

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TAROT: TEST-DRIVEN AND CAPABILITY-ADAPTIVE CURRICULUM REINFORCEMENT FINE-TUNING FOR CODE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are fundamentally changing the coding paradigm, known as *vibe coding*, yet synthesizing algorithmically sophisticated and robust code still remains a critical challenge. Incentivizing the deep reasoning capabilities of LLMs is essential to overcome this hurdle. Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy to address this need. However, most existing approaches overlook the heterogeneous difficulty and granularity inherent in test cases, leading to an imbalanced distribution of reward signals and consequently biased gradient updates during training. To address this, we propose “TAROT”, Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-Tuning. TAROT systematically constructs, for each problem, a four-tier test suite (basic, intermediate, complex, edge), providing a controlled difficulty landscape for curriculum design and evaluation. Crucially, TAROT decouples curriculum progression from raw reward scores, enabling capability-conditioned evaluation and principled selection from a portfolio of curriculum policies rather than incidental test-case difficulty composition. This design fosters stable optimization and more efficient competency acquisition. Extensive experimental results reveal that the optimal curriculum for reinforcement fine-tuning in code generation is closely tied to a model’s inherent capability, with less capable models achieving greater gains with an easy-to-hard progression, whereas more competent models excel under a hard-first curriculum. TAROT provides a reproducible method that adaptively tailors curriculum design to a model’s capability, thereby consistently improving the functional correctness and robustness of the generated code. All code and data are released to foster reproducibility and advance community research at <https://anonymous.4open.science/r/TAROT-B675/>.

1 INTRODUCTION

Large Language Models (LLMs) are driving significant changes in software engineering, with automated code generation emerging as a pivotal application (Du et al., 2024; Jiang et al., 2024). Foundational models exhibit a strong capacity to translate natural language specifications into functional code, promising significant enhancements in developer productivity (Weber et al., 2024). Nevertheless, advancing the frontier toward synthesizing algorithmically sophisticated and highly robust solutions remains a critical challenge (Zhuo et al., 2025). The next key step hinges on significantly augmenting the deep reasoning and problem-solving faculties of these models.

Curriculum Learning (CL), a methodology that structures training data by difficulty (Bengio et al., 2009), presents a promising avenue for cultivating these capabilities and improving training efficiency. However, existing applications of CL in code generation primarily focus on sequencing entire problems based on coarse difficulty metrics (Nair et al., 2024; Khant et al., 2025). While this inter-problem curriculum is intuitive, it neglects the nuanced, intra-problem difficulty gradient inherent in software verification. Human developers naturally employ practices like Test-Driven Development (TDD) (Beck, 2003), incrementally refining a solution against increasingly complex test cases to ensure robustness. Yet, this natural curriculum axis remains largely untapped in LLM training. Furthermore, reliance on problem-level sequencing often leads to flat reward landscapes when integrated with Reinforcement Fine-Tuning (RFT), dampening the learning signal. This oversight

of heterogeneous test-case difficulty results in imbalanced reward signals and consequently biased gradient updates during training, hindering the model’s ability to acquire robust, sophisticated reasoning skills.

Furthermore, while the trend in curriculum learning for LLMs is shifting towards more dynamic approaches that progressively increase task complexity (Xu et al., 2024; Cheng et al., 2025), these methods predominantly define difficulty based on the intrinsic properties of the data or the task structure. For instance, curricula are often structured using automated metrics of the source code itself, such as cyclomatic complexity (Nair et al., 2024), or by decomposing a problem into a fixed sequence of simpler subtasks (Dou et al., 2024). This prevailing focus on the data, rather than the learner, overlooks the crucial variable of the model’s own evolving and multi-faceted capability. A curriculum tailored to an early-stage model may cause learning stagnation for a more advanced one, while a curriculum designed for experts can overwhelm a less-capable model and hinder its convergence. Therefore, for a more holistic approach to effective learning, curriculum design should consider not only the intrinsic properties of the data but also the evolving capabilities of the model itself, leading to a capability-adaptive framework.

To address these limitations, we introduce **TAROT**, a novel framework for **T**est-driven and **c**Ability-adaptive **A**Curriculum **R**einforcement **T**uning. Crucially, TAROT decouples curriculum progression from raw reward scores, enabling capability-conditioned evaluation and principled selection from a portfolio of curriculum policies rather than incidental test-case difficulty composition. This design fosters stable optimization and more efficient competency acquisition. The framework’s novelty is twofold. First, TAROT operationalizes the concept of an intra-problem difficulty gradient through a novel, test-driven curriculum. To instantiate this gradient, which is absent in standard coding datasets, we constructed the TAROT dataset. Each coding problem is systematically augmented with a test suite built upon four tiers of difficulty including basic, intermediate, complex, and edge cases. This structure defines difficulty as a spectrum of functional correctness. This engineered gradient directly counteracts the flat reward landscape common in RL, providing a structured and nuanced signal for learning robust solutions.

Second, we study capability-adaptive curriculum design. Given the TAROT dataset, we instantiate a portfolio of curriculum policies that vary along three axes, namely allocation across tiers, the sequence and proportion of tiers, and reward weighting across tiers. This setup enables capability-conditioned evaluation and principled selection among policies for models differing in effective capability influenced by model scale and specialization. Our central thesis is that the optimal learning path is capability dependent. In particular, less-capable models learn best with basic to complex progression, whereas more-capable models learn best by focusing on complex tiers.

To validate this thesis, this paper introduces the TAROT framework and demonstrate/s its effectiveness through comprehensive experiments, making the following primary contributions:

- A novel intra-problem, test driven curriculum for code generation, embodied in the new TAROT dataset. Each problem in our dataset is augmented with a four-tiered test suite (basic, intermediate, complex, edge cases) to provide a granular difficulty landscape and enable nuanced reward modeling.
- A capability conditioned study and guideline for curriculum design in code generation. We present a portfolio of curriculum policies in allocation sequence and reward weighting together with a reproducible evaluation protocol for capability conditioned comparison and principled selection informed by the characteristics of model capability such as scale and specialization.
- Comprehensive empirical validation demonstrating the effectiveness of TAROT. All models are fine-tuned using GRPO to leverage verifiable code execution rewards. Our experiments show that our capability-adaptive approach significantly improves model performance and training efficiency compared to the baselines.

2 RELATED WORKS

Our work is positioned at the intersection of two key research domains: curriculum learning for structuring pedagogical data, and reinforcement learning for policy optimization in code generation. We review prior work in these areas and highlight how TAROT offers a novel synthesis of both.

108
109

2.1 CURRICULUM LEARNING FOR CODE

110

Curriculum Learning (CL) is a training strategy inspired by human cognition that presents data to a model in a structured order, typically from simple to complex examples (Bengio et al., 2009). This method has been shown to accelerate convergence and improve generalization by guiding optimization toward better solutions. In the context of Large Language Models (LLMs), curricula have been implemented in various ways, such as using a teacher model to progressively generate more complex instructions, as seen in the Evol-Instruct method (Xu et al., 2024), or by fine-tuning on a small set of meticulously curated, high-quality examples as demonstrated by LIMA (Zhou et al., 2023). For code generation, where task complexity varies widely, CL is a particularly promising but challenging area. While many code datasets rely on manual difficulty labels, recent research has focused on more systematic approaches. A notable example is the use of automatic difficulty metrics, combining measures like cyclomatic complexity and Halstead difficulty, to sort problems into a multi-stage curriculum (Naïr et al., 2024). Training with this structured approach yielded significant gains, demonstrating the value of CL in the code domain. Other methods, like StepCoder, create an implicit curriculum by breaking a complex problem into a sequence of simpler code-completion subtasks (Dou et al., 2024). These efforts show a clear trend towards leveraging curricula to organize the training process for code generation. Our work contributes to this line of research by proposing a novel method to generate a tiered test suite that serves as the basis for our curriculum.

126

127

128

129

2.2 REINFORCEMENT FINE-TUNING FOR CODE LLMs

130

Reinforcement Learning (RL) is a dominant paradigm for aligning LLMs with desired behaviors, using techniques like RLHF (Ouyang et al., 2022), DPO (Rafailov et al., 2023), PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), and GSPO (Zheng et al., 2025). In code generation, RL is adapted to optimize for functional correctness, typically using unit test outcomes as a reward signal. This “RL from unit test feedback” approach, while effective, often suffers from two key limitations: a sparse and “flat” reward landscape. The reward is sparse because a model gets no learning signal on complete failure, and it is flat because all successful solutions receive the same reward, regardless of the problem’s difficulty. This flatness, where all successful solutions receive a similar reward regardless of the challenge, generates imbalanced reward signals that can lead to biased gradient updates. Recent work has begun to address these shortcomings. To combat sparse rewards, Process Reward Models have been introduced to provide dense, line-level feedback, guiding the model even when the final code is incorrect (Dai et al., 2025). To address the flat reward landscape, researchers are exploring ways to incorporate a sense of difficulty into the learning process. The idea of combining RL with a curriculum is gaining traction. For instance, some approaches use RL to guide a model through a curriculum of subtasks, while others dynamically adjust the curriculum during RL training using techniques like the Self-Evolving Curriculum, which treats problem selection as a multi-armed bandit problem to maximize learning progress (Chen et al., 2025). Our TAROT framework specifically addresses the flat reward problem by making the reward signal itself curriculum-aware. Instead of treating all successes equally, we modulate the reward based on the difficulty of the solved test tier, a concept inspired by curriculum design. By integrating this tiered reward scheme directly into a stable policy optimization algorithm, the TAROT framework provides a more nuanced learning gradient that encourages the model to master harder problems. This approach of infusing a static curriculum structure directly into the RL reward mechanism is a novel contribution that complements other recent innovations in the field.

153

154

155

156

3 TAROT FRAMEWORK

157

158

159

160

161

In this section, we elaborate on the details of the proposed TAROT framework which enhances the code generation capability of language models by having them solve test cases of varying difficulty in appropriate order and rewarding weights that are adaptively determined based on the model’s baseline capability.

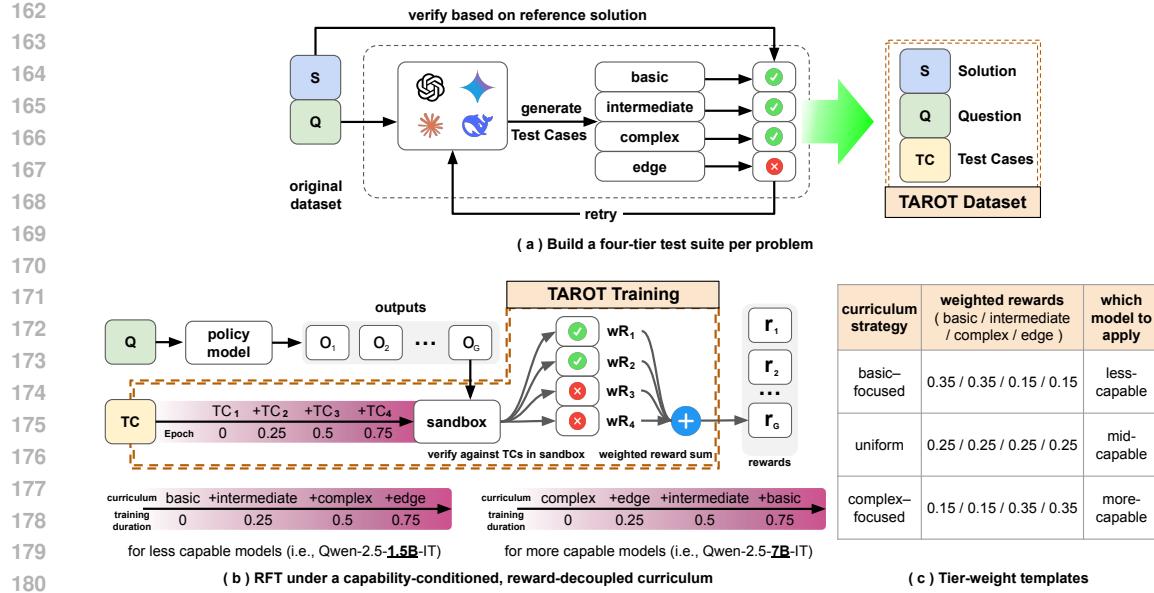


Figure 1: **Overview of TAROT framework.** (a) Build a four-tier test suite (basic/intermediate/-complex/edge) per problem using frontier LLMs and verify them against the reference solution. (b) Reinforcement fine-tuning under a capability-conditioned, reward-decoupled curriculum. Less capable models perform best with basic → complex, whereas more capable models perform best with complex → basic. (c) Tier-weight templates specifying reward weights for basic, intermediate, complex, and edge, with suggested use by capability buckets.

3.1 TAROT DATASET

A coding problem, denoted as P , is formally defined as a tuple consisting of three core components: a problem statement (\mathcal{S}), a reference solution (\mathcal{R}), and a set of test suite (\mathcal{T}). This relationship can be expressed as:

$$\mathcal{P} = (\mathcal{S}, \mathcal{R}, \mathcal{T}) \quad (1)$$

In this structure, the problem statement \mathcal{S} outlines the task, and the reference solution \mathcal{R} provides a correct implementation. The primary purpose of the test suite, \mathcal{T} , is to serve as a final validation mechanism to verify the correctness of a solver's proposed solution, but they are not designed to facilitate users' incremental learning processes. Consequently, the number and nature of test cases can vary significantly. For instance, a problem's test suite might consist of a single, simple case to verify the primary logic, or conversely, focus exclusively on complex edge cases, neither of which is structured to support a step-by-step learning process.

From a software engineering perspective, development is commonly test-driven. It begins with simple tests and progressively adds more complex and edge cases; implementations are refactored along the way, strengthening correctness and design. This staged expansion of the test suite mirrors the intuition behind curriculum learning. However, the test suite accompanying typical coding problems are not authored with this incremental pedagogy in mind. They are primarily designed for summative verification rather than stepwise scaffolding, so both their cardinality and difficulty mix vary widely and arbitrarily across problems.

To address the absence of a pedagogical structure, we introduce the TAROT dataset $\mathcal{D}_{\text{TAROT}}$, constructed by the procedure depicted in Figure 1 (a). Each problem in the dataset is augmented by incorporating a tiered test suite organized into four predefined difficulty levels (basic, intermediate, complex, and edge), without modifying the original statement or the reference solution. This structure is formally defined as follows:

216

217

$$\mathcal{D}_{\text{TAROT}} = \left\{ (\mathcal{S}_i, \mathcal{R}_i, \{\mathcal{T}_{i,l}\}_{l \in L}) \right\}_{i=1}^N, \quad (2)$$

$$L = \{\text{basic, intermediate, complex, edge}\}, \quad (3)$$

$$\mathcal{T}_i = \bigcup_{l \in L} \mathcal{T}_{i,l}, \quad (4)$$

$$\text{s.t. } \forall i \in [N], \forall l \in L, \forall t \in \mathcal{T}_{i,l} : \text{Pass}(\mathcal{R}_i, t). \quad (5)$$

224

225 Here, L is the set of difficulty levels, and the full suite for each problem is the union of its per-level
 226 subsets equation 4. By construction (see equation 5), every test case is validated against the reference
 227 solution, ensuring data quality. Any curriculum order (e.g., basic → complex or complex → basic) is
 228 imposed at training time and is not part of the dataset definition.

229

230 3.2 TAROT TRAINING MECHANISM

231 The TAROT training mechanism is designed to decouple the curriculum from raw test scores. It
 232 achieves this by utilizing two pre-defined components: a curriculum allocator that defines a fixed
 233 proportion of training focus for each difficulty tier $l \in L$, and tailored reward weights that prioritize
 234 tiers by placing greater value where the learning signal is most beneficial. During the training
 235 loop, the model first generates candidate solutions for a given problem. These solutions are then
 236 executed against the tiered test cases, and the resulting pass/fail outcomes are used to calculate and
 237 accumulate a tier-weighted return. Both the curriculum allocation and reward weights are aligned
 238 with the model’s capability. The guiding principle is to concentrate the training signal within a zone
 239 of optimal difficulty, which is unique to each model’s effective capability, a composite of instruction
 240 following fidelity and baseline coding proficiency. Therefore, the entire training schedule is pre-
 241 configured to match this profile, creating a fixed yet highly customized learning path.

242 Specifically, this means that models with lower baseline capability receive a larger share of basic
 243 and intermediate cases, whereas models with higher capability are assigned more complex and edge
 244 cases to push their frontier. The reward weights mirror this design, ensuring that successes on
 245 capability-appropriate tiers contribute more to the final objective.

246 We now formulate the training objective in the reinforcement learning setting. For each problem P_i
 247 and difficulty level $l \in L$, we define the tier-level success of a policy π as the average pass rate over
 248 that tier’s tests.

$$r_{i,l}(\pi) = \frac{1}{|\mathcal{T}_{i,l}|} \sum_{t \in \mathcal{T}_{i,l}} \mathbf{1}\{\text{Pass}(\pi, t)\}. \quad (6)$$

252 Here, $\text{Pass}(\pi, t)$ indicates that the solution produced under π satisfies test case t .

253 Given a curriculum allocation $\alpha = (\alpha_l)_{l \in L}$ and reward weights $\mathbf{w} = (w_l)_{l \in L}$, we define the TAROT
 254 return for P_i as a weighted sum over tiers.

$$R_{\text{TAROT}}(P_i, \pi; \alpha, \mathbf{w}) = \sum_{l \in L} \alpha_l w_l r_{i,l}(\pi), \quad \sum_{l \in L} \alpha_l = 1, \quad w_l \geq 0. \quad (7)$$

258 We interpret α_l as the share of training effort assigned to tier l , and w_l as how much a success on tier
 259 l contributes given the model’s baseline capability. Here, each α_l not only weights the contribution
 260 of tier l to the return but also specifies the fraction of training updates allocated to that tier.

261 Training then maximizes the expected TAROT return over problems.

$$J_{\text{TAROT}}(\theta) = \mathbb{E}_{P_i \sim \mathcal{D}_{\text{TAROT}}} \left[R_{\text{TAROT}}(P_i, \pi_\theta; \alpha, \mathbf{w}) \right]. \quad (8)$$

266 This formulation provides a simple yet powerful objective function. By decoupling the allocation of
 267 training effort (α) from the valuation of success (\mathbf{w}), the TAROT framework enables a fine-grained,
 268 capability-matched curriculum. This approach moves beyond imposing a single, model-agnostic
 269 learning path, instead concentrating the training signal on the most productive difficulty tiers for any
 given model.

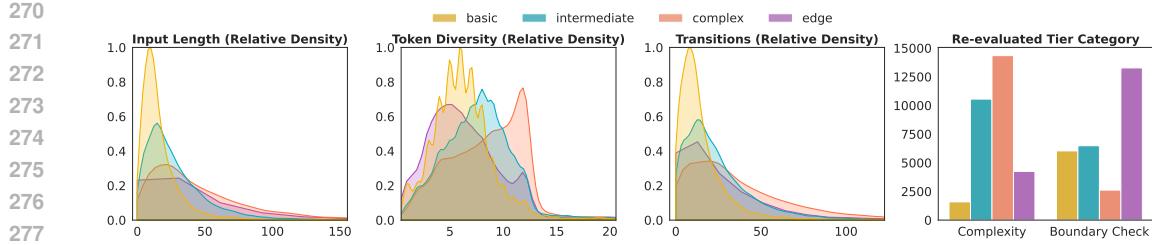


Figure 2: Quantitative and qualitative validation of the TAROT dataset. The KDE plots show the distribution of structural complexity, where the x-axis represents the metric’s magnitude. Token Diversity (unique/total tokens) and Transitions (character class changes) serve as proxies for lexical and syntactic complexity, respectively. The systematic rightward shift confirms increasing difficulty across tiers. GPT-4o validation on the right confirms that complex tiers target algorithmic complexity, while edge tiers focus on boundary conditions.

Table 1: Overview of the experimental schedules for curriculum learning. Each strategy varies in reward distribution and the sequence of difficulties presented to the model. The abbreviations B, I, C, and E correspond to basic, intermediate, complex, and edge difficulty tiers, respectively. For staged curricula, transitions occur at 0.2, 0.4, and 0.6 of the total epoch.

Strategy	Reward Weights (B, I, C, E)	Curriculum Schedule Progression
Forward (Uniform)	(0.25, 0.25, 0.25, 0.25)	B → (B,I) → (B,I,C) → All
Forward (B & I Weighted)	(0.35, 0.35, 0.15, 0.15)	B → (B,I) → (B,I,C) → All
Forward (C & E Weighted)	(0.15, 0.15, 0.35, 0.35)	B → (B,I) → (B,I,C) → All
Reversed (C & E Weighted)	(0.15, 0.15, 0.35, 0.35)	C → (C,E) → (C,E,I) → All
Basic Only	(1.0, —, —, —)	Static
Complex Only	(—, —, 1.0, —)	Static
Edge Only	(—, —, —, 1.0)	Static

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We construct a TAROT dataset based on 15k Python coding interview problems¹ with validated basic/intermediate/complex/edge test suites. As illustrated in Table 1, we design curriculum policies along two axes: allocation order and reward weighting. For allocation, we explore **Forward** (basic→edge), **Reversed** (edge→basic), and **Static** schedules. Transitions for staged curricula occur at 0.2, 0.4, and 0.6 of the total epoch. For weighting, we define three templates: **Uniform** (0.25 for all tiers), **B/I Weighted** (emphasizing the basic and intermediate tiers), and **C/Edge Weighted** (emphasizing the complex and edge tiers).

We evaluate TAROT training mechanism on a diverse suite of models, including Qwen2.5-Instruct, Qwen2.5-Coder-Instruct (1.5B, 3B, 7B) (Qwen et al., 2025; Hui et al., 2024), Gemma-2-IT (2B, 9B) (Team et al., 2024), and Qwen3-4B-Instruct-2507 (Yang et al., 2025) on well-known benchmarks including HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), HumanEval+, MBPP+ (Liu et al., 2024), LiveCodeBench v5 (Jain et al., 2024), CodeForces (Penedo et al., 2025), and CruxEval (Gu et al., 2024). This selection allows us to assess the framework’s effectiveness across a wide spectrum of model scales, architectures, coding specializations, and performance tiers, including those at the frontier. All models are fine-tuned using GRPO (Shao et al., 2024). Full implementation details appear in Appendix B.

¹<https://huggingface.co/datasets/open-r1/verifiable-coding-problems-python>

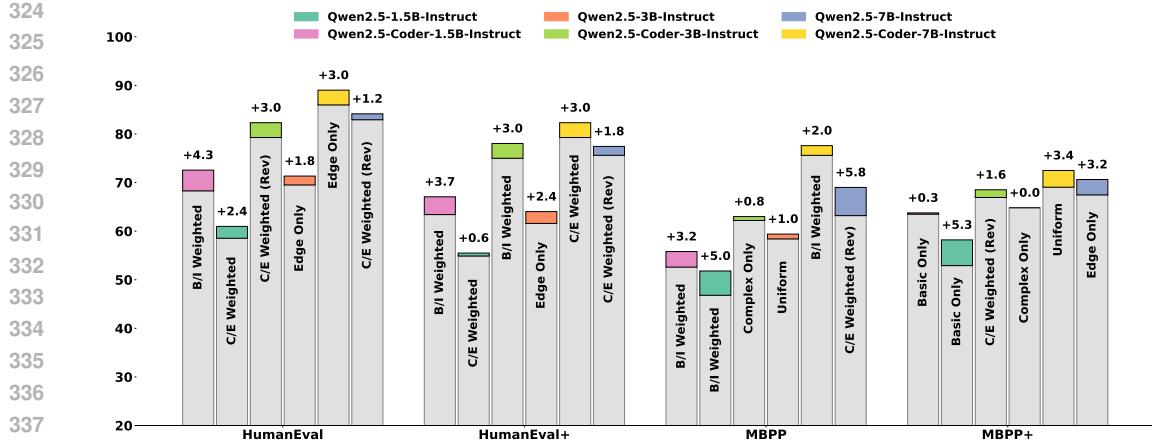


Figure 3: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct on HumanEval, HumanEval+, MBPP, and MBPP+. Scores are pass@1. Numbers above bars indicate gains in percentage points relative to each model’s base checkpoint. Labels inside bars indicate the best performing curriculum strategy.

4.2 EXPERIMENTAL RESULTS

To validate the empirical integrity of the TAROT dataset’s tiering, we analyzed its structure using quantitative and qualitative metrics, as illustrated in Figure 2. The three KDE plots demonstrate a clear progression: as the tiers advance from basic to complex, the distributions for input length, token diversity, and character transitions all exhibit a consistent rightward shift, signifying a systematic increase in structural complexity. Furthermore, the qualitative bar chart reveals a crucial distinction between the two hardest tiers. It shows that test cases designed to probe complexity peak in the complex tier, while those targeting boundary checks are overwhelmingly concentrated in the edge tier. These complementary findings confirm that our four-level taxonomy not only stratifies overall difficulty but also effectively separates different types of challenge, establishing a robust foundation for the subsequent experiments.

Experimental results, illustrated in Figure 3, reveal a nuanced relationship between model scale, specialization, and optimal curriculum design. The Qwen2.5-Instruct models exhibit a straightforward, scale-dependent trend; the largest model (7B) performs best with complex-focused strategies, while the smallest (1.5B) benefits from a conventional basic-focused approach. However, this correlation with scale does not fully explain the performance. The coding specialized Qwen2.5-Coder models introduce a critical insight, as the mid-scale Qwen2.5-Coder-3B model displays a learning preference akin to the much larger Instruct-7B model despite its smaller parameter count. It achieves its peak HumanEval score using the same complex-focused strategy and decisively outperforms its general-purpose 3B counterpart. This finding strongly suggests that a model’s prior specialization enhances its effective capability, making it a more critical determinant of the ideal learning path than parameter count alone.

To generalize these findings, the investigation was extended to the more recent Qwen3-4B-Instruct-2507. As detailed in Table 2, this newer model reinforces the core thesis. The optimal curriculum strategy, *C/E Weighted*, consistently outperforms the base model across all evaluated benchmarks, yielding substantial gains ranging from +2.12 to +4.26 percentage points. Notably, these improvements were achieved on a model that already possesses a strong performance baseline, confirming that curriculum learning is an effective method for eliciting further gains even from highly capable models. This result is significant because it demonstrates that a model’s preference for advanced, complex-focused curricula is not merely a function of parameter count but is strongly tied to its overall capability. The success of this strategy on a powerful, state-of-the-art Qwen3-4B-Instruct-2507 further solidifies the argument that the most capable models benefit most from curricula that prioritize challenging examples.

Table 2: Performance comparison of curriculum strategies for Qwen3-4B-Instruct-2507, highlighting the top-performing *C/E Weighted* curriculum strategy against the base model. The performance delta is shown in percentage points.

Strategy	HumanEval	HumanEval+	MBPP	MBPP+
Base	89.02%	78.66%	52.60%	56.61%
C/E Weighted	91.46% (+2.44pp)	82.92% (+4.26pp)	55.20% (+2.60pp)	58.73% (+2.12pp)

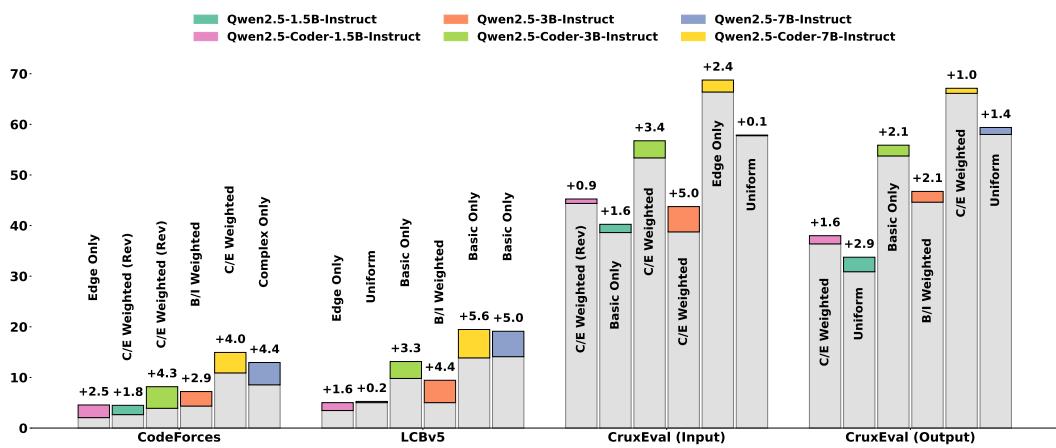


Figure 4: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct models on CodeForces, LiveCodeBench v5 (LCBv5), and CruxEval. Scores are the overall accuracy across easy, medium, and hard problems. Numbers above bars indicate gains in percentage points relative to each model’s base checkpoint. Labels inside bars indicate the best performing curriculum strategy.

We attribute this divergence to the “Zone of Optimal Difficulty”. For more-capable models, basic tier is trivial and yield negligible learning signal, whereas complex tier provides the high-entropy signal needed for improvement. Conversely, less-capable models facing Complex tiers initially suffer from sparse rewards, leading to training collapse. Therefore, we recommend using basic-focused curricula for less-capable models to ensure stability, while adopting complex-focused curricula for more-capable or code-specialized models to maximize gradient efficiency.

4.3 IN-DEPTH ANALYSIS

Out-Of-Distribution Benchmarks Evaluations on OOD benchmarks including CodeForces, LiveCodeBench v5, and CruxEval reveal that while TAROT consistently outperforms baselines, the optimal curriculum strategy is highly task-dependent rather than universal (Figure 4). For instance, Qwen2.5-7B achieved peak performance with the *Basic Only* curriculum on LiveCodeBench v5, whereas the *C/E Weighted* strategy proved most effective for CruxEval and CodeForces. This divergence stems from varying skill alignments between coding interview-style training data and downstream tasks. Consequently, effective curriculum selection must account for the target domain’s computational structure, necessitating future research into task-specific intra-problem test design and adaptive policy selection.

Comparison with Standard Reward Schemes To verify that the performance gains of TAROT stem from its capability-adaptive curriculum strategy, we compare our framework against standard reward shaping strategies commonly used in reinforcement learning for code generation. These baselines utilize the full four-tier test suite throughout the training. Specifically, we evaluate two standard RL baselines: **Avg-reward**, where the reward is calculated as the average pass rate across the four tiers ($R \in [0, 1]$), and **Pass@All**, which represents a strict functional correctness setting

432
 433 Table 3: Performance comparison between TAROT and Standard RL Baselines. TAROT outper-
 434 forms conventional reward schemes that use the same test cases but lack curriculum scheduling.
 435 Highest scores are highlighted in **bold**.

Model	Strategy	HumanEval	HumanEval+	MBPP	MBPP+	CodeForces	LCBv5	CruxEval
Qwen2.5-1.5B-Instruct								
	Avg-reward	59.15%	54.27%	49.20%	57.93%	2.72%	3.70%	38.75/32.87%
	Pass@All	60.98%	56.10%	44.60%	53.43%	2.72%	3.94%	34.62/31.75%
	TAROT (Best)	60.98%	55.49%	51.80%	58.20%	4.49%	5.26%	40.20/33.75%
Qwen2.5-7B-Instruct								
	Avg-reward	83.75%	76.22%	66.00%	69.84%	11.41%	11.95%	56.37/58.50%
	Pass@All	81.10%	73.78%	63.00%	68.52%	9.49%	14.81%	55.62/56.63%
	TAROT (Best)	84.15%	77.44%	69.00%	70.63%	12.95%	19.12%	57.88/59.38%

444
 445 where a reward of 1 is assigned only if all four tiers pass, and 0 otherwise ($R \in \{0, 1\}$). As detailed
 446 in Table 3, TAROT consistently outperforms both standard reward schemes across all benchmarks.
 447

448
 449 **Architectural Generalization** Applying TAROT to Gemma2 architecture validated our hypothe-
 450 sis that baseline proficiency, not parameter count, dictates the optimal learning path. For the larger
 451 Gemma2-9B-IT, *Complex Only* curriculum offered no decisive advantage, as simpler strategies like
 452 *Basic Only* often proved superior on key benchmarks shown in Table 4. This principle was even
 453 more starkly visible with the smaller Gemma2-2B-IT. As detailed in Appendix F, most curricula
 454 were actively harmful, leading to a performance collapse from a sparse reward signal. In stark
 455 contrast, a *Basic Only* strategy focused on fundamentals yielded substantial improvements. This
 456 demonstrates that for less-capable models, a fundamentals-first curriculum is a prerequisite for suc-
 457 cessful fine-tuning, whereas unstructured approaches can be severely detrimental.

458 Table 4: Performance comparison for Gemma2-9B-IT across key curriculum strategies. Highest
 459 scores on each benchmark are highlighted in **bold**.
 460

Strategy	HumanEval	HumanEval+	MBPP	MBPP+	CodeForces	LCBv5	CruxEval
Base	60.37%	54.88%	59.60%	65.08%	8.61%	11.83%	45.63/47.63%
Uniform	65.85%	57.93%	59.20%	64.55%	10.82%	13.62%	51.63 /47.13%
Basic Only	63.41%	56.10%	60.40%	65.08%	9.49%	14.70%	51.00/48.00%
Complex Only	65.85%	60.37%	58.60%	64.55%	9.93%	12.54%	48.25/48.00%

466 For completeness, we report the full per-strategy and per-curriculum results for all Qwen2.5-Instruct,
 467 Qwen2.5-Coder-Instruct, and Qwen3-4B-Instruct models HumanEval, MBPP, and the OOD bench-
 468 marks in Appendix G, Tables 8 and 7. We further analyze the sensitivity to training hyper-parameters
 469 (temperature, GRPO β) and the inference-time maximum token limit in Appendix D and E, and in-
 470 vestigate the training dynamics and reward correlations in Appendix H.

471
 472

5 CONCLUSION

 473

474 We introduced TAROT, a test-driven and capability-adaptive framework for curriculum reinforce-
 475 ment fine-tuning in code generation. TAROT moves beyond the conventional one-size-fits-all ap-
 476 proach by constructing a four-tier, intra-problem test suite that allows curriculum design to be tai-
 477 lored to a model’s unique abilities. Experiments confirmed our central thesis that the optimal learn-
 478 ing path is capability-dependent: less-capable models benefit most from an basic-focused pro-
 479 gression, while more-capable models excel with curricula that prioritize complex-focused challenges.
 480 We found that the most critical factor is not parameter count alone but a more holistic effective
 481 capability, which accounts for a model’s prior specialization. Ultimately, TAROT provides a practical
 482 framework for enhancing the code generation capabilities of large language models. Our framework
 483 proved its value across a wide spectrum of models, from less-capable base models to highly pro-
 484 ficient code-specialized and state-of-the-art foundation models, confirming its broad applicability.
 485 While significant, our results also show that the optimal curriculum is task-dependent, pointing to-
 486 ward future work in developing domain-specific test suites and automated policy selection methods.

486 REFERENCES
487

488 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
489 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
490 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

491 K. Beck. *Test-driven Development: By Example*. Addison-Wesley signature series. Addison-
492 Wesley, 2003. ISBN 9780321146533. URL <https://books.google.co.kr/books?id=CU1sAQAAQBAJ>.

493

494 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
495 *Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09*, pp.
496 1–8, Montreal, Quebec, Canada, 2009. ACM Press. ISBN 978-1-60558-516-1. doi: 10.1145/
497 1553374.1553380. URL <http://portal.acm.org/citation.cfm?doid=1553374.1553380>.

498

499 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
500 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
501 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
502 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
503 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
504 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
505 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
506 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
507 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
508 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
509 language models trained on code. 2021.

510

511 Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
512 Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning, 2025. URL
513 <https://arxiv.org/abs/2505.14970>.

514 Yang Cheng, Zilai Wang, Weiyu Ma, Wenhui Zhu, Yue Deng, and Jian Zhao. Evocurr: Self-evolving
515 curriculum with behavior code generation for complex decision-making, 2025. URL <https://arxiv.org/abs/2508.09586>.

516

517 Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
518 Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation,
519 2025. URL <https://arxiv.org/abs/2410.17621>.

520

521 Shihhan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, Limao Xiong, Junjie Shan, Caishuang Huang,
522 Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Tao Gui,
523 and Xuanjing Huang. StepCoder: Improving code generation with reinforcement learning from
524 compiler feedback. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings
525 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
526 Papers)*, pp. 4571–4585, Bangkok, Thailand, August 2024. Association for Computational Lin-
527 guistics. doi: 10.18653/v1/2024.acl-long.251. URL <https://aclanthology.org/2024.acl-long.251/>.

528

529 Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
530 Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
531 generation. In *Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
532 neering, ICSE '24*, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
533 9798400702174. doi: 10.1145/3597503.3639219. URL <https://doi.org/10.1145/3597503.3639219>.

534

535 Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
536 Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. *arXiv preprint
537 arXiv:2401.03065*, 2024.

538

539 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

540 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
 541 Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
 542 Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
 543 ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
 544 <https://arxiv.org/abs/2409.12186>.

545 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 546 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 547 evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.

548
 549 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
 550 models for code generation, 2024. URL <https://arxiv.org/abs/2406.00515>.

551
 552 Kyi Shin Khant, Hong Yi Lin, and Patanamon Thongtanunam. Should code models learn pedagogi-
 553 cally? a preliminary evaluation of curriculum learning for real-world software engineering tasks.
 554 In *2025 IEEE/ACM 22nd International Conference on Mining Software Repositories (MSR)*, pp.
 555 249–254, 2025. doi: 10.1109/MSR66628.2025.00044.

556
 557 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 558 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 559 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 560 Systems Principles*, 2023.

561 Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-
 562 ating language models for efficient code generation. In *First Conference on Language Modeling*,
 563 2024. URL <https://openreview.net/forum?id=IBCBMeAhmC>.

564
 565 Marwa Naïr, Kamel Yamani, Lynda Lhadj, and Riyadh Baghdadi. Curriculum learning for small
 566 code language models. In Xiyan Fu and Eve Fleisig (eds.), *Proceedings of the 62nd Annual Meet-
 567 ing of the Association for Computational Linguistics (Volume 4: Student Research Workshop)*, pp.
 568 390–401, Bangkok, Thailand, August 2024. Association for Computational Linguistics. ISBN
 569 978-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.44. URL <https://aclanthology.org/2024.acl-srw.44/>.

570
 571 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 572 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 573 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 574 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Pro-
 575 ceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS
 576 '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

577
 578 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 579 Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
 580 Werra. Codeforces. <https://huggingface.co/datasets/open-r1/codeforces>,
 2025.

581
 582 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 583 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 584 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 585 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 586 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 587 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 URL <https://arxiv.org/abs/2412.15115>.

588
 589 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 590 Chelsea Finn. Direct preference optimization: your language model is secretly a reward model.
 591 In *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 592 NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

593 Negin Raoof, Etash Kumar Guha, Ryan Marten, Jean Mercat, Eric Frankel, Sedrick Keh, Hri-
 594 tik Bansal, Georgios Smyrnis, Marianna Nezhurina, Trung Vu, Zayne Rea Sprague, Mike A

594 Merrill, Liangyu Chen, Caroline Choi, Zaid Khan, Sachin Grover, Benjamin Feuer, Ashima
 595 Suvarna, Shiye Su, Wanjia Zhao, Kartik Sharma, Charlie Cheng-Jie Ji, Kushal Arora, Jeffrey
 596 Li, Aaron Gokaslan, Sarah M Pratt, Niklas Muennighoff, Jon Saad-Falcon, John Yang, Asad
 597 Aali, Shreyas Pimpalgaonkar, Alon Albalak, Achal Dave, Hadi Pouransari, Greg Durrett, Se-
 598 woong Oh, Tatsunori Hashimoto, Vaishaal Shankar, Yejin Choi, Mohit Bansal, Chinmay Hegde,
 599 Reinhard Heckel, Jenia Jitsev, Maheswaran Sathiamoorthy, Alex Dimakis, and Ludwig Schmidt.
 600 Evalchemy, 2025.

601

602 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 603 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

604

605 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 606 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 607 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

608

609 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 610 patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
 611 ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
 612 line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
 613 Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
 614 Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
 615 son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
 616 Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
 617 Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
 618 berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
 619 Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
 620 Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
 621 Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
 622 Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
 623 Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
 624 tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
 625 Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
 626 Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
 627 Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
 628 Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
 629 Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
 630 Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
 631 Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton,
 632 Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
 633 Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
 634 Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
 635 strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kociský, Tulsee
 636 Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
 637 Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
 638 Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
 639 Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
 640 gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet,
 641 Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
 642 Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
 643 size, 2024. URL <https://arxiv.org/abs/2408.00118>.

644

645 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 646 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 647 learning. <https://github.com/huggingface/trl>, 2020.

648

649 Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer. Significant productiv-
 650 ity gains through programming with large language models. *Proc. ACM Hum.-Comput. Interact.*,
 651 8(EICS), June 2024. doi: 10.1145/3661145. URL <https://doi.org/10.1145/3661145>.

648 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 649 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 650 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
 651 ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
 652 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in*
 653 *Natural Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. As-
 654 sociation for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

655 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 656 Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
 657 complex instructions. In *The Twelfth International Conference on Learning Representations*,
 658 2024. URL <https://openreview.net/forum?id=CfXh93NDgH>.

659

660 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 661 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 662 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 663 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 664 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 665 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 666 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 667 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 668 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

669

670 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 671 Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
 672 timization, 2025. URL <https://arxiv.org/abs/2507.18071>.

673 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 674 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
 675 Lima: less is more for alignment. In *Proceedings of the 37th International Conference on Neural*
 676 *Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

677 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widayasari, Imam
 678 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
 679 Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
 680 Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
 681 Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and
 682 Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
 683 and complex instructions, 2025. URL <https://arxiv.org/abs/2406.15877>.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A TEST CASE GENERATION PROMPTS

704
 705 To ensure the consistent generation of high-quality, four-tiered test cases, we designed a detailed
 706 prompt template. This template, listed in Table 5, guides the language model to act as an expert
 707 software engineer and produce test cases that adhere to our specific difficulty criteria.
 708

709 Table 5: The Prompt template used to generate a tiered test suite per a given coding prob-
 710 lem. The problem statement and the default test case from the original source is injected into
 711 {problem_statement} and {baseline_test_case} placeholders respectively.
 712

713 You are an expert software engineer with extensive experience in designing comprehensive unit tests. Your task is to generate four distinct
 714 unit tests for a given code implementation based solely on the provided problem statement. Treat this as a black-box testing exercise—
 715 focus exclusively on the inputs and expected outputs without assuming any details about the internal implementation.

716 **Important:** A baseline test case will be provided separately. Each test case you generate must be more challenging than the baseline test
 717 case.

718 Please generate four unit tests with the following guidelines:

719 1. **Basic Complexity Test (label as "basic"):**

- 720 • Use simple, straightforward inputs.
- 721 • Validate the core behavior under normal conditions.
- 722 • Focus on the happy path scenario.
- 723 • This should be the least challenging test case relative to the others.

724 2. **Medium Complexity Test (label as "intermediate"):**

- 725 • Include moderately complex inputs with some edge conditions.
- 726 • Test with mixed data types or larger inputs.
- 727 • Incorporate common edge cases and boundary values.
- 728 • Ensure this test is more challenging than the basic test.

729 3. **High Complexity Test (label as "complex"):**

- 730 • Use complex, nested, or structured inputs.
- 731 • Validate advanced functionality and complex logic paths.
- 732 • Stress test the implementation with challenging scenarios.
- 733 • This test should be more intricate than both the basic and intermediate tests.

734 4. **Edge Case Test (label as "edge"):**

- 735 • Use extreme boundary conditions and special cases.
- 736 • Validate behavior with empty, null, or invalid inputs.
- 737 • Focus on error handling and exception scenarios.
- 738 • This should be the most challenging test case among the four.

740 For each test case, follow the JSON format provided in the example below (include only the input and expected output):

```
741 {
  742   "language": "python",
  743   "test_cases": [
  744     {
  745       "input": "4\\n4\\n0001\\n1000\\n0011\\n0111\\n3\\n010\\n101\\n0\\n2\\n00000\\n00001\\n4\\n01\\n001\\n0001\\n00001\\n",
  746       "output": "1\\n3 \\n-1\\n0\\n\\n2\\n1 2 \\n",
  747       "type": "stdin_stdout",
  748       "label": "basic",
  749       "reason": "This test represents simple, straightforward input conditions."
  750     }
  751   ]
}
```

752 Remember:

- 753 • Do not assume any knowledge about the internal code; base your tests purely on the input-output behavior described in the problem
 754 statement.
- 755 • Ensure that each of your test cases is incrementally more challenging than the baseline test case provided.

756 **Problem Statement:** {problem_statement}

757 **Baseline Test Case:** {baseline_test_case}

756 **B IMPLEMENTATION DETAILS**

758 **TAROT Dataset** Our experiments utilize the TAROT dataset, which we constructed by augmenting approximately 15,000 problems from the verifiable-coding-problems-python dataset². For each 759 problem, we employed OpenAI’s the most powerful o3 and o4 models³ with the highest reasoning 760 effort to generate a four-tiered test suite with distinct levels: basic, intermediate, complex, and edge. 761 The specific prompts used for this generation process are detailed in Appendix A. To ensure high 762 quality, every generated test case was validated against the reference solution, and any problem with 763 even one failing tier was discarded. This rigorous curation process yields a final dataset of approx- 764 imately 60,000 tiered test suites (15,000 problems \times 4 tiers). Samples of these generated tiered test 765 cases can be found in Appendix I.

766 **Model Selection** To validate our methodology, we selected a diverse set of models to investigate 767 four key research questions: (1) the effect of model scale, to test our hypothesis that the optimal 768 curriculum is capability-dependent, using three Qwen2.5 models of varying sizes (1.5B, 3B, 7B) (Qwen 769 et al., 2025); (2) the impact of specialization, to determine if TAROT can further enhance models 770 already proficient in coding, using their code-specialized counterparts (Hui et al., 2024); (3) archi- 771 tectural generalizability, to test if our findings apply beyond a single model family, by incorporating 772 two instruction-tuned Gemma2 models (2B, 9B) (Team et al., 2024); and (4) pushing performance 773 frontiers, to assess if our framework can improve even state-of-the-art models with strong baselines, 774 by fine-tuning the recent Qwen3-4B-Instruct-2507 (Yang et al., 2025). For all models, we used 775 their instruction-tuned variants to ensure a foundational code-generation capability, a prerequisite 776 for effective RL-based fine-tuning.

777 **Training Details** We fine-tune all selected models for a single epoch using the TAROT framework. 778 For policy optimization, we employ GRPO (Shao et al., 2024). All models are trained using the 779 AdamW optimizer with a constant learning rate of 1×10^{-6} . We set the global batch size to 8, 780 reducing it to 4 for larger models (Qwen2.5-7B-Instruct, Qwen2.5-Coder-7B-Instruct, and Gemma2- 781 9B-IT) to accommodate memory constraints. The maximum input and completion token lengths 782 were set to 1,024 and 4,096, respectively. For GRPO-specific settings, we generated 8 candidate 783 completions per prompt to estimate the policy advantage, with the core hyperparameter β set to 0.01 784 in our main experiments. We provide an ablation study on key training hyperparameters, including 785 the GRPO β value (0.1, 0.05, 0.01) and the sampling temperature during training (1.0, 0.7, 0.5), in 786 Appendix D.

787 The GRPO hyperparameter β controls the strength of the Kullback-Leibler (KL) divergence 788 regularization term, which penalizes the policy for deviating too far from the original base model’s 789 behavior. The training temperature, in turn, manages the exploration-exploitation trade-off; higher 790 values encourage the model to sample a wider variety of solutions (exploration), while lower values 791 cause it to refine high-probability ones (exploitation). Our ablation studies were designed to identify 792 the optimal settings for these crucial parameters within our code generation task.

793 All fine-tuning experiments were conducted on a server with 8 x NVIDIA A100 (80 GB) GPUs, 794 running CUDA 12.4 and PyTorch 2.6. Our implementation is based on open-source libraries includ- 795 ing Transformers (Wolf et al., 2020), TRL (von Werra et al., 2020), vLLM (Kwon et al., 2023), and 796 Open-R1 (Hugging Face, 2025).

797 **Evaluation Metrics** We evaluate the efficacy of the TAROT framework on a comprehensive suite 798 of code generation benchmarks. For functional correctness, we measure the pass@1 metric on 799 HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and their more challenging variants, 800 HumanEval+ and MBPP+ (Liu et al., 2024). To assess competitive problem-solving skills, we use 801 the overall accuracy on LiveCodeBench v5 (Jain et al., 2024) and CodeForces (Penedo et al., 2025), 802 averaged across their difficulty tiers. Finally, the model’s code reasoning capability is evaluated us- 803 ing the input and output prediction accuracy on CruxEval (Gu et al., 2024). The detailed generation 804 parameters and execution environment are described in Appendix C.

805 ²<https://huggingface.co/datasets/open-r1/verifiable-coding-problems-python>

806 ³<https://platform.openai.com/docs/models>

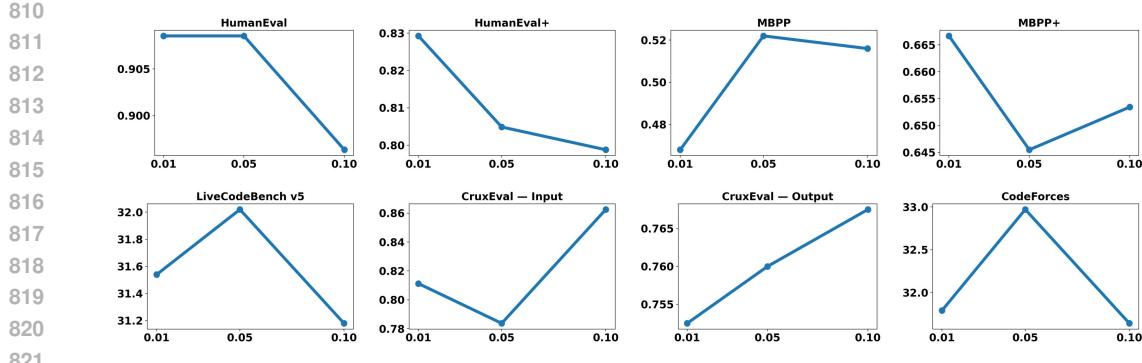


Figure 5: Performance sensitivity to the GRPO hyperparameter β . The plots show the final pass@1 or accuracy scores on various benchmarks as β is varied. The optimal value is task-dependent; for instance, HumanEval and HumanEval+ benefit from a smaller β (0.01) that allows greater policy exploration, whereas MBPP and CodeForces achieve peak performance with a larger β (0.05) that enforces stronger regularization.

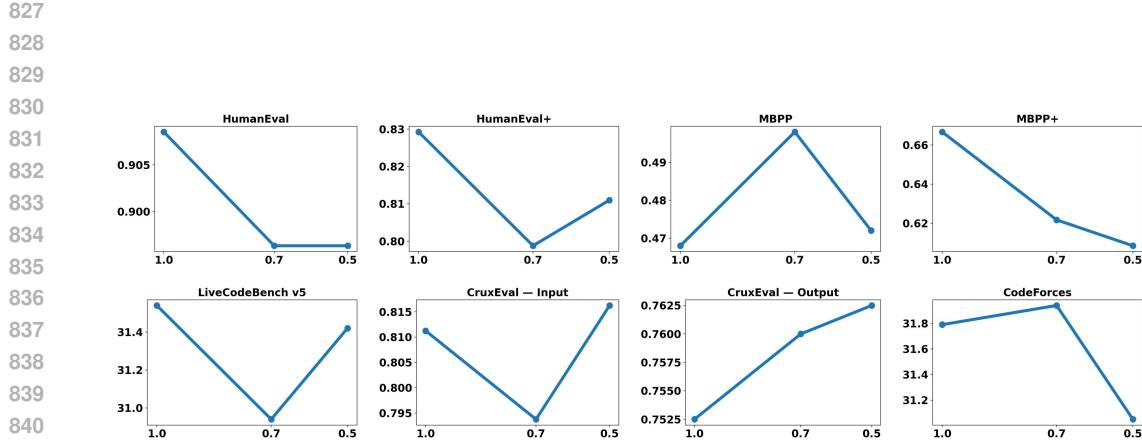


Figure 6: Performance sensitivity to the sampling temperature during training. The plots illustrate the final benchmark scores for different training temperatures. A higher temperature of 1.0, which encourages greater exploration, is optimal for benchmarks like HumanEval and HumanEval+. In contrast, other benchmarks such as MBPP show a preference for a more moderate temperature of 0.7, highlighting that the ideal exploration-exploitation balance is task-specific.

C GENERATION AND EXECUTION ENVIRONMENT

The entire evaluation pipeline is managed by the EvalChemistry framework (Raoof et al., 2025). We follow the benchmark-specific generation configurations predefined within the framework—such as temperature, top-p, prompt formatting, and stopping criteria—to ensure consistency with established evaluation protocols. By default, the maximum completion tokens for each benchmark adhered to its standard setting; however, for an ablation study on generation length (Appendix E), we systematically increased this limit to 4,096, 8,192, and 16,384 tokens to observe performance trends.

All code generation for evaluation was conducted by serving the fine-tuned models via the vLLM framework (Kwon et al., 2023) on servers equipped with 4 x NVIDIA A100 (80 GB) GPUs, using a batch size of 64. The resulting code is executed in a secure, sandboxed Python 3.11 environment, where a strict 10-second timeout is enforced for each test case to prevent infinite loops and manage evaluation time.

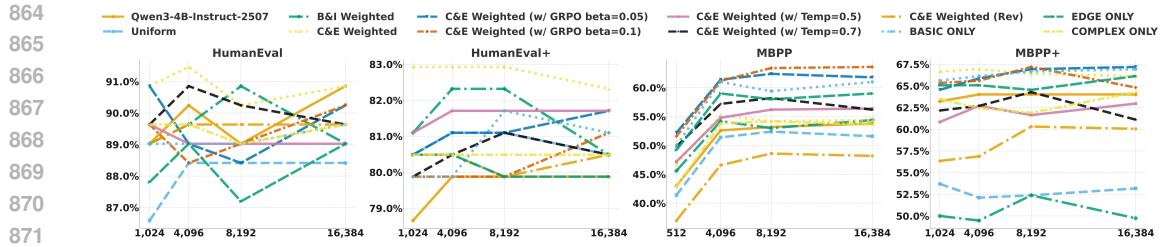


Figure 7: Performance sensitivity to the maximum completion token limit at inference time for Qwen3-4B-Instruct-2507 fine-tuned on various curriculum strategies. The results reveal a clear, benchmark-dependent dichotomy. For function-completion tasks like HumanEval and HumanEval+, performance tends to degrade as the token limit increases beyond 4,096, suggesting that a larger generation space may encourage verbose, error-prone solutions. Conversely, for benchmarks like MBPP and MBPP+, a larger token limit is generally beneficial, indicating that their problem structures may require more extensive code to solve correctly.

D HYPERPARAMETER SENSITIVITY ANALYSIS

This section provides ablation studies on two key training hyperparameters to analyze their impact on final benchmark performance: the GRPO regularization coefficient β and the sampling temperature during training.

Impact of GRPO’s β The hyperparameter β in GRPO controls the strength of the Kullback-Leibler (KL) divergence regularization, which prevents the fine-tuned policy from deviating excessively from the original base model. The results of varying β are shown in Figure 5. Performance sensitivity to β is not uniform across benchmarks. For function-synthesis tasks like HumanEval and HumanEval+, a small β of 0.01, which allows for greater policy exploration, yields the best results. Conversely, benchmarks like MBPP and CodeForces appear to benefit from slightly stronger regularization ($\beta = 0.05$). This variance suggests that the optimal regularization strength is task-dependent. We selected $\beta = 0.01$ for our main experiments as it proved most effective on our primary evaluation benchmarks.

Impact of Training Temperature The sampling temperature manages the exploration-exploitation trade-off during training. The results, presented in Figure 6, indicate that a higher temperature of 1.0, which encourages greater exploration of diverse solutions, is optimal for HumanEval and HumanEval+. However, other benchmarks show different trends; MBPP, for example, peaks at a more conservative temperature of 0.7. This highlights that the optimal degree of exploration is also task-specific, and suggests that task-adaptive temperature scheduling could be a potential area for future work.

E IMPACT OF MAXIMUM COMPLETION TOKENS AT INFERENCE TIME

We analyzed the impact of the maximum completion token limit during inference on the fine-tuned Qwen3-4B model, with results presented in Figure 7. The findings reveal a clear, benchmark-dependent dichotomy. On function-completion tasks like HumanEval and HumanEval+, performance generally degrades as the token limit increases beyond 4,096. In stark contrast, benchmarks like MBPP and MBPP+ benefit from a larger generation space, with optimal results often found at 8,192 or 16,384 tokens.

This divergence suggests that for tasks requiring concise solutions, such as those in HumanEval, a larger token limit may encourage verbose and error-prone code. Conversely, the nature of MBPP problems may necessitate a longer generation process to fully develop the correct logic. This analysis underscores a critical point for standardized evaluation: the ideal setting for maximum completion tokens is highly contingent on the characteristics of the target benchmark.

918 F ADDITIONAL RESULTS ON GEMMA2-2B-IT

920 This appendix provides the full curriculum comparison for Gemma2-2B-IT as in Table 6. Unlike
 921 larger or stronger models, Gemma2-2B-IT exhibits curriculum fragility: most curricula depress
 922 performance, consistent with the observation in the main text that sparse reward signals can cause
 923 collapse for less-capable models. In contrast, *Basic Only*—a fundamentals-first schedule—yields
 924 the most reliable gains among the tested strategies.

925 These results reinforce our capability-dependent view of curriculum design: for weaker models,
 926 emphasizing simpler tiers is a prerequisite for successful fine-tuning, whereas complex-focused or
 927 mixed curricula can be harmful.

929
 930 Table 6: Performance comparison for Gemma2-2B-IT across all curriculum strategies. Scores are
 931 colored and bolded based on their deviation from the Base strategy (**blue** for higher, **red** for lower).

932 Strategy	HumanEval	HumanEval+	MBPP	MBPP+	CodeForces	LCBv5	CruxEval
934 Base	42.07%	34.76%	41.20%	47.09%	2.21%	4.30%	37.50/26.88%
935 Uniform	39.02%	31.09%	33.80%	39.95%	0.22%	3.58%	33.00/26.63%
936 B/I Weighted	35.98%	32.32%	35.60%	42.06%	0.22%	4.30%	38.63/27.25%
937 C/E Weighted	41.46%	34.15%	39.20%	48.41%	0.22%	3.94%	36.63/26.75%
938 C/E Weighted (Rev)	40.86%	35.37%	40.20%	44.44%	0.44%	3.94%	35.63/26.75%
939 Basic Only	44.51%	37.20%	38.60%	46.83%	1.77%	3.94%	39.88/27.88%
Edge Only	39.63%	35.37%	38.00%	46.03%	0.22%	4.30%	39.00/28.13%
Complex Only	42.07%	36.59%	37.00%	45.77%	2.21%	2.87%	35.63/27.55%

942 G FULL BENCHMARK TABLES (QWEN2.5 & QWEN3-4B)

944 We report the complete benchmark results for all curriculum strategies on Qwen2.5 family
 945 (1.5B/3B/7B, including Coder variants) and Qwen3-4B-Instruct-2507. These tables expand the main
 946 figures by listing pass@1 on HumanEval, HumanEval+, MBPP, MBPP+, and average accuracy of
 947 CodeForces, LiveCodeBench v5, and CruxEval for every strategy in Table 8 and 7.

948 Consistent with the main text, the *C/E Weighted* strategy tends to be the top performer for the more-
 949 capable Qwen3-4B model, improving over the base across all four code-function benchmarks. The
 950 full per-strategy breakdowns here allow exact comparison across OOD benchmarks as well.

952 H TRAINING DYNAMICS ANALYSIS

954 **The Limits of the Reward Signal.** Figure 8 (a) shows that the training reward increases stably
 955 and is clearly separated by model capacity, indicating a stable optimization process. Note that
 956 initial rewards are relatively low even for capable models; this is due to strict output formatting

959
 960 Table 7: Comprehensive performance evaluation of all curriculum strategies on Qwen3-4B-Instruct-
 961 2507. The highest score on each benchmark is highlighted in **bold**. The performance of Qwen3-
 962 Coder-30B-A3B-Instruct is included to enable comparison against a leading code-specialized model.

963 Model	964 Strategy	HumanEval	HumanEval+	MBPP	MBPP+	CodeForces	LCBv5	CruxEval
Qwen3-Coder-30B-A3B-Instruct								
965 Base	94.51%	86.59%	73.80%	75.13%	29.65%	37.63%	81.75/79.25%	
Qwen3-4B-Instruct-2507								
966 Base	89.02%	78.66%	52.60%	56.61%	33.63%	32.02%	78.25/ 77.75%	
967 Uniform	88.41%	80.09%	35.30%	53.70%	31.86%	31.96%	79.37/75.75%	
968 B/I Weighted	89.63%	81.09%	28.00%	52.38%	33.04%	33.81%	79.50/75.38%	
969 C/E Weighted	91.46%	82.92%	55.20%	58.73%	31.79%	31.54%	81.12/75.25%	
970 C/E Weighted (Rev)	89.63%	80.48%	36.20%	35.98%	34.66%	31.66%	79.50/76.00%	
971 Basic Only	89.63%	79.87%	39.80%	56.34%	33.11%	31.90%	78.50/75.00%	
Edge Only	89.63%	79.88%	47.20%	56.61%	31.86%	30.59%	80.25/74.00%	
Complex Only	90.85%	80.48%	28.60%	51.85%	30.61%	31.30%	80.37/76.37%	

972
973
974
975
976
977

978 Table 8: Comprehensive performance evaluation of all curriculum strategies across Qwen2.5-
979 Instruct and Qwen2.5-Coder-Instruct models (1.5B, 3B, 7B). For each model size, the highest score
980 on each benchmark is highlighted in **bold**.

Model	Strategy	HumanEval	HumanEval+	MBPP	MBPP+	CodeForces	LCBv5	CruxEval
Qwen2.5-7B-Instruct								
Base	82.93%	75.61%	63.20%	67.46%	8.54%	14.10%	57.75/58.00%	
Uniform	82.93%	73.78%	67.40%	67.46%	12.36%	14.93%	57.88/59.38%	
B/I Weighted	78.05%	76.83%	67.60%	69.58%	11.56%	15.89%	57.25/59.25%	
C/E Weighted	79.27%	73.78%	66.20%	70.37%	10.89%	15.77%	57.13/55.50%	
C/E Weighted (Rev)	84.15%	77.44%	69.00%	70.11%	8.24%	15.41%	57.88/56.38%	
Basic Only	82.32%	75.61%	66.20%	68.52%	12.29%	19.12%	55.63/57.50%	
Edge Only	83.54%	76.22%	67.60%	70.63%	11.11%	17.08%	56.13/57.75%	
Complex Only	84.15%	75.61%	69.00%	69.05%	12.95%	17.80%	57.25/56.38%	
Qwen2.5-3B-Instruct								
Base	69.51%	61.59%	58.40%	64.81%	4.34%	5.02%	38.75/44.63%	
Uniform	71.34%	63.41%	59.40%	63.49%	6.92%	8.72%	42.00/42.50%	
B/I Weighted	69.51%	62.20%	59.00%	63.49%	7.21%	9.44%	42.38/ 46.75%	
C/E Weighted	69.51%	62.80%	56.60%	63.76%	7.21%	7.17%	43.75/44.50%	
C/E Weighted (Rev)	70.12%	62.80%	57.00%	63.49%	6.92%	8.00%	43.63/42.50%	
Basic Only	66.46%	59.15%	59.40%	64.02%	6.33%	6.09%	40.50/44.13%	
Edge Only	71.34%	64.02%	58.20%	62.70%	6.11%	7.05%	43.13/42.63%	
Complex Only	67.68%	60.37%	59.00%	64.81%	6.84%	6.33%	41.25/42.88%	
Qwen2.5-1.5B-Instruct								
Base	58.54%	54.88%	46.80%	52.91%	2.65%	5.02%	38.63/30.88%	
Uniform	60.98%	54.88%	50.00%	57.14%	3.68%	5.26%	37.13/ 33.75%	
B/I Weighted	59.15%	54.27%	51.80%	57.94%	3.83%	4.54%	36.00/29.75%	
C/E Weighted	60.98%	55.49%	49.40%	56.08%	3.61%	5.02%	34.75/32.38%	
C/E Weighted (Rev)	56.71%	52.44%	50.40%	58.20%	4.49%	4.90%	34.00/31.75%	
Basic Only	57.32%	53.05%	50.60%	58.20%	4.05%	4.66%	40.25/33.00%	
Edge Only	55.49%	50.61%	50.20%	56.08%	3.75%	4.42%	35.50/31.50%	
Complex Only	59.76%	54.88%	51.80%	55.29%	3.46%	4.54%	36.13/33.38%	
Qwen2.5-Coder-7B-Instruct								
Base	85.98%	79.27%	75.60%	69.05%	10.89%	13.86%	66.38/66.13%	
Uniform	85.76%	79.27%	77.20%	72.49%	13.98%	17.68%	66.50/66.38%	
B/I Weighted	84.76%	78.66%	77.60%	71.96%	13.32%	17.44%	68.38/65.88%	
C/E Weighted	87.80%	82.32%	76.20%	70.90%	14.94%	19.24%	66.25/ 67.13%	
C/E Weighted (Rev)	88.41%	81.10%	75.00%	71.42%	13.98%	19.12%	68.63/65.00%	
Basic Only	85.98%	79.88%	76.20%	71.96%	14.86%	19.47%	67.50/66.38%	
Edge Only	79.02%	81.07%	77.20%	71.96%	12.14%	19.12%	68.75/66.00%	
Complex Only	87.80%	80.49%	76.60%	70.90%	14.35%	18.16%	67.75/66.50%	
Qwen2.5-Coder-3B-Instruct								
Base	79.27%	75.00%	62.20%	66.93%	3.90%	9.80%	53.38/53.75%	
Uniform	81.10%	76.83%	62.00%	67.20%	7.21%	10.75%	54.00/54.75%	
B/I Weighted	81.71%	78.05%	61.40%	66.93%	6.70%	9.80%	54.25/53.38%	
C/E Weighted	79.88%	76.83%	61.00%	67.46%	8.02%	10.51%	56.75/53.50%	
C/E Weighted (Rev)	82.32%	77.44%	62.00%	68.52%	8.17%	10.75%	52.63/55.13%	
Basic Only	80.49%	76.22%	62.80%	66.67%	7.95%	13.14%	55.88/ 55.88%	
Edge Only	79.27%	75.00%	62.60%	66.14%	7.21%	10.63%	53.75/53.25%	
Complex Only	78.05%	73.78%	63.00%	67.72%	7.65%	10.63%	53.13/55.25%	
Qwen2.5-Coder-1.5B-Instruct								
Base	68.29%	63.41%	52.60%	63.49%	2.06%	3.46%	44.38/36.38%	
Uniform	71.34%	65.24%	52.80%	62.96%	4.56%	4.42%	44.75/36.38%	
B/I Weighted	72.56%	64.02%	55.80%	62.70%	4.19%	4.66%	45.13/35.75%	
C/E Weighted	71.34%	66.65%	54.60%	62.96%	3.46%	4.42%	45.13/ 38.00%	
C/E Weighted (Rev)	72.56%	64.20%	54.20%	62.96%	3.38%	4.18%	45.25/37.00%	
Basic Only	70.12%	64.02%	54.00%	64.76%	4.49%	4.66%	43.25/36.00%	
Edge Only	72.56%	67.10%	53.60%	62.17%	4.56%	5.02%	44.86/35.63%	
Complex Only	71.34%	66.46%	53.20%	63.49%	3.31%	4.54%	43.75/37.36%	

1022
1023
1024
1025

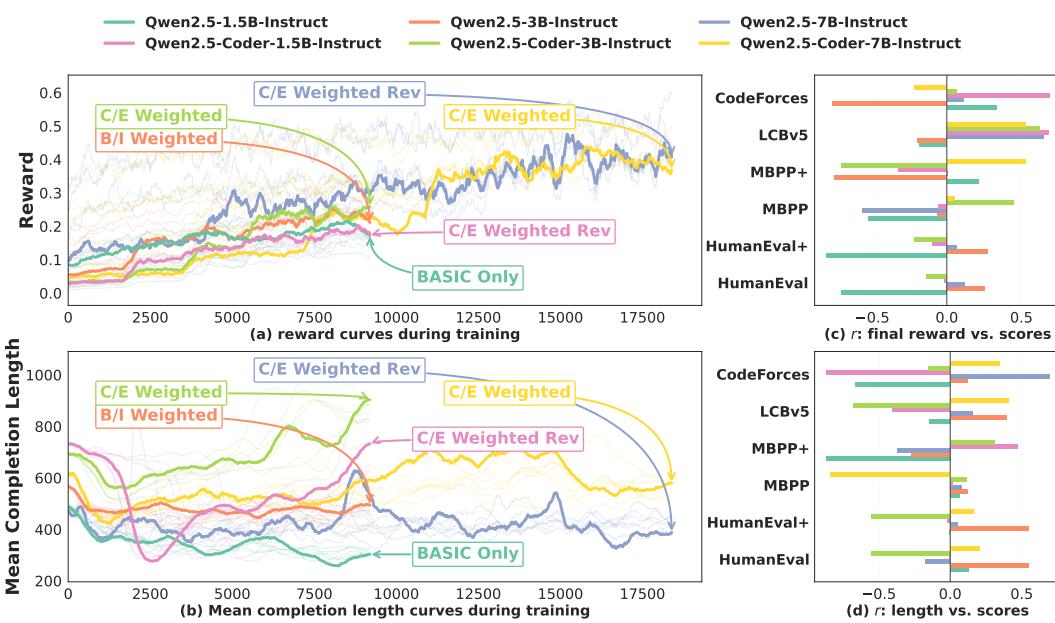


Figure 8: Training dynamics vs. downstream performance. (a) and (b) show the reward and the mean completion length curves during reinforcement fine-tuning, and the annotations mark the curriculum strategy with the best average downstream performance. (c) and (d) show the Pearson correlation coefficient r of the final rewards vs. benchmark scores and the mean completion length vs. benchmark scores, respectively. Light, semi-transparent lines represent alternative curriculum strategies, while the solid, annotated lines correspond to the best-performing strategy for each model. Some trajectories terminate earlier than others because different model sizes utilize varying batch sizes and gradient accumulation steps under a fixed total compute budget.

requirements and execution timeouts enforced by the sandbox, which the models quickly adapt to during the early stages of fine-tuning. This pattern suggests that the policy learns the training distribution well and that stronger models achieve higher reward levels under the same curriculum. However, the reward observed during training does not reliably anticipate downstream benchmark outcomes. As shown in Figure 8 (c), the final reward has only a weak Pearson correlation coefficient with benchmark scores, which means that runs with similar rewards can still deliver very different levels of task performance.

Conciseness as a Proxy for Advanced Reasoning. A different perspective comes from analyzing completion length. Figure 8 (b) shows that models with greater capability tend to produce shorter solutions as training progresses, and this tendency becomes more pronounced for stronger configurations. Importantly, Figure 8 (d) indicates that mean completion length exhibits a stronger negative correlation with benchmark scores than the reward does, implying that conciseness aligns better with final solution quality. Shorter programs are more likely to capture the essential reasoning steps without unnecessary detours, whereas longer outputs often reflect uncertainty or inefficient search. These observations support using solution conciseness as a practical secondary proxy for advanced reasoning quality, complementing the reward based perspective and providing a more informative early indicator of downstream performance.

I SAMPLE TIERED TEST CASES

Table 9- 18 present concrete examples of the four-tiered test cases generated for several problems in the TAROT dataset. These samples illustrate a clear and intentional progression in difficulty and scope, which is a cornerstone of our framework.

1080 The tiers are generally designed to validate different aspects of a solution. Basic tiers focus on
1081 the core logic of a problem with simple, straightforward inputs. Following this, intermediate and
1082 complex tiers introduce greater difficulty through larger inputs, more intricate scenarios, or patterns
1083 requiring more sophisticated algorithmic reasoning. Finally, edge tiers are designed to test for ro-
1084 bustness by probing boundary conditions, constraints, and performance-intensive cases such as large
1085 numbers or long strings. This tiered structure exemplifies the intra-problem difficulty gradient that
1086 forms the basis of our capability-adaptive curriculum.

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 Table 9: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex,
 1135 and edge. The Reason column details the rationale for each tier assignment.

1136	Solve the following coding problem using the programming language python:				
1137	You are given two positive integer numbers a and b . Permute (change order) of the digits of a to construct maximal number not exceeding b . No number in input and/or output can start with the digit 0.				
1138					
1139	It is allowed to leave a as it is.				
1140					
1141	Input				
1142	The first line contains integer a ($1 \leq a \leq 10^{18}$). The second line contains integer b ($1 \leq b \leq 10^{18}$). Numbers don't have leading zeroes. It is guaranteed that answer exists.				
1143					
1144	Output				
1145	Print the maximum possible number that is a permutation of digits of a and is not greater than b . The answer can't have any leading zeroes. It is guaranteed that the answer exists. The number in the output should have exactly the same length as number a . It should be a permutation of digits of a .				
1146					
1147	Examples				
1148	Input				
1149	123 222				
1150					
1151	Output				
1152	213				
1153					
1154	Input				
1155	3921 10000				
1156					
1157	Output				
1158	9321				
1159					
1160	Input				
1161	4940 5000				
1162					
1163	Output				
1164	4940				
1165					
1166	Input				
1167					
1168	Output				
1169	The input will be given via stdin and the output should be printed to stdout by your code.				
1170					
1171	Now solve the problem by providing the code.				
1172					
1173					
1174	Test cases	Basic	Intermediate	Complex	Edge
1175	Input	21	3051	98761230	111222333444555666
1176		12	5310	98765000	1000000000000000000
1177	Output	12	5310	98763210	666555444333222111
1178	Reason	A simple 2-digit case where swapping the digits yields the only valid permutation \leq bound, illustrating the happy path.	A 4-digit case including zero, requiring the algorithm to match the upper bound exactly with a permutation of the digits.	An 8-digit case where matching the bound fails at a later position, forcing backtracking and a maximal tail fill.	An extreme boundary case with an 18-digit input and a longer 19-digit bound, where any valid permutation fits, so the result is the digits sorted in descending order.
1179					
1180					
1181					
1182					
1183					
1184					
1185					
1186					
1187					

1188
1189 Table 10: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.

He has created a method to know how strong his army is. Let the i -th soldier's strength be a_i . For some k , we call the indices i_1, i_2, \dots, i_k a clan if $i_1 < i_2 < \dots < i_k$ and $\text{gcd}(a_{i_1}, a_{i_2}, \dots, a_{i_k}) > 1$. The strength of that clan is defined as $\text{gcd}(a_{i_1}, a_{i_2}, \dots, a_{i_k})$. The strength of the army is defined by the sum of the strengths of all possible clans.

Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 ($10^9 + 7$).

Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.

-----Input-----

The first line contains integer n ($1 \leq n \leq 200000$) – the size of the army. The second line contains n integers a_1, a_2, \dots, a_n ($1 \leq a_i \leq 1000000$) – denoting the strengths of his soldiers.

-----Output-----

Print one integer – the strength of John Snow's army modulo 1000000007 ($10^9 + 7$).

-----Examples-----

Input
3
3 3 1

Output
12

Input
4
2 3 4 6

Output
39

-----Note-----

In the first sample the clans are $\{1\}, \{2\}, \{1, 2\}$ so the answer will be $1 \cdot 3 + 1 \cdot 3 + 2 \cdot 3 = 12$

The input will be `stdin` and you should print your solution to `stdout`

Now solve the problem and return the code.

Test cases	Basic	Intermediate	Complex	Edge
Input	4 2 3 5 7	6 2 4 8 3 9 6	7 2 2 2 2 2 2 2	5 1 1 1 1 1
Output	17	119	896	0
Reason	All strengths are prime, so only single-soldier clans contribute.	Mix of primes and composites yields clans of various sizes and gcds.	Uniform strengths where every nonempty subset is a valid clan ($\text{gcd} \geq 1$); result is zero.	All strengths are 1, so no clan has $\text{gcd} < 1$; result is zero.

1242 Table 11: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge.
 1243 The Reason column details the rationale for each tier assignment.

	Solve the following coding problem using the programming language python:				
1244	A permutation – is a sequence of length n integers from 1 to n , in which all the numbers occur exactly once. For example, $[1], [3, 5, 2, 1, 4], [1, 3, 2]$ – permutations, and $[2, 3, 2], [4, 3, 1], [0]$ – no.				
1245	Polycarp was recently gifted a permutation $a[1 \dots n]$ of length n . Polycarp likes trees more than permutations, so he wants to transform permutation a into a rooted binary tree. He transforms an array of different integers into a tree as follows:				
1246	<ul style="list-style-type: none"> • The maximum element of the array becomes the root of the tree; • All elements to the left of the maximum – form a left subtree (which is built according to the same rules but applied to the left part of the array), but if there are no elements to the left of the maximum, then the root has no left child; • All elements to the right of the maximum – form a right subtree (which is built according to the same rules but applied to the right side of the array), but if there are no elements to the right of the maximum, then the root has no right child. 				
1247	For example, if he builds a tree by permutation $a = [3, 5, 2, 1, 4]$, then the root will be the element $a_2 = 5$, and the left subtree will be the tree that will be built for the subarray $a[1 \dots 1] = [3]$, and the right one – for the subarray $a[3 \dots 5] = [2, 1, 4]$. As a result, the following tree will be built:				
1248	<image> The tree corresponding to the permutation $a=[3, 5, 2, 1, 4]$.				
1249	Another example: let the permutation be $a=[1, 3, 2, 7, 5, 6, 4]$. In this case, the tree looks like this:				
1250	<image> The tree corresponding to the permutation $a=[1, 3, 2, 7, 5, 6, 4]$.				
1251	Let us denote by d_v the depth of the vertex a_v , that is, the number of edges on the path from the root to the vertex numbered a_v . Note that the root depth is zero. Given the permutation a , for each vertex, find the value of d_v .				
1252	Input				
1253	The first line contains one integer t ($1 \leq t \leq 100$) – the number of test cases. Then t test cases follow. The first line of each test case contains an integer n ($1 \leq n \leq 100$) – the length of the permutation. This is followed by n numbers a_1, a_2, \dots, a_n – permutation a .				
1254	Output				
1255	For each test case, output n values – d_1, d_2, \dots, d_n .				
1256	Example				
1257	Input				
1258	3 5 3 5 2 1 4 1 1 4 4 3 1 2				
1259	Output				
1260	1 0 2 3 1 0 0 1 3 2				
1261	The input will be stdin and you should print your solution to stdout				
1262	Now solve the problem and return the code.				
1263					
1264					
1265					
1266					
1267					
1268					
1269					
1270					
1271					
1272					
1273					
1274					
1275					
1276					
1277					
1278					
1279					
1280					
1281					
1282					
1283					
1284					
1285					
1286	Test cases	Basic	Intermediate	Complex	Edge
1287	Input	1 3 1 2 3	2 4 2 1 4 3 5 5 4 3 2 1	1 10 3 8 2 5 10 9 1 7 4 6	1 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1288	Output	2 1 0	1 2 0 1 0 1 2 3 4	2 1 3 2 0 1 3 2 4 3	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1289	Reason	Simple ascending permutation forming a left-skewed tree under normal conditions.	Includes a mixed permutation and a strictly decreasing permutation to test right-skewed tree and boundary values.	Complex permutation of length 10 to test multiple recursion levels and both left and right subtrees.	Maximum ascending chain of length 15 to test deep recursion and large boundary condition.

Table 12: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge. The Reason column details the rationale for each tier assignment.

Test cases	Basic	Intermediate	Complex	Edge
Input	4 7 3 2 4 1 1 5 2 2 0 0	6 12 5 3 2 0 7 2 3 3 4 1 6 2 0 0	10 30 10 1 5 5 8 5 6 3 12 2 4 5 7 3 9 4 3 0 11 2 0 0	3 0 5 2 10 4 7 3 4 100 5 2 10 4 7 3 8 0 2 1000 100 0 200 0 0 0
Output	3	22	83	71 0 0
Reason	Simple scenario with multiple segments and straightforward positive Pi values; tests basic greedy coverage under a limited budget.	Moderate number of segments including Pi=0, ensuring segments with no attacks are ignored and budget partially covers higher-Pi segments.	Larger set of segments with ties in Pi values and varied distances, requiring correct sorting and partial coverage among equal-Pi segments.	Edge conditions including zero budget, budget exceeding total distance, and segments with Pi=0 to verify no-protection and full-protection behaviors.

1350 Table 13: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge.
 1351 The Reason column details the rationale for each tier assignment.

	Solve the following coding problem using the programming language python:				
1353		Valera loves his garden, where n fruit trees grow.			
1354					
1355		This year he will enjoy a great harvest! On the i -th tree b_i fruit grow, they will ripen on a day number a_i . Unfortunately, the fruit on the tree get withered, so they can only be collected on day a_i and day $a_i + 1$ (all fruits that are not collected in these two days, become unfit to eat).			
1356					
1357					
1358					
1359		Valera is not very fast, but there are some positive points. Valera is ready to work every day. In one day, Valera can collect no more than v fruits. The fruits may be either from the same tree, or from different ones. What is the maximum amount of fruit Valera can collect for all time, if he operates optimally well?			
1360					
1361					
1362					
1363	-----Input-----				
1364		The first line contains two space-separated integers n and v ($1 \leq n, v \leq 3000$) – the number of fruit trees in the garden and the number of fruits that Valera can collect in a day.			
1365					
1366					
1367		Next n lines contain the description of trees in the garden. The i -th line contains two space-separated integers a_i and b_i ($1 \leq a_i, b_i \leq 3000$) – the day the fruits ripen on the i -th tree and the number of fruits on the i -th tree.			
1368	-----Output-----				
1369		Print a single integer – the maximum number of fruit that Valera can collect.			
1370	-----Examples-----				
1371	Input				
1372	2 3				
1373	1 5				
1374	2 3				
1375	Output				
1376	8				
1377	Input				
1378	5 10				
1379	3 20				
1380	2 20				
1381	1 20				
1382	4 20				
1383	5 20				
1384	Output				
1385	60				
1386	-----Note-----				
1387	In the first sample, in order to obtain the optimal answer, you should act as follows. On the first day collect 3 fruits from the 1-st tree. On the second day collect 1 fruit from the 2-nd tree and 2 fruits from the 1-st tree. On the third day collect the remaining fruits from the 2-nd tree.				
1388					
1389	In the second sample, you can only collect 60 fruits, the remaining fruit will simply wither.				
1390					
1391	The input will be <code>stdin</code> and you should print your solution to <code>stdout</code>				
1392					
1393	Now solve the problem and return the code.				
1394	Test cases	Basic	Intermediate	Complex	Edge
1395	Input	2 5 1 3 3 4	3 1 1 2 2 2 3 2	5 5 1 4 2 6 2 3 5 10 6 2	2 1000 2999 1500 3000 2500
1396					
1397					
1398					
1399	Output	7	4	25	3000
1400	Reason	No overlapping ripening days and capacity exceeds daily fruits; collect all fruits on their ripening days.	Capacity is only 1 per day with overlapping two-day windows; requires optimal scheduling across consecutive days.	Multiple trees ripen on the same days, gaps between ripening days, and moderate capacity to stress multi-day planning.	Ripening on the maximum allowed days (2999 and 3000) tests boundary handling and two-day collection windows at the end of the range.
1401					
1402					
1403					

1404 Table 14: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
 1405 plex, and edge. The Reason column details the rationale for each tier assignment.

	Test cases	Basic	Intermediate	Complex	Edge
1453	Input	abab	abacaba	abababab	z
1454	Output	3	6	10	1
1455	Reason	A simple alternating pattern to validate basic subsequence counting.	Mixed letters and repeating patterns to test moderately complex subsequences.	Longer alternating pattern to stress test counting of many arithmetic-progression subsequences.	Minimal input length boundary case.

Table 15: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge. The Reason column details the rationale for each tier assignment.

Test cases	Basic	Intermediate	Complex	Edge
Input	1 4 2 1 1 1 4	2 7 4 3 2 2 4 5 4 6 5 1 0 2 3 5	3 1000000000000 1000000000000 2 3 1 1000000000000 5000000000000 1 999999999999 20 15 5 5 1 2 3 4 5 4 5 6 7 8 50 100 3 2 10 20 30 30 40	2 0 0 5 10 3 3 1 2 3 3 4 5
Output	2	3 1	999999999996 12 46	0 0
Reason	Basic test with a single test case, non-empty X and Y sets without overlap, validating core functionality.	Medium complexity with multiple test cases, overlapping X and Y in the first, and an empty X set in the second.	High complexity with very large N and R values, moderate X and Y sizes, and multiple test cases to stress-test the implementation.	Edge case with maximum boundary values and zero scholarships in the first, and X and Y covering all participants in the second, testing empty sets and full exclusion.

Table 16: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge. The Reason column details the rationale for each tier assignment.

	Test cases	Basic	Intermediate	Complex	Edge
1551	Input	4 + 4 5 ? 5 4 ? 4 4 ? 6 4	7 + 2 7 + 3 3 + 7 2 ? 3 7 ? 4 6 + 10 1 ? 10 5	13 + 5 5 + 6 4 + 9 1 ? 5 5 ? 9 1 ? 4 9 + 2 8 ? 8 9 + 7 7 ? 7 7 ? 8 7 ? 10 8 ? 6 6	8 + 1000000000 1 + 1 1000000000 + 500000000 500000000 ? 1000000000 1000000000 ? 999999999 1000000000 ? 1000000000 499999999 + 1000000000 1000000000 ? 1000000000 1000000000
1552	Output	YES NO YES YES NO	YES NO NO YES NO NO YES NO	NO NO YES NO YES YES NO	YES YES NO YES
1553	Reason	Single bill with queries testing orientation and size validation under straightforward conditions.	Multiple bills including duplicates and interleaved adds and queries testing correct global dimension tracking.	Complex interleaving of many adds and queries with varying dimensions to stress test global maximum computations.	Extreme boundary values testing maximum limits and strict comparison edge where one dimension is just below requirement.

Table 17: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:				
1568 Valera had an undirected connected graph without self-loops and multiple edges consisting of n vertices. The graph had an interesting property: there were at most k edges adjacent to each of its vertices. For convenience, we will assume that the graph vertices were indexed by integers from 1 to n .				
1569 One day Valera counted the shortest distances from one of the graph vertices to all other ones and wrote them out in array d .				
1570 Thus, element $d[i]$ of the array shows the shortest distance from the vertex Valera chose to vertex number i .				
1571 Then something irreparable terrible happened. Valera lost the initial graph. However, he still has the array d . Help him restore the lost graph.				
1572				
1573				
1574				
1575				
1576				
1577				
1578				
1579				
1580				
1581				
1582				
1583				
1584				
1585				
1586				
1587				
1588				
1589				
1590				
1591				
1592				
1593				
1594				
1595				
1596				
1597				
1598				
1599				
1600				
1601				
1602				
1603				
1604				
1605				
1606				
1607				
1608				
1609				
1610				
1611				
1612				
1613				
1614				
1615				
1616				
1617				
1618				
1619				
The input will be given via stdin and the output should be printed to stdout by your code.				
Test cases	Basic	Intermediate	Complex	Edge
Input	4 2 0 1 1 2	7 3 0 1 2 2 1 2 3	10 3 0 1 1 2 2 2 2 2 3	5 3 0 2 2 3 3
Output	3 1 2 1 3 2 4	6 1 2 1 5 2 3 2 4 5 6 3 7	9 1 2 1 3 1 4 2 5 2 6 3 7 3 8 4 9 5 10	-1
Reason	Simple BFS tree with one level-2 vertex.	Moderately sized tree with branching and various depths.	Larger tree with multiple branches and depth-3 leaf.	No vertices at distance 1, invalid distance sequence

1620 Table 18: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
 1621 plex, and edge. The Reason column details the rationale for each tier assignment.

1622	Solve the following coding problem using the programming language python:				
1623	The game of Berland poker is played with a deck of n cards, m of which are jokers. k players play this game (n is divisible by k).				
1624	At the beginning of the game, each player takes $\frac{n}{k}$ cards from the deck (so each card is taken by exactly one player). The player who has the maximum number of jokers is the winner, and he gets the number of points equal to $x - y$, where x is the number of jokers in the winner's hand, and y is the maximum number of jokers among all other players. If there are two or more players with maximum number of jokers, all of them are winners and they get 0 points.				
1625	Here are some examples: $n = 8$, $m = 3$, $k = 2$. If one player gets 3 jokers and 1 plain card, and another player gets 0 jokers and 4 plain cards, then the first player is the winner and gets $3 - 0 = 3$ points; $n = 4$, $m = 2$, $k = 4$. Two players get plain cards, and the other two players get jokers, so both of them are winners and get 0 points; $n = 9$, $m = 6$, $k = 3$. If the first player gets 3 jokers, the second player gets 1 joker and 2 plain cards, and the third player gets 2 jokers and 1 plain card, then the first player is the winner, and he gets $3 - 2 = 1$ point; $n = 42$, $m = 0$, $k = 7$. Since there are no jokers, everyone gets 0 jokers, everyone is a winner, and everyone gets 0 points.				
1626	Given n , m and k , calculate the maximum number of points a player can get for winning the game.				
1627	-----Input-----				
1628	The first line of the input contains one integer t ($1 \leq t \leq 500$) the number of test cases.				
1629	Then the test cases follow. Each test case contains three integers n , m and k ($2 \leq n \leq 50$, $0 \leq m \leq n$, $2 \leq k \leq n$, k is a divisor of n).				
1630	-----Output-----				
1631	For each test case, print one integer the maximum number of points a player can get for winning the game.				
1632	-----Example-----				
1633	Input				
1634	4				
1635	8 3 2				
1636	4 2 4				
1637	9 6 3				
1638	42 0 7				
1639	Output				
1640	3				
1641	0				
1642	1				
1643	0				
1644	-----Note-----				
1645	Test cases of the example are described in the statement.				
1646	The input will be stdin and you should print your solution to stdout				
1647	Now solve the problem and return the code.				
1648					
1649					
1650					
1651					
1652					
1653					
1654					
1655					
1656					
1657					
1658					
1659					
1660	Test cases	Basic	Intermediate	Complex	Edge
1661	Input	3 9 2 3 12 5 4	5 20 10 5 15 3 5	7 50 25 25 49 49 7	6 2 0 2 2 2 2
1662		6 5 3	10 10 2 14 7 7 18 17 3	48 20 6 30 0 5 32 16 4 45 23 9 28 14 7	50 0 25 50 50 50 50 25 5 50 1 2
1663	Output	2 2 0	2 3 0	1 0 5 0	0 0 0
1664			1 0 1 0	0 5 6	
1665				2 2	1
1666	Reason	Simple small cases covering scenarios where jokers are fewer than, equal to, or exceed the per-player limit.	Moderate-sized inputs, testing exact division of jokers, no jokers, and tied maximum distributions.	Varied larger values including big decks, testing heavy distributions and zero-joker scenarios.	Extreme boundary conditions with minimal and maximal n, k, and m values to test edge handling.
1667					
1668					
1669					
1670					
1671					
1672					
1673					
