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Abstract

One-shot Federated learning (FL) is a powerful technology facilitating collaborative
training of machine learning models in a single round of communication. While its
superiority lies in communication efficiency and privacy preservation compared to
iterative FL, one-shot FL often compromises model performance. Prior research
has primarily focused on employing data-free knowledge distillation to optimize
data generators and ensemble models for better aggregating local knowledge
into the server model. Prior research has primarily focused on employing data-
free knowledge distillation to optimize data generators and ensemble models
for better aggregating local knowledge into the server model. However, these
methods typically struggle with data heterogeneity, where inconsistent local data
distributions can cause teachers to provide misleading knowledge. Additionally,
they may encounter scalability issues with complex datasets due to inherent two-
step information loss: first, during local training (from data to model), and second,
when transferring knowledge to the server model (from model to inversed data).
In this paper, we propose FedSD2C, a novel and practical one-shot FL framework
designed to address these challenges. FedSD2C introduces a distiller to synthesize
informative distillates directly from local data to reduce information loss and
proposes sharing synthetic distillates instead of inconsistent local models to tackle
data heterogeneity. Our empirical results demonstrate that FedSD2C consistently
outperforms other one-shot FL methods with more complex and real datasets,
achieving up to 2.6 × the performance of the best baseline. Code: https://
github.com/Carkham/FedSD2C

1 Introduction

Federated learning (FL) has emerged as a cutting-edge technology that enables training a global
model across multiple clients without sharing their raw data [1]. Original FL requires multiple
communication rounds for exchanging information between clients and servers. While this paradigm
yields a better global model by frequent communication, such high communication costs along with
the risk of connection drop errors make it impractical and intolerable in real-world FL applications [2,
3, 4]. Moreover, frequent communication poses security risks such as man-in-the-middle attacks [5]
and privacy concerns [6].

To address these issues, one-shot FL [7] has been proposed, requiring only a single communication
round, significantly reducing communication costs and concurrently diminishing vulnerability to
malicious interception. Due to one communication round property, One-shot FL can also be easily
scaled up to large-scale client scenarios, especially for cross-device settings [3]. Despite its sufficient
benefits, the limitation of a single communication round makes one-shot FL fall short in accuracy
compared to conventional multiple-round FL.
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Figure 1: Illustration of issues in one-shot FL based on DFKD: (1) Information loss occurs during
the transfer from local data to the model and from the model back to the inversed data. (2) t-SNE
plots of feature distributions of data generated by DENSE(left ▲), Co-Boosting(middle ■), and our
FedSD2C(right ⋆). We randomly select five different classes (indicated by different colors) of real
and synthetic data from Tiny-ImageNet. Bad samples are data generated by the DFKD-based method
that deviates from the distribution of local real data.

To facilitate effective knowledge transfer from client models to the server model within a single
round, most previous one-shot FL methods [7, 8, 9, 10] have focused on knowledge distillation.
Early approaches [11, 7] use knowledge distillation to transfer knowledge from an ensemble of
client models [12] to the server model. While effective, these methods often require additional
public datasets, which can be cumbersome or unfeasible in real-world scenarios [13]. Alternatively,
data-free knowledge distillation (DFKD) is introduced to avoid the need for public datasets. For
example, DENSE [8] employs Generative Adversarial Networks (GANs) [14] as data generators and
an ensemble of client models as a discriminator to synthesize diverse data for knowledge transfer
to server model in a data-free manner. Co-Boosting [10] extends DENSE by proposing a mutually
reinforcing approach to enhance synthetic data and the ensemble model for server training.

Nevertheless, such a method of generating data implies two-tier information loss. First, due to model
capacity limitations, client models may struggle to encapsulate all information about local data,
affecting the quality of the generated data. Second, the generated data do not fully represent the
information within the model, as they are produced from random noise without explicit guidance.
Therefore, some classes of synthetic data cannot have similar feature distributions to the original real
data, as depicted in Figure 1. Moreover, data heterogeneity [15] in FL can result in inconsistent and
misleading predictions from local models [16], which has been shown to hinder knowledge distilla-
tion [17, 18]. Consequently, the server model trained on such noisy and information-lossy generated
data typically suffers significant performance degradation, particularly on complex datasets [19].

In this paper, we propose FedSD2C (One-shot Federated Learning via Synthetic Distiller-Distillate
Communication), a novel and practical one-shot FL framework that introduces a pre-defined distiller
for informative, privacy-enhanced, and communication-efficient distillate communication. In specific,
FedSD2C first adopts a V-information [20] based Core-Set selection method to distill the local
dataset into an informative Core-Set. By capturing the diversity and realism through V-information,
the distilled Core-Set fully encapsulates the information of the local data domain for training a
robust server model. However, directly transmitting the Core-Set, which may include the original
samples, poses potential privacy risks and incurs significant communication costs, especially for high-
resolution images. In this regard, FedSD2C employs two techniques to further distill the Core-Set
into distillates, thereby enhancing privacy and reducing communication costs: 1) Utilizing Fourier
transform perturbation to alter the amplitude components of the Core-Set samples for distillate
initialization, enhancing privacy while retaining semantic content; 2) Employing a pre-trained
Autoencoder [21] provided by the server as a distiller to distill the perturbed Core-Set into distillates
and optimizing its V-information to be as close as possible to original Core-Set, thus minimizing
information loss. Finally, clients transmit synthetic distillates to the server instead of inconsistent

2



models for knowledge transfer. Compared to generating noisy knowledge from inconsistent client
models with two-tier information loss, end-to-end distillate synthesis minimizes information loss
and their aggregation mitigates the impact of data heterogeneity. Through extensive experiments
over various real-world datasets , we show that our proposed method significantly surpasses the
generated-based one-shot FL methods. The contributions of this paper are:

• We propose a new one-shot FL framework named FedSD2C which proposes to share
synthetic distillates instead of generating noisy data from inconsistent models for server-side
training.

• To mitigate the potential of privacy leakage and reduce communication costs, we propose
two techniques: distillate initialization with Fourier transform perturbation and distillate
synthesis with a pre-trained Autoencoder.

• We conduct extensive experiments over various datasets and settings. The results demon-
strate the effectiveness of the proposed method which achieves up to 2.7 × the performance
of the best baseline.

2 Related Work

2.1 One-shot Federated Learning

One-shot federated learning was first proposed by [22], which introduces a method to aggregate
a server model by distilling knowledge from an ensemble of client models using public datasets.
FedKT [11] propose a hierarchical knowledge transfer framework, enabling various types of classi-
fication models. While their approaches demonstrate promising results, the requirement of public
datasets which is inaccessible for privacy or transmission reasons limits their practical applications.
To address the limitations associated with public datasets, DENSE [8] introduces a DFKD process
utilizing an additional data generator trained on the ensemble model. Considering the challenge of
high statistical heterogeneity, FedCVAE [9] proposes replacing the local training task with training
conditional Variation Autoencoders. Furthermore, Co-Boosting [10] aims to enhance the perfor-
mance of both the data generator and the ensemble model through a two-tier process. Despite these
advancements, generating data through DFKD involves a two-tier information loss. Simultaneously,
the inconsistency among client models due to data heterogeneity [15, 23, 24, 25], further degrades
the quality of generated data, introducing label noise and thus limiting the performance of the server
model. In this work, we tackle these problems from the perspective of sharing synthetic distillates.
By utilizing Core-Set selection and pre-trained Autoencoders as distillers, our proposed methods
distill diverse and informative data for server training.

2.2 Dataset Distillation in Federated learning

Dataset Distillation (DD) was first introduced by [26], aiming to distill the knowledge of datasets into
synthetic data while preserving the performance of the model trained on it. Early dataset distillation
methods are formulated as a bi-level optimization problems [27], where the outer loop optimize the
synthetic data via gradient matching [28, 29, 30], distribution matching [31, 32] and performance
matching [26], while the inner loop progressively trains a model on the synthetic data. Considering
computational resources constraints, single-level optimization methods [33, 34] based on kernel
ridge regression are proposed to decouple the bi-level optimization, thereby reducing training cost.
These methods demonstrate comparable performance in non-complex datasets like CIFAR10 and are
implemented in FL to tackle communication bottlenecks [35, 36], data heterogeneity [37, 38, 39] and
one-shot FL [40, 36]. However, these methods require significant computational resources, making
them impractical for edge devices with limited capability in FL. Additionally, they may struggle to
effectively distill high-resolution datasets.

3 Methodology

3.1 Overview

We proposed FedSD2C to alleviate the two-tier information loss inherent in one-shot FL methods
based on DFKD and account for data heterogeneity by synthetic distiller-distillate communication.
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Figure 2: Framework of proposed FedSD2C.

The details of FedSD2C are described in Figure 2 and Algorithm 1. In the preparation phase of
one-shot FL, the server distributed a pre-trained Autoencoder [21] as the distiller to each client. Sub-
sequently, clients synthesize informative, privacy-enhanced, and communication-efficient distillates
for server-side training. Specifically, to ensure the distillates fully encompass local information,
clients first utilize a V-information-based Core-Set selection method to extract diverse and infor-
mative Core-Set from their local data domains. Aiming to further reduce the communication costs
and enhance the privacy of distillates, clients then perturb the Core-Set with Fourier transform for
distillate initialization and employ the received pre-trained Autoencoder to optimize distillates in a
compact latent space via V-information alignment with the Core-Set. Finally, clients transmit the
distillates, and the server decodes them using the pre-trained Autoencoder for training. We will now
delve into the details of each component.

3.2 V-information based Core-Set Selection

V-information [20] was first proposed to measure the mutual information between X and Y con-
strained on predictive family V which is denoted as:

IV(X → Y ) = HV(Y |∅)−HV(Y |X) (1)
where HV(Y |∅) and HV(Y |X) denote the predictive V-entropy conditioned on ∅ or X .

Core-Set selection is a type of dataset distillation method that focuses on preserving a subset of the
original training dataset containing only valuable or representative samples. The objective is to enable
models trained on this subset to achieve performance similar to those trained on the entire dataset.
Typically, this is achieved by minimizing certain criteria, such as data distribution [41]. In our case,
the emphasis lies on maximizing the diversity and information content of the subset. Therefore, in
the context of V-information, Core-Set selection can be reformulated as:

(Xs, Ys) = argmax
X,Y

IV(Xt → Yt) (2)

where Xt and Yt denotes the images and labels in the original datasets and (Xs, Ys) denotes the
selected Core-Set. The intuition behind this equation is that Core-Set should include sufficient
information and provide a concise representation corresponding to original datasets, constrained by
observers V .

Inspired by [42], we maximize the V-information of the Core-Set from two levels. First, we identify
the most informative image segments within each image by evaluating patches extracted at various
scales from each image. Second, we select the top-ipc with the highest V-information for each
class to construct the final Core-Set. The algorithm description can be found at Appendix A. Since
a model pre-trained on original datasets can serve as an optimal observer for approximating the
V-information [42], we proposed using local pre-trained models as the observer models (predictive
family V) to conduct V-information-based Core-Set selection on local datasets. Given that pre-trained
local models are commonly present in one-shot FL [8, 7], their utilization does not violate the
practicality of our approach.

3.3 Distilling Core-Set into Distillates with Pre-trained Autoencoders

In this section, we will describe how to synthesize informative, privacy-enhanced, and communication-
efficient distillates using pre-trained Autoencoders. Although Core-Set significantly reduces dataset
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size, communication costs remain a challenge for high-resolution data in real-world applications.
Moreover, while sharing Core-Set provides consistent resistance to membership inference attacks [43],
transmitting patches may still risk exposing sensitive information of original images. Therefore,
further enhancing the privacy of shared data is essential. To alleviate these concerns, we propose
two novel techniques: 1) distillate initialization with Fourier transform perturbation, which alters the
amplitude components of the Core-Set samples to enhance privacy while retaining semantic content;
and 2) distillate synthesis with pre-trained Autoencoders which act as the distillers. The pre-trained
Autoencoder converts the perturbed samples into distillates by optimizing their V-information to be
as close as possible to the original Core-Set samples, minimizing information loss. We will now
discuss each component in detail below. The process is described in Algorithm 1.

Distillate initialization with Fourier transform perturbation. A typical privacy-enhanced tech-
nique for sharing synthetic data is adding noise [44]. Although this approach can blur the visual
information of the synthetic data, it can also destroy important semantic information and seriously
degrade model performance. Our approach leverages a well-known property of the Fourier transform:
the phase component of the Fourier spectrum encodes high-level semantic information, whereas
the amplitude component captures low-level details [45, 46]. Inspired by this, we propose a novel
privacy-enhanced method that perturbs the amplitude components in Core-Set samples through the
Fourier transform to reduce visual information while preserving semantic information. Given an
image x, its Fourier transform can be formulated as:

F(x) = A(x)× e−j×P(x) (3)
where A(x),P(x) depict the amplitude and phase components respectively. We then perturb the
amplitude information via linearly interpolating:

Â(x) = (1− λ)A(x) + λA(x∗) (4)
where the λ is a scaling coefficient and x∗ can be other images or random noise. Then, we combine
the perturbed amplitude spectrums with the original phase component to generate the perturbed
Core-Set sample:

x = F−1(Â(x)× e−j×P(x)) (5)
where F−1(x) defines the inverse Fourier transform which can be calculated with the FFT algo-
rithm [47] effectively.

Distillate synthesis with pre-trained Autoencoders. The Fourier transform perturbation serves
to protect visual privacy but also compromises the realism of images, resulting in inconsistent V-
information between the perturbed Core-Set and the original Core-Set. To address this issue, we
propose optimizing the alignment of the V-information between the perturbed Core-Set and the
original Core-Set to reconstruct key information. One straightforward and efficient approach is to
optimize the perturbed Core-Set in pixel space [48, 49]. However, this method can be prone to
overfitting into high-frequency patterns that only match the observer model [50]. Such overfitting is
detrimental to training a global model due to inconsistent local models caused by data heterogeneity.
Leveraging the powerful priors obtained from large-scale datasets, a pre-trained Autoencoder can
decode latent representations into generalizable images. As a result, optimizing in the latent space acts
as a regularization method that encourages synthetic data to be more generalizable, thereby making
pre-trained Autoencoder an ideal distiller for local Core-Sets distillation. Furthermore, compact
latent representations can reduce communication costs and mitigate privacy leakage if the latent
is intercepted by attackers. Consequently, we employ a pre-trained Autoencoder on the client to
distill the Core-Set into informative, privacy-enhanced, and communication-efficient distillates, and
transmit them to the server for model training. On the server side, they are decoded by the decoder
and are expected to maintain similar V-information to the original Core-Set from the perspective of
the observer model while remaining visually unidentifiable.

In specific, in the preparation phase of one-shot FL, the server first distributes a pre-trained Au-
toencoder to n clients, denoted as E and D for encoder and decoder, respectively. Each client i
then conducts V-information-based selection to construct a Core-Set (Xi

s, Y
i
s ), i = 1, 2 · · · , n with

diverse information regarding the original local datasets. Subsequently, client i learns a latent set
Zi = {zj}|Z

i|
j=1 initialized by {E(xi

j)}
|Xi

s|
j=1 , x

i
j ∈ Xi

s which is perturbed with Fourier transform, such

that the {D(zij)}
|Zi|
j=1 is as close as possible to the corresponding data in the Core-Set:

argmin
Zi

∥∥∥IVi(Xi
s → Y i

s )− IVi({D(zij)}
|Zi|
j=1 → Y i

s )
∥∥∥2 (6)
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Algorithm 1 One-shot Federated Learning via Synthetic Distiller-Distillate Communication

Require: Client local model f i(hi(·)), pre-trained VAE (D, E), Server model parameter θ, number
of clients n, training iterations of local synthesis Tsyn, training iterations of server model Ttrn,
learning rate ηsyn and ηtrn

1: Server distributes pre-trained VAE (D, E) to n clients.
2: for each client i = 1, · · · , n do
3: (Xi

s, Y
i
s )← CoresetSelection(i) ▷ See Algorithm 2 in Appendix

4: for each xi
j ∈ Xi

s do
5: Perturb xi

j via Equations (3), (4) and (5)
6: end for
7: Initialize latent set Zi = {E(xi

j)}
|Xi

s|
j=1 using pre-trained VAE decoder E

8: for t = 1, · · ·Tsyn do
9: for mini-batch (zi, xi

s) ∈ (Zi, Xi
s) do

10: Compute synthetic loss Lsyn based on Equation (7)
11: zi ← zi − ηsyn∇ziLsyn

12: end for
13: end for
14: Generate soft label for each synthetic latents Y i

s = {f i(hi(D(zij)))}
|Zi|
j=1

15: Transmit Si = (Zi, Y i
s ) to the server

16: end for
17: Combine client synthetic data into S = (Z, Ys) = (Z1 ∪ · · · ∪ Zn, Y 1

s ∪ · · · ∪ Y n
s )

18: for t = 1, · · · , Ttrn do
19: for mini-batch (z, y) ∈ (Z, Ys) do
20: Compute Ltrn based on Equation (8)
21: θ ← θ − ηtrn∇θLtrn

22: end for
23: end for

As Core-Set selection employs the local pre-trained models as the observer models Vi, the reformu-
lated Equation (6) and objective function can be formulated as:

argmin
zi

∥∥hi(D(zi))− hi(x
i)
∥∥2

Lsyn =

∥∥∥∥∥∥ 1

N

N∑
j=1

hi(D(zij))−
1

N

N∑
j=1

hi(x
i
j)

∥∥∥∥∥∥
2 (7)

where hi(·) denotes the feature extractor of pre-trained local model of client i, and xi
j and zij are

paired. By minimizing Lsyn, we synthesize a set of latent variables Zi = {zj}|Z
i|

j=1 that contains
diverse information of local data domains.

Finally, clients transmit the latent set Zi along with the corresponding soft label Y i
s predicted by local

models to the server. The server combines the synthetic local distillates from each client S = (Z, Ys).
It then uses decoderD to reconstruct the images from data (z, y) ∈ (Z, Ys) and distills the knowledge
by minimizing the following objective function:

Ltrn =
∑

(z,y)∈(Z,Ys)

KL(f(h(D(z))), y) (8)

where f(h(·)) denotes the server model. By minimizing the KL loss, we can transfer the local
knowledge in the distillate to the server model.

Discussion on privacy. We first consider whether an attacker can train a performant model with the
intercepted distilled data and labels during transmission [40, 9]. Because the attacker cannot know
that the distilled data is encoded by VAE, nor can the attacker access the pre-trained VAE encoder,
which can be easily achieved by being predefined offline or via encryption, it is hard for the attacker
to reproduce an effective model. For model inversion and membership inference attacks, according
to [51], there has been no prior research has performed these attacks solely using distilled data and
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Table 1: Accuracy of different one-shot FL methods over three datasets with ConvNet and ResNet-18.
We vary the α = {0.1, 0.3, 0.5} to simulate different levels of data heterogeneity for Tiny-ImageNet
and Imagenette and use pre-defined splits for OpenImage. "Central" means that clients send all their
local data to the server for centralized training, representing the upper bound of model performance.

Model Methods
ImageNette Tiny-ImageNet OpenImage

α = 0.1 α = 0.3 α = 0.5 α = 0.1 α = 0.3 α = 0.5 -

ConvNet

Central 89.60 49.73 33.61
FedAVG 10.68±0.23 10.04±0.10 9.83±0.27 - - - 3.08±0.17
F-DAFL 44.95±0.72 52.23±0.23 58.34±0.55 5.25±0.41 8.89±0.61 10.28±0.10 3.36±0.56
DENSE 42.09±0.68 48.64±1.91 54.74±0.75 11.45±0.08 14.69±0.48 15.15±0.22 7.00±0.84
Co-Boosting 39.36±0.70 56.15±1.33 58.60±1.02 6.66±0.35 9.81±0.26 10.75±0.11 13.59±0.98
FedSD2C 50.68±0.20 57.89±0.96 58.17±0.51 20.73±0.12 23.53±0.18 24.10±0.30 23.00±0.24

ResNet-18

Central 90.00 61.98 34.17
FedAVG 9.86±0.13 10.06±0.20 10.76±0.35 - - - 1.68±0.16
F-DAFL 37.86±0.38 39.52±0.46 46.06±0.16 7.91±0.22 12.30±0.36 13.31±0.56 12.75±0.14
DENSE 38.37±0.36 47.85±2.17 49.78±2.11 8.88±0.23 13.05±0.36 17.24±0.43 14.85±0.62
Co-Boosting 27.06±0.61 28.53±0.86 30.53±1.12 10.29±0.43 14.35±0.93 16.39±0.59 9.52±1.52
FedSD2C 47.52±0.51 53.69±0.17 55.90±0.53 26.83±0.10 29.92±0.37 31.66±0.85 22.69±0.14

labels and previous works [52, 36, 35, 43] have also revealed the advantage of dataset distillation in
this regard. Therefore, we employ the synthetic data as the reconstructed samples for the evaluation
of model inversion attacks. Furthermore, we compare our proposed Fourier transform perturbation
with other privacy-enhanced techniques, including adding random noise to synthetic samples and
data augment [53]. Experimental results can be found in Section 4.3.1.

4 Experiments

4.1 Experimental Setup

Datasets and partitions. We conduct experiments on three real-world image datasets with different
ranges of resolution including Tiny-ImageNet [54], ImageNette [55], and OpenImage [56]. Tiny-
ImageNet contains 10000 images of 64×64 resolution across 200 classes. ImageNette is a widely used
subset of 10 classes from ImageNet-1K [57] with 9469 color images, resized to 128×128. OpenImage
is a large-scale real-world vision dataset with over 9 million images of 256×256 resolution. To
simulate data heterogeneity in real-world applications of one-shot FL, we use Dirichlet distribution to
generate non-IID data to generate non-IID local data, as in [58] for Tiny-ImageNet and ImageNette.
Specifically, for client i, we sample pik Dir(α) to allocate a pik proportion of class k to client i.
The parameter α controls the degree of data heterogeneity, with smaller α indicating severe data
heterogeneity. The α is set to 0.1 by default unless otherwise stated. For OpenImage, we randomly
choose n real-world clients from FedScale [59] and use their corresponding test sets to form global
sets. We set the default number of clients n to 10, unless otherwise specified.

Baseline methods and Configurations. We compare our proposed FedSD2C with existing methods:
FedAVG [1], DENSE [8] and Co-Boosting [10]. Following [8, 10], we also introduce DAFL [60] with
one-shot FL settings, denoted as F-DAFL. We use two different model architectures: ConvNet [28]
and ResNet-18 [61] for all methods. In FedSD2C, the image per class ipc is set to 50 for Tiny-
ImageNet and ImageNette, and 10 for OpenImage. We set the Fourier transform coefficient λ = 0.8
and use a public pre-trained Autoencoder from Stable Diffussion [62] by default for all tasks. For
distillate synthesis, we set Tsyn = 50, ηsyn = 0.1 by default. ηtrn is set to 0.2 for Tiny-ImageNet
and 0.02 for ImageNette and OpenImage. More experimental details can be found in the Appendix.

4.2 Evaluation Results

To evaluate the effectiveness of our method, we conduct experiments under various non-IID set-
tings with α = {0.1, 0.3, 0.5} for Tiny-ImageNet and Imagenette and pre-defined splits [59] for
OpenImage. As illustrated in Table 1, our proposed FedSD2C surpasses all other methods in most
settings. In particular, under extreme data heterogeneity(α = 0.1), FedSD2C achieves up to 1.3×,
2.6×, and 1.8× the accuracy of the best baseline on ImageNette, Tiny-ImageNet and OpenImage,
respectively. This superior performance is attributed to FedSD2C’s approach of sharing synthetic
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Table 2: Accuracy, PSNR and SSIM of FedSD2C combining different privacy-enhanced techniques.
Laplace and Gaussian indicate adding corresponding noise into synthetic distillates without Fourier
transform initialization. FedMix denotes averaging two real samples from Core-Set to synthesize
data. "-" indicates no privacy-enhanced technique is combined.

Privacy-preserving ImageNette Tiny-ImageNet
techniques ConvNet↑ ResNet-18↑ PSNR↓ SSIM↓ ConvNet↑ ResNet-18↑ PSNR↓ SSIM↓

- 51.87 51.82 - - 22.62 28.29 - -

Ours(λ = 0.1) 51.26 50.55 23.48 73.20 22.03 28.22 20.54 54.89
Ours(λ = 0.5) 51.36 48.97 19.97 64.23 21.77 28.09 18.06 44.18
Ours(λ = 0.8) 50.68 47.52 16.42 50.80 20.85 26.83 16.95 35.89

Laplace(s = 0.2, p = 0.1) 48.61 45.25 24.02 81.66 21.50 27.48 22.25 73.09
Gaussian(s = 0.2, p = 0.1) 48.31 46.70 24.82 85.89 21.48 27.51 23.38 78.90
Laplace(s = 0.2, p = 0.2) 45.61 38.01 20.05 73.13 19.32 23.66 19.99 64.51
Gaussian(s = 0.2, p = 0.2) 45.81 38.09 20.30 76.11 19.32 23.52 20.35 68.56

FedMix 41.86 37.76 16.88 58.93 13.86 16.26 16.43 56.91

distillates rather than inconsistent local models, thereby mitigating the impact of data heterogeneity.
Moreover, FedSD2C demonstrates the independence from model structures. In contrast, other meth-
ods struggle to adapt to different model structures and complex datasets. For instance, at α = 0.5,
Co-Boosting with ResNet-18 achieves only half the accuracy of ConvNet on ImageNette, whereas
FedSD2C maintains consistent performance. This discrepancy arises because differences in model
capacity affect their ability to condense local knowledge and the two-tier information loss during
data generation increases the difficulty of transferring local knowledge to the server model, resulting
in poor robustness to complex datasets and varied networks. In contrast, the shared distillates in
FedSD2C are synthesized through end-to-end local distillation, mitigating information loss during
knowledge transfer.

4.3 Analysis of Our Method

4.3.1 Privacy Evaluation

For privacy evaluation, we consider an honest-but-curious server attempting to reconstruct client
data from distillates. We compare our proposed FedSD2C with other privacy-enhanced techniques
for sharing synthetic data, including adding random noise [44, 63] and FedMix [53]. In the random
noise approach, we incorporate it into FedSD2C by removing the Fourier transform perturbation and
instead directly using Core-Set samples for initialization. We then add random noise to the synthetic
distillates before transmitting them to the server, following the methods in [44, 63]. Specifically,
Given latent z, a perturbation coefficient p, randomly generated noise e and its scale parameter s,
the data to be shared is formulated as z = (1 − p)z + e × s. FedMix [53] proposes using linear
interpolation of real samples to preserve privacy. In this approach, we synthesize data by averaging
each two real samples from the Core-Set. For our proposed Fourier transform perturbation, we
vary the λ = {0.1, 0.5, 0.8} and observe the variations in performance and privacy protection. To
quantitatively evaluate the privacy protection of the synthetic data, we employ the Peak Signal-to-
Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM). A higher PSNR or SSIM value
indicates greater similarity between the synthetic samples and the original samples, which implies
more severe privacy leakage. We calculate the average PSNR and SSIM values of all the synthetic
samples.

As depicted in Table 2, although FedMix provides better privacy protection, as evidenced by lower
PSNR and SSIM values, it comes at the expense of significant performance degradation. The
application of random noise requires a delicate balance between performance and privacy protection.
For example, with a perturbation coefficient p = 0.2, it offers similar privacy protection to that
of FedMix, but the performance drops approximately 10% compared to p = 0.1. However, the
p = 0.1 setting increases the risk of privacy leakage. In comparison, the synthetic distillates
generated by our proposed FedSD2C achieve comparable PSNR values with them. This suggests
that our proposed Fourier transform perturbation offers effective privacy protection for the real data
sample. Furthermore, FedSD2C consistently outperforms other methods in terms of accuracy while
maintaining a minimal performance degradation compared to no privacy protection techniques. This
indicates that FedSD2C strikes a balance between privacy preservation and performance. We also
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Table 3: Comparison of communication costs and accuracy at α = 0.1 with ResNet-18. Results
highlighted in bold represent outcomes with default ipc settings. Acc. and Comm. denote accuracy
and communication costs, respectively.

Method ipc
ImageNette Tiny-ImageNet

ipc
OpenImage

Acc. Comm. Acc. Comm. Acc. Comm.

DENSE - 38.37 44MB 8.88 44MB - 14.85 44MB
Co-Boosting - 27.06 44MB 10.29 44MB - 7.00 44MB

FedSD2C w/o AE 1 19.90 0.48MB 3.60 2.2MB 1 12.89 2.6MB

FedSD2C
20 43.10 0.23MB 23.23 1.1MB 5 20.73 1.6MB
50 50.68 0.5MB 26.83 2.1MB 10 22.69 2.0MB
80 56.13 0.73MB 27.71 2.9MB 15 23.49 2.7MB

perform membership inference attacks on FedSD2C and other methods, please refer to Appendix C.2
for more details.

4.3.2 Scalability of Communication Efficiency

By employing Core-Set selection and communication-efficient distillate communication, our
FedSD2C condenses local data to mere MBs, while the model trained on these condensed data
exhibits comparable performance, as shown in Table 3. Specifically, the communication costs of
FedSD2C for sharing synthetic distillate is at most 4% of that of sharing model. Notably, we exclude
the communication costs of sending and receiving pre-trained Autoencoder, as this can be pre-defined
offline, allowing for the reuse of multiple one-shot FL tasks. Given the considerable capacity for
communication costs, we further investigate the scalability of communication efficiency and perfor-
mance. Our experimental results demonstrate that increased data transmission enhances the diversity
of compressed data, leading to further improvements in performance. By increasing ipc from 20
to 80, the accuracy boosts by 13.03% and 4.48% on ImageNette and Tiny-ImageNet respectively.
Additionally, we compare FedSD2C without Autoencoder at equivalent communication costs, where
the absence of synthesized images limits performance to at best half of the default setting. The
communication-efficiency of FedSD2C highlights its practicality in real-world applications.

4.3.3 Impact of Pre-trained Autoencoder
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Figure 3: (a) Experiments on the medical image data domain.
Adopting pre-trained Autoencoders on other data domains can
reduce performance. However, this can be mitigated by increasing
Tsyn. (b) Experiments of FedSD2C with randomly initialized
downsampling and upsampling modules (blue line) compared to
pre-trained Autoencoders (orange line) on ImageNette. Without
pre-trained knowledge, FedSD2C requires a higher Tsyn for distil-
late synthesis but can still achieve comparable results. ResNet-18
is used for both experiments.

Pre-trained Autoencoders are
typically trained on natural data
domains [64], while practical ap-
plications of federated learning
often involve a broader range of
domains, such as medical im-
ages. This raises the question
of whether pre-trained Autoen-
coders remain effective when ap-
plied to a different domain and
whether our proposed FedSD2C
can adapt to these differences. To
investigate this, we evaluate per-
formance using a medical dataset
COVID-FL [65].

As shown in Figure 3a, using
the default synthesis iteration of
Tsyn = 50 yields suboptimal
results. By increasing Tsyn to
1000, the performance improves and then stabilizes. This observation suggests that the pre-trained
knowledge of Autoencoders may influence the speed of distillate synthesis convergence. To fur-
ther validate this, we replace the encoder and decoder of pre-trained Autoencoders with randomly
initialized downsampling and upsampling modules. We vary Tsyn from 50 to 1000 and compare
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Table 4: Accuracy on Tiny-ImageNet with different client amounts.
Number of clients α F-DAFL DENSE Co-Boosting FedSD2C

n=20
α = 0.1 4.97 11.36 7.37 21.92
α = 0.3 7.66 13.69 9.95 22.00
α = 0.5 10.01 14.86 10.45 22.87

n=50
α = 0.1 3.99 8.32 7.05 21.48
α = 0.3 5.92 12.25 8.80 22.38
α = 0.5 6.94 13.06 8.90 22.58

n=100
α = 0.1 3.12 7.87 4.27 20.34
α = 0.3 5.26 10.22 7.15 21.86
α = 0.5 6.30 11.49 8.32 21.76

its performance with employing pre-trained Autoencoders on ImageNette, setting ipc = 80 for
better illustration. Figure 3b demonstrates that as Tsyn increases, the performance of FedSD2C
with randomly initialized modules improves progressively, eventually matching the performance of
FedSD2C with pre-trained Autoencoders. In summary, while pre-trained knowledge can enhance
convergence rate, FedSD2C can achieve comparable performance by adjusting Tsyn, demonstrating
its adaptability across domains.

4.3.4 Impact of Client Scales

As practical FL deployments often involve participating clients [59], we evaluate our FedSD2C with
various numbers of clients n = {20, 50, 100} and maintain consistent communication budget by
setting ipc = {40, 20, 10}, respectively. We compare these methods under on Tiny-ImageNet with
data heterogeneity α = {0.1, 0.3, 0.5} for partitions and employ ConvNet. As depicted in Table 4,
FedSD2C consistently achieves the highest accuracy as the number of clients increases. Moreover,
FedSD2C demonstrates greater robustness to the number of participants. Specifically, as the number
of participants changes, the accuracy of FedSD2C fluctuates within only 1%. In contrast, the accuracy
of F-DAFL, DENSE, and Co-Boosting dropped by up to 4.71%, 3.49%, and 3.10%, respectively under
different settings. This further validates the utility of sharing synthesized distillates in real-world
one-shot FL applications.

5 Limitations

The local distillation process introduces additional computational overhead. While Core-Set selection
requires no training and the distillate synthesis process only requires 50 iterations with a speed
of 0.4s/per image on RTX3090, it still imposes higher resource requirements on the local device
compared to the method of sharing model. One direction worth exploring is to integrate with the
model market [66] to enable clients to synthesize distillates once for permanent use.

6 Conclusion

In this paper, we propose a new one-shot FL framework driven by distiller-distillate communica-
tion, denoted as FedSD2C, to alleviate the information loss of knowledge transfer and impacts
of data heterogeneity. FedSD2C compresses the local data into Core-Set with V-information and
employs a pre-trained Autoencoder as the distiller to distill informative, communication-efficient, and
privacy-enhanced distillates from Core-Set. Moreover, We discuss FedSD2C’s resistance to attackers
intercepting distillate communications and attacks from honest-but-curious servers and introduce
Fourier transform perturbation to further minimize the risk of privacy leakage. Empirical results
validate the effectiveness of FedSD2C in transferring local knowledge to the server in one-shot FL
while balancing communication efficiency and privacy protection.
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A V-information based Core-Set Selection Description

Algorithm S1 V-information-based Core-Set Selection

Require: Client local dataset (Xt, Yt) Client local feature extractor h, image per class ipc
X ′

T ← ∅
2: Level 1: identifying the most informative image segments

for each x, y ∈ (Xt, Yt) do
4: {xk}Kk=1 ← extract K patches with multiple scales from x.

for k = 1 to K do
6: Calculate V-information score sk ← −L(h(xk), y)

end for
8: select x′ with highest score s′

X ′
T

⋃
{(x′, y, s′)}

10: end for
Level 2: select the top-ipc patches with highest V-information

12: Xs, Ys ← ∅
for each class c ∈ Yt do

14: if size of {(x′
j , yj , s

′
j)}, yj = c ≥ ipc then

select top-ipc {(x′
j , yj)}

ipc
j=1 via s′j

16: Xs

⋃
{x′

j}
ipc
j=1,Ys

⋃
{yj}ipcj=1

end if
18: end for

return (Xs, Ys)

B More Experimental Details

We use the SGD optimizer with momentum=0.9, learning rate=0.01 and weight decay=0.0001 for
clients’ local training. The batch size is set to 128 and local epoch is 200. For all generation
based methods, we set the resolution of the generated images to 64× 64, 128× 128 and 256× 256
for Tiny-ImageNet, ImageNette and OpenImage, the number of generated images in each batch
is 128, and the learning rate of the generator is 0.001, the latent dimension is 256, iteration for
training generator is 30, using Adam for optimization. The server model is optimized with SGD with
momentum 0.9, the learning rate is 0.01, and the training epochs are 200. The synthesized batch
size and server model training batch size is both 128. In DENSE, we set λ1 = 1 for BN loss and
λ2 = 0.5 for diversity loss. In Co-Boosting, the perturbation strength is set to ϵ = 8/255 and the
step size µ = 0.1/n. In Core-Set selection stage of FedSD2C, for each image xi, we employ the
torchvision.transform.RandomResizeCrop K times to generate a collection of patches. For
patch size, we set the scale=(0.08, 1.0), which is to collect diverse image patches. Following [42], we
employ ConvNet-4 for Tiny-ImageNet, ConvNet-5 for ImageNette and ConvNet-6 for OpenImage.
All methods are implemented with Pytorch and conducted on GeForce RTX 3090.

Details of t-SNE plots in Figure 1 We randomly select a client and five classes from its local
dataset (Tiny-ImageNet) and employs its local model (ResNet-18) to extract features. The feature is
extracted from the final layer (before the classifier). We then use t-SNE plots to illustrate the feature
distribution.

C Additional Experiments

C.1 Additional datasets

CIFAR-10. We set the resolution of generated images to 32×32 for CIFAR-10 [67] and keep all
the other settings the same. As shown in Table S1, there is an initial performance discrepancy at
the standard setting of ipc = 50. This occurs because our method prioritizes efficiency with large
datasets rather than low-resolution ones. However, upon increasing the amount of synthetic data
(ipc = 500), our method can still achieve comparable results.
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Table S1: Performance on CIFAR-10 with ResNet-18.
Method α = 0.1 α = 0.3 α = 0.5 Comm.

DENSE 47.75 54.53 66.05 44MB
Co-Boosting 53.33 61.75 68.99 44MB
FedSD2C (ipc = 50) 44.72 48.23 51.14 0.03MB
FedSD2C (ipc = 500) 56.95 62.37 65.06 0.24MB

COVID-FL. We crop the images of COVID-FL [65] into 128×128, set the Tsyn = 1000 as in Sec-
tion 4.3.3 and keep all the other settings the same. The results in Table S2 indicate that our FedSD2C
still acheive better results compared to DENSE and Co-Boosting.

Table S2: Performance on COVID-FL datasets with ResNet-18.
Method α = 0.1 α = 0.3 α = 0.5

DENSE 46.38 57.55 62.83
Co-Boosting 45.07 60.27 65.81
FedSD2C 52.65 62.50 66.68

C.2 Membership Inference Attack

To further validate the effectiveness of our method, we employ an improved version of LiRA [68] to
conduct Membership Inference Attacks on our methods. When attacking each client, for FedSD2C,
we use the distillates uploaded by the client to train a new model and conduct membership inference
attacks on that model. For the sharing model-based methods, we perform membership inference
attacks on the models uploaded by the clients. The client model is ResNet-18 with α = 0.1, ipc = 50.
We set the raw images of Core-Set as the canary (target data x), as this is the most serious case of our
methods. The results confirm that our approach does not introduce more privacy risk than the sharing
model-based approach, even for the most vulnerable targets.

Table S3: Membership Inference Attack.
Method TPR@FPR=0.1%

Sharing model-based methods 22.81(DENSE, Co-Boosting)
FedSD2C 20.13

C.3 Wavelet transform perturbation

We explore the use of wavelet transforms to replace the Fourier transforms during Fourier transform
perturbations. We use ResNet-18 on Tiny-ImageNet with α = 0.1, ipc = 50. The results indicate that
Wavelet Transform offers greater scalability in privacy protection. By increasing λ, the PSNR/SSIM
can be reduced to as low as 12.90/15.30. When the accuracy is comparable to that of Fourier transform
(Wavelet λ = 0.5 vs. Fourier λ = 0.8), the PSNR and SSIM of Wavelet transform is lower.

Table S4: Comparison between Wavelet transform and Fourier transform.

Acc. PSNR SSIM

Wavelet(λ = 0.1) 28.05 18.86 44.76
Fourier(λ = 0.1) 28.22 20.54 51.50
Wavelet(λ = 0.5) 26.91 15.22 27.34
Fourier(λ = 0.5) 28.09 18.06 43.26
Wavelet(λ = 0.8) 26.06 12.90 15.30
Fourier(λ = 0.8) 26.83 16.95 35.89

C.4 Ablation study on Core-Set selection

In this section, we perform ablation experiments to explore the significance of V-information Core-Set
selection. We use ResNet-18 with α = 0.1, ipc = 50. Compared with V-information Core-Set
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selection, the accuracy of random selection decreased by 3.5 and 5.46 on Tiny-ImageNet and
ImageNette, respectively. We also report the performance of uploading Core-Set directly, which
achieve the best performance. However, without distillate synthesis, it will increase the cost of
communication and the risk of privacy leakage.

Table S5: Performance of different selection strategy. Core-Set denotes that clients directly upload
their local Core-Set, which leads to privacy issue. FedSD2C w/ random selection denotes replacing
V-information-based Core-Set selection with random selection.

Tiny-ImageNet ImageNette

Core-Set 31.01 60.54
FedSD2C w/ random selection 23.32 42.06
FedSD2C 26.83 47.52

C.5 Integrating with Differential Privacy

According to [35], introducing DP-SGD [69] during the distillate synthesis stage can provide the-
oretical privacy guarantees for our method. We perform experiments of integrating DP-SGD in
our method on Tiny-ImageNet with ResNet-18 (α = 0.1, ipc = 50) to provide a clear view of the
trade-offs involved.

Table S6: Performance of integrating DP-SGD
ϵ = 1 ϵ = 4 ϵ = 8 ϵ =∞

FedSD2C 22.92 25.13 26.01 26.83

D Visualization

Figure S1: Visualization of synthetic distillate reconstructed by the pre-trained Autoencoder compared
to the original sample on Tiny-ImageNet. The image style is similar, but with enhanced privacy
protection.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are empirically validated in the main body.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: the paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of FedSD2C and the parameters for imple-
menting the baseline in Section 4 and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code is attached to the supplementary material and is released at: https:
//github.com/Carkham/FedSD2C.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed description of FedSD2C and the parameters for imple-
menting the baseline in Section 4 and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computational resources used in the Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not violate Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential impacts about privacy issues.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all sources used and comply with their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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