other baselines, each trained
or tuned on a single environment and evaluated on the same environment. We show mean return over
training with standard error, evaluated over 16 seeds.
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F Analysis

Throughout this section, we include analysis and figures exploring the behavior of optimizers learned
by OPEN. In particular, we consider the behavior of OPEN with regards to dormancy, momentum,
update size and stochasticity in different environments. Where relevant, we also make comparisons
to the ‘No Features’ optimizer, introduced as a baseline in Section 6, to explore possible differences
introduced by the additional elements of OPEN.

Due to the number of moving parts in OPEN, it is difficult to make strong claims regarding the
behaviour of the learned optimizers it produces. Instead, we attempt to draw some conclusions based
on what we believe the data plots included below suggest, while recognizing that the black-box nature
of its update rules, which leads to a lack of interpretability, is a potential drawback of the method in
the context of analysis.

All plots included below pertain to the single task regime, besides section F.5 which focuses specifi-
cally on deep sea.

F.1 Dormancy

Figure 10 shows the τ = 0 dormancy curves during training for each of the MinAtar [60, 61]
environments. These environments were selected as the only ones where the agent uses ReLU
activation functions; ant [63, 62] used a tanh activation function for which τ = 0 dormancy is not
applicable.
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Figure 10: τ = 0 dormancy curves for all optimizers on the four MinAtar environments, evaluated
over 16 seeds each. We plot the mean dormancy with standard error.

In all environments excluding freeway, dormancy of all agents quickly converged to 0. Additionally,
in every environment, OPEN produced more plastic (i.e., less dormant) agents than the featureless
optimizer. We draw conclusions about this behavior below:

• OPEN optimizes towards zero dormancy in a subset of environments, demonstrating it is
capable of doing so. The fact that this only held in three out of four environments, despite
OPEN outperforming or matching baselines in every environment, suggests it optimizes
towards zero dormancy only when the agent plasticity is limiting performance (i.e., when
plasticity loss prevents the agent from improving). Therefore, though a dormancy regular-
ization term in the fitness function for meta-training may have been beneficial for asterix,
breakout and spaceinvaders, it is possible that this could harm the performance in freeway
and would require expensive hyperparameter tuning of the regularization coefficient to
maximize performance. Our meta-learning approach completely sidesteps this problem.

• Despite having the same optimization objective, No Features always had higher dormancy
than OPEN. In tandem with our ablation from Figure 5, it is likely that the inclusion of each
additional feature has given OPEN the capability to minimize plasticity loss.
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F.2 Similarity Between Update and Gradient/Momentum

We evaluate the cosine similarity between the update from OPEN and ‘No Features’ with momentum
over different timescales, and the gradient, in Figure 11. Momentum is calculated as mt+1 =
βmt + (1− β)gt, where gt is the gradient at time t. In OPEN, inspired by [23], we input momentum
using βs in [0.1, 0.5, 0.9, 0.99, 0.999, 0.9999]. For the ith timescale, we denote the momentum as mi

in Figure 11. For the gradient, we include an additional comparison against Adam.
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Figure 11: Curves showing the cosine similarity between the updates from OPEN and ‘No Features’
with the gradient or momentum at different β timescales. Each column corresponds to a different
environment, and each row to a different timescale. In order, the rows show cosine similarity with
gradient, followed by momentum at β = [0.1, 0.5, 0.9, 0.99, 0.999, 0.9999]. We plot mean cosine
similarities with standard error over 16 runs.

From Figure 11, we can conclude that:
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• For both OPEN and ‘No Features’, alignment with momentum seems to be maximized
at similar (though not always the same) timescales as the β1 values tuned for Adam in
Section C.2.

• OPEN and ‘No Features’ rarely had similar cosine similarities. While it is difficult to discern
whether this arises as a result of randomness (optimizers trained from a single seed) or
something more fundamental, it may demonstrate how the additional elements of OPEN
have changed its optimization trajectory.

• For both learned optimizers, cosine similarity with gradient and momentum generally peaked
and decreased over the training horizon. While OPEN includes lifetime conditioning, which
may partially influence this behavior, it is likely that both optimizers rely on their own
hidden states, which can be thought of as a learned momentum, more as training progresses.

F.3 Non-Stochastic Update

In the following experiments (i.e., Appendices F.3, F.4, F.5), we find it useful to divide updates
by their respective parameter value. Unlike most handcrafted optimizers which produce shrinking
updates from an annealed learned rate and generally output parameters with magnitudes close to zero,
OPEN generally increases the magnitude of parameters over training with roughly constant update
magnitudes. As such, normalizing updates with respect to the parameter value shows the relative
effect (i.e., change) when an update is applied. In all cases, we plot the average absolute normalized
value over time.

In Figure 12, we explore how the magnitude of the non-stochastic update changes over time (i.e.,
the update before any learned stochasticity is applied, defined as ûi = α1mi expα2ei). This is
normalized with respect to the parameter value, and so is calculated |û/p| = Ei

[
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Figure 12: Plots of the average normalized, non-stochastic update magnitude with respect to time,
with standard error over 16 seeds.

We find that optimizers learned with OPEN all anneal their step sizes. In particular, the relative size
of the update with respect to the parameter size decreases over time, with final updates generally
being much smaller than at the beginning of training. This holds in all environments, though was
weaker in ant which had significantly smaller updates from the start. Interestingly, for all handcrafted
optimizers, hyperparameter tuning also consistently produces smaller learning rates for ant.

F.4 Stochasticity

Figure 13 explores how the weight of the learned stochasticity, δactor
i , changes with respect to time.

This stochasticity is incorporated into the update rules as ûactor
i = ûactor

i +α3δ
actor
i ϵ, with ϵ ∼ N (0, 1).

As in the previous plot, this is normalized with respect to the parameter value, and is calculated as
randomness/p = Ei

[
| δ
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|
]
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Figure 13: Plots of the normalized stochasticity weight with respect to time. We plot mean values
with standard error over 16 seeds.
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As expected, this decreases significantly over time, suggesting the optimizers promotes less explo-
ration over time. This makes sense; it is beneficial to explore early in training, when there is time to
continue searching for better local or global optima, but later in training it is important to converge to
the nearest optimum.

We also note the significantly different scales of noise which are applied to different environments. In
particular, ant uses very small noise, suggesting it is not an environment which needs a significant
amount of exploration. This may be one reason why OPEN performed similarly to handcrafted
optimizers, and ‘No Features’.

F.5 Deepsea

Finally, we consider how the randomness used by OPEN changes during training in environments
of different sizes from Deep sea [68, 61]. This randomness was shown to be crucial for learning in
larger environments in Section 7.2. To analyze this, we consider 5 different sizes (10, 20, 30, 40, 50),
with the size corresponding to how many ‘rights’ the agent has to take in a row to receive a large
reward. We look at randomness/p = Ei

[
| δ

actor
i

pactor
i

|
]
, as in Appendix F.4.
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Figure 14: Mean normalized randomness applied by OPEN for different sized Deep Sea environments,
over 128 seeds, with standard error. Notably, the scale for larger environments is bigger, such that
OPEN applies more noise (i.e., more exploration) in larger environments despite having no awareness
of the environment size.

We focus on two behaviors of the optimizer. Firstly, the applied randomness progressively decreases
over training, reducing the exploration as the agent converges. This follows similar behavior to figure
13, where the level of randomness decreases during the training horizon. Secondly, the amount of
noise seems to grow with the environment size; the optimizer promotes more exploration in larger
environments, despite lacking any awareness about the environment size. The combination of these
two elements allows the agent to explore sufficiently in larger environments, while converging to
good, close to optimal policies towards the end of training.
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G Multi Environment Return Curves

Figure 15 shows return curves the four MinAtar [60] environments included in ‘multi-task’ training
(Section 6. As expected, the method of normalization used in training (i.e., dividing scores in each
environment by scores achieved by Adam and averaging across environments) leads OPEN, and the
other learned optimizers, to principally focus on those which they can strongly outperform Adam in.
In particular, OPEN marginally underperforms Adam and other handcrafted optimizers in freeway and
spaceinvaders. However, its score in asterix, which is approximately double Adam’s, will outweigh
these other environments. We leave finding better methods for multi-task training, such as using more
principled curricula to normalize between environments, to future work. However, we still note that
this demonstrates that OPEN is capable of learning highly expressive update rules which can fit to
many different contexts; it performs comparatively to handcrafted optimizers in two environments
and significantly outperforms them in two others, in addition to consistently matching or beating the
other learned baselines.
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Figure 15: RL training curves for the multi-task setting. We show mean return over training with
standard error, evaluated over 16 seeds.
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H Additional Gridworlds

Similar to Figure 4, which looked at how OPEN generalized to different agent sizes, we consider
how OPEN adapts to different training lengths in Figure 16. In particular, we note that OPEN was
only ever trained for gridworlds (‘all’, Appendix D) which ran for 3e7 training steps, so all lengths
outside of this are OOS tasks. We also consider that in E, the return of OPEN often started lower than
other optimizers and increased only later in training. As such, the lifetime conditioning (i.e., training
proportion) of OPEN needs to be leveraged to be able to perform well at shorter training lengths. If
OPEN did not make use of this feature, it may end training without having converged to the nearby
optima, instead focusing on exploration.

We find that OPEN is able to beat Adam in all of the grids considered at the in-distribution training
length. For OOS training lengths, OPEN generalizes better than Adam, and only in a couple of
environments (rand_dense, standard_maze) does it not outperform Adam in the shortest training
length. For every other training length, OPEN performs better than Adam in every environment,
further demonstrating its capability to generalize to OOS environments and training settings.
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Figure 16: IQM of return achieved by OPEN, normalized by the return of Adam, against a range of
different training lengths with 95% stratified bootstrap confidence intervals for 64 seeds. a) shows
performance on the distribution which OPEN was trained on, and Adam was tuned in. b) shows
performance on OOS gridworlds, with the top row coming from [13] and the bottom row inspired
by mazes from [65], all implemented by [64]. We mark 3e7 timesteps as the in-distribution training
length for both OPEN and Adam.
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I Ablation Details

I.1 Feature Ablation Setup

We train 17 optimizers for each feature ablation, and evaluate performance on 64 seeds per optimizer,
using a shortened version of Breakout. We use the same PPO hyperparameters for Breakout as in
Table 3 besides the total timesteps T , which we shorten to 2 × 105. Each optimizer takes ∼ 60
minutes to train on one GPU, and we train a total of 119 optimizers.

We train each optimizer for 250 generations, keeping all other MinAtar ES hyperparameters from
Table 7.

I.2 Deep Sea Expanded Curve

We show the final return against size for the Deep Sea environment [68, 61] in Figure 14 for all
optimizers; both shared and separated, with stochasticity and without. The one without can be thought
of as a deterministic optimizer, and is denoted ‘ablated’ in the figure. For this experiment, we trained
each optimizer for only 48 iterations on sizes in the range [4, 26]; any sizes outside of this range at
test time are out of support of the training distribution.

Clearly the separated optimizer with learned stochasticity is the only one which is able to generalize
across many different sizes of Deep Sea. This occurs marginally at the behest of optimization in
smaller environments, where the stochastic optimizer still explores after obtaining reward and so does
not consistently reach maximum performance. In Deep Sea, the final return scale is between 0.99
and −0.01.
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Figure 17: IQM of return against size of environment in Deep Sea, with stratified bootstrap 95%
confidence intervals for 128 random seeds. The only optimizer which is able to generalize has
separate parameters between the actor and critic and incorporates learned stochasticity into its update.
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J Experimental Compute

J.1 Runtimes

We include runtimes (inference) for our experiments with the different optimizers on 4 × L40s
GPUs. We note that, while OPEN takes longer to run compared to handcrafted optimizers, it offers
significant speedup over VeLO and takes a similar runtime as Optim4RL and No Features in addition
to significantly stronger performance. Importantly, this suggests the additional computation used in
OPEN to calculate features, such as dormancy, does not translate to significant overhead compared to
other learned optimizers.

Table 11: Runtime for each optimizer. We evaluate each over 16 seeds, on 4 L40s GPUs. These take
advantage of Jax’s ability to parallelize over multiple GPUs [32].

Optimizer RunTime (s)
freeway breakout spaceinvaders asterix ant

OPEN (single-task) 138 87 94 137 453
OPEN (multi-task) 154 98 109 148 N/A

Adam 91 53 58 105 333
RMSprop 84 38 52 97 322

Lion 83 44 50 96 303
VeLO 190 135 145 185 581

Optim4RL (single-task) 127 85 90 131 404
Optim4RL (multi-task) 168 99 116 157 N/A

No Features (single-task 123 79 88 132 416
No Features (multi-task) 154 93 106 147 N/A

J.2 Training Compute

We used a range of hardware for training: Nvidia A40s, Nvidia L40ses, Nvidia GeForce GTX 1080Tis,
Nvidia GeForce RTX 2080Tis and Nvidia GeForce RTX 3080s. These are all part of an internal
cluster. Whilst this makes it difficult to directly compare meta-training times per-experiment, we
find training took roughly between ∼ [16, 32] GPU days of compute per optimizer in the single-task
setting, and ∼ 60 GPU days of compute for multi-task training. We measured inference time for all
optimizers in Appendix J.

J.3 Total Compute

For all of our hyperparameter tuning experiments, we used a total of ∼ 16 GPU days of compute,
using Nvidia A40 GPUs.

For each learned optimizer in our single-task experiments, we used approximately ∼ [16, 32] GPU
days of compute. This equates to around 1 GPU year of compute for 3 learned optimizers on 5
environments (=15 optimizers total). This was run principally on Nvidia GeForce GTX 1080Tis,
Nvidia GeForce RTX 2080Tis and Nvidia GeForce RTX 3080s.

For each multi-task optimizer, we used around 60 GPU days of compute, on Nvidia GeForce RTX
2080Tis. This totals 180 GPU days of compute. We also ran experiments for each optimizer with the
smaller architecture, which took a similar length of time. These are not included in the paper; in total
multi-task training used another 1 GPU year of compute, taking into account the omitted results.

To train on a distribution of gridworlds, we used 7 GPU days of compute on Nvidia GeForce RTX
2080 Tis.

Our ablation study used ∼ 8 GPU days of compute, running on Nvidia A40 GPUs.

Each optimizer took 2 days to train in deep sea on an Nvidia A40 GPU. In total, this section of the
ablation study took 8 GPU days.

As stated in Table 11, inference was a negligible cost (on the order of seconds) in this paper.
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Totaling the above, all experiments in this paper used approximately 2.1 GPU years to run, though it
is difficult to aggregate results properly due to the variety of hardware used.

We ran a number of preliminary experiments to guide the design of OPEN, though these are not
included in the final manuscript. We are unable to quantify how much compute was used to this end.
Due to the excessive cost of learned optimization, we ran only one run for each setting and optimizer
(besides the multi-task setting, where we tested both small and large architectures and found that
the larger architectures performed best for every optimizer on average). After converging upon our
method, and finishing the implementations of Optim4RL and No Features, we did not have any failed
runs and so included all experiments in the paper.
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K Code Repositories and Asset Licenses

Below we include a full list of assets used in this paper, in addition to the license under which it was
made available.

Table 12: Main libraries used in this paper, links to the github repository at which they can be found
and the license under which they are released.

Name Link License
evosax [33] evosax Apache-2.0

gymnax [61] gymnax Apache-2.0
brax [62] brax Apache-2.0

learned_optimization [43] learned_optimization Apache-2.0
groove (gridworlds) [64] groove Apache-2.0

purejaxrl [15] purejaxrl Apache-2.0
optax [66] optax Apache-2.0

rliable [67] rliable Apache-2.0
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https://github.com/RobertTLange/evosax
https://github.com/RobertTLange/gymnax
https://github.com/google/brax
https://github.com/google/learned_optimization
https://github.com/EmptyJackson/groove
https://github.com/luchris429/purejaxrl
https://github.com/google-deepmind/optax
https://github.com/google-research/rliable
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