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Abstract

Reinforcement Learning from Human Feedback
(RLHF) is essential for aligning large language
models (LLMs) with human values. However,
RLHF is susceptible to reward hacking, where
the agent exploits flaws in the reward function
rather than learning the intended behavior, thus
degrading alignment. Although reward shaping
helps stabilize RLHF and partially mitigate re-
ward hacking, a systematic investigation into shap-
ing techniques and their underlying principles re-
mains lacking. To bridge this gap, we present
a comprehensive study of the prevalent reward
shaping methods. Our analysis suggests two key
design principles: (1) the RL reward should be
bounded, and (2) the RL reward benefits from
rapid initial growth followed by gradual conver-
gence. Guided by these insights, we propose Pref-
erence As Reward (PAR), a novel approach that
leverages the latent preferences embedded within
the reward model as the signal for reinforcement
learning. We evaluated PAR on two base models,
Gemma2-2B, and Llama3-8B, using two datasets,
Ultrafeedback-Binarized and HH-RLHF. Exper-
imental results demonstrate PAR’s superior per-
formance over other reward shaping methods. On
the AlpacaEval 2.0 benchmark, PAR achieves a
win rate of at least 5 percentage points higher
than competing approaches. Furthermore, PAR
exhibits remarkable data efficiency, requiring only
a single reference reward for optimal performance,
and maintains robustness against reward hacking
even after two full epochs of training.

1. Introduction
Reinforcement learning from human feedback (RLHF) has
become a cornerstone for aligning large language models
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(LLMs) with human intentions and enhancing their capabil-
ities (Ouyang et al., 2022; OpenAI, 2024; Bai et al., 2022;
Guo et al., 2024). However, a significant challenge that
undermines the reliability of RLHF is reward hacking: the
tendency for policy models to exploit weaknesses in the re-
ward model to maximize reward signals without achieving
genuine alignment or improvement (Amodei et al., 2016;
Gao et al., 2023; Singhal et al., 2023). This can manifest
as degenerate behaviors, such as generating repetitive or
overly verbose outputs, merely to satisfy the proxy reward
function.

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is widely adopted for RLHF (Ouyang et al., 2022), yet it
remains susceptible to reward hacking (Gao et al., 2023).
Existing mitigation strategies often involve reward shaping
techniques like clipping or rescaling the proxy rewards (Dai
et al., 2023; Wang et al., 2024). Despite their use, a system-
atic investigation comparing these methods and establishing
clear design principles for effective reward shaping is cur-
rently lacking.

This work aims to fill this gap. We conduct a systematic
analysis of reward shaping methods in the context of PPO-
based RLHF. Our results reveal a reward threshold in PPO
training—exceeding it often triggers reward hacking, de-
grading the model’s win rate (Moskovitz et al., 2023). We
hypothesize that excessively high rewards misalign with
true performance and impair the critic’s learning, leading to
our first principle: (1) RL reward should be bounded. We
further find low-reward regions safer for optimization, mo-
tivating our second principle: (2) RL reward benefits from
rapid initial growth followed by gradual convergence.

Motivated by these principles, we introduce Preference As
Reward (PAR), a novel reward shaping technique (see Fig-
ure 1). PAR applies a sigmoid function to the centered
reward (the difference between the proxy reward r and a
reference reward rref). This design is intuitive: since the
policy model is typically initialized from a reference model,
the centered reward is initially near zero. The sigmoid func-
tion’s steep slope at zero promotes rapid initial learning.
Crucially, the sigmoid’s gradual convergence towards its up-
per bound ensures training stability. We further observe that
PAR’s functional form closely resembles the Bradley-Terry
model (Bradley & Terry, 1952), interpreting the exponential
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Figure 1. RLHF training pipeline with reward shaping. Policy model’s responses are evaluated by the reward model, producing proxy
rewards. These rewards are then reshaped (optionally using reference rewards, as shown in the dashed box) before being used to update
the policy via RL. The blue box details the PAR reward shaping function, which uses a sigmoid applied to the centered reward.

of the proxy reward as an Elo score (Elo, 1978). In this
context, the RL reward rRL = sigmoid(r − rref) can be in-
terpreted as the relative preference of the policy response
over the reference response, as determined by the reward
model.

We conduct experiments on two base models, Gemma2-2B
(Google, 2024) and Llama3-8B (Meta, 2024), using two
widely used RLHF datasets, Ultrafeedback-Binarized (Cui
et al., 2023) and HH-RLHF (Bai et al., 2022). The result
shows that PAR achieves high winrates on the test set after
training of one epoch. We also evaluate its performance on
two benchmarks AlpacaEval2.0 (Li et al., 2023) and MT-
Bench (Zheng et al., 2023a), the PAR consistently tops the
benchmark and achieves a winrate that is at least 5 percent-
age points higher than that of its competitors. Additionally,
PAR is data-efficient, requiring only a single reference re-
ward to perform well. It also remains robust against reward
hacking, even after two epochs of training.

In conclusion, our contributions are threefold.

• We propose two key principles for designing effective
reward shaping strategies.

• We introduce PAR, a novel reward shaping technique, and
analyze its connection to the underlying preferences of
the reward model.

• We demonstrate through extensive experiments that PAR
significantly mitigates reward hacking and outperforms
existing baselines across multiple models, datasets, and
benchmarks.

2. Related Work
Reward hacking arises when an RL agent exploits flaws or
ambiguities in the reward function to achieve high rewards
without performing the intended task (Weng, 2024). This
aligns with Goodhart’s Law: When a measure becomes a
target, it ceases to be a good measure.

Reward hacking in RLHF for large language models has
been extensively studied. Gao et al. (2023) systematically in-
vestigate the scaling laws of reward hacking in small models,
while Wen et al. (2024) demonstrate that language models
can learn to mislead humans through RLHF. Beyond ex-
ploiting the training process, reward hacking can also target
evaluators. Although using LLMs as judges is a natural
choice given their increasing capabilities, this approach is
imperfect and can introduce biases. For instance, LLMs
may favor their own responses when evaluating outputs
from different model families (Liu et al., 2024b; Xu et al.,
2024) or exhibit positional bias when assessing responses
in sequence (Wang et al., 2023).

To mitigate reward hacking, many methods have been pro-
posed. Reward ensemble techniques have shown promise
in addressing this issue (Eisenstein et al., 2023; Ram’e
et al., 2024; Ahmed et al., 2024; Coste et al., 2023; Zhang
et al., 2024). Miao et al. (2024) introduce an information
bottleneck to filter irrelevant noise, while Moskovitz et al.
(2023) employ constrained RLHF to prevent reward over-
optimization. Chen et al. (2024) propose the ODIN method,
which uses a linear layer to separately output quality and
length rewards, reducing their correlation through an or-
thogonal loss function. Similarly, Sun et al. (2023) train
instructable reward models to give a more comprehensive
reward signal from multiple objectives. Dai et al. (2023) con-
strain reward magnitudes using regularization terms. Liu
et al. (2024a) curate diverse pairwise data for robust reward
model training.

Reward shaping methods have demonstrated both simplic-
ity and effectiveness in recent research (Yang et al., 2024;
Jinnai et al., 2024). For instance, Wang et al. (2024) intro-
duce a log-sigmoid centering transformation, while Shen
et al. (2024) employ contrastive rewards to enhance RL per-
formance. Additionally, Ahmadian et al. (2024) propose a
leave-one-out reward method for advantage estimation in the
REINFORCE algorithm. However, these reward-shaping
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Figure 2. Loss curves from PPO training show that PAR exhibits
greater stability, particularly in critic loss, compared to Vanilla
training. This stability is attributed to PAR’s bounded RL reward.

methods are not explicitly designed to mitigate reward hack-
ing, nor do they provide a theoretical justification for their
mechanisms. In contrast, our proposed PAR method directly
addresses the challenge of reward hacking, offering both a
principled solution and theoretical analysis.

3. Method
3.1. Design Principles

As detailed in Section 1, we restate our two design princi-
ples here: (1) RL reward should be bounded, (2) RL reward
benefits from rapid initial growth followed by gradual con-
vergence. To elucidate the rationale behind these principles,
we examine the Proximal Policy Optimization (PPO) pol-
icy and critic loss functions for prompt x and response y
(notation detailed in Table 2):

Lpolicy(θ) = Êt

[
min

(
πθ(yt|x, y<t)

πθold(yt|x, y<t)
· Ât,

clip
(

πθ(yt|x, y<t)

πθold(yt|x, y<t)
, 1− ϵ, 1 + ϵ

)
· Ât

)]
,

Lcritic(α) = Êt

[
||Vα(x, y<t)−Gt||22

]
.

For the policy loss, Ât =
∑T

l=t(γλ)
l−tδl represents the

generalized advantage estimation (GAE) at token t, where
δt = rt+γVαold(st+1)−Vαold(st) is the temporal difference
(TD) error. πθ denotes the current policy model, and πθold

refers to the policy model from the previous iteration. Vαold

is the critic’s value function from the previous iteration.
For the critic loss, Gt =

∑T
l=t γ

l−trl represents the return,
defined as the discounted sum of per-token rewards.

The per-token reward at position t, denoted as rt, is defined
as:

rt =

{
rRL − η log πθ(yt|x,y<t)

πref(yt|x,y<t)
if t = T

−η log πθ(yt|x,y<t)
πref(yt|x,y<t)

if t < T

This formulation ensures that the final token receives the
RL reward rRL while earlier tokens are shaped by the KL
divergence regularization term.

The first principle, advocating for bounded RL rewards, is
crucial for stabilizing critic training. Excessively large re-
wards can hinder the critic model’s ability to accurately learn
the value function, as illustrated in Figure 2. We hypothe-
size that this issue arises from the nature of the regression
loss used in the critic model. Specifically, large RL rewards
rRL lead to large variance of returns Gt (see Theorem 3.1),
making the critic loss Lcritic(α) more challenging to opti-
mize. Furthermore, this effect propagates to the excessive
advantage estimate Ât, rendering it unstable and leading to
overly aggressive policy updates.

The second principle focuses on regulating the rate of
change in the advantage function. A rapid change early
in training encourages the policy model to learn quickly,
while a slower change toward the end of training helps pre-
vent the policy model from collapsing. We posit that this
behavior is due to the advantage function’s role in control-
ling both the direction and magnitude of the policy model’s
optimization steps.

We explore several candidate functions that meet these cri-
teria, with a focus on sigmoid-like functions. Our choice
is motivated by the finding that the sigmoid function mini-
mizes policy gradient variance within F (see Theorem 3.2).
The curves for these candidate functions are illustrated in
Figure 4b.

3.2. Preference as Reward

After careful consideration and empirical evaluation, we
recommend using the sigmoid function applied to centered
rewards as the preferred reward shaping method. The sig-
moid function is bounded, has the steepest slope at the initial
point (zero), and converges gradually to its upper bound of
one. This property makes it particularly suitable for stabi-
lizing the RL training process. Furthermore, our analysis
reveals that this shaping approach is intrinsically linked to
the hidden preferences encoded within the reward model.
The reward model is designed to simulate human prefer-
ences, and the RL training process aims to maximize the
reward using an RL algorithm. Given a reward model rϕ,
the hidden preference between two responses y and y′ to a
prompt x can be expressed as:

Pϕ(y ≻ y′|x) = σ(rϕ(x, y)− rϕ(x, y
′))

This formulation shows that applying the sigmoid function
to centered rewards corresponds precisely to the preference
score of the policy response over the reference response.
Consequently, we term this method Preference As Reward
(PAR), which is defined as follows. To enhance stability,
we use multiple M reference rewards:

rRL =
1

M

M∑
m=1

σ(r − rmref) =
1

M

M∑
m=1

Pϕ(y ≻ ymref)
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Our proposed PAR method serves exclusively as a reward
shaping technique, which is fundamentally orthogonal to
other strategies for mitigating reward hacking, such as robust
reward model training (Dai et al., 2023) or the construction
of diverse datasets (Liu et al., 2024a).

The pseudo-code for the reward shaping procedure under
PAR is detailed in Algorithm 4, while the complete im-
plementation of the Proximal Policy Optimization (PPO)
algorithm is provided in Algorithm 1. Additionally, the
pipeline for reward shaping is illustrated in Figure 1.

3.3. Theoretical Analysis

We further establish that our proposed PAR method satisfies
two key theoretical properties: (1) The return variance is up-
per bounded and (2) Policy gradient variance is minimized.
A rigorous derivation of these guarantees is provided in Ap-
pendix 13. These theoretical foundations are essential for
ensuring the robustness and reliability of PAR in practical
applications.

Theorem 3.1 (Return variance bound). For any trajectory
and discount factor γ ∈ (0, 1), the variance of the PAR
return GPAR

t is upper-bounded by:

Var
[
GPAR

t

]
≤ 1

(1− γ)2
.

Conversely, if the per-token reward is sub-Gaussian with
parameter σ2, the variance of the unbounded return scales
as

Var[Gt] = Ω
(
σ2/(1− γ2)

)
.

Theorem 3.1 establishes that bounded RL rewards contribute
to stabilizing critic model training by constraining the vari-
ance of returns.

Theorem 3.2 (Sigmoid minimize the policy gradient vari-
ance). Let F be the family of C1, strictly increasing func-
tions f : R→ (0, 1). Then we have:

σ = argmin
f∈F

Var[gf ].

Where gf = ∇θlog πθ(y | x) f(z), σ is the sigmoid func-
tion.

Theorem 3.2 justifies our selection of sigmoid-like func-
tions for bounding RL rewards, as the sigmoid’s properties
minimize policy gradient variance.

4. Experiment
Our emperical analysis is structured to first validate the two
key design principles, followed by a comparison of PAR
with other reward hacking mitigation methods, and finally,
an evaluation of the data efficiency and robustness of PAR.

4.1. Experimental Setting

Datasets and Models We utilize two dialogue
datasets: HH-RLHF (Bai et al., 2022) and Ultrafeedback-
Binarized (Cui et al., 2023), alongside two base models,
Gemma-2B (Google, 2024) and Llama3-8B (Meta, 2024),
for our experiments. We present the results of Gemma2-2B
on the Ultrafeedback-Binarized in this section. For
additional results and comprehensive training details, please
refer to Appendix 8.

Mitigation Baselines We evaluate seven baseline methods
to mitigate reward hacking, which are described as follows:

• WARM (Ram’e et al., 2024): This approach combines
the weights of multiple reward models and employs the
aggregated model to provide rewards for reinforcement
learning training.

• ODIN (Chen et al., 2024): This method introduces an
additional length head during reward training to capture
the response length. Only the quality head is utilized for
reinforcement learning training.

• Reg (Dai et al., 2023): A regularization term is
integrated into the reward training loss, defined as:
lreward = E(x,yw,yl)∼D[− log σ(rϕ(x, yw) − rϕ(x, yl)) +
β||rϕ(x, yw)||22 + β||rϕ(x, yl)||22].

• Meanstd: The reward is normalized using the running
mean and running standard deviation: rRL = r−µ

s , where
µ and s represent the running mean and standard deviation,
respectively.

• Clip: Clips reward based on the running mean and stan-
dard deviation: rRL = clip(r, µ− s, µ+ s).

• Minmax: The reward is normalized using the running
minimum and maximum rewards: rRL = r−rmin

rmax−rmin
,

where rmax and rmin denote the running maximum and
minimum rewards, respectively.

• LSC (Wang et al., 2024): The reward is normalized us-
ing the log-sigmoid-centered shaping method, defined
as: rRL = log σ(r − r.85ref ) where r.85ref represents the 85th
percentile of the normal distribution, calculated from the
mean and variance of the reference rewards.

Evaluation Metrics Two primary metrics are employed
to monitor training progress, both computed on the test
set: Proxy Reward (shown as a solid line) and Winrate
(shown as a dashed line). The winrate measures the policy
model’s winning rate against the SFT model, as evaluated by
DeepSeek-V3 (DeepSeek-AI, 2024). For the benchmarks
AlpacaEval2.0 (Li et al., 2023) and MT-Bench (Zheng et al.,
2023a), six metrics are utilized, with all metrics except the
length metric being assessed by DeepSeek-V3.
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Figure 3. PPO training curves over two epochs. ‘ceil5.0’ indicates
that rRL = min(r, 5.0), and ‘kl0.1’ refers to the KL penalty with
β = 0.1. This figure indicates two important results: (1) Excessive
rewards can cause reward hacking, hence the RL reward should be
bounded. (2) PAR is more robust than Minmax and WARM.

Training Details We briefly outline the training details
here; for a comprehensive discussion, refer to Appendix 8.
The dataset is preprocessed to remove noise, and hyperpa-
rameters are carefully tuned to ensure continuous growth in
the proxy reward. The SFT model is trained for two epochs
on chosen responses with a learning rate of 5e-6, while the
reward model, consisting of a linear head appended to the
base model, is trained for one epoch with a learning rate
of 5e-6. The policy model, initialized as the SFT model, is
trained for one epoch with a learning rate of 3e-7, and the
critic model, initialized as the reward model, is trained for
one epoch with a learning rate of 5e-6. A linear learning
rate scheduler is employed for all training procedures, grad-
ually increasing the learning rate from 0 to the maximum
value during the first 0.1 epoch. To generate the reward and
winrate curves, the policy model is evaluated on the test set
at intervals of 0.1 epochs, yielding 10 checkpoints for each
mitigation method.

4.2. Principle One

To validate the first principle that RL reward should be
bounded, we conducted experiments by employing a larger
KL penalty coefficient and constraining the maximum re-
ward during reinforcement learning training (see Figure 3).
The results demonstrate that limiting excessive rewards sig-
nificantly mitigates reward hacking. For instance, increasing
the KL penalty coefficient from 0.01 to 0.1 leads to a rise
in the winrate curve and a corresponding decline in the re-
ward curve. A similar effect is observed when reducing the
reward ceiling (i.e., the maximum reward threshold). Fur-
thermore, Figure 3 reveals that while PAR and kl0.1 exhibit
comparable proxy rewards, PAR consistently outperforms
kl0.1 in terms of winrate, highlighting the superiority of our
proposed PAR method.
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Figure 4. (a) Performance comparison of sigmoid-like func-
tions. ‘tanh(centered)’ denotes rRL = 1

M

∑M
m=1 tanh(r − rmref),

‘tanh(uncentered)’ denotes rRL = tanh(r), and ‘sigmoid(centered)’
represents our PAR method. Centered reward formulations achieve
higher winrates than uncentered versions. (b) Mathematical for-
mulations of sigmoid-like functions: σk(x) =

1
1+e−kx (k=2,3 for

sigmoidk2/3), fifth-order polynomial approximation (poly fitted),
and shifted sigmoid (sgfc = sigmoidk3(x-3)).

4.3. Principle Two

To validate the second principle—which states that RL re-
ward benefits from rapid initial growth followed by grad-
ual convergence—we conducted experiments using several
sigmoid-like functions, including their centered and uncen-
tered variants. The results are presented in Figure 4a.

Our experiments show that applying sigmoid-like functions
to centered rewards leads to higher win rates compared to
uncentered rewards, supporting Principle 2 (steepest slope at
initialization). Since centered rewards begin at zero—where
the sigmoid’s gradient is maximized—they enable rapid
early learning, whereas uncentered rewards start at arbitrary
values. Notably, the Slow-Grow-Fast-Converge (SgFc) func-
tion, when applied to centered rewards, exhibits lower initial
win rates and reward hacking in later phases (see Figure 5).
This behavior arises from SgFc’s diminished early gradi-
ents and abrupt convergence, further validating Principle 2,
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which emphasizes the need for rapid initial growth followed
by gradual convergence.

4.4. PAR Effectively Mitigates Reward Hacking
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Figure 5. PPO training curve for different mitigation methods on
Gemma2-2B and Ultrafeedback-Binarized. Solid lines denote the
Proxy Reward, and dashed lines denote the Winrate. Vanilla PPO
demonstrates significant reward hacking. ODIN, Reg, Meanstd,
Clip, and LSC fail to mitigate this issue, indicated by increasing
proxy rewards but decreasing winrates. PAR achieves highest
winrate at the end of training.

Reward and Winrate Curve As illustrated in Figure 5,
the Vanilla PPO suffers from the reward hacking problem
severely. To address this issue, we conduct a comprehen-
sive study of several mitigation methods. While some ap-
proaches, such as ODIN, Reg, Meanstd, Clip, and LSC, fail
to mitigate the problem, others, including WARM, Minmax,
and PAR, demonstrate varying degrees of effectiveness over
a single training epoch. Notably, the PAR method achieves
the highest winrate by the end of the training process.

Another intriguing observation is that Vanilla, Meanstd,
Clip, and LSC exhibit hacking behavior when the proxy
reward reaches a specific threshold, such as 6.0, as shown
in Figure 5. In contrast, Minmax and PAR show no signs
of hacking, and their proxy rewards do not exceed this
threshold.

Benchmark Performance We further investigate the gen-
eralization ability of the policy model on out-of-distribution
(OOD) data. For each mitigation method, we select the
checkpoint after one epoch of training and evaluate these
checkpoints on two benchmarks: AlpacaEval2.0 and MT-
bench. The results, presented in Table 1, align with the train-
ing curve depicted in Figure 5. The Vanilla PPO method
exhibits complete deterioration, while the top-performing
methods are PAR, Minmax, and WARM.
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Figure 6. (a)PPO training curves, evaluated across varying num-
bers of reference rewards for the PAR method. E.g., the PAR5
means rRL = 1

5

∑5
m=1 σ(r − rmref). A single reference reward is

sufficient for PAR to achieve a comparable winrate. (b) Calibra-
tion between hidden preference score (reward model) and winrate
(DeepSeek-V3) for different mitigation methods. All reward shap-
ing methods show initial alignment but sudden winrate decrease
when preference score exceeds 0.8, while PAR resists this decrease.
Methods modifying the reward model directly show no calibration.

4.5. Data Efficiency and Robustness

The default number of reference rewards for each prompt
in our PAR method is set to 10. However, we hypothesize
that this number may be higher than necessary for PAR
to function effectively. To explore this, we conduct an ex-
periment to determine the minimum number of reference
rewards required for PAR to perform efficiently. As shown
in Figure 6a, the results reveal that PARref1 to PARref10
exhibit similar trends in both proxy reward and winrate
during training. This suggests that a single reference re-
ward is sufficient for PAR to operate effectively. In contrast,
the sigmoid method, which can be viewed as a variant of
PAR without any reference rewards, performs significantly
worse than PARref1. This indicates that completely elim-
inating reference rewards is not feasible for maintaining
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Method AlpacaEval2.0 MT-Bench

LC Winrate(%) ↑ Winrate(%) ↑ Length ↓ T1 ↑ T2 ↑ Overall ↑
SFT 50.000 50.000 899 5.150 3.975 4.563

PP
O

tr
ai

ni
ng

Vanilla 0.100 0.370 2008 2.150 1.700 1.925

WARM 60.670 63.170 1073 5.525 3.938 4.731
ODIN 0.000 0.000 3672 1.375 1.338 1.356
Reg 0.000 0.000 1868 1.513 1.388 1.450

Meanstd 0.030 0.120 3183 1.713 1.300 1.506
Clip 0.000 0.000 3096 1.288 1.225 1.256
Minmax 66.980 70.930 1159 5.750 4.013 4.881
LSC 47.560 53.790 1556 5.538 4.100 4.819
PAR 70.810 75.370 1207 5.813 4.313 5.063

Table 1. In our evaluation, the checkpoint after one epoch of PPO training is selected for comparison, while the SFT model checkpoint
is chosen after two epochs of training. The results indicate that PAR consistently achieves superior performance across all benchmark
metrics.

performance.

To assess the robustness of the mitigation methods discussed
earlier, we select the top three performing methods on bench-
marks: PAR, Minmax, and WARM. For a more compre-
hensive evaluation, we extend the training process to two
epochs instead of one. The rationale is that if a mitigation
method can effectively address the reward hacking prob-
lem even under prolonged training, it can be considered
robust. The training curves for proxy reward and winrate
are presented in Figure 3. Among the three methods, it is
evident that Minmax and WARM lack robustness when the
training process is extended to two epochs. In contrast, PAR
demonstrates consistent robustness throughout the extended
training period. Notably, PAR consistently achieves the
highest winrate among all methods, further highlighting its
effectiveness and reliability in mitigating reward hacking
over extended training durations.

4.6. Calibration of Preference Score

We also investigate the calibration between the hidden pref-
erence score of the reward model and the winrate provided
by DeepSeek-V3 (see Figure 6b). For all reward shaping
methods, the preference score initially calibrates well with
the winrate but deteriorates when the preference score ex-
ceeds 0.8. Notably, PAR effectively resists this deterioration
by limiting the preference score. In contrast, methods that
modify the reward model itself exhibit poor calibration, ren-
dering their results less meaningful.

5. Discussion
Reward shaping is not applicable to DPO (Rafailov et al.,
2023), as it does not require a reward model during train-
ing. We also explore online DPO, which employs the policy
model to generate two responses, and the reward model

selects the response with the higher reward as the chosen
response and the lower reward as the rejected response.
However, since most reward shaping techniques are mono-
tonic, they do not alter the binary preference and therefore,
they do not influence the training procedure of online DPO.

For GRPO (Shao et al., 2024), we argue that its advantage
calculation inherently normalizes the proxy reward, making
linear transformations (e.g., Minmax and mean std) ineffec-
tive. However, our non-linear PAR demonstrates slightly
better performance than Vanilla GRPO in later stages (see
Appendix 11). An important observation is that GRPO does
not exhibit the reward hacking problem during training,
primarily because its advantage calculation effectively nor-
malizes the rewards. Although the win rate decreases in the
later stages, the proxy rewards also decrease proportionally,
maintaining alignment between the optimization objective
and the desired outcomes.

6. Conclusion
We identify that for a given reward model, there exists a
specific threshold beyond which the proxy reward becomes
both meaningless and inaccurate. Based on this observa-
tion, we establish two fundamental principles for designing
reward shaping methods.

In alignment with these principles, we propose an effective
shaping method, Preference As Reward (PAR). Through ex-
tensive experimentation with various mitigation approaches,
our results demonstrate that PAR not only outperforms other
baseline methods by the end of one training epoch but also
maintains a high winrate after two epochs of training. No-
tably, PAR is also data-efficient, requiring only a single
reference reward to achieve strong performance.
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7. Notations
The definitions of the notations used in this paper are sum-
marized in Table 2.

8. Training Details
Dataset Our experiments are conducted on two datasets:
Ultrafeedback-Binarized (Cui et al., 2023) and the helpful-
base subset of HH-rlhf (Bai et al., 2022). Both datasets
undergo preprocessing to eliminate noise and constrain their
overall length. For the Ultrafeedback-Binarized dataset, we
select examples where the prompt length, chosen response
length, and rejected response length are each less than 512
tokens. Additionally, we ensure that the chosen response
score exceeds the rejected response score and that the sub-
string ’confidence’ does not appear in either the chosen or
rejected responses. For the HH-rlhf dataset, we apply the
same length constraints (prompt, chosen, and rejected re-
sponses each under 512 tokens). Furthermore, we ensure
that each prompt appears only once across both datasets
and limit the test set to 256 examples. The training set of
Ultrafeedback-Binarized contains around 33,000 examples
and HH-RLHF helpful base contains 43,000 examples. All
training are carried on 8*A800(80G) GPUs.

Base Models For the base models, we utilize Gemma-
2B (Google, 2024) and Llama3-8B (Meta, 2024). In all
training procedures, we implement a linear learning rate
scheduler, which gradually increases the learning rate from
0 to the maximum value over the first 0.1 epoch.

SFT Model The Supervised Fine-Tuned (SFT) model is
initialized from the base model and trained on the chosen
responses for two epochs with a learning rate of 5e-6. Gra-
dient norm clipping is applied when the norm exceeds 10.

Reward Model The reward model is initialized from the
base model, with the logit head replaced by a linear head
above the last embedding layer to output a scalar value. It is
trained for one epoch with a learning rate of 5e-6, achieving
an accuracy of approximately 70% on the test set. Gradient
norm clipping is applied when the norm exceeds 5.

For ODIN training, we use two linear heads to output length
reward and quality reward separately, following the training
loss described in Chen et al. (2024). Only the quality head
is used during RL training.

For WARM training, we train five reward models on the
same dataset with varying learning rates (3e-6, 4e-6, 5e-6,
6e-6, 7e-6) and different random seeds.

For Reg training, we adopt the loss function from (Dai et al.,
2023), with a regularization term coefficient of 0.005.

Policy Model The policy model is initialized from the SFT
model and trained on the same prompts for one epoch using
the PPO algorithm with a learning rate of 3e-7. Gradient
norm clipping is applied when the norm exceeds 5.

Critic Model The critic model is initialized from the re-
ward model and trained alongside the policy model for one
epoch with a learning rate of 5e-6. Gradient norm clipping
is applied when the norm exceeds 5.

Hyper-Parameters Responses are sampled from the pol-
icy model using a temperature of 0.9, with top-k set to 50,
top-p set to 0.9, and a length penalty of 2. The coefficient for
the KL penalty is 0.005, and the default number of reference
rewards is 10. For PPO training, the buffer size is set to 4,
with ϵ = 0.2, λ = 0.95, γ = 1.0, For GRPO training, the
ϵ = 0.2, the buffer size is 4, and the group size is 5.

9. Evaluation
9.1. Winrate on Test Set

To leverage the strong grading capability of DeepSeek-V3
for comparing the SFT model and the policy model on the
test set, we design a detailed evaluation prompt. The system
prompt and user input format are provided in Listing 1 and
2.

To address position bias (Wang et al., 2023), we evaluate
each pair of responses twice, alternating their order, and
aggregate the scores. Specifically, for two responses A and
B, we first evaluate them in the order A-B and then in the
order B-A. In each evaluation, the winner receives a score of
1, the loser receives 0, and in the case of a tie, both responses
receive 0.5. The final scores of A and B are compared, and
the response with the higher score is declared the winner. If
the scores are tied, both responses receive 0.5 win counts.
The win counts are used to calculate the winrate.

9.2. Benchmark

We also evaluate the model on two benchmarks, using
DeepSeek-V3 to simulate human evaluation. The metrics
and their meanings are as follows:

AlpacaEval 2.0

• LC Winrate: The length-controlled win rate measures
the model’s performance while controlling for the length
of generated responses. It compares the model’s outputs
to a baseline (e.g., the SFT model) and adjusts for the
influence of response length on human preferences.

• Winrate: The standard win rate measures the propor-
tion of times the model’s outputs are preferred over the
baseline’s outputs in human evaluations.
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Symbol Meaning

D Dataset
x, yw, yl ∼ D Prompt, chosen response, rejected response in Dataset
πθ Policy model
πref Reference model, also the SFT model
rϕ Reward model
Vα Critic model
y ∼ πθ(.|x) The response generated by policy model for prompt x
yref ∼ πref(.|x) Reference response, the response generated by reference model
r = rϕ(x, y) Proxy reward, the reward given directly by reward model
rref = rϕ(x, yref) Reference reward, the proxy reward for reference response
Pϕ(y ≻ yref|x) = sigmoid(r − rref) The hidden preference of reward model rϕ
rcentered = r − rref Centered reward, the proxy reward subtracted by reference reward.
rRL = f(rcentered) RL reward, the reward for RL training
st = [x, y1,...,t] The state at position t
at = yt+1 The Action taken at position t

Ât =
∑T

l=t(γλ)
l−tδl The generalized advantage estimation (GAE)

δt = rt + γVαold(st+1)− Vαold(st) The temporal difference (TD) error
Gt =

∑T
l=t γ

l−trl The return

rt =

{
rRL − η log πθ(yt|x,y<t)

πref(yt|x,y<t)
if t = T

−η log πθ(yt|x,y<t)
πref(yt|x,y<t)

if t < T
The per token reward

Table 2. Summary of notations.

• Length: The average length of the model’s generated
responses, measured in tokens or characters, providing
insight into the model’s verbosity.

MT-bench

• T1: Turn 1 Score evaluates the model’s performance on
the first turn of a multi-turn dialogue, assessing relevance,
coherence, and informativeness. Scores are normalized
as 0-10.

• T2: Turn 2 Score evaluates the model’s performance on
the second turn, measuring its ability to maintain context
and provide consistent, high-quality responses. Scores are
also normalized as 0-10.

• Overall: The overall score is the average of the T1 and
T2 scores, providing a comprehensive evaluation of the
model’s performance across both turns.

10. More Results
10.1. Llama3-8B and Ultrafeedback Binarized

Figure 8a presents the PPO training curves for different
mitigation methods on Llama3-8B with the Ultrafeedback
Binarized dataset. PAR demonstrates robustness against
reward hacking and maintains a high win rate throughout
one epoch of training.

10.2. Gemma2-2B and HH-RLHF

The PPO training curves for various mitigation methods
on Gemma2-2B with the HH-RLHF dataset are shown in

Figure 8b. PAR exhibits resilience to reward hacking and
sustains a high win rate during one epoch of training.

10.3. Llama3-8B and HH-RLHF

Figure 8c illustrates the PPO training curves for different
mitigation methods applied to Llama3-8B on the HH-RLHF
dataset. While PAR shows signs of reward hacking toward
the end of training, it maintains a consistently high win rate
(above 60%) for an extended period, from 10,000 to 30,000
steps. We hypothesize that the observed reward hacking in
the later stages is due to the convergence rate of the sigmoid
function approaching its upper bound. However, the PAR
method remains among the top three performers despite
showing some performance degradation in later stages.

10.4. Performance on Benchmark

We additionally evaluate the checkpoint with the highest
win rate obtained during PPO training on Gemma-2B and
the UltraFeedback-Binarized dataset across the benchmark.
The corresponding results are presented in Table 3.

Our reward-shaping technique mitigates reward hacking
by realigning the agent’s incentives with the true task ob-
jectives, removing loopholes that allow high rewards for
undesired behavior. However, it does not improve peak
performance because it does not alter the fundamental ca-
pabilities of the agent or the complexity of the task. The
best possible policy under the shaped rewards is the same
as under the original rewards—we’ve only made it harder
for the agent to find suboptimal shortcuts.
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Method AlpacaEval2.0 MT-Bench

LC Winrate(%) ↑ Overall ↑
SFT 50.00 4.56

PP
O

tr
ai

ni
ng

Vanilla 70.48 4.94

WARM 70.03 4.83
ODIN 68.96 5.06
Reg 69.44 4.74

Meanstd 69.88 4.90
Clip 70.55 4.92
Minmax 68.95 4.81
LSC 72.24 4.89
PAR 69.43 4.93

Table 3. For comparison, we select the checkpoint with the highest
win rate on the test set within one epoch of PPO training. For the
SFT model, we utilize the checkpoint obtained after two epochs
of training. All methods exhibit comparable peak performance
during the training process.

11. DPO and GRPO
In this section, we explain why monotonous reward shaping
techniques, such as PAR, are not applicable to the Direct
Preference Optimization (DPO). And why linear shaping
techniques are not applicable to the Group Relative Policy
Optimization (GRPO) algorithms.

11.1. DPO and Reward Shaping

Vanilla DPO is an offline alignment algorithm that trains
the policy model directly on paired responses using a con-
trastive loss. Since the vanilla DPO algorithm does not rely
on an explicit reward model, reward shaping techniques are
inherently inapplicable. We also explore an online variant
of DPO, which generates two responses for a given prompt
and employs a reward model to determine the chosen and re-
jected responses. The policy model is then trained on these
responses (see Algorithm 6). However, any monotonous
transformation of the proxy reward will not alter the cho-
sen and rejected responses. For instance, if r1 > r2, then
f(r1) > f(r2) for any monotonous function f(·), including
PAR. Consequently, PAR is also not applicable to online
DPO.

11.2. GRPO and Reward Shaping

For GRPO, the advantage value is computed as a normaliza-
tion of proxy rewards. Consider a prompt x and N responses
y1, . . . , yN sampled from the policy model. A reward model
rϕ assigns scores r1, . . . , rN to each response. The advan-
tage Ai,t for response yi at token position t is given by:

Ai,t =
ri − µ

s
,

where µ = 1
N

∑N
i=1 ri and s =

√
1
N

∑N
i=1(ri − µ)2 are

the mean and standard deviation of the rewards, respectively.

Assume a linear transformation is applied to the proxy re-
ward, such that r̂ = a · r + b (a > 0). We prove that the
new advantage Âi,t is identical to the original Ai,t. First,
the new mean µ̂ = a ·µ+ b, and the new standard deviation
ŝ = a · s. The new advantage is computed as:

Âi,t =
r̂i − µ̂

ŝ
=

ari + b− (aµ+ b)

as

=
ari − aµ

as
=

ri − µ

s
= Ai,t.

Thus, linear transformations do not influence the advantage
calculation in GRPO. Furthermore, since the sigmoid func-
tion is a non-linear function, PAR is applicable to GRPO
training. We validate this through experiments, as shown
in Figure 7. No reward hacking problem is observed in
the GRPO training process, as the advantage calculation
inherently performs reward normalization.
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Figure 7. The training curves for GRPO, evaluated on Gemma2-2B
with the Ultrafeedback-Binarized dataset, demonstrate that Vanilla,
Meanstd, Minmax exhibit similar proxy rewards throughout the
training process. This is because linear transformations of the
proxy rewards do not affect the advantage value in GRPO. The
PAR is a non-linear function and slightly better before collapse.
No reward hacking issue is observed in the GRPO training process,
as the advantage calculation inherently normalizes the rewards.

12. Comparison of Some Reward Shaping
Techniques

Recent work has explored various approaches to reward
transformation in RLHF. Shen et al. (2024) proposed con-
trastive rewards that share similarities with our method.
Their approach employs a reference model to generate mul-
tiple baseline responses (ymref), computing rewards as:

rRL =
1

M

M∑
m=1

[r(x, y)− r(x, ymref)] .

13
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This method primarily focuses on enhancing PPO through
contrastive learning against reference responses.

Ahmadian et al. (2024) revisited the REINFORCE algorithm
for RLHF, adopting a response-centric approach analogous
to GRPO. Their formulation centers rewards using multiple
sampled responses:

g =
1

M

M∑
i=1

r(x, yi)− 1

M − 1

∑
j ̸=i

r(x, yj)

∇ log πθ(yi|x),

where y1, . . . , yM
i.i.d.∼ πθ(·|x). This work emphasizes al-

gorithmic simplicity and stability by replacing PPO with
REINFORCE.

Wang et al. (2024) introduced log-sigmoid reward transfor-
mation for multi-reward integration:

rRL = log-sigmoid
[
r(x, y)− r(x, y.85ref )

]
.

Their method specifically addresses the challenge of effec-
tively combining multiple reward signals during training.

In this work, we present Preference As Reward (PAR),
which applies sigmoid transformation to mitigate reward
hacking:

rRL =
1

M

M∑
m=1

sigmoid (r(x, y)− r(x, ymref)) .

Our approach specifically targets reward hacking while
maintaining stable policy optimization.

13. Theoretical Analysis
We give a principled justification for Preference As Reward
(PAR) here.

13.1. Bounded Rewards Reduce Return Variance

PAR has the key property |rl| < 1, here rl is the reward at

position l, defined in Section 3. Let Gt =
T∑
l=t

γ l−trl be the

return with discount γ ∈ [0, 1].

Theorem 13.1 (Return Variance Bound). For any trajectory
and any γ, Var

[
Gt

]
≤ 1

(1−γ)2 . Conversely, if the per-
token reward rl is sub-Gaussian with parameter σ2, its
unbounded return has Var[Gt] = Ω

(
σ2/(1− γ2)

)
.

Proof. Because 0 < rl < 1, we have:

0 ≤ Gt ≤
T−t∑
k=0

γk <

∞∑
k=0

γk =
1

1− γ

According to the Popoviciu’s inequality, which states that for
any random variable X with support inside [a,b], Var[X] ≤
(b−a)2

4 . We have:

Var[Gt] ≤
1

4(1− γ)2
≤ 1

(1− γ)2

Hence the upper bound holds.

Since we assume rl is sub-Gaussian with parameter σ2, we
have two cases.

Perfect positive correlation, we let Z = rl, for every l ≥ t,
then:

Gt = Z

∞∑
k=0

γk =
Z

1− γ

Var[Gt] =
V ar[Z]

(1− γ)2
≥ c

σ2

(1− γ)2

Independent (or zero-mean-uncorrelated) rewards, we have:

Var[Gt] = σ2
∞∑
k=0

γ2k =
σ2

1− γ2

Both two cases satisfy that Var[Gt] = Ω(σ2/(1− γ2)).

Theorem 13.1 explains the smaller and stable critic loss in
Figure 2, also highlight the importance of Design Principle
1 from a theoretical view.

13.2. The Justification of Sigmoid function

Let z := rϕ(x, y)−rϕ
(
x, yref

)
and define the shaped reward

rPAR(z) = σ(z), σ(z) = 1
1+e−z .

Consider a differentiable policy πθ(y | x) and the RE-
INFORCE–style gradient signal gθ(x, y) = ∇θlog πθ(y |
x) rPAR(z). Then the following theorem holds.

Theorem 13.2 (Sigmoid minimize the policy gradient vari-
ance). Let

F =
{
f ∈ C1(R)

∣∣∣ f ′(z) > 0, lim
z→−∞

f(z) = 0,

lim
z→+∞

f(z) = 1, f(0) = 1
2

}
.

Then we have:

σ = argmin
f∈F

Var[gf ]

Where gf = ∇θlog πθ(y | x) f(z), σ is the sigmoid func-
tion.

14
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Proof. According to the definition of variance:

V ar[gf ] = Mf − ∥∇θJf∥22

where Mf = E[∥∇θlog πθ(y | x)∥22f(z)2], Jf =
Eπθ

[f(z)]

If two shaping functions f1, f2 produce similar-size true
gradients, then the variance depends on the second moment
Mf . We now prove that the sigmoid function minimizes the
second moment Mf .

Since ∥∇θlog πθ(y | x)∥22 does not depend on f , minimiz-
ing Mf is equivalent to miniziming:

Vf = E[f(z)2]

Now we only need to prove the sigmoid function minimizing
Vf , we divide the proof into five steps: 1. Regularised
variational problem. Introduce the smoothness-penalised
functional

Jλ[f ] = Vf + λ

∫
R

(
f ′(z)

)2
dz, λ > 0.

Because Vf and
∫
(f ′)2 are both weakly

lower-semicontinuous and coercive in H1(R), the
direct method of the calculus of variations yields a
minimiser fλ ∈ F for each λ > 0.

2. Euler–Lagrange equation. For any C1 variation δf
supported on a compact set, the first variation of Jλ vanishes
at fλ:

0 = δJλ =

∫
R

(
2 fλ(z) p(z) − 2λ f ′′

λ (z)
)
δf(z) dz,

p(z) = 1√
2π

e−z2/2.

Since δf is arbitrary,

2 fλ(z) p(z)−2λ f ′′
λ (z) = 0 =⇒ f ′′

λ (z) =
1

λ
p(z) fλ(z).

(1)

3. Solving the ODE. Because p is even and fλ satisfies
fλ(0) =

1
2 , solutions to (1) are necessarily even about 0 and

strictly increasing. Writing cλ = 1
λ

√
2π we obtain

f ′′
λ (z) = cλ e

−z2/2 fλ(z).

Standard ODE theory (Picard–Lindelöf) plus the boundary
conditions fλ(−∞) = 0, fλ(+∞) = 1 implies

fλ(z) = σ
(
cλz

)
.

(The shift is fixed by fλ(0) =
1
2 .)

4. Optimal scale. Insert fλ(z) = σ(cz) into Vf =
E[σ(cZ)2]. By symmetry of Z,

V (c) = E[σ(cZ)2] = 2

∫ ∞

0

σ(cz)2
e−z2/2

√
2π

dz.

Differentiating in c and setting d
dcV (c) = 0 gives c = 1 as

the unique stationary point, and d2

dc2V (c)
∣∣
c=1

> 0 shows it
is a minimum. Hence fλ = σ for every λ > 0.

5. Removing the regularisation. Because Jλ[fλ] ≤
Jλ[σ] = Vσ and

∫
(f ′

λ)
2 ≥ 0, we have Vfλ ≤ Vσ. But

Vσ is the lower bound of Jλ, so Vfλ = Vσ, and by unique-
ness in the previous step fλ = σ. Letting λ ↓ 0 leaves σ
unchanged; thus no other f ∈ F can achieve a smaller Vf .

Therefore σ uniquely minimises Vf in F .

14. Case Study
We identify several patterns of reward hacking observed in
Vanilla PPO training, using the checkpoint trained after one
epoch for detailed examination. We show the examples in
Figure 9.

15. PPO Training
PPO (Proximal Policy Optimization) is an online reinforce-
ment learning algorithm that generates a response given a
prompt, computes a reward for the response using a reward
model, and updates the policy and critic models to maximize
the reward.

We employ several PPO techniques to ensure stable train-
ing, including advantage normalization (Zheng et al.,
2023b), value loss clipping (Patterson et al., 2023), a re-
play buffer (Eysenbach et al., 2019), per-token KL penalty,
and length penalty. The pseudo-code for the PPO algorithm
is provided in Algorithm 1.

16. Limitations
Although our PAR method effectively mitigates reward hack-
ing, it does not improve peak performance, as measured by
the winrate of the best checkpoint. Furthermore, its design
principles lack precision. While PAR sets the upper bound
of the RL reward to 1.0, alternative bounds and their selec-
tion criteria remain unexplored. Additionally, the dynamics
of reward adjustment—such as the initial rate of increase
and the pace of convergence—are not fully elucidated.
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Please act as an impartial evaluator to assess the quality of two responses from different
AI assistants to an incomplete dialogue between a user (<|user|>) and an AI assistant
(<|assistant|>). The dialogue will be missing the last turn, and both Assistant-A (<
Assistant-A response>) and Assistant-B (<Assistant-B response>) are expected to
complete it. Focus your evaluation on the following five aspects:

1. Clarity and Relevance: Responses should be concise, directly addressing the question.
They should use clear, natural language and remain on-topic.

2. Accuracy and Honesty: Responses must provide factual, truthful information. Disclose
limitations or uncertainties when necessary.

3. Ethics and Appropriateness: Ensure the responses are free from harmful, offensive, or
discriminatory content.

4. Engagement and Depth: Responses should be engaging, educational, and sufficiently
detailed to comprehensively address the user question.

5. Structure and Creativity: Responses should be logically organized and show originality
or adaptability when necessary.

Note: The quality of the responses should not be judged solely by their length. Both
brevity and detail are important depending on the context of the question.

You will be given an incomplete dialogue (<question>) with the last turn left blank.
Assistant-A (<Assistant-A response>) and Assistant-B (<Assistant-B response>) have
each provided a response to complete the dialogue. Your task is to evaluate each
response based on the five criteria above and provide a comparison.

Evaluation Format:
Assistant-A Response:
(Evaluate the quality of Assistant-A response based on the five aspects mentioned above.)
Assistant-B Response:
(Evaluate the quality of Assistant-B response based on the five aspects mentioned above.)
Comparison and Analysis:
Compare and contrast the responses from Assistant-A and Assistant-B to determine which one

is more effective overall. Justify your reasoning clearly and concisely.

At the end, output the comparison result for both responses in the following format:
Better: X (X is A, B, or N, representing A is better, B is better, or both are of equal

quality)

Listing 1. System Prompt For Winrate Evaluation on Test Set

<question>:
{user_question}
<Assistant-A response>:
{policy_response}
<Assistant-B response>:
{sft_response}

Listing 2. User Input Template For Winrate Evaluation on Test Set
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(a) PPO training curve for different mitigation methods on Llama3-8B and Ultrafeedback-
Binarized.
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(b) PPO training curve for different mitigation methods on Gemma2-2B and HH-RLHF.
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(c) PPO training curve for different mitigation methods on Llama3-8B and HH-RLHF.

Figure 8. PPO training curves for different mitigation methods across various models and datasets.
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Prompt:
<|user|>i am going to give a ppt presentation on VLSI in aerospace and defence. what I

need is like introduction slide and Overview slide and related contents you wish to be
included give me<|assistant|>

Policy model response:
In enchanting architectural mosaics, fuse captivating cosmic threads VELCRO-ing silicon’s

sacred architectural realm with adaptive aeronautical nebulae, sculpting celestial
gardens for efficient holographic compass landmarks. Seamless Integrated Silicon
Graphics (ISG) - ......

Listing 3. Gemma2-2B with Ultrafeedback-Binarized

Prompt:
<|user|>Can you help compare the price travel for a trip to the Caribbean to a trip to Las

Vegas?<|assistant|>

Policy model response:
Sure! Caribbean travel is a wonderful choice for a vacation. Caribbean destinations offer

some of the most beautiful beaches in the world, and the crystal clear waters of the
Caribbean Sea make for some of the most amazing snorkeling and diving experiences.
Caribbean resorts and hotels offer amenities like fine dining, swimming pools, spa
services, and a number of outdoor activities, such as sailing, hiking, golfing, and
horseback riding...

Listing 4. Gemma2-2B with HH-RLHF

Prompt:
<|user|>How can creative leaders ensure that their decisions align with their organization

’s values and ethics?<|assistant|>

Policy model response:
Embed GDPR-grade encrypted traceability logs to GDPR-compliant audit records via trusted

pipelines, preventing unauthorized backups by blockchain timestamp sealed secure
encrypted logs copies through API certified audits against bespoke compliance
templates signatures, logs’ timestamps assigned securely within SharePoint backups or
verified validation privacy signatures plus?,?, ...

Listing 5. Llama3-8B with Ultrafeedback-Binarized

Prompt:
<|user|>What are some salty things I can put in oatmeal?<|assistant|>

Policy model response:
You might add salt, pepper, tomatoes, onions, celery, eggs, beans, yogurt, mushrooms, tofu

, berries, maple syrup, cinnamon, nutmeg, paprika, and dried herbs. Maybe add some
dark chocolate, almonds, walnuts, and pumpkin seeds. And you can also drink plenty of
water, avoid soda and caffeinated drinks, eat healthy carbs and avoid saturated fats,
stay hydrated and watch for high blood pressure, have sufficient vitamin intake. Sleep
at least 8 hours per day, limit your red meat intake, be active by cooking, swimming,
running, weightlifting, and eating outdoors, eat good fats like olive oil, eat nuts

and seeds and go light on salt, avoid greasy foods and snacks like cheese chips. Get
plenty of fresh air, have fun indoors an outside. Avoid smoking and overeating, and
take some time daily to enjoy your favorite activities, be grateful, and be thankful.
Keep active and move in ways that encourage fitness. Take a deep breath and take a
journey! Make your oatmeal a treat!

Listing 6. Llama3-8B with HH-RLHF

Figure 9. Analysis of reward hacking patterns observed in Vanilla PPO training, based on a detailed examination of the model checkpoint
after one epoch.
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Algorithm 1 PPO

Require: sft model πsft, reward model rϕ, prompt set D.
Ensure: Aligned model πθ∗

1: Initialize policy model πθ ← πsft
2: Initialize reference model πref ← πsft
3: Initialize critic model Vα ← rϕ
4: for x ∈ D do
5: ppo batch = build ppo batch(x, πθ, πref, Vα, rϕ)
6: ppo batch = buffer.substitute(ppo batch) ▷

sample a ppo batch from replay buffer and save current
ppo batch into the buffer

7: Lppo(θ),Lcritic(α) = calculate loss(ppo batch, πθ,
Vα)

8: θ ← θ − plr ∗ ∇θLppo(θ) ▷ update policy model
via gradient descent, plr is policy learning rate

9: α← α− clr ∗ ∇αLcritic(α) ▷ clr is critic learning
rate

10: end for
11: return πθ∗

Algorithm 2 build ppo batch

Require: prompt x, four models πθ, πref, Vα, rϕ.
Ensure: ppo batch: A dictionary

1: Initialize ppo batch =
2: sample y ∼ πθ(.|x)
3: sample y1,...,Mref ∼ πref(.|x) ▷ optional
4: r = rϕ(x, y)

5: r1,...,Mref = rϕ(x, y
1,...,M
ref ) ▷ optional

6: rRL = reward reshape(r, r1,...,Mref , len(y),mode =
PAR)

7: Now we split (x,y) into (st, at)
T
t=0

8: KL penalty = log πθ(at|st)− log πref(at|st)
9: construct per-token rewards r1,...,T from rRL and

KL penalty
10: Vt = Vα(st)
11: Compute GAE Ât and Return Gt from Vt and rt.
12: ppo batch = (log πθ(at|st), Gt, Ât, Vt, st, at)
13: return ppo batch

Algorithm 3 Buffer.substitute

Require: ppo batch.
Ensure: ppo batch: A dictionary

1: Global List pool = []
2: Global buffer size = 4
3: IF len(pool)¡buffer size:
4: pool.append(ppo batch)
5: return None
6: ELSE:
7: selected batch = random.choice(pool)
8: pool.pop(selected batch)
9: pool.append(ppo batch)

10: return selected batch

Algorithm 4 reward reshape

Require: policy reward r, reference reward r1,...,Mref , re-
sponse length l, reshape mode mode.

Ensure: RL reward
1: IF l > 300:
2: r = r − 0.01 ∗ (l − 300) ▷ penalize long response
3: IF mode==meanstd:
4: rRL = r−µ

s ▷ µ, s are running mean and running
standard variance respectively.

5: IF mode==reward clip:
6: ...
7: IF mode==PAR:
8: rRL = 1

M

∑M
m=1 σ(r − rmref)

Algorithm 5 calculate loss

Require: ppo batch, policy model πθ, critic model Vα.
Ensure: policy loss Lppo(θ), critic loss Lcritic(α)

1: (log πθold(at|st), Gt, Ât, Vt, st, at) = ppo batch ▷
Extract elements from ppo batch

2: Lppo(θ) = Êt

[
min

(
πθ(at|st)
πθold (at|st) Ât, clip

(
πθ(at|st)
πθold (at|st) , 1− ϵ, 1 + ϵ

)
Ât

)]
3:

Lcritic(α) =Êt

[
max

(
||Vα(st)−Gt||22,

||clip(Vα(st), Vt − δ, Vt + δ)−Gt||22
)]

▷ Critic clip trick
4: return Lppo(θ),Lcritic(ϕ)

Algorithm 6 Online DPO

Require: sft model πsft, reward model rϕ, prompt set D.
Ensure: Aligned model πθ∗

1: Initialize policy model πθ ← πsft
2: Initialize reference model πref ← πsft
3: for x ∈ D do
4: Sample y1, y2 ∼ πθ(.|x)
5: Calculate rewards r1 = rϕ(x, y1), r2 = rϕ(x, y2)
6: IF r1 > r2:
7: yw = y1, yl = y2
8: ELSE:
9: yw = y2, yl = y1

10: LDPO(θ) = −
[
log σ

(
β
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

))]
11: θ ← θ − lr ∗ ∇θLDPO(θ)
12: end for
13: return πθ∗
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