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ABSTRACT

Large Language Models (LLMs) are fundamentally changing the coding
paradigm, known as vibe coding, yet synthesizing algorithmically sophisticated
and robust code still remains a critical challenge. Incentivizing the deep reasoning
capabilities of LLMs is essential to overcome this hurdle. Reinforcement Fine-
Tuning (RFT) has emerged as a promising strategy to address this need. However,
most existing approaches overlook the heterogeneous difficulty and granularity
inherent in test cases, leading to an imbalanced distribution of reward signals and
consequently biased gradient updates during training. To address this, we propose
“TAROT”, Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-
Tuning. TAROT systematically constructs, for each problem, a four-tier test suite
(basic, intermediate, complex, edge), providing a controlled difficulty landscape
for curriculum design and evaluation. Crucially, TAROT decouples curriculum
progression from raw reward scores, enabling capability-conditioned evaluation
and principled selection from a portfolio of curriculum policies rather than in-
cidental test-case difficulty composition. This design fosters stable optimization
and more efficient competency acquisition. Extensive experimental results reveal
that the optimal curriculum for reinforcement fine-tuning in code generation is
closely tied to a model’s inherent capability, with less capable models achieving
greater gains with an easy-to-hard progression, whereas more competent models
excel under a hard-first curriculum. TAROT provides a reproducible method that
adaptively tailors curriculum design to a model’s capability, thereby consistently
improving the functional correctness and robustness of the generated code. All
code and data are released to foster reproducibility and advance community re-
search at https://anonymous.4open.science/r/TAROT-B675/.

1 INTRODUCTION

Large Language Models (LLMs) are driving significant changes in software engineering, with auto-
mated code generation emerging as a pivotal application (Du et al., 2024; Jiang et al., 2024). Foun-
dational models exhibit a strong capacity to translate natural language specifications into functional
code, promising significant enhancements in developer productivity (Weber et al., 2024). Never-
theless, advancing the frontier toward synthesizing algorithmically sophisticated and highly robust
solutions remains a critical challenge (Zhuo et al., 2025). The next key step hinges on significantly
augmenting the deep reasoning and problem-solving faculties of these models.

Curriculum Learning (CL), a methodology that structures training data by difficulty (Bengio et al.,
2009), presents a promising avenue for cultivating these capabilities and improving training effi-
ciency. However, existing applications of CL in code generation primarily focus on sequencing
entire problems based on coarse difficulty metrics (Naı̈r et al., 2024; Khant et al., 2025). While
this inter-problem curriculum is intuitive, it neglects the nuanced, intra-problem difficulty gradient
inherent in software verification. Human developers naturally employ practices like Test-Driven De-
velopment (TDD) (Beck, 2003), incrementally refining a solution against increasingly complex test
cases to ensure robustness. Yet, this natural curriculum axis remains largely untapped in LLM train-
ing. Furthermore, reliance on problem-level sequencing often leads to flat reward landscapes when
integrated with Reinforcement Fine-Tuning (RFT), dampening the learning signal. This oversight
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of heterogeneous test-case difficulty results in imbalanced reward signals and consequently biased
gradient updates during training, hindering the model’s ability to acquire robust, sophisticated rea-
soning skills.

Furthermore, while the trend in curriculum learning for LLMs is shifting towards more dynamic
approaches that progressively increase task complexity (Xu et al., 2024; Cheng et al., 2025), these
methods predominantly define difficulty based on the intrinsic properties of the data or the task
structure. For instance, curricula are often structured using automated metrics of the source code
itself, such as cyclomatic complexity (Naı̈r et al., 2024), or by decomposing a problem into a fixed
sequence of simpler subtasks (Dou et al., 2024). This prevailing focus on the data, rather than the
learner, overlooks the crucial variable of the model’s own evolving and multi-faceted capability. A
curriculum tailored to an early-stage model may cause learning stagnation for a more advanced one,
while a curriculum designed for experts can overwhelm a nascent model and hinder its convergence.
Therefore, for a more holistic approach to effective learning, curriculum design should consider not
only the intrinsic properties of the data but also the evolving capabilities of the model itself, leading
to a capability-adaptive framework.

To address these limitations, we introduce TAROT, a novel framework for Test-driven and
cApability-adaptive cuRriculum reinfOrcement fine-Tuning. Crucially, TAROT decouples curricu-
lum progression from raw reward scores, enabling capability-conditioned evaluation and principled
selection from a portfolio of curriculum policies rather than incidental test-case difficulty compo-
sition. This design fosters stable optimization and more efficient competency acquisition. The
framework’s novelty is twofold. First, TAROT operationalizes the concept of an intra-problem dif-
ficulty gradient through a novel, test-driven curriculum. To instantiate this gradient, which is absent
in standard coding datasets, we constructed the TAROT dataset. Each coding problem is system-
atically augmented with a test suite built upon four tiers of difficulty including basic, intermediate,
complex, and edge cases. This structure defines difficulty as a spectrum of functional correctness.
This engineered gradient directly counteracts the flat reward landscape common in RL, providing a
structured and nuanced signal for learning robust solutions.

Second, we study capability-adaptive curriculum design. Given the TAROT dataset, we instantiate
a portfolio of curriculum policies that vary along three axes, namely allocation across tiers, the
sequence and proportion of tiers, and reward weighting across tiers. This setup enables capability-
conditioned evaluation and principled selection among policies for models differing in effective
capability which is defined via instruction-following fidelity and baseline coding proficiency, both
influenced by model scale, specialization, and architecture. Our central thesis is that the optimal
learning path is capability dependent. In particular, Nascent models learn best with basic to complex
progression, whereas stronger models learn best by focusing on complex tiers.

To validate this thesis, this paper introduces the TAROT framework and demonstrates its effective-
ness through comprehensive experiments, making the following primary contributions:

• A novel intra-problem, test driven curriculum for code generation, embodied in the new
TAROT dataset. Each problem in our dataset is augmented with a four-tiered test suite
(basic, intermediate, complex, edge cases) to provide a granular difficulty landscape and
enable nuanced reward modeling.

• A capability conditioned study and guideline for curriculum design in code generation.
We present a portfolio of curriculum policies in allocation sequence and reward weighting
together with a reproducible evaluation protocol for capability conditioned comparison and
principled selection informed by the characteristics of model capability such as scale and
specialization.

• Comprehensive empirical validation demonstrating the effectiveness of TAROT. Our ex-
periments show that our capability-adaptive approach significantly improves model perfor-
mance and training efficiency compared to baseline curriculum strategies.

2 RELATED WORKS

Our work is positioned at the intersection of two key research domains: curriculum learning for
structuring pedagogical data, and reinforcement learning for policy optimization in code generation.
We review prior work in these areas and highlight how TAROT offers a novel synthesis of both.
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2.1 CURRICULUM LEARNING FOR CODE

Curriculum Learning (CL) is a training strategy inspired by human cognition that presents data to
a model in a structured order, typically from simple to complex examples (Bengio et al., 2009).
This method has been shown to accelerate convergence and improve generalization by guiding opti-
mization toward better solutions. In the context of Large Language Models (LLMs), curricula have
been implemented in various ways, such as using a teacher model to progressively generate more
complex instructions, as seen in the Evol-Instruct method (Xu et al., 2024), or by fine-tuning on a
small set of meticulously curated, high-quality examples as demonstrated by LIMA (Zhou et al.,
2023). For code generation, where task complexity varies widely, CL is a particularly promising
but challenging area. While many code datasets rely on manual difficulty labels, recent research has
focused on more systematic approaches. A notable example is the use of automatic difficulty met-
rics, combining measures like cyclomatic complexity and Halstead difficulty, to sort problems into a
multi-stage curriculum (Naı̈r et al., 2024). Training with this structured approach yielded significant
gains, demonstrating the value of CL in the code domain. Other methods, like StepCoder, create
an implicit curriculum by breaking a complex problem into a sequence of simpler code-completion
subtasks (Dou et al., 2024). These efforts show a clear trend towards leveraging curricula to organize
the training process for code generation. Our work contributes to this line of research by proposing
a novel method to generate a tiered test suite that serves as the basis for our curriculum.

2.2 REINFORCEMENT FINE-TUNING FOR CODE LLMS

Reinforcement Learning (RL) is a dominant paradigm for aligning LLMs with desired behaviors, us-
ing techniques like RLHF (Ouyang et al., 2022), DPO (Rafailov et al., 2023) (Rafailov et al., 2023),
PPO (Schulman et al., 2017) (Schulman et al., 2017), GRPO (Shao et al., 2024), and GSPO (Zheng
et al., 2025). In code generation, RL is adapted to optimize for functional correctness, typically
using unit test outcomes as a reward signal. This ”RL from unit test feedback” approach, while
effective, often suffers from two key limitations: a sparse and ”flat” reward landscape. The reward
is sparse because a model gets no learning signal on complete failure, and it is flat because all suc-
cessful solutions receive the same reward, regardless of the problem’s difficulty. This flatness, where
all successful solutions receive a similar reward regardless of the challenge, generates imbalanced
reward signals that can lead to biased gradient updates. Recent work has begun to address these
shortcomings. To combat sparse rewards, Process Reward Models have been introduced to provide
dense, line-level feedback, guiding the model even when the final code is incorrect (Dai et al., 2025).
To address the flat reward landscape, researchers are exploring ways to incorporate a sense of diffi-
culty into the learning process. The idea of combining RL with a curriculum is gaining traction. For
instance, some approaches use RL to guide a model through a curriculum of subtasks, while oth-
ers dynamically adjust the curriculum during RL training using techniques like the Self-Evolving
Curriculum, which treats problem selection as a multi-armed bandit problem to maximize learning
progress (Chen et al., 2025). Our TAROT framework specifically addresses the flat reward problem
by making the reward signal itself curriculum-aware. Instead of treating all successes equally, we
modulate the reward based on the difficulty of the solved test tier, a concept inspired by curriculum
design. By integrating this tiered reward scheme directly into a stable policy optimization algo-
rithm, the TAROT framework provides a more nuanced learning gradient that encourages the model
to master harder problems. This approach of infusing a static curriculum structure directly into the
RL reward mechanism is a novel contribution that complements other recent innovations in the field.

3 TAROT FRAMEWORK

In this section, we elaborate on the details of the proposed TAROT framework which enhances the
code generation capability of language models by having them solve test cases of varying difficulty
in appropriate order and rewarding weights that are adaptively determined based on the model’s
baseline capability.

3
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Figure 1: Overview of TAROT framework. (a) Build a four-tier test suite (basic/intermediate/-
complex/edge) per problem using frontier LLMs and verify them against the reference solution.
(b) Reinforcement fine-tuning under a capability-conditioned, reward-decoupled curriculum. Less
capable models perform best with basic → complex, whereas more capable models perform best
with complex → basic. (c) Tier-weight templates specifying reward weights for basic, intermediate,
complex, and edge, with suggested use by capability buckets.

3.1 TAROT DATASET

A coding problem, denoted as P, is formally defined as a tuple consisting of three core components:
a problem statement (S), a reference solution (R), and a set of test suite (T ). This relationship can
be expressed as:

P = (S,R, T ) (1)

In this structure, the problem statement S outlines the task, and the reference solution R provides
a correct implementation. The primary purpose of the test suite, T , is to serve as a final validation
mechanism to verify the correctness of a solver’s proposed solution, but they are not designed to
facilitate users’ incremental learning processes. Consequently, the number and nature of test cases
can vary significantly. For instance, a problem’s test suite might consist of a single, simple case to
verify the primary logic, or conversely, focus exclusively on complex edge cases, neither of which
is structured to support a step-by-step learning process.

From a software engineering perspective, development is commonly test-driven. It begins with sim-
ple tests and progressively adds more complex and edge cases; implementations are refactored along
the way, strengthening correctness and design. This staged expansion of the test suite mirrors the
intuition behind curriculum learning. However, the test suite accompanying typical coding problems
are not authored with this incremental pedagogy in mind. They are primarily designed for summa-
tive verification rather than stepwise scaffolding, so both their cardinality and difficulty mix vary
widely and arbitrarily across problems.

To address the absence of a pedagogical structure, we introduce the TAROT dataset DTAROT, con-
structed by the procedure depicted in Figure 1 (a). Each problem in the dataset is augmented by
incorporating a tiered test suite organized into four predefined difficulty levels (basic, intermedi-
ate, complex, and edge), without modifying the original statement or the reference solution. This
structure is formally defined as follows:

4
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DTAROT =
{ (

Si, Ri, { Ti,l }l∈L

) }N

i=1
, (2)

L = {basic, intermediate, complex, edge}, (3)

Ti =
⋃
l∈L

Ti,l, (4)

s.t. ∀ i ∈ [N ], ∀ l ∈ L, ∀ t ∈ Ti,l : Pass(Ri, t). (5)

Here, L is the set of difficulty levels, and the full suite for each problem is the union of its per-level
subsets equation 4. By construction (see equation 5), every test case is validated against the reference
solution, ensuring data quality. Any curriculum order (e.g., basic→complex or complex→basic) is
imposed at training time and is not part of the dataset definition.

3.2 TAROT TRAINING MECHANISM

The TAROT training mechanism is designed to decouple the curriculum from raw test scores. It
achieves this by utilizing two pre-defined components: a curriculum allocator that defines a fixed
proportion of training focus for each difficulty tier l ∈ L, and tailored reward weights that prioritize
tiers by placing greater value where the learning signal is most beneficial. During the training
loop, the model first generates candidate solutions for a given problem. These solutions are then
executed against the tiered test cases, and the resulting pass/fail outcomes are used to calculate and
accumulate a tier-weighted return. Both the curriculum allocation and reward weights are aligned
with the model’s capability. The guiding principle is to concentrate the training signal within a zone
of optimal difficulty, which is unique to each model’s effective capability, a composite of instruction
following fidelity and baseline coding proficiency. Therefore, the entire training schedule is pre-
configured to match this profile, creating a fixed yet highly customized learning path.

Specifically, this means that models with lower baseline capability receive a larger share of basic
and intermediate cases, whereas models with higher capability are assigned more complex and edge
cases to push their frontier. The reward weights mirror this design, ensuring that successes on
capability-appropriate tiers contribute more to the final objective.

We now formulate the training objective in the reinforcement learning setting. For each problem Pi

and difficulty level l ∈ L, we define the tier-level success of a policy π as the average pass rate over
that tier’s tests.

ri,l(π) =
1

|Ti,l|
∑
t∈Ti,l

1{Pass(π, t)}. (6)

Here, Pass(π, t) indicates that the solution produced under π satisfies test case t.

Given a curriculum allocation α = (αl)l∈L and reward weights w = (wl)l∈L, we define the TAROT
return for Pi as a weighted sum over tiers.

RTAROT
(
Pi, π;α,w

)
=

∑
l∈L

αl wl ri,l(π),
∑
l∈L

αl = 1, wl ≥ 0. (7)

We interpret αl as the share of training effort assigned to tier l, and wl as how much a success on tier
l contributes given the model’s baseline capability. Here, each αl not only weights the contribution
of tier l to the return but also specifies the fraction of training updates allocated to that tier.

Training then maximizes the expected TAROT return over problems.

JTAROT(θ) = EPi∼DTAROT

[
RTAROT

(
Pi, πθ;α,w

) ]
. (8)

This formulation provides a simple yet powerful objective function. By decoupling the allocation of
training effort (α) from the valuation of success (w), the TAROT framework enables a fine-grained,
capability-matched curriculum. This approach moves beyond imposing a single, model-agnostic
learning path, instead concentrating the training signal on the most productive difficulty tiers for any
given model.

5
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Figure 2: Quantitative and qualitative validation of the TAROT dataset’s four-tiered structure. The
KDE plots show a systematic increase in structural complexity metrics across tiers. On the right, a
GPT-4o based re-validation qualitatively confirms that complex tiers test for complexity and edge
tiers for boundary conditions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We construct a TAROT dataset based on 15k Python coding interview problems with validated
basic/intermediate/complex/edge test suites. We prepare curricula couple allocation order (For-
ward/Reversed/Static with 0.2/0.4/0.6 staged transitions) and tier weights (Uniform, B&I, C&E).
We evaluate TAROT training mechanism on a diverse suite of models, including Qwen2.5-Instruct,
Qwen2.5-Coder-Instruct (1.5B, 3B, 7B) (Qwen et al., 2025; Hui et al., 2024), Gemma-2-IT
(2B, 9B) (Team et al., 2024), and Qwen3-4B-Instruct-2507 (Yang et al., 2025) on well-known
benchmarks including HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), HumanEval+,
MBPP+ (Liu et al., 2024), LiveCodeBench v5 (Jain et al., 2024), CodeForces (Penedo et al., 2025),
and CruxEval (Gu et al., 2024). This selection allows us to assess the framework’s effectiveness
across a wide spectrum of model scales, architectures, coding specializations, and performance tiers,
including those at the frontier. Full implementation details and the curriculum schedules appear in
Appendix C.

4.2 EXPERIMENTAL RESULTS

To validate the empirical integrity of the TAROT dataset’s tiering, we analyzed its structure using
quantitative and qualitative metrics, as illustrated in Figure 2. The three KDE plots demonstrate a
clear progression: as the tiers advance from basic to complex, the distributions for input length, token
diversity, and character transitions all exhibit a consistent rightward shift, signifying a systematic
increase in structural complexity. Furthermore, the qualitative bar chart reveals a crucial distinction
between the two hardest tiers. It shows that test cases designed to probe complexity peak in the
complex tier, while those targeting boundary checks are overwhelmingly concentrated in the edge
tier. These complementary findings confirm that our four-level taxonomy not only stratifies overall
difficulty but also effectively separates different types of challenge, establishing a robust foundation
for the subsequent experiments.

Experimental results, illustrated in Figure 3, reveal a nuanced relationship between model scale, spe-
cialization, and optimal curriculum design. The general-purpose Qwen2.5-Instruct models exhibit a
straightforward, scale-dependent trend; the largest model (7B) performs best with complex-focused
strategies, while the smallest (1.5B) benefits from a conventional basic-focused approach. However,
this correlation with scale does not fully explain performance. The coding specialized Qwen2.5-
Coder models introduce a critical insight, as the mid-scale Qwen2.5-Coder-3B model displays a
learning preference akin to the much larger Instruct-7B model despite its smaller parameter count.
It achieves its peak HumanEval score using the same complex-focused strategy and decisively out-
performs its general-purpose 3B counterpart. This finding strongly suggests that a model’s prior
specialization enhances its effective capability, making it a more critical determinant of the ideal
learning path than parameter count alone. The evidence supports the thesis that the optimal cur-
riculum is dictated not by raw scale, but by a more holistic measure of a model’s intrinsic abilities

6
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Figure 3: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct (1.5B, 3B, 7B) on
HumanEval, HumanEval+, MBPP, and MBPP+. Scores are pass@1. Numbers above bars indicate
gains in percentage points (pp) relative to each model’s base checkpoint without RFT. Labels inside
bars indicate the best performing curriculum strategy.

shaped by its training history. Complete per-strategy results for Qwen2.5-Instruct and Qwen2.5-
Coder-Instruct models are provided in Appendix G, Table 6.

To generalize these findings, the investigation was extended to the more recent Qwen3-4B-Instruct-
2507. As detailed in Table 1, this newer model reinforces the core thesis. The optimal curriculum
strategy, C/E Weighted, consistently outperforms the base model across all evaluated benchmarks,
yielding substantial gains ranging from +2.12 to +4.26 percentage points. Notably, these improve-
ments were achieved on a model that already possesses a strong performance baseline, confirming
that curriculum learning is an effective method for eliciting further gains even from highly capable
models. This result is significant because it demonstrates that a model’s preference for advanced,
complex-focused curricula is not merely a function of parameter count but is strongly tied to its
overall capability. The success of this strategy on a powerful, state-of-the-art Qwen3-4B-Instruct-
2507 further solidifies the argument that the most capable models benefit most from curricula that
prioritize challenging examples. Full per-curriculum results for Qwen3-4B-Instruct-2507 are in Ap-
pendix G, Table 7. We also study sensitivity to training hyper-parameters (temperature, GRPO β)
and to the inference max-token limit; see Appendix E and F for details.

Table 1: Performance comparison of curriculum strategies for Qwen3-4B-Instruct-2507, highlight-
ing the top-performing C/E Weighted curriculum strategy against the base model. The performance
delta is shown in percentage points (pp).

Strategy HumanEval HumanEval+ MBPP MBPP+
Base 89.02% 78.66% 52.60% 56.61%
C/E Weighted 91.46% (+2.44pp) 82.92% (+4.26pp) 55.20% (+2.60pp) 58.73% (+2.12pp)

4.3 IN-DEPTH ANALYSIS

Performance on Out-of-Distribution Benchmarks. Evaluating the TAROT framework on out-
of-distribution benchmarks like CodeForces, LiveCodeBench v5, and CruxEval revealed a crucial
insight: the optimal curriculum strategy is not universal but is instead highly task-dependent. While
curriculum learning consistently surpassed the baseline across all OOD (Out-of-Distribution) tasks
(Figure 4), the most effective learning path varied significantly. For example, Qwen2.5-7B model
achieved its best performance on LiveCodeBench v5 with the Basic Only curriculum (+5.6 pp),
whereas the C/E Weighted strategy proved most effective for the same model on CruxEval (+5.0 pp)
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Figure 4: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct models (1.5B, 3B,
7B) on CodeForces, LiveCodeBench v5(LCBv5), and CruxEval. Scores are the overall accuracy
across easy, medium, and hard problems. Numbers above bars indicate gains in percentage points
(pp) relative to each model’s base checkpoint without reinforcement fine-tuning. Labels inside bars
indicate the best performing curriculum strategy.

and CodeForces (+4.0 pp). This divergence arises because these benchmarks test different skills than
our coding interview style training data. This finding underscores the limitations of a one-size-fits-
all curriculum and suggests that different learning strategies may be required across tasks. It further
highlights the value of task specific intra-problem test suites that reflect the computational structure
of the target domain, calling for future research on curriculum policy selection and intra-problem
test design.

Applying TAROT to Other Model Architectures. Applying TAROT to Gemma2 architecture
validated our hypothesis that baseline proficiency, not parameter count, dictates the optimal learning
path. For the larger Gemma2-9B-IT, Complex Only curriculum offered no decisive advantage, as
simpler strategies like Basic Only often proved superior on key benchmarks shown in Table 2. This
principle was even more starkly visible with the smaller Gemma2-2B-IT. As detailed in Appendx H,
most curricula were actively harmful, leading to a performance collapse from a sparse reward signal.
In stark contrast, a Basic Only strategy focused on fundamentals yielded substantial improvements.
This demonstrates that for less-capable models, a fundamentals-first curriculum is a prerequisite for
successful fine-tuning, whereas unstructured approaches can be severely detrimental.

Table 2: Performance comparison for Gemma2-9B-IT across key curriculum strategies. Highest
scores on each benchmark are highlighted in bold.

Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Base 60.37% 54.88% 59.60% 65.08% 8.61% 11.83% 45.63/47.63%
Uniform 65.85% 57.93% 59.20% 64.55% 10.82% 13.62% 51.63/47.13%
Basic Only 63.41% 56.10% 60.40% 65.08% 9.49% 14.70% 51.00/48.00%
Complex Only 65.85% 60.37% 58.60% 64.55% 9.93% 12.54% 48.25/48.00%

The Limits of the Reward Signal. Figure 5 (a) shows that the training reward increases steadily
and is clearly separated by model capacity, indicating a stable optimization process. This pattern
suggests that the policy learns the training distribution well and that stronger models achieve higher
reward levels under the same curriculum. However, the reward observed during training does not
reliably anticipate downstream benchmark outcomes. As shown in Figure 5 (c), the final reward
has only a weak Pearson correlation coefficient with benchmark scores, which means that runs with
similar rewards can still deliver very different levels of task performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500
(a) reward curves during training

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Re

w
ar

d
C/E Weighted Rev

C/E Weighted
B/I Weighted
C/E Weighted

BASIC Only

C/E Weighted Rev

0.5 0.0 0.5
(c) r: final reward vs. scores

HumanEval

HumanEval+

MBPP

MBPP+

LCBv5

CodeForces

0 2500 5000 7500 10000 12500 15000 17500
(b) Mean completion length curves during training

200

400

600

800

1000

M
ea

n 
Co

m
pl

et
io

n 
Le

ng
th

C/E Weighted Rev
C/E Weighted

B/I Weighted
C/E Weighted

BASIC Only

C/E Weighted Rev

0.5 0.0 0.5
(d) r: length vs. scores

HumanEval

HumanEval+

MBPP

MBPP+

LCBv5

CodeForces

Qwen2.5-1.5B-Instruct
Qwen2.5-Coder-1.5B-Instruct

Qwen2.5-3B-Instruct
Qwen2.5-Coder-3B-Instruct

Qwen2.5-7B-Instruct
Qwen2.5-Coder-7B-Instruct

Figure 5: Training dynamics vs. downstream performance. (a) and (b) show the reward and the mean
completion length curves during reinforcement fine-tuning, and the annotations mark the curriculum
strategy with the best average downstream performance. (c) and (d) show the Pearson correlation
coefficient r of the final rewards vs. benchmark scores and the mean completion length vs. bench-
mark scores, respectively.

Conciseness as a Proxy for Advanced Reasoning. A different perspective comes from analyzing
completion length. Figure 5 (b) shows that models with greater capability tend to produce shorter
solutions as training progresses, and this tendency becomes more pronounced for stronger configu-
rations. Importantly, Figure 5 (d) indicates that mean completion length exhibits a stronger negative
correlation with benchmark scores than the reward does, implying that conciseness aligns better
with final solution quality. Shorter programs are more likely to capture the essential reasoning steps
without unnecessary detours, whereas longer outputs often reflect uncertainty or inefficient search.
These observations support using solution conciseness as a practical secondary proxy for advanced
reasoning quality, complementing the reward based perspective and providing a more informative
early indicator of downstream performance.

5 CONCLUSION

We introduced TAROT, a test-driven and capability-adaptive framework for curriculum reinforce-
ment fine-tuning in code generation. TAROT challenges the prevailing one-size-fits-all approach
by constructing a four-tier, intra-problem test suite that allows curriculum design to be tailored to
a model’s unique abilities. Experiments confirmed our central thesis that the optimal learning path
is capability-dependent: less capable models benefit most from an basic-focused progression, while
more competent models excel with curricula that prioritize complex-focused challenges. We found
that the most critical factor is not parameter count alone but a more holistic effective capability,
which accounts for a model’s prior specialization. Ultimately, TAROT provides a practical and ef-
fective recipe for enhancing the code generation capabilities of Large Language Models. Our frame-
work proved its value across a wide spectrum of models, from less-capable base models to highly
proficient code-specialized and state-of-the-art foundation models, confirming its broad applicabil-
ity. While significant, our results also show that the optimal curriculum is task-dependent, pointing
toward future work in developing domain-specific test suites and automated policy selection meth-
ods. Continuing to refine this capability-aware approach is a crucial step toward developing more
powerful and reliable code generation models.
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A SAMPLE TIERED TEST CASES

Table 3 presents concrete examples of the four-tiered test cases generated for several problems in the
TAROT dataset. These samples illustrate a clear and intentional progression in difficulty and scope,
which is a cornerstone of our framework.

The tiers are generally designed to validate different aspects of a solution. Basic tiers focus on
the core logic of a problem with simple, straightforward inputs. Following this, intermediate and
complex tiers introduce greater difficulty through larger inputs, more intricate scenarios, or patterns
requiring more sophisticated algorithmic reasoning. Finally, edge tiers are designed to test for ro-
bustness by probing boundary conditions, constraints, and performance-intensive cases such as large
numbers or long strings. This tiered structure exemplifies the intra-problem difficulty gradient that
forms the basis of our capability-adaptive curriculum.

B TEST CASE GENERATION PROMPTS

To ensure the consistent generation of high-quality, four-tiered test cases, we designed a detailed
prompt template. This template, listed in Table 4, guides the language model to act as an expert
software engineer and produce test cases that adhere to our specific difficulty criteria.

C IMPLEMENTATION DETAILS

TAROT Dataset. Our experiments utilize the TAROT dataset, which we constructed by augment-
ing approximately 15,000 problems from the verifiable-coding-problems-python dataset1. For each
problem, we employed OpenAI’s the most powerful o3 and o4 models2 with the highest reasoning
effort to generate a four-tiered test suite with distinct levels: basic, intermediate, complex, and edge.
The specific prompts used for this generation process are detailed in Appendix B. To ensure high
quality, every generated test case was validated against the reference solution, and any problem with
even one failing tier was discarded. This rigorous curation process yields a final dataset of approx-
imately 60,000 tiered test suites (15,000 problems × 4 tiers). Samples of these generated tiered test
cases can be found in Appendix A.

Model Selection. To validate our methodology, we selected a diverse set of models to investigate
four key research questions: (1) the effect of model scale, to test our hypothesis that the optimal cur-
riculum is capability-dependent, using three Qwen2.5 models of varying sizes (1.5B, 3B, 7B) (Qwen
et al., 2025); (2) the impact of specialization, to determine if TAROT can further enhance models
already proficient in coding, using their code-specialized counterparts (Hui et al., 2024); (3) archi-
tectural generalizability, to test if our findings apply beyond a single model family, by incorporating
two instruction-tuned Gemma2 models (2B, 9B) (Team et al., 2024); and (4) pushing performance
frontiers, to assess if our framework can improve even state-of-the-art models with strong baselines,
by fine-tuning the recent Qwen3-4B-Instruct-2507 (Yang et al., 2025). For all models, we used
their instruction-tuned variants to ensure a foundational code-generation capability, a prerequisite
for effective RL-based fine-tuning.

Curriculum Settings. Our curriculum experiments are designed around two independent vari-
ables detailed in Table 5: the allocation strategy and the reward scheme. We test three primary
allocation strategies: Forward, which progressively introduces tiers from basic to complex; Re-
versed, which inverts this sequence; and Static, which dedicates all training effort to a single tier.
These strategies are combined with three distinct reward weighting schemes: Uniform, which as-
signs equal value to all tiers; Basic & Intermediate Weighted, which emphasizes easier tiers; and
Complex & Edge Weighted, which prioritizes the most difficult ones. This diverse set of config-
urations allows us to empirically test our central hypothesis: that the optimal learning path is not
universal, but is instead contingent on a model’s effective capability.

1https://huggingface.co/datasets/open-r1/verifiable-coding-problems-python
2https://platform.openai.com/docs/models
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Table 3: Samples of Python coding problems with synthetically generated four tiers of test cases.

Problem Test Case
Difficulty Input Expected Output

Solve the following coding problem using the programming lan-
guage python: You are given a string S and an integer L. A op-
eration is described as :- ”You are given a string S, and you have
to perform the given L operations. In each operation, you will be
given an integer ’p’ and a character ’c’. You have to replace the
p-th character of the string with c. After performing all the opera-
tions, you have to sort the string in ascending order and print it.”

basic 2 1 zebra 3 apple azebr aelpp

intermediate 3 1 dbca 4 zzxyyxzx 5 hellohello adbc xxxyyzzz eehhlllloo

complex 2 3 mississippi 1 baab iiiimppssss aabb

edge 2 1 qwertyuiopasdfghjklz 20 qwe
rtyuiopasdfghjklz

asdfghjklzqwertyuiop adefghijkl
opqrstuwyz

Solve the following coding problem using the programming lan-
guage python: Two sisters, A and B, play the piano every day.
During the day, they can play in any order. For a given sequence of
A and B, determine if it is possible to divide it into several parts so
that each part is a concatenation of two identical strings.

basic 3 BA BABA ABAB yes yes yes

intermediate 3 AABB BAABABAB AB-
BAAAAB

no yes no

complex 3 BAABBAABBAABBAABBA
AB BAABBAABBAABBAAB
BAAA ABBAABBAABBAAB
BAABBA

yes no yes

edge 2 AAAAAAAAAAAAAAAAA
AAA BBBBBBBBBBBBBBBB
BBBB

no no

Solve the following coding problem using the programming lan-
guage python: Valya and Tolya are an ideal pair, but they quarrel
sometimes. Recently, Valya took offense at Tolya and left home.
Now Tolya is very sad and wants to reconcile with Valya. For this,
he is going to make her a gift — a necklace. A necklace is a se-
quence of beads on a string. Valya will be happy if she can read
her name on the necklace. Her name is a string S. The necklace is a
string T. Valya can read her name if S is a subsequence of T. Tolya
has two strings of beads, A and B. He wants to create a necklace T
by choosing some subsequence of A and some subsequence of B
and concatenating them. Moreover, he wants to use as many beads
as possible, i.e. the length of T must be maximum. Find the maxi-
mum possible length of T such that S is a subsequence of T.

basic 5 abcde bcdea 4 a b b c c d d e

intermediate 6 abcdef bcdefa 5 a b b c c d d e e f

complex 10 abcdefghij bcdeaghijf 8 a b b c c d d e f g g h h i i j

edge 26 abcdefghijklmnopqrstuvwxyz
bcdefghijklmnopqrstuvwxyza

25 a b b c c d d e e f f g g h h i i j
j k k l l m m n n o o p p q q r r s s
t t u u v v w w x x y y z

Solve the following coding problem using the programming lan-
guage python: In a recent [breakthrough] in mathematics, the proof
utilized a concept called Height Balanced Tree. A Height Balanced
Tree is a binary tree in which the height of the left and right sub-
trees of any node differ by not more than 1. You are given an in-
teger N. You have to find the maximum number of nodes a Height
Balanced Tree of height N can have.

basic 7 23 23

intermediate 50 99 99

complex 97 89 97

edge 1 1 1

Solve the following coding problem using the programming lan-
guage python: Alex doesn’t like boredom. That’s why whenever
he gets bored, he comes up with games. One day he came up with
a game with numbers. He has a sequence of n numbers a1, a2, ...,
an. He is allowed to perform the following operation any number
of times: choose an index i (1 ¡= i ¡= n) and replace the number
ai with ai + 1. He wants to make the sequence strictly increasing.
What is the minimum number of operations he needs to perform?

basic 3 1 2 3 4

intermediate 6 1 2 2 3 3 4 8

complex 13 2 3 2 6 7 2 8 7 3 6 4 7 10 41

edge 5 1 99999 100000 1 100000 200002

This problem is actually a subproblem of problem G from the same
contest. There are n bone piles on the ground. You have to choose
m piles and paint them black. Then, you will need to arrange the n
piles as a sequence with some order (you may place the piles at the
same location). Each time you choose some piles with the same
maximum height (larger than 0), take away the top block of each
of these piles. If all of the chosen piles are black, this operation
is called a ”good move”; otherwise, it is a ”bad move”. The score
of this sequence is defined as the number of ”good moves”. You
want to maximize the score over all m-blackened and all possible
sequences. You need to output the maximum score.

basic 1 5 1 2 3 4 5 1

intermediate 1 10 1 2 1 2 1 2 1 2 1 2 9

complex 1 28 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
3 3 3 3 4 4 4 5 5 5 6 6 7

25

edge 3 1 1 4 1 1 1 1 4 1 2 3 4 1 4 1
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Table 4: The Prompt template used to generate a tiered test suite per a given coding prob-
lem. The problem statement and the default test case from the original source is injected into
{problem statement} and {baseline test case} placeholders respectively.

You are an expert software engineer with extensive experience in designing comprehensive unit tests. Your task is to generate four distinct
unit tests for a given code implementation based solely on the provided problem statement. Treat this as a black-box testing exercise—
focus exclusively on the inputs and expected outputs without assuming any details about the internal implementation.

Important: A baseline test case will be provided separately. Each test case you generate must be more challenging than the baseline test
case.

Please generate four unit tests with the following guidelines:

1. Basic Complexity Test (label as ”basic”):

• Use simple, straightforward inputs.

• Validate the core behavior under normal conditions.

• Focus on the happy path scenario.

• This should be the least challenging test case relative to the others.

2. Medium Complexity Test (label as ”intermediate”):

• Include moderately complex inputs with some edge conditions.

• Test with mixed data types or larger inputs.

• Incorporate common edge cases and boundary values.

• Ensure this test is more challenging than the basic test.

3. High Complexity Test (label as ”complex”):

• Use complex, nested, or structured inputs.

• Validate advanced functionality and complex logic paths.

• Stress test the implementation with challenging scenarios.

• This test should be more intricate than both the basic and intermediate tests.

4. Edge Case Test (label as ”edge”):

• Use extreme boundary conditions and special cases.

• Validate behavior with empty, null, or invalid inputs.

• Focus on error handling and exception scenarios.

• This should be the most challenging test case among the four.

For each test case, follow the JSON format provided in the example below (include only the input and expected output):

{
"language": "python",
"test_cases": [
{

"input": "4\n4\n0001\n1000\n0011\n0111\n3\n010\n101\n0\n2\n00000\n00001\n4\n01\n001\n0001\n00001\n",
"output": "1\n3 \n-1\n0\n\n2\n1 2 \n",
"type": "stdin_stdout",
"label": "basic",
"reason": "This test represents simple, straightforward input conditions."

}
]

}

Remember:

• Do not assume any knowledge about the internal code; base your tests purely on the input-output behavior described in the problem
statement.

• Ensure that each of your test cases is incrementally more challenging than the baseline test case provided.

Problem Statement: {problem statement}

Baseline Test Case: {baseline test case}

Training Details. We fine-tune all selected models for a single epoch using the TAROT frame-
work. For policy optimization, we employ GRPO (Shao et al., 2024). All models are trained using
the AdamW optimizer with a constant learning rate of 1×10−6. We set the global batch size to 8, re-
ducing it to 4 for larger models (Qwen2.5-7B-Instruct, Qwen2.5-Coder-7B-Instruct, and Gemma2-
9B-IT) to accommodate memory constraints. The maximum input and completion token lengths
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Table 5: Overview of the experimental schedules for curriculum learning. Each strategy varies in
reward distribution and the sequence of difficulties presented to the model. The abbreviations B,
I, C, and E correspond to basic, intermediate, complex, and edge difficulty tiers, respectively. For
staged curricula, transitions occur at 0.2, 0.4, and 0.6 of the total epoch.

Strategy Reward Weights (B, I, C, E) Curriculum Schedule Progression
Forward (Uniform) (0.25, 0.25, 0.25, 0.25) B → (B,I) → (B,I,C) → All

Forward (B & I Weighted) (0.35, 0.35, 0.15, 0.15) B → (B,I) → (B,I,C) → All

Forward (C & E Weighted) (0.15, 0.15, 0.35, 0.35) B → (B,I) → (B,I,C) → All

Reversed (C & E Weighted) (0.15, 0.15, 0.35, 0.35) C → (C,E) → (C,E,I) → All

Basic Only (1.0, —, —, —) Static

Complex Only (—, —, 1.0, —) Static

Edge Only (—, —, —, 1.0) Static

were set to 1,024 and 4,096, respectively. For GRPO-specific settings, we generated 8 candidate
completions per prompt to estimate the policy advantage, with the core hyperparameter β set to 0.01
in our main experiments. We provide an ablation study on key training hyperparameters, including
the GRPO β value (0.1, 0.05, 0.01) and the sampling temperature during training (1.0, 0.7, 0.5), in
Appendix E.

The GRPO hyperparameter β controls the strength of the Kullback-Leibler (KL) divergence reg-
ularization term, which penalizes the policy for deviating too far from the original base model’s
behavior. The training temperature, in turn, manages the exploration-exploitation trade-off; higher
values encourage the model to sample a wider variety of solutions (exploration), while lower values
cause it to refine high-probability ones (exploitation). Our ablation studies were designed to identify
the optimal settings for these crucial parameters within our code generation task.

All fine-tuning experiments were conducted on a server with 8 x NVIDIA A100 (80 GB) GPUs,
running CUDA 12.4 and PyTorch 2.6. Our implementation is based on open-source libraries includ-
ing Transformers (Wolf et al., 2020), TRL (von Werra et al., 2020), vLLM (Kwon et al., 2023), and
Open-R1 (Hugging Face, 2025).

Evaluation Metrics. We evaluate the efficacy of the TAROT framework on a comprehensive suite
of code generation benchmarks. For functional correctness, we measure the pass@1 metric on
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and their more challenging variants,
HumanEval+ and MBPP+ (Liu et al., 2024). To assess competitive problem-solving skills, we use
the overall accuracy on LiveCodeBench v5 (Jain et al., 2024) and CodeForces (Penedo et al., 2025),
averaged across their difficulty tiers. Finally, the model’s code reasoning capability is evaluated us-
ing the input and output prediction accuracy on CruxEval (Gu et al., 2024). The detailed generation
parameters and execution environment are described in Appendix D.

D GENERATION AND EXECUTION ENVIRONMENT

The entire evaluation pipeline is managed by the EvalChemy framework (Raoof et al., 2025). We
follow the benchmark-specific generation configurations predefined within the framework—such as
temperature, top-p, prompt formatting, and stopping criteria—to ensure consistency with established
evaluation protocols. By default, the maximum completion tokens for each benchmark adhered to
its standard setting; however, for an ablation study on generation length (Appendix F), we system-
atically increased this limit to 4,096, 8,192, and 16,384 tokens to observe performance trends.

All code generation for evaluation was conducted by serving the fine-tuned models via the vLLM
framework (Kwon et al., 2023) on servers equipped with 4 x NVIDIA A100 (80 GB) GPUs, using
a batch size of 64. The resulting code is executed in a secure, sandboxed Python 3.11 environment,
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Figure 6: Performance sensitivity to the GRPO hyperparameter β. The plots show the final pass@1
or accuracy scores on various benchmarks as β is varied. The optimal value is task-dependent; for
instance, HumanEval and HumanEval+ benefit from a smaller β (0.01) that allows greater policy
exploration, whereas MBPP and CodeForces achieve peak performance with a larger β (0.05) that
enforces stronger regularization.

Figure 7: Performance sensitivity to the sampling temperature during training. The plots illustrate
the final benchmark scores for different training temperatures. A higher temperature of 1.0, which
encourages greater exploration, is optimal for benchmarks like HumanEval and HumanEval+. In
contrast, other benchmarks such as MBPP show a preference for a more moderate temperature of
0.7, highlighting that the ideal exploration-exploitation balance is task-specific.

where a strict 10-second timeout is enforced for each test case to prevent infinite loops and manage
evaluation time.

E HYPERPARAMETER SENSITIVITY ANALYSIS

This section provides ablation studies on two key training hyperparameters to analyze their impact
on final benchmark performance: the GRPO regularization coefficient β and the sampling tempera-
ture during training.

Impact of GRPO’s β The hyperparameter β in GRPO controls the strength of the Kullback-
Leibler (KL) divergence regularization, which prevents the fine-tuned policy from deviating exces-
sively from the original base model. The results of varying β are shown in Figure 6. Performance
sensitivity to β is not uniform across benchmarks. For function-synthesis tasks like HumanEval
and HumanEval+, a small β of 0.01, which allows for greater policy exploration, yields the best re-
sults. Conversely, benchmarks like MBPP and CodeForces appear to benefit from slightly stronger
regularization (β = 0.05). This variance suggests that the optimal regularization strength is task-
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Figure 8: Performance sensitivity to the maximum completion token limit at inference time
for Qwen3-4B-Instruct-2507 fine-tuned on various curriculum strategies. The results reveal a
clear, benchmark-dependent dichotomy. For function-completion tasks like HumanEval and Hu-
manEval+, performance tends to degrade as the token limit increases beyond 4,096, suggesting that
a larger generation space may encourage verbose, error-prone solutions. Conversely, for bench-
marks like MBPP and MBPP+, a larger token limit is generally beneficial, indicating that their
problem structures may require more extensive code to solve correctly.

dependent. We selected β = 0.01 for our main experiments as it proved most effective on our
primary evaluation benchmarks.

Impact of Training Temperature The sampling temperature manages the exploration-
exploitation trade-off during training. The results, presented in Figure 7, indicate that a higher
temperature of 1.0, which encourages greater exploration of diverse solutions, is optimal for Hu-
manEval and HumanEval+. However, other benchmarks show different trends; MBPP, for example,
peaks at a more conservative temperature of 0.7. This highlights that the optimal degree of ex-
ploration is also task-specific, and suggests that task-adaptive temperature scheduling could be a
potential area for future work.

F IMPACT OF MAXIMUM COMPLETION TOKENS AT INFERENCE TIME

We analyzed the impact of the maximum completion token limit during inference on the fine-tuned
Qwen3-4B model, with results presented in Figure 8. The findings reveal a clear, benchmark-
dependent dichotomy. On function-completion tasks like HumanEval and HumanEval+, perfor-
mance generally degrades as the token limit increases beyond 4,096. In stark contrast, benchmarks
like MBPP and MBPP+ benefit from a larger generation space, with optimal results often found at
8,192 or 16,384 tokens.

This divergence suggests that for tasks requiring concise solutions, such as those in HumanEval, a
larger token limit may encourage verbose and error-prone code. Conversely, the nature of MBPP
problems may necessitate a longer generation process to fully develop the correct logic. This anal-
ysis underscores a critical point for standardized evaluation: the ideal setting for maximum comple-
tion tokens is highly contingent on the characteristics of the target benchmark.

G FULL BENCHMARK TABLES (QWEN2.5 & QWEN3-4B)

We report the complete benchmark results for all curriculum strategies on Qwen2.5 family
(1.5B/3B/7B, including Coder variants) and Qwen3-4B-Instruct-2507. These tables expand the
main figures by listing pass@1 on HumanEval/HumanEval+, MBPP/MBPP+, and average accu-
racy of CodeForces, LiveCodeBench v5, and CruxEval for every strategy in Table 6 and 7.

Consistent with the main text, the C/E Weighted strategy tends to be the top performer for the
stronger Qwen3-4B model, improving over the base across all four code-function benchmarks (see
Table 1 in the main paper for deltas). The full per-strategy breakdowns here allow exact comparison
across OOD tasks as well.
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Table 6: Comprehensive performance evaluation of all curriculum strategies across Qwen2.5-
Instruct and Qwen2.5-Coder-Instruct models (1.5B, 3B, 7B). For each model size, the highest score
on each benchmark is highlighted in bold.

Model Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Qwen2.5-7B-Instruct

Base 82.93% 75.61% 63.20% 67.46% 8.54% 14.10% 57.75/58.00%
Uniform 82.93% 73.78% 67.40% 67.46% 12.36% 14.93% 57.88/59.38%
B/I Weighted 78.05% 76.83% 67.60% 69.58% 11.56% 15.89% 57.25/59.25%
C/E Weighted 79.27% 73.78% 66.20% 70.37% 10.89% 15.77% 57.13/55.50%
C/E Weighted (Rev) 84.15% 77.44% 69.00% 70.11% 8.24% 15.41% 57.88/56.38%
Basic Only 82.32% 75.61% 66.20% 68.52% 12.29% 19.12% 55.63/57.50%
Edge Only 83.54% 76.22% 67.60% 70.63% 11.11% 17.08% 56.13/57.75%
Complex Only 84.15% 75.61% 69.00% 69.05% 12.95% 17.80% 57.25/56.38%

Qwen2.5-3B-Instruct
Base 69.51% 61.59% 58.40% 64.81% 4.34% 5.02% 38.75/44.63%
Uniform 71.34% 63.41% 59.40% 63.49% 6.92% 8.72% 42.00/42.50%
B/I Weighted 69.51% 62.20% 59.00% 63.49% 7.21% 9.44% 42.38/46.75%
C/E Weighted 69.51% 62.80% 56.60% 63.76% 7.21% 7.17% 43.75/44.50%
C/E Weighted (Rev) 70.12% 62.80% 57.00% 63.49% 6.92% 8.00% 43.63/42.50%
Basic Only 66.46% 59.15% 59.40% 64.02% 6.33% 6.09% 40.50/44.13%
Edge Only 71.34% 64.02% 58.20% 62.70% 6.11% 7.05% 43.13/42.63%
Complex Only 67.68% 60.37% 59.00% 64.81% 6.84% 6.33% 41.25/42.88%

Qwen2.5-1.5B-Instruct
Base 58.54% 54.88% 46.80% 52.91% 2.65% 5.02% 38.63/30.88%
Uniform 60.98% 54.88% 50.00% 57.14% 3.68% 5.26% 37.13/33.75%
B/I Weighted 59.15% 54.27% 51.80% 57.94% 3.83% 4.54% 36.00/29.75%
C/E Weighted 60.98% 55.49% 49.40% 56.08% 3.61% 5.02% 34.75/32.38%
C/E Weighted (Rev) 56.71% 52.44% 50.40% 58.20% 4.49% 4.90% 34.00/31.75%
Basic Only 57.32% 53.05% 50.60% 58.20% 4.05% 4.66% 40.25/33.00%
Edge Only 55.49% 50.61% 50.20% 56.08% 3.75% 4.42% 35.50/31.50%
Complex Only 59.76% 54.88% 51.80% 55.29% 3.46% 4.54% 36.13/33.38%

Qwen2.5-Coder-7B-Instruct
Base 85.98% 79.27% 75.60% 69.05% 10.89% 13.86% 66.38/66.13%
Uniform 85.76% 79.27% 77.20% 72.49% 13.98% 17.68% 66.50/66.38%
B/I Weighted 84.76% 78.66% 77.60% 71.96% 13.32% 17.44% 68.38/65.88%
C/E Weighted 87.80% 82.32% 76.20% 70.90% 14.94% 19.24% 66.25/67.13%
C/E Weighted (Rev) 88.41% 81.10% 75.00% 71.42% 13.98% 19.12% 68.63/65.00%
Basic Only 85.98% 79.88% 76.20% 71.96% 14.86% 19.47% 67.50/66.38%
Edge Only 79.02% 81.07% 77.20% 71.96% 12.14% 19.12% 68.75/66.00%
Complex Only 87.80% 80.49% 76.60% 70.90% 14.35% 18.16% 67.75/66.50%

Qwen2.5-Coder-3B-Instruct
Base 79.27% 75.00% 62.20% 66.93% 3.90% 9.80% 53.38/53.75%
Uniform 81.10% 76.83% 62.00% 67.20% 7.21% 10.75% 54.00/54.75%
B/I Weighted 81.71% 78.05% 61.40% 66.93% 6.70% 9.80% 54.25/53.38%
C/E Weighted 79.88% 76.83% 61.00% 67.46% 8.02% 10.51% 56.75/53.50%
C/E Weighted (Rev) 82.32% 77.44% 62.00% 68.52% 8.17% 10.75% 52.63/55.13%
Basic Only 80.49% 76.22% 62.80% 66.67% 7.95% 13.14% 55.88/55.88%
Edge Only 79.27% 75.00% 62.60% 66.14% 7.21% 10.63% 53.75/53.25%
Complex Only 78.05% 73.78% 63.00% 67.72% 7.65% 10.63% 53.13/55.25%

Qwen2.5-Coder-1.5B-Instruct
Base 68.29% 63.41% 52.60% 63.49% 2.06% 3.46% 44.38/36.38%
Uniform 71.34% 65.24% 52.80% 62.96% 4.56% 4.42% 44.75/36.38%
B/I Weighted 72.56% 64.02% 55.80% 62.70% 4.19% 4.66% 45.13/35.75%
C/E Weighted 71.34% 66.65% 54.60% 62.96% 3.46% 4.42% 45.13/38.00%
C/E Weighted (Rev) 72.56% 64.20% 54.20% 62.96% 3.38% 4.18% 45.25/37.00%
Basic Only 70.12% 64.02% 54.00% 64.76% 4.49% 4.66% 43.25/36.00%
Edge Only 72.56% 67.10% 53.60% 62.17% 4.56% 5.02% 44.86/35.63%
Complex Only 71.34% 66.46% 53.20% 63.49% 3.31% 4.54% 43.75/37.36%

H ADDITIONAL RESULTS ON GEMMA2-2B-IT

This appendix provides the full curriculum comparison for Gemma2-2B-IT as in Table 8. Unlike
larger or stronger models, Gemma2-2B-IT exhibits curriculum fragility: most curricula depress
performance, consistent with the observation in the main text that sparse reward signals can cause
collapse for less-capable models. In contrast, Basic Only—a fundamentals-first schedule—yields
the most reliable gains among the tested strategies.
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Table 7: Comprehensive performance evaluation of all curriculum strategies on Qwen3-4B-Instruct-
2507. The highest score on each benchmark is highlighted in bold. The performance of Qwen3-
Coder-30B-A3B-Instruct is included to enable comparison against a leading code-specialized model.

Model Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Qwen3-Coder-30B-A3B-Instruct

Base 94.51% 86.59% 73.80% 75.13% 29.65% 37.63% 81.75/79.25%

Qwen3-4B-Instruct-2507
Base 89.02% 78.66% 52.60% 56.61% 33.63% 32.02% 78.25/77.75%
Uniform 88.41% 80.09% 35.30% 53.70% 31.86% 31.96% 79.37/75.75%
B/I Weighted 89.63% 81.09% 28.00% 52.38% 33.04% 33.81% 79.50/75.38%
C/E Weighted 91.46% 82.92% 55.20% 58.73% 31.79% 31.54% 81.12/75.25%
C/E Weighted (Rev) 89.63% 80.48% 36.20% 35.98% 34.66% 31.66% 79.50/76.00%
Basic Only 89.63% 79.87% 39.80% 56.34% 33.11% 31.90% 78.50/75.00%
Edge Only 89.63% 79.88% 47.20% 56.61% 31.86% 30.59% 80.25/74.00%
Complex Only 90.85% 80.48% 28.60% 51.85% 30.61% 31.30% 80.37/76.37%

These results reinforce our capability-dependent view of curriculum design: for weaker models,
emphasizing simpler tiers is a prerequisite for successful fine-tuning, whereas complex-focused or
mixed curricula can be harmful.

Table 8: Performance comparison for Gemma2-2B-IT across all curriculum strategies. Scores are
colored and bolded based on their deviation from the Base strategy (blue for higher, red for lower).

Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Base 42.07% 34.76% 41.20% 47.09% 2.21% 4.30% 37.50/26.88%
Uniform 39.02% 31.09% 33.80% 39.95% 0.22% 3.58% 33.00/26.63%
B/I Weighted 35.98% 32.32% 35.60% 42.06% 0.22% 4.30% 38.63/27.25%
C/E Weighted 41.46% 34.15% 39.20% 48.41% 0.22% 3.94% 36.63/26.75%
C/E Weighted (Rev) 40.86% 35.37% 40.20% 44.44% 0.44% 3.94% 35.63/26.75%
Basic Only 44.51% 37.20% 38.60% 46.83% 1.77% 3.94% 39.88/27.88%
Edge Only 39.63% 35.37% 38.00% 46.03% 0.22% 4.30% 39.00/28.13%
Complex Only 42.07% 36.59% 37.00% 45.77% 2.21% 2.87% 35.63/27.55%
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