
z-SignFedAvg: A Unified Sign-based Stochastic
Compression for Federated Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Federated learning is a promising privacy-preserving distributed learning paradigm1

but suffers from high communication cost when training large-scale machine2

learning models. Sign-based methods, such as SignSGD [Bernstein et al., 2018],3

have been proposed as a biased gradient compression technique for reducing4

the communication cost. However, sign-based compression could diverge under5

heterogeneous data, which motivate developments of advanced techniques, such6

as the error-feedback method and stochastic sign-based compression, to fix this7

issue. Nevertheless, these methods still suffer significantly slower convergence8

rate than uncompressed algorithms. Besides, none of them allow local multiple9

SGD updates like FedAvg [McMahan et al., 2017]. In this paper, we propose a10

novel noisy perturbation scheme with a general symmetric noise distribution for11

sign-based compression, which not only allows one to flexibly control the tradeoff12

between gradient bias and convergence performance, but also provides a unified13

viewpoint to existing sign-based methods. More importantly, we propose the very14

first sign-based FedAvg algorithm (z-SignFedAvg). Theoretically, we show that15

z-SignFedAvg achieves a faster convergence rate than existing sign-based methods16

and, under the uniformly distribtued noise, can even enjoy the same convergence17

rate as its uncompressed counterpart. Extensive experiments are conducted to18

demonstrate that our proposed z-SignFedAvg can achieve competitive empirical19

performance on real datasets.20

1 Introduction21

In this paper, we consider the Federated Learning (FL) network with one parameter server and n22

clients [McMahan et al., 2017, Li et al., 2020a], with the focus on solving the following distributed23

learning problem24

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(·) is the local objective function for the i-th client, for i = 1, . . . , n. Throughout this25

work, we assume that each fi is smooth and possibly non-convex. The local objective functions are26

generated from the local dataset owned by each client. When designing distributed algorithms to solve27

(1), a crucial aspect is the communication efficiency since each client needs to transmit their local28

gradients to the server frequently [Li et al., 2020a]. As one of the most popular FL algorithms, the29

federated averaging (FedAvg) algorithm [McMahan et al., 2017, Konečnỳ et al., 2016] considers local30

multiple SGD updates with periodic communications to reduce the communication cost. Another31

way is to compress the local gradients before sending them to the server [Li et al., 2020a, Alistarh32

et al., 2017, Reisizadeh et al., 2020]. Among the existing compression methods, a simple yet elegant33

technqiue is to take the sign of each coordinate of the local gradients, which requires only one bit for34
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transmitting each coordinate. For any x ∈ R, we define the sign operator as: Sign(x) = 1 if x ≥ 035

and −1 otherwise.36

Recently, optimization algorithms with sign-based compression have attracted much attention as they37

enjoy a great communication efficiency while still achieving comparable empirical performance as38

uncompressed algorithms [Bernstein et al., 2018, Karimireddy et al., 2019, Safaryan and Richtárik,39

2021]. However, for distributed learning, especially the scenarios with heterogeneous data, i.e.,40

fi ̸= fj for every i ̸= j, a naive application of the sign-based algorithm cannot guarantee convergence41

[Karimireddy et al., 2019, Chen et al., 2020a, Safaryan and Richtárik, 2021]. There are mainly two42

approaches to fix this issue in the existing literature. The first one is the stochastic sign-based method,43

which intoduces stochasticity into the sign operation [Jin et al., 2020, Safaryan and Richtárik, 2021,44

Chen et al., 2020a], and the second one is the Error-Feedback (EF) method [Karimireddy et al., 2019,45

Vogels et al., 2019, Tang et al., 2019]. However, these works are still unstastifactory. Specifically, first,46

the theoretical convergence rates of these algorithms are still worse than uncompressed algorithms47

like [Ghadimi and Lan, 2013, Yu et al., 2019]. Second, none of them allows the clients to have48

multiple local SGD updates within one communication round like the FedAvg. This work aims at49

addresing these issues and closing the gaps for sign-based methods. A detailed review for related50

works is given in Appendix A.51

Main contributions. Our contributions are summarized as follows.52

(1) A unified family of stochastic sign operators. We show an intriguing fact: The bias brought53

by the sign-based compression can be flexibly controlled by injecting a proper amount of54

random noise before the sign operation. In particular, our analysis is based on a novel noisy55

perturbation scheme with a general symmetric noise distribution, and therefore provides a56

unified viewpoint and incorporates existing stochastic sign-based methods, including [Jin57

et al., 2020, Safaryan and Richtárik, 2021, Chen et al., 2020a], as special instances.58

(2) The first sign-based federated averaging algorithm. In contrast to the existing sign-based59

shcemes which do not allow local multiple SGD updates within one communication round,60

based on the proposed stochastic sign-based compression, we design a novel family of61

sign-based federated averaging algorithms (z-SignFedAvg) that can achieve the best of both62

worlds: communication efficiency and convergence performance.63

(3) New theoretical convergence rate analyses. By a clever use of the asymptotic unbiased-64

ness property of the stochastic sign-based compression, we derive a series of theoretical65

results which exhibit better convergence rate than the existing sign-based methods. More-66

over, we show that by injecting a suffciently large uniform noise, our proposed algorithm67

can have a matching convergence rate with the uncompressed algorithms.68

Organization of this paper. In Section 2, the proposed general noisy perturbation scheme for the69

sign-based compression and its key propoerty about asymptotic unbiasedness are presented. Inspired70

by this result, the main algorithms are developed in Section 3 together with their convergence analyses71

under different noise distribution parameters. We evaluate our proposed algorithms on real datasets72

and benchmark with existing FL methods in Section 4. Finally, conclusions are drawn in Section 5.73

Notations. For any x ∈ Rd, we denote x(j) as the j-th element of the vector x. We define74

the ℓp norm for any p ≥ 1 as ∥x∥p = (
∑d

j=1 |x(j)|p)
1
p . We denote that ∥ · ∥ = ∥ · ∥2, and75

∥x∥∞ = maxj∈{1,...,d} |x(j)|. For any function f(x), we denote f (k)(x) as its k-th derivative, and76

for a vector x = [x(1), ..., x(d)]⊤ ∈ Rd, we define Sign(x) = [Sign(x(1)), ...,Sign(x(d))]⊤.77

2 Sign operator with symmetric and zero-mean noise is asymptotically78

unbiased.79

In this section, we introduce a general noisy perturbation scheme for the sign-based compression and80

analyze its asymptotic unbiasedness. The result serves as the foundation of the proposed algorithm81

designs in subsequent sections. Specifically, let us consider the following family of noise distribution82

parameterized by a postive interger z ∈ Z+.83

Definition 1 (z-distribution). A random variable ξz follows z-distribution if its p.d.f is84

pz(t) =
1

2ηz
e−

t2z

2 , (2)
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where ηz = 2
1
2z Γ

(
1 + 1

2z

)
and Γ(z) =

∫ +∞
0

tz−1e−tdt is the Gamma function.85

It can be verified that (2) is a valid p.d.f. When z = 1, it corresponds to the standard Gaussian86

distribution. In addition, one can also show that (2) converges to the uniform distribution when87

z → +∞ (Lemma 2 in Appendices). This family of distribution has a nice property that can be88

leveraged to bound the bias caused by the sign compression, as stated in the following lemma.89

Lemma 1. For any x ∈ Rd and σ > 0,90

∥ηzσE [Sign(x + σξz)]− x∥2 ≤
∥x∥4z+2

4z+2

4(2z + 1)2σ4z
, (3)

where ξz(1), ..., ξz(d) follow the i.i.d. z-distribution.91

Remark 1. One can see that the RHS of (3) involves the term (∥x∥4z+2/σ)
4z . Therefore, as long as92

σ > ∥x∥∞, the LHS of (3) converges to zero when z → +∞. Since Lemma 2 implies that ξ∞ is a93

vector whose elements follow i.i.d uniform distribution at [−1, 1], we obtain σE [Sign(x + σξ∞)] = x94

as long as σ > ∥x∥∞. It is interesting to remark that the stochastic sign operators proposed in [Jin95

et al., 2020, Safaryan and Richtárik, 2021] is exactly the sign operator injected with a sufficient96

amount of uniform noise.97

3 Stochastic sign-based federated averaging with z-distribution.98

In this section, based on the anaysis in Section 2, we propose the following sign-based federated99

averaging algorithm, termed as z-SignFedAvg. The algorithm details are stated in Algortihm 1. Note100

that in practice, we only implement z-SignFedAvg with z = 1 and z = +∞ which correspond to101

the Gaussian distribution and uniform distribution, respectively. This is because, to the best of our102

knowledge, there is currently no efficient way to sampling from the distribution pz(t) with other103

choices of z. Nevertheless, we are interested in the convergence properteis of z-SignFedAvg for a104

general positive interger z since it provides better insights on how z impacts the convergence rate.105

Algorithm 1 z-SignFedAvg (or z-SignSGD when E = 1)
Require: Total communication rounds T , Number of local steps E, Number of clients n, Clients

stepsize γ, Server stepsize η, Noise coefficient σ, parameter of noise distribution z.
1: Initialize x0 and for i = 1, ..., n.
2: for t = 1 to T do
3: On Clients:
4: for i = 1 to n in parallel do
5: xi

t−1,0 = xt−1

6: for s = 1 to E do
7: git−1,s = gi(x

i
t−1,s−1), where gi(·) is the minibatch gradient oracle of the i-th client.

8: xi
t−1,s = xi

t−1,s−1 − γgit−1,s.
9: end for

10: ∆i
t−1 = Sign

(
xt−1−xi

t−1,E

γ + σξz

)
, where ξz(1), ..., ξz(d) ∼ pz(t) i.i.d.

11: Send ∆i
t−1 to the server.

12: end for
13: On Server:
14: xt = xt−1 − ηγ 1

n

∑n
i=1 ∆

i
t−1.

15: Send xt to the clients.
16: end for
17: return xT .

We first state the following standard assumptions.106

Assumption 1. We assume that each fi(x) has the following properties:107

A.1 The minibatch gradient is unbiased and has bounded variance, i.e., E[gi(x)] =108

∇fi(x), E[∥gi(x)−∇fi(x)∥22] ≤ ζ2.109

A.2 Each fi is smooth, i.e., for any x, y ∈ Rd, there exists some non-negative constans L1, ..., Ld110

such that f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+
∑d

j=1 Lj(y(j)−x(j))2

2 .111
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A.3 There exists some constant f∗ such that f(x) ≥ f∗,∀x ∈ Rd112

A.4 There exists a constant G ≥ 0 such that ∥∇fi(x)∥ ≤ G, ∀i = 1, . . . , n, and x ∈ Rd.113

For the convergence rate analysis, we consider two cases, namely, the case with z < +∞ and the114

case of z = ∞.115

3.1 Case 1: z < +∞116

As we can see from Lemma 1, there always exists some gradient bias when z < +∞. In order to117

bound it, we further assume that a higher order moment of the minibatch gradient noise is bounded.118

Assumption 2. There exists a constant Qz ≥ 0 such that for any x ∈ Rd, we have119

E[∥gi(x)−∇fi(x)∥4z+2
4z+2] ≤ Qz. (4)

Theorem 1. Suppose that Assumption 1 and 2 hold. Denote x̄t,s = 1
n

∑n
i=1 x

i
t,s and Lmax =120

maxj Lj . Then, for η = ηzσ and γ ≤ 1
Lmax

, we have121

E

[
1

TE

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3︸ ︷︷ ︸
(a). Standard terms in FedAvg

(5a)

+
22zE2z

√
Qz +G4z+2G

(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z︸ ︷︷ ︸
(b). Bias terms

(5b)

+
4η2zγσ

2
∑d

j=1 Lj

En︸ ︷︷ ︸
(c). Variance term

. (5c)

When is the bound non-trivial? Since we assume that the ℓ2-norm of gradient is bounded by G, all122

the terms in the RHS of (5) should be no larger than G2. For example, one can check that to have the123

fisrt term in (5b) less than G2, one requires σ to be greater than 2E
(
Qz +G4z

) 1
4z /(2z + 1)

1
2z .124

Bias-variance trade-off. An interesting observation from Theorem 1 is that there exists a trade-off125

between the bias and variance terms. One can see that the terms in (5b) is caused by the gradient bias126

of the sign operation (see (1)) and is an infinitesimal of σ with O
(
σ−2z

)
, while the term in (5c) is due127

to the injected noise and is in the order of O
(
γσ2

)
. Specifically, the first term in (b) only depends on128

the noise scale σ and mostly affects the final learning performance. In the meanwhile, the variance129

term mainly affects the convergence speed because a smaller stepsize is required for it to diminish.130

Theoretically, we can choose an iteration-dependent noise scale σ so as to making the algorithm131

converge. In the following results, we denote τ = TE as the total number of gradient queries to the132

local objective function.133

Corollary 1 (Informal). Let γ = min{n
z

2z+1 τ−
z+1
2z+1 , 1

Lmax
} and σ = (nτ)

1
4z+2 in Theorem 1, and134

let E ≤ n− 3z
4z+2 τ

z+2
4z+2 . We have135

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

z
2z+1

)
. (6)

Achieveing linear speedup. From Corollary 1, we can see that the z-SignFedAvg needs (nτ)
3z

4z+2136

communication rounds to achieve a linear speedup convergence rate. Particularly, when z = 1, the137

corresponding convergence speed is O((nτ)−
1
3 ) and the required communication rounds is (nτ)

1
2 .138

3.2 Case 2: z = +∞139

In this case, the injected noise in z-SignFedAvg is uniformly distributed at [−1, 1]. From Remark 1140

we have learned that the bias term in (5b) will either blow up when σ is lower than some threshold, or141

vanish on the other hand. To quantify this threshold, we need the limit form of Assumption 2:142
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Assumption 3. There exists a constant Q∞ ≥ 0 such that, with probability 1 we have143

∥gi(x)−∇fi(x)∥∞ ≤ Q∞,∀x ∈ Rd. (7)
144 Theorem 2 (Informal). Suppose that Assumption 1 and 3 hold. For γ = min{n 1

2 τ−
1
2 , 1

Lmax
}, η = σ,145

E ≤ n− 3
4 τ

1
4 , and σ > E(G+Q∞), we have146

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

1
2

)
. (8)

147

We can see that (8) implies ∞-SignFedAvg recovers the convergence rate of uncompressed algorithms148

[Yu et al., 2019].149

Remark 2. It is worthwhile to point out that the condition of sufficeintly large noise scale σ >150

E(G+Q∞) is necessary and cannot be spared. By intuition, this is because when σ ≤ E(G+Q∞)151

in Theorem 2, the injected uniform noise cannot change the sign of gradients in the worst case. For152

example, if ξ∞ follows uniform distribution on [−1, 1], and now σ < A for some A > 0, we have153

Sign(x+ σξ∞) = Sign(x) for any x ≥ A.154

Remark 3. By comparing the required thresholds for σ in Theorem 1 and Theorem 2, we can see155

that when there is no minibatch gradient noise (i.e., ζ = 0), Case 2 demands less noise injection156

and may perform better than Case 1. On the contrary, when the minibatch gradient noise has a long157

tail such as Qz ≪ Q4z
∞, Case 1 may be better. Despite of the distinction in theory, as we will see in158

Section 4, Case 1 and Case 2 have almost the same behavior on real datasets.159

More detailed theoretical results and comparsion with existing methods are relegated to Appendix B.160

4 Experiments161

In this section, we present the experiment results on real datasets. All the figures are obtained by 10162

independent runs and are visualized in the form of mean±std. We also conduct an experiment on163

synthetic data where there is no minibatch gradient noise, and the results is relegated to Appendix D.164

Noise scale as a hyperparameter. Although we explicitly characterize how the performance of165

Algorithm 1 depends on the noise scale σ in previous section, we treat σ as a tunable hyperparameter166

in practice. Because, on one hand, it usually impossible to compute the moment and support of167

the gradient noise in reality. One the other hand, since the theoretical results above only provide a168

worst-case guarantee, for some real problems, the optimal noise scales selected from grid search can169

be much smaller than the choice suggested by theory.170

4.1 An extremely non-i.i.d setting171

In this section, we consider an extremely non-i.i.d setting with the well-known dataset MNIST [Deng,172

2012] which is a hand-written digits recogonition dataset. Specifically, we split the dataset into 10173

parts based on the labels and each client only have the data of one digit. In such a highly heterogeneous174

setting, there is no benefit from local computation with periodic commnunication. Therefore,175

we compare with the listed algorithms: SGDwM [Ghadimi and Lan, 2013], EF-SignSGDwM176

[Karimireddy et al., 2019, Vogels et al., 2019], Sto-SignSGDwM [Safaryan and Richtárik, 2021].177

Some baseline algorithms have an additional hyperparameter for the momentum of gradient. For all178

the algorithms, we select the their own optimal hyperparameters like stepsize, momentum coefficient,179

noise scale via grid search. For more details like hyperparameters for all the tested algorthms and the180

performance of 1-SignSGD and ∞-SignSGD under different noise scales, we refer the readers to181

Appendix E.1.182

Results. From Figure 1a, 1b, we can observe that 1-SignSGD and ∞-SignSGD have roughly the183

same performance which outperform other sign-based algorithms and is slightly inferior to the184

uncompressed algorithm. Our theory is verified by comparing the performance of noiseless SignSGD185

and our proposed algortihms. If we compare the performance with respect to the total number of186

transmitted bits, our algorithms achieve the state-of-the-art performance on this task as we can see in187

Figure 1c.188

4.2 Federated Learning on EMNIST189

In this section, we verify the performance of our proposed Algorithm 1 on EMNIST[Cohen et al.,190

2017]. We mainly compare the performance of three algorithms: FedAvg without any compression191

[McMahan et al., 2017, Yu et al., 2019] and our proposed Algorithm 1 with z = 1 and z = ∞.192
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(a) Trainning Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

Figure 1: Performance of various algorithms on non-i.i.d MNIST

Settings. We follow a similar setting to [Reddi et al., 2020]. We also consider the scenario with193

partial participation. Specifically, for the EMNIST dataset, there are 3579 clients in total and we194

sample 100 clients uniformly to upload their local gradients at each communication round.195

Results. The hyperparameters for the algorithms are tuned via grid search and details are in Appendix196

E.2. Specifically, we use σ = 0.01 for both 1-SignFedAvg and ∞-SignFedAvg on EMNIST dataset.197

We can see from Figure 2 that all the algorithms can benefit from multiple local steps, and more198

surprisingly, both 1-SignFedAvg and ∞-SignFedAvg can outperform the umcompressed algorithm199

FedAvg. This is probably because the EMNIST dataset is less non-i.i.d as the dataset we use in200

Section 4.1. The performance of 1-SignFedAvg and ∞-SignFedAvg under various choices of noise201

scale are relegated to the Figure 6 and 7 in Appendix E.2, which also matches our theoretical results.202

(a) Trainning Loss (b) Test Accuracy (c) Test Accuracy w.r.t bits

(d) Trainning Loss (e) Test Accuracy (f) Test Accuracy w.r.t bits

Figure 2: Performance of FedAvg, 1-SignFedAvg and ∞-SignFedAvg on EMNIST dataset.

5 Conclusion203

In this work, we have proposed the z-SignFedAvg: a FedAvg-type algorithm with a novel family of204

sign-based stochastic compression. Throughout extensive theoretical analysis and empirical evalu-205

ation, we have shown that z-SignFedAvg can perform comparably, sometimes even better, as the206

uncompressed FedAvg algorithm with a significantly reduced number of bits transmitted from the207

clients to the server. However, a vital issue in z-SignFedAvg is that it involves a new hyperparameter,208

i.e., the noise scale σ, which needs to be carefully chosen for achieving a good convergence perfor-209

mance. An interesting observation from the experiments is that the less heterogeneous the local data210

are, the smaller the optimal noise scale is, which is consisten with the theoretical insights. In the211

future, we will futher study the relationship between the client’s heterogeneity and the optimal noise212

scale. As a final remark, we note that the stochastic sign-based compression proposed in this work is213

of independent interest and can be directly combined with other adaptive FL algorithms like those in214

Karimireddy et al. [2020], Reddi et al. [2020].215
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Appendices401

A Dicussion on related works402

Sign-based optimization algorithms such as the SignSGD in [Bernstein et al., 2018] have gained403

much popularity recently because of their simple compression rule and comparable performance to404

uncompressed algorithms. In this work, we focus on the scenario with heterogeneous data, and as405

we have discussed in Section 1, a naive application of sign-based compression in this scenario is406

problematic. Besides, we consider using sign-based compression only for the uplink communication407

in this work, while it is worth mentioning that [Tang et al., 2019, Jin et al., 2020, Chen et al., 2020a]408

also compress for the downlink communication. In the following paragraphs, we review a few related409

works on similar topics.410

Stochastic sign-based method. The setting considered by [Safaryan and Richtárik, 2021] is the411

closest to ours because [Jin et al., 2020, Chen et al., 2020a] also compresses the server-to-client412

communication with majority vote. Aside from the difference in setting, the algorithms in them413

achieve the same convergence rate O(τ−
1
4 ) w.r.t different convergence metrics, where τ is the number414

of gradient queries to the objective function. As will be discussed in Appendix A, these rates are415

usually inferior to that of uncompressed algorithms. Our proposed algorithm also belongs to this416

category. Compared to existing works, we require a slightly stronger assumption on the gradient417

noise, and the convergence speed of our algorithm is either O(τ−
1
3 ) or O(τ−

1
2 ) with the commonly418

used squared ℓ2 norm of gradients as the convergence metric. Moreover, we also show that our419

proposed sign-based algorithm can achieve a linear speedup when the number of clients increases,420

and such a result is not known in previous works.421

Error Feedback method. The error feedback (EF) method is first proposed by [Seide et al., 2014]422

and then theoretically justified by [Karimireddy et al., 2019]. Then [Vogels et al., 2019, Tang423

et al., 2019, 2021b] further extend this EF framework into distributed non-i.i.d setting and adaptive424

gradient method. The key idea is to show that the sign operator multiplying with one norm is a425

contractive compressor, and the error induced by the contractive compressor can be fixed by the426

error-compensated gradient method. However, unlike the pure sign-based gradient method, it must427

transmit one extra real number for the one norm. Besides, the convergence rate for the EF algorithms428

is O(τ−
1
2 + τ−1/δ2), where δ is the parameter of contractive compressor. In the worst case, the429

sign operator multiplying with one norm is a contractive compressor with δ = 1/d, where d is430

the dimension of the gradient. Therefore, the convergence rate of it becomes O(τ−
1
2 + d2τ−1),431

which could become very bad especially for high-dimension optimization problem. Besides, to our432

knowledge, no one has extended the error feedback method to the scenario with periodic aggregation.433

It is often tricky to compare the convergence results of sign-based methods because some works434

like [Chen et al., 2020a, Safaryan and Richtárik, 2021] do not use the standard convergence metric.435

To better compare existing results and ours, in Appendix A, we provide a detailed discussion on436

the existing convergence metrics and summarize the representative algorithms and their theoretical437

results in Table 1.438

Table 1 gives a brief summary for a few representative works related to this work. In this table, we439

review the algorithms in these works on the convergence rate along with the used convergence metrics,440

communication complexity, assumptions required, and also whether they can deal with periodic441

aggregation. Particularly, [Chen et al., 2020a, Safaryan and Richtárik, 2021] adopt convergence442

metrics other than the commonly used average squared ℓ2 norm of gradients. Due to the additional443

step of server-to-client compression, [Chen et al., 2020a] use a convergence metric mixed with ℓ2444

norm and ℓ1 norm, while [Safaryan and Richtárik, 2021] use ℓ2 norm instead of squared ℓ2 norm. For445

communication complexity, we only compare the unlink communication, and to compute the used446

bits per communication, we assume that all the algorithms need 32 bits to represent a float number as447

this is the most common setting in Tensorflow [Abadi et al., 2016b] and Pytorch [Paszke et al., 2017].448

Among the works in Table 1, the setting considered by [Safaryan and Richtárik, 2021] is the closest to449

ours. [Safaryan and Richtárik, 2021] propose an algorithm that can achieve convergence rate O(τ−
1
4 )450

with average ℓ2 norm of gradients as the metric. We remark that this is inferior to the convergence451

rate O(τ−
1
2 ) with squared ℓ2 norm as the metric. To illustrate this point, we denote a serie of vector452
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Algorithm Convergence
metric / rate

Used bits per
communication

Extra
Assumptions?

Can achieve
linear speedup?

Can allow
multiple

local steps?

[Ghadimi and Lan, 2013] O(τ
− 1

2 )
squared ℓ2

32d No ✓ ✗

[Yu et al., 2019] O(τ
− 1

2 )
squared ℓ2

32d • Bounded gradient ✓ ✓

[Karimireddy et al., 2019] O(τ
− 1

2 + d2τ−1)
squared ℓ2

d + 32 • Bounded gradient ✗ ✗

[Safaryan and Richtárik, 2021] O(τ
− 1

4 )
ℓ2

d No ✗ ✗

[Jin et al., 2020] O(τ
− 1

4 )
squared ℓ2

d
• Bounded gradient
• n is an odd number ✗ ✗

[Chen et al., 2020a] O(τ
− 1

4 )
mixed

d
• Bounded gradient
• n is an odd number ✗ ✗

1-SignFedAvg (ALG. 1)
This work

O(τ
− 1

3 )
squared ℓ2

d
• Bounded gradient
• Bounded 6th moment

of gradient noise
✓ ✓

∞-SignFedAvg (ALG. 1)
This work

O(τ
− 1

2 )
squared ℓ2

d
• Bounded gradient
• Bounded support

of gradient noise
✓ ✓

Table 1: Summary for related works.

{α1, ..., ατ , ...} with αi ∈ Rd. If now453

1

τ

τ∑
i=1

∥αi∥ = O(τ−
1
4 ), (9)

in the worst case, we can only guarantee that454

1

τ

τ∑
i=1

∥αi∥2 ≤ τ

(
1

τ

τ∑
i=1

∥αi∥

)2

= O(τ
1
2 ) (10)

for squared ℓ2 norm. As a simple example, the equality in (10) holds when there is only one non-zero455

term in {α1, ..., ατ}.456

On the contrary, if457

1

τ

τ∑
i=1

∥αi∥2 = O(τ−
1
2 ), (11)

we have458

1

τ

τ∑
i=1

∥αi∥ ≤

√√√√1

τ

τ∑
i=1

∥αi∥2 = O(τ−
1
4 ). (12)

Consider the scenario E = 1, the algorithm in [Safaryan and Richtárik, 2021] is equivalent to our459

Algorithm 1 with σ chosen to be ∥git−1,s∥. On one hand, this choice of noise scale σ make it unable460

to be extended to the federated averaging algorithm, because each client use a different noise scale.461

On the other hand, this choice is linearly increaseing w.r.t problem dimension and hence is too462

conservative. From Figure 3 and 1 we can see that this input-dependent noise scale result in an463

extremely slow convergence for high-dimension problems.464

B Theoretical results465

In this section, we state the formal version of Corollary 1 and Theorem 2.466
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Corollary 2 (Formal version of Corollary 1). If we choose γ = min{n
z

2z+1 τ−
z+1
2z+1 , 1

Lmax
} and467

σ = (nτ)
1

4z+2 in Theorem 1, we have468

E[
1

τ

T∑
t=1

E∑
s=1

]∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(x0)− f∗]

(nτ)
z

2z+1
+

ζ2Lmax

(nτ)
z+1
2z+1

+
(E − 1)(2E − 1)n

2z
2z+1L2

maxG
2

3τ
2z+2
2z+1

(13a)

+
22zE2z

√
Qz +G4z+2G

(2z + 1)(nτ)
z

2z+1
+

24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2n
z

2z+1 τ
3z+1
2z+1

(13b)

+
4η2z

∑d
j=1 Lj

E(nτ)
z

2z+1
. (13c)

Furthermore, if E ≤ n− 3z
4z+2 τ

z+2
4z+2 , the upper bound above will converge as O

(
(nτ)−

z
2z+1

)
.469

Relationship to [Chen et al., 2020a]. [Chen et al., 2020a] also studies the sign-based optimization470

algorithm with symmetric and zero-mean noise and prove that the convergence rate is O(τ−
1
4 ) using471

a similar iteration-dependent noise scale like us. However, there are two difference between their472

result and our Theorem 1. First, since they also consider the downlink compression, the convergence473

metric they used is no longer ℓ2 norm and hard to interpret. Second, unlike [Chen et al., 2020a]474

whose result is rooted in median-based algorithm, our analysis directly exploits the property of sign475

operation and hence can provide a better and more interpretable result.476

Theorem 3 (Formal version of Theorem 2). Given that Assumption 1 and 3 hold, and we choose477

η = σ, if γ ≤ 1
Lmax

, if σ > E(G+Q∞), we have478

E[
1

TE

T∑
t=1

E∑
s=1

]∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3︸ ︷︷ ︸
standard terms in federated averaging

(14a)

+
4γσ2

∑d
j=1 Lj

En︸ ︷︷ ︸
variance term

. (14b)

otherwise, if σ ≤ E(G+Q∞), there exists a problem where the algorithm cannot converge.479

If we further choose γ = min{n 1
2 τ−

1
2 , 1

Lmax
}, we have480

E[
1

τ

T∑
t=1

E∑
s=1

]∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(x0)− f∗]

(nτ)
1
2

+
ζ2Lmax

(nτ)
1
2

+
(E − 1)(2E − 1)nL2

maxG
2

3τ

(15)

+
4σ2

∑d
j=1 Lj

E(nτ)
1
2

. (16)

Furthermore, if E ≤ n− 3
4 τ

1
4 , the upper bound above will converge as O

(
(nτ)−

1
2

)
, which recovers481

the convergence result of uncompressed algorithm [Yu et al., 2019].482

Remark 4. When σ ≤ E(G+Q∞) in Theorem 3, the injected uniform noise cannot change the sign483

of gradients in the worst case. For example, if ξ∞ follows uniform distribution on [−1, 1], and now484

σ < A for some A > 0, we have Sign(x+ σξ∞) = Sign(x) for any x ≥ A.485

Relationship to [Jin et al., 2020, Safaryan and Richtárik, 2021]. We remark that both the486

stochastic sign operators proposed in [Jin et al., 2020, Safaryan and Richtárik, 2021] are equivalent487

to the sign operator with uniform noise considered in Case 2. In particular, [Jin et al., 2020] also488
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consider downlink compression and hence its convergence results are not directly comparable to the489

Case 2. [Safaryan and Richtárik, 2021] adopts an input-dependent noise scale and proves O(τ−
1
4 )490

convergence rate with ℓ2 norm of gradient as the metric. We remark that this rate is usually worse491

than the rate O(τ−
1
2 ) with squared ℓ2 norm as the metric. Such input-dependent noise scale make492

it possible to prove convergence without the bounded support of gradient noise assumed in this493

work. But there are two disadvantages for their choice of noise scale. First, it can not be extended494

to federated averaging algorithm. Second, it often leads to slow convergence in practice when the495

problem dimension is very high. More discussions on Safaryan and Richtárik [2021] are provided in496

Appendix A.497

C Missing proofs498

Lemma 2. z-distribution weakly converges to uniform distribution at [−1, 1] when z → +∞.499

Proof of Lemma 2. Now we denote the p.d.f of uniform distribution as500

p∞(x) =

{
1
2 |x| ≤ 1,

0 |x| > 1.
(17)

Without loss of generality, for any x > 1 and z ∈ Z+, we have501 ∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ = ∣∣∣∣∫ x

0

(
1

2ηz
e−

t2z

2 − p∞(t)

)
dt

∣∣∣∣ (18a)

≤
∫ 1

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt+ ∫ x

1

1

2ηz
e−

t2z

2 dt. (18b)

For any 0 < ϵ < min{1, x− 1}, we have502 ∫ 1

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt = ∫ 1−ϵ

0

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt+ ∫ 1

1−ϵ

∣∣∣∣ 1

2ηz
e−

t2z

2 − 1

2

∣∣∣∣ dt (19a)

≤
∣∣∣∣ 1

2ηz
e−

(1−ϵ)2z

2 − 1

2

∣∣∣∣+ ϵ. (19b)

Since limz→∞
1

2ηz
= limz→∞

z

2
1
2z Γ( 1

2z )
= 1

2 and limz→∞ e−
(1−ϵ)2z

2 = 1, there exists an interger

Z1 > 0 such that if z > Z1, we have ∣∣∣∣ 1

2ηz
e−

(1−ϵ)2z

2 − 1

2

∣∣∣∣ ≤ ϵ.

Similarly, we have503

∫ x

1

1

2ηz
e−

t2z

2 dt =

∫ 1+ϵ

1

1

2ηz
e−

t2z

2 dt+

∫ x

1+ϵ

1

2ηz
e−

t2z

2 dt (20a)

≤ ϵ+
1

2ηz
e−

(1+ϵ)2z

2 (x− 1− ϵ). (20b)

Since limz→∞ e−
(1+ϵ)2z

2 = 0, there exists an interger Z2 > 0 such that if z > Z2, we have504 ∫ x

1

1

2ηz
e−

t2z

2 dt ≤ ϵ. (21)

In all, for any 0 < ϵ < 1, if z is sufficiently large, we have505 ∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ ≤ 4ϵ. (22)
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Take ϵ → 0 and z → ∞, we have506

lim
z→∞

∣∣∣∣∫ x

−∞

1

2ηz
e−

t2z

2 dt−
∫ x

−∞
p∞(t)dt

∣∣∣∣ = 0. (23)

507

Proof of Lemma 1. We first state a useful inequality on the c.d.f of z distribution:508

Lemma 3. For any x ∈ R509

|x| − |x|2z+1

2(2z + 1)
≤ |Ψz(x)| ≤ |x|, where Ψz(x)

def.
=

∫ x

0

e−
t2z

2 dt. (24)

Then, we have510

∥ηzσE [Sign(x + σξz)]− x∥2 =
∥∥∥x− σΨz(

x

σ
)
∥∥∥2 =

d∑
j=1

(
x(j)− σΨz(

x(j)

σ
)

)2

(25a)

≤
d∑

j=1

x(j)4z+2

4(2z + 1)2σ4z
=

∥x∥4z+2
4z+2

4(2z + 1)2σ4z
. (25b)

511

Proof of Lemma 3. Without loss of generality, we prove it for x ≥ 0.512

First,513 ∫ x

0

e−
t2z

2 dt ≤
∫ x

0

1dt ≤ x. (26)

Now we define F (x)
def.
=
∫ x

0
e−

t2z

2 dt− x+ x2z+1

2(2z+1) . Note that F (0) = 0.514

Then, we can prove that F (x) ≥ 0 by515

F ′(x) = e−
t2z

2 − x+
t2z

2
≥ 0. (27)

(27) is due to the inequality e−x − 1 + x ≥ 0 for any x ≥ 0.516

Proof of Theorem 1. Here we define the virtual aggregated update:517

x̄t,s =
1

n

n∑
i=1

xi
t,s, (28)

x̄t = x̄t−1,E . (29)

We now state the two useful lemmas:518

Lemma 4.

E[f(xt)− f(x̄t)] ≤
γ22zE2z+1

√
Qz +G4z+2G

2(2z + 1)σ2z
+

γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z
(30a)

+
2η2zγ

2σ2
∑d

j=1 Lj

n
. (30b)

Lemma 5.

E[f(x̄t)− f(xt−1)] ≤ −γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

E(E − 1)(2E − 1)γ3L2
maxG

2

6
.

(31)
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With this two lemma, we have519

E[f(xt)− f(xt−1)] = E[f(xt)− f(x̄t)] + E[f(x̄t)− f(xt−1)] (32a)

≤ −γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

E(E − 1)(2E − 1)γ3L2
maxG

2

6

(32b)

+
γ22zE2z+1

√
Qz +G4z+2G

2(2z + 1)σ2z
+

γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z
(32c)

+
2η2zγ

2σ2
∑d

j=1 Lj

n
. (32d)

Rearranging the terms, we have520

1

E

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(xt−1)− f(xt)]

Eγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3

(33a)

+
22zE2z

√
Qz +G4z+2G

(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z
(33b)

+
4η2zγσ

2
∑d

j=1 Lj

En
. (33c)

Form the telescopic sum521

E[
1

TE

T∑
t=1

E∑
s=1

]∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3

(34a)

+
22zE2z

√
Qz +G4z+2G

(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z

(34b)

+
4η2zγσ

2
∑d

j=1 Lj

En
. (34c)

522

Proof of Lemma 4. Therefore, from smoothness we have,523

f(xt)− f(x̄t) ≤ ⟨∇f(x̄t), xt − x̄t⟩+
∑d

j=1 Lj (xt(j)− x̄t(j))
2

2
. (35)

The following equation and inequality can be checked, where the expectation is taken over the noise524

vector ξz ,525

xt − x̄t =
γ

n

n∑
i=1

(
ηzσSign

(
E∑

s=1

git,s + σξz

)
−

E∑
s=1

git,s

)
, (36)

E[xt − x̄t] =
γ

n

n∑
i=1

(
σΨz

(
1

σ

E∑
s=1

git,s

)
−

E∑
s=1

git,s

)
. (37)

16



For any j = 1, ..., d, we have526

E[(xt(j)− x̄t(j))
2
] ≤ γ2

n2

(
n∑

i=1

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

)
−

E∑
s=1

git,s(j)

))2

(38a)

+
γ2

n2
E

( n∑
i=1

(
ηzσSign

(
E∑

s=1

git,s(j) + σξz

)
− σΨz

(
1

σ

E∑
s=1

git,s(j)

)))2


(38b)

≤ γ2

n

n∑
i=1

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

)
−

E∑
s=1

git,s(j)

)2

(38c)

+
γ2

n2

n∑
i=1

E

(ηzσSign

(
E∑

s=1

git,s(j) + σξz

)
− σΨz

(
1

σ

E∑
s=1

git,s(j)

))2


(38d)

≤ γ2

n

n∑
i=1

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

)
−

E∑
s=1

git,s(j)

)2

(38e)

+
2γ2

n2

n∑
i=1

E

(ηzσSign

(
E∑

s=1

git,s(j) + σξz

))2
 (38f)

+
2γ2

n2

n∑
i=1

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

))2

(38g)

≤ γ2

n

n∑
i=1

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

)
−

E∑
s=1

git,s(j)

)2

+
4η2zγ

2σ2

n
. (38h)

(38i)

Therefore, from Lemma 1, we have527

E[
d∑

j=1

Lj (xt(j)− x̄t(j))
2
] ≤ γ2

n

n∑
i=1

d∑
j=1

Lj

(
σΨz

(
1

σ

E∑
s=1

git,s(j)

)
−

E∑
s=1

git,s(j)

)2

(39a)

+
4η2zγ

2σ2
∑d

j=1 Lj

n
(39b)

≤ γ2Lmax

n

n∑
i=1

∥∥∥∥∥σΨz

(
1

σ

E∑
s=1

git,s

)
−

E∑
s=1

git,s

∥∥∥∥∥
2

+
4η2zγ

2σ2
∑d

j=1 Lj

n

(39c)

≤ γ2Lmax

4(2z + 1)2σ4zn

n∑
i=1

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

+
4η2zγ

2σ2
∑d

j=1 Lj

n
. (39d)

Now we need to bound528

E

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

 , (40)
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where the expectation is taken over gradient noise.529

E

∥∥∥∥∥
E∑

s=1

git,s

∥∥∥∥∥
4z+2

4z+2

 ≤ E

[
E4z+1

E∑
s=1

∥∥git,s∥∥4z+2

4z+2

]
(41a)

= E

[
E4z+1

E∑
s=1

∥∥git,s −∇fi(x
i
t,s−1) +∇fi(x

i
t,s−1)

∥∥4z+2

4z+2

]
(41b)

≤ E

[
(2E)4z+1

E∑
s=1

∥∥git,s −∇fi(x
i
t,s−1)

∥∥4z+2

4z+2
+ (2E)4z+1

E∑
s=1

∥∥∇fi(x
i
t,s−1)

∥∥4z+2

4z+2

]
(41c)

≤ (2E)4z+1EQz + (2E)4z+1
E∑

s=1

∥∥∇fi(x
i
t,s−1)

∥∥4z+2

2
≤ 24z+1E4z+2(Qz +G4z+2).

(41d)

In the derivation above, we use a classical result on the monotonicity of ℓp norm: For any x ∈ Rd530

and 1 < r < p, we have531

∥x∥p ≤ ∥x∥r ≤ d
1
r−

1
p ∥x∥p. (42)

Therefore, by taking expectation over both ξz and Gradient noise, we have532

E[
d∑

j=1

Lj (xt(j)− x̄t(j))
2
] ≤ γ224z+1E4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z
+

4η2zγ
2σ2

∑d
j=1 Lj

n
. (43)

Hence, we have533

E[f(xt)− f(x̄t)] ≤

〈
∇f(x̄t),

γ

n

n∑
i=1

(
σΨ

(
1

σ

E∑
s=1

git,s

)
−

E∑
s=1

git,s

)〉
+

∑d
j=1 Lj (xt(j)− x̄t(j))

2

2

(44a)

≤ ∥∇f(x̄t)∥

∥∥∥∥∥γn
n∑

i=1

(
σΨ

(
1

σ

E∑
s=1

git,s

)
−

E∑
s=1

git,s

)∥∥∥∥∥+
∑d

j=1 Lj (xt(j)− x̄t(j))
2

2

(44b)

≤ γ22zE2z+1
√
Qz +G4z+2G

2(2z + 1)σ2z
+

γ224zE4z+2(Qz +G4z+2)Lmax

4(2z + 1)2σ4z
+

2η2zγ
2σ2

∑d
j=1 Lj

n
.

(44c)

534

Proof of Lemma 5.

f(x̄t)− f(xt−1) = f(x̄t−1,E)− f(x̄t−1,0) =

E∑
s=1

f(x̄t−1,s)− f(x̄t−1,s−1) (45a)

≤
E∑

s=1

(
−⟨∇f(x̄t−1,s−1), x̄t−1,s−1 − x̄t−1,s⟩+

Lmax

2
∥x̄t−1,s − x̄t−1,s−1∥2

)
(45b)

=

E∑
s=1

(
−γ⟨∇f(x̄t−1,s−1),

1

n

n∑
i=1

git−1,s⟩+
γ2Lmax

2
∥ 1
n

n∑
i=1

git−1,s∥2
)
. (45c)
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Taking expectation over gradient noise, we have535

E[∥ 1
n

n∑
i=1

git−1,s∥2] ≤ ∥ 1
n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 +

ζ2

n
, (46a)

E[−⟨∇f(x̄t−1,s−1),
1

n

n∑
i=1

git−1,s⟩] = −⟨∇f(x̄t−1,s−1),
1

n

n∑
i=1

∇fi(x
i
t−1,s−1)⟩ (46b)

= −1

2
∥∇f(x̄t−1,s−1)∥2 −

1

2
∥ 1
n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 (46c)

+
1

2
∥∇f(x̄t−1,s−1)−

1

n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2. (46d)

Notice that from smoothness, we have for arbitrary x, y ∈ Rd,536

f(y) ≤ ⟨∇f(x), y − x⟩+ Lmax

2
∥y − x∥2, (47)

which is equivalent to537

∥∇f(x)−∇f(y)∥ ≤ Lmax∥y − x∥. (48)

Now for every s, we have538

∥∇f(x̄t−1,s−1)−
1

n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 (49a)

=∥ 1
n

n∑
i=1

∇fi(x̄t−1,s−1)−
1

n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 (49b)

≤L2

n

n∑
i=1

∥x̄t−1,s−1 − xi
t−1,s−1∥2 (49c)

=
γ2L2

max

n

n∑
i=1

∥∥∥∥∥∥
s−1∑
q=1

 1

n

n∑
j=1

gjt−1,q − git−1,q

∥∥∥∥∥∥
2

(49d)

≤ (s− 1)γ2L2
max

n

n∑
i=1

s−1∑
q=1

∥∥∥∥∥∥ 1n
n∑

j=1

gjt−1,q − git−1,q

∥∥∥∥∥∥
2

(49e)

≤2(s− 1)2γ2L2
maxG

2. (49f)

In all, we have539

E[f(x̄t)− f(xt−1)] ≤
E∑

s=1

(
− γ

2
∥∇f(x̄t−1,s−1)∥2 −

γ

2
∥ 1
n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 +

γ2ζ2Lmax

2n

(50a)

+
γ

2
∥∇f(x̄t−1,s−1)−

1

n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2 +

γ2Lmax

2
∥ 1
n

n∑
i=1

∇fi(x
i
t−1,s−1)∥2

)
(50b)

≤
E∑

s=1

(
−γ

2
∥∇f(x̄t−1,s−1)∥2 +

γ2ζ2Lmax

2n
+ (s− 1)2γ3L2

maxG
2

)
(50c)

= −γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

E(E − 1)(2E − 1)γ3L2
maxG

2

6
.

(50d)

540
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Proof of Theorem 3. We need a similar lemma like Lemma 4.541

Lemma 6. If σ > E(G+Q∞), then542

E[f(xt)− f(x̄t)] ≤
2γ2σ2

∑d
j=1 Lj

n
. (51)

Following similar idea in the proof of Theorem 1, we have543

E[f(xt)− f(xt−1)] = E[f(xt)− f(x̄t)] + E[f(x̄t)− f(xt−1)] (52a)

≤ −γ

2

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 +
Eγ2ζ2Lmax

2n
+

E(E − 1)(2E − 1)γ3L2
maxG

2

6
+

2γ2σ2
∑d

j=1 Lj

n
.

(52b)

Rearranging the terms, we have544

1

E

E∑
s=1

∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(xt−1)− f(xt)]

Eγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3

(53a)

+
4γσ2

∑d
j=1 Lj

En
. (53b)

Form the telescopic sum545

E[
1

TE

T∑
t=1

E∑
s=1

]∥∇f(x̄t−1,s−1)∥2 ≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

(E − 1)(2E − 1)γ2L2
maxG

2

3

(54a)

+
4γσ2

∑d
j=1 Lj

En
. (54b)

Here we provide a simple example where σ < E(G+Q∞) and the algorithm cannot converge.546

Consider E = 1, Q∞ = 0 and the problem

min
x∈R

(x−A)2 + (x+A)2,

where A > 0 is some postive number. If we choose the initial to be x0 = A
2 . As we can, the gradient547

at x0 for the two parts of the objective function are −A and 3A respectively. We denote that ξ∞ as548

the random noise following uniform distribution at [−1, 1]. If now σ < A, we have549

Sign(−A+ σξ∞) + Sign(3A+ σξ∞) = 0, (55)

i.e., this algorithm never update the variable.550

Proof of Lemma 6. We first note that, when z = +∞, we have551

Ψ∞(x) =


x x ∈ [−1, 1],

1 x < −1,

1 x > 1.

(56)

Now, from L-smoothness we have,552

f(xt)− f(x̄t) ≤ ⟨∇f(x̄t), xt − x̄t⟩+
∑d

j=1 Lj (xt(j)− x̄t(j))
2

2
. (57a)

The following equation and inequality can be checked, where the expectation is taken over ξ∞,553

E[xt − x̄t] = E

[
γ

n

n∑
i=1

(
σSign

(
E∑

s=1

git,s + σξ∞

)
−

E∑
s=1

git,s

)]
= 0, (58)

because from the condition of σ we can see that σ > ∥
∑E

s=1 g
i
t,s∥∞ almost surely.554
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For any j = 1, ..., d, we have555

E[(xt(j)− x̄t(j))
2
] ≤ γ2

n2
E

( n∑
i=1

(
σSign

(
E∑

s=1

git,s(j) + σξ∞(j)

)
− σΨ∞

(
1

σ

E∑
s=1

git,s(j)

)))2


(59)

≤ 4γ2σ2

n
. (60)

Hence, we have556

E[f(xt)− f(x̄t)] ≤ +

∑d
j=1 Lj (xt(j)− x̄t(j))

2

2
(61)

≤
2γ2σ2

∑d
j=1 Lj

n
. (62)

D A simple simulated experiment.557

In this section, we verify our theorical results in Section 3 on a simple simulated experiment without558

any gradient noise. Specifically, we consider the following distributed optimization problem with 10559

clients,560

min
x∈Rd

1

2

10∑
i=1

∥x− yi∥2. (63)

Here we generate y1, ..., y10 ∈ Rd using i.i.d standard Gaussian distribution, where d is the problem561

dimension. We compare the performance of the following algorithms. For all the algorithms, we use562

the same stepsize 0.01 and all-zero initialization. We denote the tested algorithms as:563

• GD: Distributed gradient descent without any compression.564

• Sto-SignSGD: The algorithm proposed by [Safaryan and Richtárik, 2021].565

• SignSGD: (Algorithm 1 with z = 1, E = 1 and σ = 0.).566

• 1-SignSGD (Algorithm 1 with z = 1 and E = 1.)567

• ∞-SignSGD (Algorithm 1 with z = +∞ and E = 1.)568

Results. As we can see from Figure 3, all the stochastic sign-based algorithms can converge to569

the optimal solution, while the SignSGD without any noise fail to converge to the optimal solution.570

Besides, 1-SignSGD and ∞-SignSGD have roughly the same convergence speed which is slightly571

slower than the uncompressed gradient descent. It is also verified that the input-dependent noise572

scale adopted by [Safaryan and Richtárik, 2021] could lead to slow convergence when the problem573

dimension is high, as we have discussed in Section 3.2. The optimal noise scales of 1-SignSGD and574

∞-SignSGD are selected based on Figure 4. We can see that there is a clear bias-variance trade-off575

in 4 which corroborates our prediction in Section 3. Moreover, it worth to mention that in this576

experiment, the optimal σ for ∞-SignSGD is much smaller than the conservative choice suggested577

by theory.578

E Experiment details579

E.1 Details for the experiment in Section 4.1580

In Table 2, we provide the tuned hyperparameters for all the tested algorithms on non-i.i.d581

MNIST. Generally, we tune the hyperparameters via grid search: [0.1, 0.05, 0.01, 0.005] for stepsize,582

[0, 0.3, 0.5, 0.7, 0.9] for momentum coefficient, [0, 0.02, 0.05, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5] for noise583

scale.584

In Figure 5, we visualize the performance of 1-SignSGD and ∞-SignSGD under different noise585

scales. As we can see, the results for 1-SignSGD and ∞-SignSGD are almost the same, except that586

the ∞-SignSGD is slighly better than 1-SignSGD when the noise scale is large.587
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(a) d = 10 (b) d = 100 (c) d = 1000

Figure 3: Performance of algorithms under different problem dimension.

(a) 1-SignSGD (b) ∞-SignSGD

Figure 4: Algorithm 1 under different noise scales

E.2 Details for the experiment in Section 4.2588

For the experiment on EMNIST, we fix the client stepsize as 0.05. Then we tune589

the server stepsize, noise scales via grid search: [1, 0.5, 0.1, 0.05, 0.01, 0.005] for stepsize,590

[0, 0.005, 0.02, 0.05, 0.01, 0.03, 0.05, 0.1, 0.2] for noise scale. The used hyperparameter in the Figure591

2 are summarized in Table 3. We also visualize the performance of 1-SignFedAvg and ∞-SignFedAvg592

under various noise scales and local steps in Figure 6, 7, where we use SignFedAvg to represent593

Algorithm 1 with σ = 0.594

Algorithm Stepsize Momentum coefficient Noise scale

SGDwM 0.05 0.9
EF-SignSGDwM 0.05 0.9
Sto-SignSGDwM 0.01 0.9

SignSGD 0.01 0 0
1-SignSGD 0.01 0 0.05
∞-SignSGD 0.01 0 0.05

Table 2: Hyperparameters for tested Algorithms on non-i.i.d MNIST.
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(a) Trainning Loss:1-SignSGD (b) Test Accuracy:1-SignSGD

(c) Trainning Loss:∞-SignSGD (d) Test Accuracy:∞-SignSGD

Figure 5: ALG 1 under different noise scales on non-i.i.d MNIST

Algorithm Server stepsize Noise scale

1-SignFedAvg 0.03 0.01
∞-SignFedAvg 0.03 0.01

Table 3: Hyperparameters for tested Algorithms on EMNIST.

(a) E = 2 (b) E = 5 (c) E = 10 (d) E = 20

(e) E = 2 (f) E = 5 (g) E = 10 (h) E = 20

Figure 6: 1-SignFedAvg under different noise scales and local steps
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(a) E = 2 (b) E = 5 (c) E = 10 (d) E = 20

(e) E = 2 (f) E = 5 (g) E = 10 (h) E = 20

Figure 7: ∞-SignFedAvg under different noise scales and local steps
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