Under review as a conference paper at ICLR 2026

TAROT: TEST-DRIVEN AND CAPABILITY-ADAPTIVE
CURRICULUM REINFORCEMENT FINE-TUNING FOR
CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are fundamentally changing the coding
paradigm, known as vibe coding, yet synthesizing algorithmically sophisticated
and robust code still remains a critical challenge. Incentivizing the deep reasoning
capabilities of LLMs is essential to overcome this hurdle. Reinforcement Fine-
Tuning (RFT) has emerged as a promising strategy to address this need. However,
most existing approaches overlook the heterogeneous difficulty and granularity
inherent in test cases, leading to an imbalanced distribution of reward signals and
consequently biased gradient updates during training. To address this, we propose
“TAROT”, Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-
Tuning. TAROT systematically constructs, for each problem, a four-tier test suite
(basic, intermediate, complex, edge), providing a controlled difficulty landscape
for curriculum design and evaluation. Crucially, TAROT decouples curriculum
progression from raw reward scores, enabling capability-conditioned evaluation
and principled selection from a portfolio of curriculum policies rather than in-
cidental test-case difficulty composition. This design fosters stable optimization
and more efficient competency acquisition. Extensive experimental results reveal
that the optimal curriculum for reinforcement fine-tuning in code generation is
closely tied to a model’s inherent capability, with less capable models achieving
greater gains with an easy-to-hard progression, whereas more competent models
excel under a hard-first curriculum. TAROT provides a reproducible method that
adaptively tailors curriculum design to a model’s capability, thereby consistently
improving the functional correctness and robustness of the generated code. All
code and data are released to foster reproducibility and advance community re-
search athttps://anonymous.4open.science/r/TAROT-B675/.

1 INTRODUCTION

Large Language Models (LLMs) are driving significant changes in software engineering, with auto-
mated code generation emerging as a pivotal application (Du et al.}|2024; Jiang et al., [2024). Foun-
dational models exhibit a strong capacity to translate natural language specifications into functional
code, promising significant enhancements in developer productivity (Weber et al.l 2024). Never-
theless, advancing the frontier toward synthesizing algorithmically sophisticated and highly robust
solutions remains a critical challenge (Zhuo et al., [2025). The next key step hinges on significantly
augmenting the deep reasoning and problem-solving faculties of these models.

Curriculum Learning (CL), a methodology that structures training data by difficulty (Bengio et al.,
2009)), presents a promising avenue for cultivating these capabilities and improving training effi-
ciency. However, existing applications of CL in code generation primarily focus on sequencing
entire problems based on coarse difficulty metrics (Nair et al., 2024} [Khant et al., 2025). While
this inter-problem curriculum is intuitive, it neglects the nuanced, intra-problem difficulty gradient
inherent in software verification. Human developers naturally employ practices like Test-Driven De-
velopment (TDD) (Beck, |2003)), incrementally refining a solution against increasingly complex test
cases to ensure robustness. Yet, this natural curriculum axis remains largely untapped in LLM train-
ing. Furthermore, reliance on problem-level sequencing often leads to flat reward landscapes when
integrated with Reinforcement Fine-Tuning (RFT), dampening the learning signal. This oversight

https://anonymous.4open.science/r/TAROT-B675/

Under review as a conference paper at ICLR 2026

of heterogeneous test-case difficulty results in imbalanced reward signals and consequently biased
gradient updates during training, hindering the model’s ability to acquire robust, sophisticated rea-
soning skills.

Furthermore, while the trend in curriculum learning for LLMs is shifting towards more dynamic
approaches that progressively increase task complexity (Xu et al., 2024; (Cheng et al.| [2025)), these
methods predominantly define difficulty based on the intrinsic properties of the data or the task
structure. For instance, curricula are often structured using automated metrics of the source code
itself, such as cyclomatic complexity (Nair et al., 2024), or by decomposing a problem into a fixed
sequence of simpler subtasks (Dou et al., 2024). This prevailing focus on the data, rather than the
learner, overlooks the crucial variable of the model’s own evolving and multi-faceted capability.
A curriculum tailored to an early-stage model may cause learning stagnation for a more advanced
one, while a curriculum designed for experts can overwhelm a less-capable model and hinder its
convergence. Therefore, for a more holistic approach to effective learning, curriculum design should
consider not only the intrinsic properties of the data but also the evolving capabilities of the model
itself, leading to a capability-adaptive framework.

To address these limitations, we introduce TAROT, a novel framework for Test-driven and
cApability-adaptive cuRriculum reinfOrcement fine-Tuning. Crucially, TAROT decouples curricu-
lum progression from raw reward scores, enabling capability-conditioned evaluation and principled
selection from a portfolio of curriculum policies rather than incidental test-case difficulty compo-
sition. This design fosters stable optimization and more efficient competency acquisition. The
framework’s novelty is twofold. First, TAROT operationalizes the concept of an intra-problem dif-
ficulty gradient through a novel, test-driven curriculum. To instantiate this gradient, which is absent
in standard coding datasets, we constructed the TAROT dataset. Each coding problem is system-
atically augmented with a test suite built upon four tiers of difficulty including basic, intermediate,
complex, and edge cases. This structure defines difficulty as a spectrum of functional correctness.
This engineered gradient directly counteracts the flat reward landscape common in RL, providing a
structured and nuanced signal for learning robust solutions.

Second, we study capability-adaptive curriculum design. Given the TAROT dataset, we instanti-
ate a portfolio of curriculum policies that vary along three axes, namely allocation across tiers, the
sequence and proportion of tiers, and reward weighting across tiers. This setup enables capability-
conditioned evaluation and principled selection among policies for models differing in effective
capability influenced by model scale and specialization. Our central thesis is that the optimal learn-
ing path is capability dependent. In particular, less-capable models learn best with basic to complex
progression, whereas more-capable models learn best by focusing on complex tiers.

To validate this thesis, this paper introduces the TAROT framework and demonstrate/s its effective-
ness through comprehensive experiments, making the following primary contributions:

* A novel intra-problem, test driven curriculum for code generation, embodied in the new
TAROT dataset. Each problem in our dataset is augmented with a four-tiered test suite
(basic, intermediate, complex, edge cases) to provide a granular difficulty landscape and
enable nuanced reward modeling.

* A capability conditioned study and guideline for curriculum design in code generation.
We present a portfolio of curriculum policies in allocation sequence and reward weighting
together with a reproducible evaluation protocol for capability conditioned comparison and
principled selection informed by the characteristics of model capability such as scale and
specialization.

* Comprehensive empirical validation demonstrating the effectiveness of TAROT. All models
are fine-tuned using GRPO to leverage verifiable code execution rewards. Our experiments
show that our capability-adaptive approach significantly improves model performance and
training efficiency compared to the baselines.

2 RELATED WORKS

Our work is positioned at the intersection of two key research domains: curriculum learning for
structuring pedagogical data, and reinforcement learning for policy optimization in code generation.
We review prior work in these areas and highlight how TAROT offers a novel synthesis of both.

Under review as a conference paper at ICLR 2026

2.1 CURRICULUM LEARNING FOR CODE

Curriculum Learning (CL) is a training strategy inspired by human cognition that presents data to
a model in a structured order, typically from simple to complex examples (Bengio et al.l 2009).
This method has been shown to accelerate convergence and improve generalization by guiding opti-
mization toward better solutions. In the context of Large Language Models (LLMs), curricula have
been implemented in various ways, such as using a teacher model to progressively generate more
complex instructions, as seen in the Evol-Instruct method (Xu et al [2024), or by fine-tuning on a
small set of meticulously curated, high-quality examples as demonstrated by LIMA (Zhou et al.,
2023). For code generation, where task complexity varies widely, CL is a particularly promising
but challenging area. While many code datasets rely on manual difficulty labels, recent research has
focused on more systematic approaches. A notable example is the use of automatic difficulty met-
rics, combining measures like cyclomatic complexity and Halstead difficulty, to sort problems into a
multi-stage curriculum (Nair et al.,[2024)). Training with this structured approach yielded significant
gains, demonstrating the value of CL in the code domain. Other methods, like StepCoder, create
an implicit curriculum by breaking a complex problem into a sequence of simpler code-completion
subtasks (Dou et al.|[2024)). These efforts show a clear trend towards leveraging curricula to organize
the training process for code generation. Our work contributes to this line of research by proposing
a novel method to generate a tiered test suite that serves as the basis for our curriculum.

2.2 REINFORCEMENT FINE-TUNING FOR CODE LLMSs

Reinforcement Learning (RL) is a dominant paradigm for aligning LLMs with desired behaviors,
using techniques like RLHF (Ouyang et al.| [2022), DPO (Rafailov et al., [2023), PPO (Schulman
et al., 2017), GRPO (Shao et al.l [2024), and GSPO (Zheng et al., 2025). In code generation, RL
is adapted to optimize for functional correctness, typically using unit test outcomes as a reward
signal. This “RL from unit test feedback™ approach, while effective, often suffers from two key
limitations: a sparse and “flat” reward landscape. The reward is sparse because a model gets no
learning signal on complete failure, and it is flat because all successful solutions receive the same
reward, regardless of the problem’s difficulty. This flatness, where all successful solutions receive
a similar reward regardless of the challenge, generates imbalanced reward signals that can lead
to biased gradient updates. Recent work has begun to address these shortcomings. To combat
sparse rewards, Process Reward Models have been introduced to provide dense, line-level feedback,
guiding the model even when the final code is incorrect (Dai et al., [2025). To address the flat
reward landscape, researchers are exploring ways to incorporate a sense of difficulty into the learning
process. The idea of combining RL with a curriculum is gaining traction. For instance, some
approaches use RL to guide a model through a curriculum of subtasks, while others dynamically
adjust the curriculum during RL training using techniques like the Self-Evolving Curriculum, which
treats problem selection as a multi-armed bandit problem to maximize learning progress (Chen et al.,
20235)). Our TAROT framework specifically addresses the flat reward problem by making the reward
signal itself curriculum-aware. Instead of treating all successes equally, we modulate the reward
based on the difficulty of the solved test tier, a concept inspired by curriculum design. By integrating
this tiered reward scheme directly into a stable policy optimization algorithm, the TAROT framework
provides a more nuanced learning gradient that encourages the model to master harder problems.
This approach of infusing a static curriculum structure directly into the RL reward mechanism is a
novel contribution that complements other recent innovations in the field.

3 TAROT FRAMEWORK

In this section, we elaborate on the details of the proposed TAROT framework which enhances the
code generation capability of language models by having them solve test cases of varying difficulty
in appropriate order and rewarding weights that are adaptively determined based on the model’s
baseline capability.

Under review as a conference paper at ICLR 2026

verify based on reference solution

Solution

n Question

TC | Test Cases

generate

N Test Case;

 §

original

dataset | TTTTTTTTTT[TTTseseeeeseeeeceeeeeeeeeeecfes - TAROT Dataset
retry

(a) Build a four-tier test suite per problem

| TAROT Training

l st weighted rewards which
. N :,r I: @ tearaoy (basic / intermediate | model to
e () e .
P e -1 n asIC- 10.35/0.35/0.15/0.15 | o5
1 wR; " e focused capable
TC TCq1 +TC, +TC3 WR, [
Epoch 0 025 05 | . mid-
l uniform | 0.25/0.25/0.25/0.25

______________________________________ rewards capable

e bosic riiemedate reomplex e otpex_edge Hlemedaie MBI 15015 /036 /035 oM
il 0 0.25 0.5 9 0 0.25 0.5 ocuse capable

duration

for less capable models (i.e., Qwen-2.5-1.5B-IT) for more capable models (i.e., Qwen-2.5-7B-IT)

(b)) RFT under a capability-conditi: reward-d led curriculum (c) Tier-weight templates

Figure 1: Overview of TAROT framework. (a) Build a four-tier test suite (basic/intermediate/-
complex/edge) per problem using frontier LLMs and verify them against the reference solution.
(b) Reinforcement fine-tuning under a capability-conditioned, reward-decoupled curriculum. Less
capable models perform best with basic — complex, whereas more capable models perform best
with complex — basic. (c) Tier-weight templates specifying reward weights for basic, intermediate,
complex, and edge, with suggested use by capability buckets.

3.1 TAROT DATASET

A coding problem, denoted as P, is formally defined as a tuple consisting of three core components:
a problem statement (S), a reference solution (R), and a set of test suite (7). This relationship can
be expressed as:

P=(S,R,T) (1

In this structure, the problem statement S outlines the task, and the reference solution R provides
a correct implementation. The primary purpose of the test suite, T, is to serve as a final validation
mechanism to verify the correctness of a solver’s proposed solution, but they are not designed to
facilitate users’ incremental learning processes. Consequently, the number and nature of test cases
can vary significantly. For instance, a problem’s test suite might consist of a single, simple case to
verify the primary logic, or conversely, focus exclusively on complex edge cases, neither of which
is structured to support a step-by-step learning process.

From a software engineering perspective, development is commonly test-driven. It begins with sim-
ple tests and progressively adds more complex and edge cases; implementations are refactored along
the way, strengthening correctness and design. This staged expansion of the test suite mirrors the
intuition behind curriculum learning. However, the test suite accompanying typical coding problems
are not authored with this incremental pedagogy in mind. They are primarily designed for summa-
tive verification rather than stepwise scaffolding, so both their cardinality and difficulty mix vary
widely and arbitrarily across problems.

To address the absence of a pedagogical structure, we introduce the TAROT dataset Dyagror, con-
structed by the procedure depicted in Figure [T] (a). Each problem in the dataset is augmented by
incorporating a tiered test suite organized into four predefined difficulty levels (basic, intermedi-
ate, complex, and edge), without modifying the original statement or the reference solution. This
structure is formally defined as follows:

Under review as a conference paper at ICLR 2026

N

Draror = { (Si, Ri, {Tia her) }i_ys (2)
L = {basic, intermediate, complex, edge}, 3)
Ti=J Tis,)

leL
st. Vie[N],VieL, VteT,: Pass(R;,t). %)

Here, L is the set of difficulty levels, and the full suite for each problem is the union of its per-level
subsets equationd} By construction (see equation[3)), every test case is validated against the reference
solution, ensuring data quality. Any curriculum order (e.g., basic—complex or complex—basic) is
imposed at training time and is not part of the dataset definition.

3.2 TAROT TRAINING MECHANISM

The TAROT training mechanism is designed to decouple the curriculum from raw test scores. It
achieves this by utilizing two pre-defined components: a curriculum allocator that defines a fixed
proportion of training focus for each difficulty tier [€ L, and tailored reward weights that prioritize
tiers by placing greater value where the learning signal is most beneficial. During the training
loop, the model first generates candidate solutions for a given problem. These solutions are then
executed against the tiered test cases, and the resulting pass/fail outcomes are used to calculate and
accumulate a tier-weighted return. Both the curriculum allocation and reward weights are aligned
with the model’s capability. The guiding principle is to concentrate the training signal within a zone
of optimal difficulty, which is unique to each model’s effective capability, a composite of instruction
following fidelity and baseline coding proficiency. Therefore, the entire training schedule is pre-
configured to match this profile, creating a fixed yet highly customized learning path.

Specifically, this means that models with lower baseline capability receive a larger share of basic
and intermediate cases, whereas models with higher capability are assigned more complex and edge
cases to push their frontier. The reward weights mirror this design, ensuring that successes on
capability-appropriate tiers contribute more to the final objective.

We now formulate the training objective in the reinforcement learning setting. For each problem P;
and difficulty level | € L, we define the tier-level success of a policy 7 as the average pass rate over

that tier’s tests. .
rig(m) = — Z 1{Pass(m,t)}. (6)

|7;’l teTi1

Here, Pass(, t) indicates that the solution produced under 7 satisfies test case t.

Given a curriculum allocation o = ()¢, and reward weights w = (w;);e 1., we define the TAROT
return for P; as a weighted sum over tiers.

Rparor(Pi o, w) = Y oqwyrig(r), Y or=1, w >0. (7)
leL leL

We interpret «; as the share of training effort assigned to tier /, and w; as how much a success on tier
[contributes given the model’s baseline capability. Here, each «; not only weights the contribution
of tier [to the return but also specifies the fraction of training updates allocated to that tier.

Training then maximizes the expected TAROT return over problems.

Jraror(0) = Ep,~Drsror { Rraror(P, mo; o, w) } . (8)

This formulation provides a simple yet powerful objective function. By decoupling the allocation of
training effort (o) from the valuation of success (w), the TAROT framework enables a fine-grained,
capability-matched curriculum. This approach moves beyond imposing a single, model-agnostic
learning path, instead concentrating the training signal on the most productive difficulty tiers for any
given model.

Under review as a conference paper at ICLR 2026

1.0

0.8

0.6

0.4

0.2

0.0

basic intermediate complex edge
Input Length (Relative Density) 1 0Token Diversity (Relative Density) 10 Transitions (Relative Density) 15000 Re-evaluated Tier Category
0.8 0.8 12500
10000
0.6 06| A
/ / 7500
0.4 0.4
L //\ 5000
0.2 0.2 2500
0.0 0.0 0
0 50 100 150 0 50 100 Complexity Boundary Check

Figure 2: Quantitative and qualitative validation of the TAROT dataset. The KDE plots show the
distribution of structural complexity, where the x-axis represents the metric’s magnitude. Token
Diversity (unique/total tokens) and Transitions (character class changes) serve as proxies for lexical
and syntactic complexity, respectively. The systematic rightward shift confirms increasing difficulty
across tiers. GPT-4o validation on the right confirms that complex tiers target algorithmic complex-
ity, while edge tiers focus on boundary conditions.

Table 1: Overview of the experimental schedules for curriculum learning. Each strategy varies in
reward distribution and the sequence of difficulties presented to the model. The abbreviations B,
I, C, and E correspond to basic, intermediate, complex, and edge difficulty tiers, respectively. For
staged curricula, transitions occur at 0.2, 0.4, and 0.6 of the total epoch.

4

4.

Strategy Reward Weights (B, I, C, E) Curriculum Schedule Progression
Forward (Uniform) (0.25, 0.25, 0.25, 0.25) B — (B,)) —» (B,I,C) — All
Forward (B & I Weighted) (0.35, 0.35,0.15, 0.15) B — (B,]) —» (B,I,C) — All
Forward (C & E Weighted) (0.15, 0.15, 0.35, 0.35) B — (B,)) —» (B,,C) — All
Reversed (C & E Weighted) (0.15, 0.15, 0.35, 0.35) C—(CE)— (CE]D— All
Basic Only (1.0, —, —, —) Static

Complex Only (—,—, 1.0,—) Static

Edge Only (—,—,—, 1.0) Static

EXPERIMENTS

1 EXPERIMENTAL SETTINGS

We construct a TAROT dataset based on 15k Python coding interview problemﬂ with validated
basic/intermediate/complex/edge test suites. As illustrated in Table [T} we design curriculum poli-
cies along two axes: allocation order and reward weighting. For allocation, we explore Forward
(basic—edge), Reversed (edge—basic), and Static schedules. Transitions for staged curricula oc-
cur at 0.2, 0.4, and 0.6 of the total epoch. For weighting, we define three templates: Uniform (0.25
for all tiers), B/I Weighted (emphasizing the basic and intermediate tiers), and C/Edge Weighted
(emphasizing the complex and edge tiers).

We evaluate TAROT training mechanism on a diverse suite of models, including Qwen2.5-Instruct,
Qwen2.5-Coder-Instruct (1.5B, 3B, 7B) (Qwen et al) 2025; Hui et al., 2024), Gemma-2-IT
(2B, 9B) (Team et al. |2024), and Qwen3-4B-Instruct-2507 (Yang et al., 2025) on well-known
benchmarks including HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), HumanEval+,
MBPP+ (Liu et al., 2024), LiveCodeBench v5 (Jain et al., 2024), CodeForces (Penedo et al.| [2025),
and CruxEval (Gu et al.l 2024). This selection allows us to assess the framework’s effectiveness
across a wide spectrum of model scales, architectures, coding specializations, and performance
tiers, including those at the frontier. All models are fine-tuned using GRPO (Shao et al.,|2024). Full
implementation details appear in Appendix [B]

1https ://huggingface.co/datasets/open-rl/verifiable-coding-problems—python

https://huggingface.co/datasets/open-r1/verifiable-coding-problems-python

Under review as a conference paper at ICLR 2026

Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct

100- Qwen2.5-Coder-1.5B-Instruct Qwen2.5-Coder-3B-Instruct Qwen2.5-Coder-7B-Instruct

+3.0
90- .

+1.2
+3.0 | +3.0
80-] z +3.0 [J+18 +2.0
o |3 [—
+4.3 S [+1.8| © g S k4 = — +3.4 +3.2
H - 8 +5.8 +1.6 !
70- e /ua | o +3.7 3 53 T ey -
= 5 4 S =) i} +0.0 =
= 8 E |+24| 3 | @ +0.8 £ +0.3 —
T 424 8| 2 = ® —| 2 | T o . £
9 |t = S ° ==+1.0| g = = || 2>
60- £E o0 (7} ES w 9 2 (s +5.3| 5 o <
sz S |2 R N AT =1z 3 > & (2] E S
2 = |2 > = = =
§ 2 ¢ u £ 5|2 E 2 N3 g 16128
2o ||Y | w 2 o 2 o | E ° ° o | x i
50- S £|©9 9 || o o x | 5 i s> 22
=) I o w T 2 | e = g | &2
K = | 2 2 v - s | E > @ 6|9 |E
H L) 5(131E|° S 228
a0 w g g 2/¢ = 2w
o S | = @ | O
w =@ o
) a| 2
30- =
a
20
HumanEval HumanEval+ MBPP MBPP+

Figure 3: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct on HumanEval,
HumanEval+, MBPP, and MBPP+. Scores are pass@1. Numbers above bars indicate gains in
percentage points relative to each model’s base checkpoint. Labels inside bars indicate the best
performing curriculum strategy.

4.2 EXPERIMENTAL RESULTS

To validate the empirical integrity of the TAROT dataset’s tiering, we analyzed its structure using
quantitative and qualitative metrics, as illustrated in Figure 2] The three KDE plots demonstrate a
clear progression: as the tiers advance from basic to complex, the distributions for input length, token
diversity, and character transitions all exhibit a consistent rightward shift, signifying a systematic
increase in structural complexity. Furthermore, the qualitative bar chart reveals a crucial distinction
between the two hardest tiers. It shows that test cases designed to probe complexity peak in the
complex tier, while those targeting boundary checks are overwhelmingly concentrated in the edge
tier. These complementary findings confirm that our four-level taxonomy not only stratifies overall
difficulty but also effectively separates different types of challenge, establishing a robust foundation
for the subsequent experiments.

Experimental results, illustrated in Figure [3} reveal a nuanced relationship between model scale,
specialization, and optimal curriculum design. The Qwen2.5-Instruct models exhibit a straightfor-
ward, scale-dependent trend; the largest model (7B) performs best with complex-focused strategies,
while the smallest (1.5B) benefits from a conventional basic-focused approach. However, this cor-
relation with scale does not fully explain the performance. The coding specialized Qwen2.5-Coder
models introduce a critical insight, as the mid-scale Qwen2.5-Coder-3B model displays a learning
preference akin to the much larger Instruct-7B model despite its smaller parameter count. It achieves
its peak HumanEval score using the same complex-focused strategy and decisively outperforms its
general-purpose 3B counterpart. This finding strongly suggests that a model’s prior specialization
enhances its effective capability, making it a more critical determinant of the ideal learning path than
parameter count alone.

To generalize these findings, the investigation was extended to the more recent Qwen3-4B-Instruct-
2507. As detailed in Table [2] this newer model reinforces the core thesis. The optimal curriculum
strategy, C/E Weighted, consistently outperforms the base model across all evaluated benchmarks,
yielding substantial gains ranging from +2.12 to +4.26 percentage points. Notably, these improve-
ments were achieved on a model that already possesses a strong performance baseline, confirming
that curriculum learning is an effective method for eliciting further gains even from highly capable
models. This result is significant because it demonstrates that a model’s preference for advanced,
complex-focused curricula is not merely a function of parameter count but is strongly tied to its
overall capability. The success of this strategy on a powerful, state-of-the-art Qwen3-4B-Instruct-
2507 further solidifies the argument that the most capable models benefit most from curricula that
prioritize challenging examples.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of curriculum strategies for Qwen3-4B-Instruct-2507, highlight-
ing the top-performing C/E Weighted curriculum strategy against the base model. The performance
delta is shown in percentage points.

Strategy HumanEval HumanEval+ MBPP MBPP+

Base 89.02% 78.66% 52.60% 56.61%
C/E Weighted 91.46% (+2.44pp) 82.92% (+4.26pp) 55.20% (+2.60pp) 58.73% (+2.12pp)

Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct
Qwen2.5-Coder-1.5B-Instruct Qwen2.5-Coder-3B-Instruct Qwen2.5-Coder-7B-Instruct
70- +2.4 +1.0
+1.4
- +0.1
60 +3.4 2| +2.1 o ===
T c O 2
mBar mil
50- s 5 421 9 | 8
o +0.9 o w |2 P P 20
o > > +5.0 = < £
g 2 z 2 =22 |5 e 5
£ T g g +1.6| £ o o
40- s v 2 © > - ® +1.6 “
-~ = 8 & 8 x < £ 2 > ==le o
T 3 =z £ 5 2 S T & 8 g 2 +29 & |3
0 £ - ©® w 2 > £ ¢ & @ = = w || g — =
e - 5 @ o & T 5 & 5 s | 20|32 — 5
30- @ T £ =2 S c £ & 2 9 | E = i
g 8 = © T 9 9 £ 0 £ #]
W = > = [} 2 2 - 13 2
£ 2 3 2] s 22 o} £ |5 =
T 3 w & +5.6+5.0 E = 2|« @
20- S w @ w 9 =
w O +4.0 w o s >
S +4.4 +3.3 (%) w
o
10- +4.3 129 44
+z.5+1.s’:| +1.6 +0.2 ’:‘
1) !
CodeForces LCBvV5 CruxEval (Input) CruxEval (Output)

Figure 4: Experimental results for Qwen2.5-Instruct and Qwen2.5-Coder-Instruct models on Code-
Forces, LiveCodeBench v5 (LCBvS), and CruxEval. Scores are the overall accuracy across easy,
medium, and hard problems. Numbers above bars indicate gains in percentage points relative to
each model’s base checkpoint. Labels inside bars indicate the best performing curriculum strategy.

We attribute this divergence to the “Zone of Optimal Difficulty”. For more-capable models, basic
tier is trivial and yield negligible learning signal, whereas complex tier provides the high-entropy
signal needed for improvement. Conversely, less-capable models facing Complex tiers initially suf-
fer from sparse rewards, leading to training collapse. Therefore, we recommend using basic-focused
curricula for less-capable models to ensure stability, while adopting complex-focused curricula for
more-capable or code-specialized models to maximize gradient efficiency.

4.3 IN-DEPTH ANALYSIS

Out-Of-Distribution Benchmarks Evaluations on OOD benchmarks including CodeForces,
LiveCodeBench v5, and CruxEval reveal that while TAROT consistently outperforms baselines,
the optimal curriculum strategy is highly task-dependent rather than universal (Figure). For in-
stance, Qwen2.5-7B achieved peak performance with the Basic Only curriculum on LiveCodeBench
vS, whereas the C/E Weighted strategy proved most effective for CruxEval and CodeForces. This
divergence stems from varying skill alignments between coding interview-style training data and
downstream tasks. Consequently, effective curriculum selection must account for the target do-
main’s computational structure, necessitating future research into task-specific intra-problem test
design and adaptive policy selection.

Comparison with Standard Reward Schemes To verify that the performance gains of TAROT
stem from its capability-adaptive curriculum strategy, we compare our framework against standard
reward shaping strategies commonly used in reinforcement learning for code generation. These
baselines utilize the full four-tier test suite throughout the training. Specifically, we evaluate two
standard RL baselines: Avg-reward, where the reward is calculated as the average pass rate across
the four tiers (R € [0,1]), and Pass@All, which represents a strict functional correctness setting

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison between TAROT and Standard RL Baselines. TAROT outper-
forms conventional reward schemes that use the same test cases but lack curriculum scheduling.
Highest scores are highlighted in bold.

Model Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Qwen2.5-1.5B-Instruct
Avg-reward 59.15% 54.27% 49.20% 57.93% 2.72% 3.70% 38.75/32.87%
Pass@All 60.98 % 56.10% 44.60% 53.43% 2.72% 3.94% 34.62/31.75%
TAROT (Best) 60.98 % 55.49% 51.80% 58.20% 4.49% 5.26% 40.20/33.75%
Qwen2.5-7B-Instruct
Avg-reward 83.75% 76.22% 66.00% 69.84% 11.41% 11.95% 56.37/58.50%
Pass@All 81.10% 73.78% 63.00% 68.52% 9.49% 14.81% 55.62/56.63%
TAROT (Best) 84.15% 77.44% 69.00% 70.63% 12.95% 19.12% 57.88/59.38%

where a reward of 1 is assigned only if all four tiers pass, and 0 otherwise (R € {0,1}). As detailed
in Table [3] TAROT consistently outperforms both standard reward schemes across all benchmarks.

Architectural Generalization Applying TAROT to Gemma?2 architecture validated our hypothe-
sis that baseline proficiency, not parameter count, dictates the optimal learning path. For the larger
Gemma2-9B-IT, Complex Only curriculum offered no decisive advantage, as simpler strategies like
Basic Only often proved superior on key benchmarks shown in Table |4 This principle was even
more starkly visible with the smaller Gemma2-2B-IT. As detailed in Appendx [F| most curricula
were actively harmful, leading to a performance collapse from a sparse reward signal. In stark
contrast, a Basic Only strategy focused on fundamentals yielded substantial improvements. This
demonstrates that for less-capable models, a fundamentals-first curriculum is a prerequisite for suc-
cessful fine-tuning, whereas unstructured approaches can be severely detrimental.

Table 4: Performance comparison for Gemma2-9B-IT across key curriculum strategies. Highest
scores on each benchmark are highlighted in bold.

Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBvS CruxEval

Base 60.37% 54.88% 59.60% 65.08% 8.61% 11.83% 45.63/47.63%
Uniform 65.85% 57.93% 59.20% 64.55% 10.82% 13.62% 51.63/47.13%
Basic Only 63.41% 56.10% 60.40% 65.08% 9.49% 14.70% 51.00/48.00%
Complex Only 65.85% 60.37% 58.60% 64.55% 9.93% 12.54% 48.25/48.00%

For completeness, we report the full per-strategy and per-curriculum results for all Qwen2.5-Instruct,
Qwen2.5-Coder-Instruct, and Qwen3-4B-Instruct models HumanEval, MBPP, and the OOD bench-
marks in Appendix|G] Tables[§|and[7} We further analyze the sensitivity to training hyper-parameters
(temperature, GRPO /3) and the inference-time maximum token limit in Appendix [D]and [E] and in-
vestigate the training dynamics and reward correlations in Appendix [H]

5 CONCLUSION

We introduced TAROT, a test-driven and capability-adaptive framework for curriculum reinforce-
ment fine-tuning in code generation. TAROT moves beyond the conventional one-size-fits-all ap-
proach by constructing a four-tier, intra-problem test suite that allows curriculum design to be tai-
lored to a model’s unique abilities. Experiments confirmed our central thesis that the optimal learn-
ing path is capability-dependent: less-capable models benefit most from an basic-focused progres-
sion, while more-capable models excel with curricula that prioritize complex-focused challenges.
We found that the most critical factor is not parameter count alone but a more holistic effective ca-
pability, which accounts for a model’s prior specialization. Ultimately, TAROT provides a practical
framework for enhancing the code generation capabilities of large language models. Our framework
proved its value across a wide spectrum of models, from less-capable base models to highly pro-
ficient code-specialized and state-of-the-art foundation models, confirming its broad applicability.
While significant, our results also show that the optimal curriculum is task-dependent, pointing to-
ward future work in developing domain-specific test suites and automated policy selection methods.

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732,

K. Beck. Test-driven Development: By Example. Addison-Wesley signature series. Addison-
Wesley, 2003. ISBN 9780321146533. URL https://books.google.co.kr/books?
1d=CU1lsAQAAQBAJ.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning - ICML 09, pp.
1-8, Montreal, Quebec, Canada, 2009. ACM Press. ISBN 978-1-60558-516-1. doi: 10.1145/
1553374.1553380. URL http://portal.acm.org/citation.cfm?doid=1553374.
1553380.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for 1lm reasoning, 2025. URL
https://arxiv.org/abs/2505.14970.

Yang Cheng, Zilai Wang, Weiyu Ma, Wenhui Zhu, Yue Deng, and Jian Zhao. Evocurr: Self-evolving
curriculum with behavior code generation for complex decision-making, 2025. URL https:
//arxiv.org/abs/2508.09586.

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation,
2025. URLhttps://arxiv.org/abs/2410.17621.

Shihan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, Limao Xiong, Junjie Shan, Caishuang Huang,
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Tao Gui,
and Xuanjing Huang. StepCoder: Improving code generation with reinforcement learning from
compiler feedback. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4571-4585, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.251. URL https://aclanthology.org/2024.
acl-long.251/.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering, ICSE 24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.36392109.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida L.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—-rill

10

https://arxiv.org/abs/2108.07732
https://books.google.co.kr/books?id=CUlsAQAAQBAJ
https://books.google.co.kr/books?id=CUlsAQAAQBAJ
http://portal.acm.org/citation.cfm?doid=1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
https://arxiv.org/abs/2505.14970
https://arxiv.org/abs/2508.09586
https://arxiv.org/abs/2508.09586
https://arxiv.org/abs/2410.17621
https://aclanthology.org/2024.acl-long.251/
https://aclanthology.org/2024.acl-long.251/
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515|

Kyi Shin Khant, Hong Yi Lin, and Patanamon Thongtanunam. Should code models learn pedagogi-
cally? a preliminary evaluation of curriculum learning for real-world software engineering tasks.
In 2025 IEEE/ACM 22nd International Conference on Mining Software Repositories (MSR), pp.
249-254, 2025. doi: 10.1109/MSR66628.2025.00044.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-
ating language models for efficient code generation. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

Marwa Nair, Kamel Yamani, Lynda Lhadj, and Riyadh Baghdadi. Curriculum learning for small
code language models. In Xiyan Fu and Eve Fleisig (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pp.
390-401, Bangkok, Thailand, August 2024. Association for Computational Linguistics. ISBN
979-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.44. URL https://aclanthology.
org/2024.acl-srw.44/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Guilherme Penedo, Anton Lozhkov, Hynek Kydli¢ek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von

Werra. Codeforces. https://huggingface.co/datasets/open—rl/codeforces,
2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: your language model is secretly a reward model.
In Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Negin Raoof, Etash Kumar Guha, Ryan Marten, Jean Mercat, Eric Frankel, Sedrick Keh, Hri-
tik Bansal, Georgios Smyrnis, Marianna Nezhurina, Trung Vu, Zayne Rea Sprague, Mike A

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2406.00515
https://openreview.net/forum?id=IBCBMeAhmC
https://aclanthology.org/2024.acl-srw.44/
https://aclanthology.org/2024.acl-srw.44/
https://huggingface.co/datasets/open-r1/codeforces
https://arxiv.org/abs/2412.15115

Under review as a conference paper at ICLR 2026

Merrill, Liangyu Chen, Caroline Choi, Zaid Khan, Sachin Grover, Benjamin Feuer, Ashima
Suvarna, Shiye Su, Wanjia Zhao, Kartik Sharma, Charlie Cheng-Jie Ji, Kushal Arora, Jeffrey
Li, Aaron Gokaslan, Sarah M Pratt, Niklas Muennighoff, Jon Saad-Falcon, John Yang, Asad
Aali, Shreyas Pimpalgaonkar, Alon Albalak, Achal Dave, Hadi Pouransari, Greg Durrett, Se-
woong Oh, Tatsunori Hashimoto, Vaishaal Shankar, Yejin Choi, Mohit Bansal, Chinmay Hegde,
Reinhard Heckel, Jenia Jitsev, Maheswaran Sathiamoorthy, Alex Dimakis, and Ludwig Schmidt.
Evalchemy, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozifiska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluciriska, Harleen
Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer. Significant productiv-

ity gains through programming with large language models. Proc. ACM Hum.-Comput. Interact.,
8(EICS), June 2024. doi: 10.1145/3661145. URL https://doi.org/10.1145/3661145|

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.00118
https://github.com/huggingface/trl
https://doi.org/10.1145/3661145

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38—45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp—-demos. 6.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=CfXh93NDgH.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025. URL https://arxiv.org/abs/2507.18071l

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: less is more for alignment. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS *23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2025. URL https://arxiv.org/abs/2406.15877.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2507.18071
https://arxiv.org/abs/2406.15877

Under review as a conference paper at ICLR 2026

A TEST CASE GENERATION PROMPTS

To ensure the consistent generation of high-quality, four-tiered test cases, we designed a detailed
prompt template. This template, listed in Table 5} guides the language model to act as an expert
software engineer and produce test cases that adhere to our specific difficulty criteria.

Table 5: The Prompt template used to generate a tiered test suite per a given coding prob-
lem. The problem statement and the default test case from the original source is injected into
{problem statement} and {baseline_test_case} placeholders respectively.

You are an expert software engineer with extensive experience in designing comprehensive unit tests. Your task is to generate four distinct
unit tests for a given code implementation based solely on the provided problem statement. Treat this as a black-box testing exercise—
focus exclusively on the inputs and expected outputs without assuming any details about the internal implementation.

Important: A baseline test case will be provided separately. Each test case you generate must be more challenging than the baseline test
case.

Please generate four unit tests with the following guidelines:
1. Basic Complexity Test (label as ’basic”):

¢ Use simple, straightforward inputs.

« Validate the core behavior under normal conditions.

* Focus on the happy path scenario.

« This should be the least challenging test case relative to the others.
2. Medium Complexity Test (label as ”intermediate”):

¢ Include moderately complex inputs with some edge conditions.
« Test with mixed data types or larger inputs.

¢ Incorporate common edge cases and boundary values.

< Ensure this test is more challenging than the basic test.

3. High Complexity Test (label as ”complex”):

¢ Use complex, nested, or structured inputs.
« Validate advanced functionality and complex logic paths.
¢ Stress test the implementation with challenging scenarios.

» This test should be more intricate than both the basic and intermediate tests.
4. Edge Case Test (label as ”edge”):

« Use extreme boundary conditions and special cases.
* Validate behavior with empty, null, or invalid inputs.
* Focus on error handling and exception scenarios.

« This should be the most challenging test case among the four.

For each test case, follow the JSON format provided in the example below (include only the input and expected output):

{
"language": "python",
"test_cases": [
{

"input": "4\n4\n0001\n1000\n0011\n0111\n3\n010\n101\n0\n2\n00000\n00001\n4\n01\n001\n0001\n0000I\n",
"output": "1\n3 \n-1\nO0\n\n2\nl 2 \n"
"type": "stdin_stdout",
"label": "basic",
"reason": "This test represents simple, straightforward input conditions."
}
]
}
Remember:

* Do not assume any knowledge about the internal code; base your tests purely on the input-output behavior described in the problem
statement.

* Ensure that each of your test cases is incrementally more challenging than the baseline test case provided.

Problem Statement: {problem_statement}

Baseline Test Case: {baseline_test_case}

14

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

TAROT Dataset Our experiments utilize the TAROT dataset, which we constructed by augment-
ing approximately 15,000 problems from the verifiable-coding-problems-python dataset’l For each
problem, we employed OpenAlI’s the most powerful 03 and o4 modelsﬂ with the highest reasoning
effort to generate a four-tiered test suite with distinct levels: basic, intermediate, complex, and edge.
The specific prompts used for this generation process are detailed in Appendix [A] To ensure high
quality, every generated test case was validated against the reference solution, and any problem with
even one failing tier was discarded. This rigorous curation process yields a final dataset of approx-
imately 60,000 tiered test suites (15,000 problems x 4 tiers). Samples of these generated tiered test
cases can be found in Appendix [[}

Model Selection To validate our methodology, we selected a diverse set of models to investigate
four key research questions: (1) the effect of model scale, to test our hypothesis that the optimal cur-
riculum is capability-dependent, using three Qwen2.5 models of varying sizes (1.5B, 3B, 7B) (Qwen
et al., |2025); (2) the impact of specialization, to determine if TAROT can further enhance models
already proficient in coding, using their code-specialized counterparts (Hui et al., [2024)); (3) archi-
tectural generalizability, to test if our findings apply beyond a single model family, by incorporating
two instruction-tuned Gemma2 models (2B, 9B) (Team et al., 2024); and (4) pushing performance
frontiers, to assess if our framework can improve even state-of-the-art models with strong baselines,
by fine-tuning the recent Qwen3-4B-Instruct-2507 (Yang et al., [2025). For all models, we used
their instruction-tuned variants to ensure a foundational code-generation capability, a prerequisite
for effective RL-based fine-tuning.

Training Details We fine-tune all selected models for a single epoch using the TAROT framework.
For policy optimization, we employ GRPO (Shao et al., 2024). All models are trained using the
AdamW optimizer with a constant learning rate of 1 x 10™°. We set the global batch size to 8,
reducing it to 4 for larger models (Qwen2.5-7B-Instruct, Qwen2.5-Coder-7B-Instruct, and Gemma2-
9B-IT) to accommodate memory constraints. The maximum input and completion token lengths
were set to 1,024 and 4,096, respectively. For GRPO-specific settings, we generated 8 candidate
completions per prompt to estimate the policy advantage, with the core hyperparameter (3 set to 0.01
in our main experiments. We provide an ablation study on key training hyperparameters, including
the GRPO £ value (0.1, 0.05, 0.01) and the sampling temperature during training (1.0, 0.7, 0.5), in

Appendix

The GRPO hyperparameter 3 controls the strength of the Kullback-Leibler (KL) divergence reg-
ularization term, which penalizes the policy for deviating too far from the original base model’s
behavior. The training temperature, in turn, manages the exploration-exploitation trade-off; higher
values encourage the model to sample a wider variety of solutions (exploration), while lower values
cause it to refine high-probability ones (exploitation). Our ablation studies were designed to identify
the optimal settings for these crucial parameters within our code generation task.

All fine-tuning experiments were conducted on a server with 8 x NVIDIA A100 (80 GB) GPUs,
running CUDA 12.4 and PyTorch 2.6. Our implementation is based on open-source libraries includ-
ing Transformers (Wolf et al.,|2020), TRL (von Werra et al.,|2020)), vLLM (Kwon et al., 2023), and
Open-R1 (Hugging Face, [2025).

Evaluation Metrics We evaluate the efficacy of the TAROT framework on a comprehensive suite
of code generation benchmarks. For functional correctness, we measure the pass@1 metric on
HumanEval (Chen et al.|, 2021)), MBPP (Austin et al.| [2021), and their more challenging variants,
HumanEval+ and MBPP+ (Liu et al., [2024). To assess competitive problem-solving skills, we use
the overall accuracy on LiveCodeBench v5 (Jain et al.,|2024) and CodeForces (Penedo et al.,|2025)),
averaged across their difficulty tiers. Finally, the model’s code reasoning capability is evaluated us-
ing the input and output prediction accuracy on CruxEval (Gu et al.,|2024). The detailed generation
parameters and execution environment are described in Appendix [C|

Zhttps://huggingface.co/datasets/open-rl/verifiable-coding-problems-python
*https://platform.openai.com/docs/models

15

https://huggingface.co/datasets/open-r1/verifiable-coding-problems-python
https://platform.openai.com/docs/models

Under review as a conference paper at ICLR 2026

HumanEval HumanEval+ MBPP MBPP+

0.665

0.905 0.660
0.655

0.900
0.650

e o o o
© © « o«
o - N w
e o o
= o [*}
© o N

0.645

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
LiveC v5 CruxEval — Input CruxEval — Output CodeForces
32.0 0.86 33.0
318 0.765
1.
0.84 32.5
31.6 0.82 0.760
31.4 32.0
0:80 0.755
312 0.78
0.01 0.05 0.10 """o0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

Figure 5: Performance sensitivity to the GRPO hyperparameter 5. The plots show the final pass@ 1
or accuracy scores on various benchmarks as /3 is varied. The optimal value is task-dependent; for
instance, HumanEval and HumanEval+ benefit from a smaller 8 (0.01) that allows greater policy
exploration, whereas MBPP and CodeForces achieve peak performance with a larger 5 (0.05) that
enforces stronger regularization.

Human MBPP MBPP+

0.905

0.900

«
-
o

° ° ° °
© © @ @
5] =) N w
o e 14
» 'S Y
S © ©
4 14 4
o @ o
N E o

g
)

-

.0 0.7 0.

)
=
)

0.7 0. 0.7 0.5 0.7 0.

w

LiveC v5 CruxEval — Input CruxEval — Output CodeForces

- 0.7625
31.8
31.4 0.810 0.7600
31.6
312 0.805 0.7575 14
0.800 0.7550 312
31.0 0.795 i
- 0.7525

Figure 6: Performance sensitivity to the sampling temperature during training. The plots illustrate
the final benchmark scores for different training temperatures. A higher temperature of 1.0, which
encourages greater exploration, is optimal for benchmarks like HumanEval and HumanEval+. In
contrast, other benchmarks such as MBPP show a preference for a more moderate temperature of
0.7, highlighting that the ideal exploration-exploitation balance is task-specific.

C GENERATION AND EXECUTION ENVIRONMENT

The entire evaluation pipeline is managed by the EvalChemy framework (Raoof et al.l [2025). We
follow the benchmark-specific generation configurations predefined within the framework—such as
temperature, top-p, prompt formatting, and stopping criteria—to ensure consistency with established
evaluation protocols. By default, the maximum completion tokens for each benchmark adhered to
its standard setting; however, for an ablation study on generation length (Appendix [E)), we system-
atically increased this limit to 4,096, 8,192, and 16,384 tokens to observe performance trends.

All code generation for evaluation was conducted by serving the fine-tuned models via the vLLM
framework (Kwon et al., 2023 on servers equipped with 4 x NVIDIA A100 (80 GB) GPUs, using
a batch size of 64. The resulting code is executed in a secure, sandboxed Python 3.11 environment,
where a strict 10-second timeout is enforced for each test case to prevent infinite loops and manage
evaluation time.

16

Under review as a conference paper at ICLR 2026

Qwen3-4B-Instruct-2507 ==- B&I Weighted === C&E Weighted (w/ GRPO beta=0.05) C&E Weighted (w/ Temp=0.5) C&E Weighted (Rev) === EDGE ONLY
Uniform C&E Weighted =+= C&E Weighted (w/ GRPO beta=0.1) == C&E Weighted (w/ Temp=0.7) BASIC ONLY COMPLEX ONLY
HumanEval HumanEval+ MBPP+

83.0% 67.5% A T

-
91.0% N .) I 65.0% 5==‘.___=_
- . . ==Z
/ Rl A 82.0% ’ N o T omr T ==
90.0% />\ P R el X D L
4.5 e~ ot y’ -
> P N, 8L0% ’ D e \,)(, 60.0%
89.0% NS o - - -7 Pt 57.5%
/s',\ Sz e P e
ss.0% 7 \\ /// 80.0% e f T gt 55.0%
N\~ 52.5% -
.l Pt
o o 40.0% . -~.
87.0% 79.0% 50.0% e -

1,024 4,096 8,192 16,384 1,024 4,096 8,192 16,384 512 4,096 8,192 16,384 1,024 4,096 8,192 16,384

Figure 7: Performance sensitivity to the maximum completion token limit at inference time
for Qwen3-4B-Instruct-2507 fine-tuned on various curriculum strategies. The results reveal a
clear, benchmark-dependent dichotomy. For function-completion tasks like HumanEval and Hu-
manEval+, performance tends to degrade as the token limit increases beyond 4,096, suggesting that
a larger generation space may encourage verbose, error-prone solutions. Conversely, for bench-
marks like MBPP and MBPP+, a larger token limit is generally beneficial, indicating that their
problem structures may require more extensive code to solve correctly.

D HYPERPARAMETER SENSITIVITY ANALYSIS

This section provides ablation studies on two key training hyperparameters to analyze their impact
on final benchmark performance: the GRPO regularization coefficient 5 and the sampling tempera-
ture during training.

Impact of GRPO’s § The hyperparameter 5 in GRPO controls the strength of the Kullback-
Leibler (KL) divergence regularization, which prevents the fine-tuned policy from deviating exces-
sively from the original base model. The results of varying (3 are shown in Figure[5] Performance
sensitivity to S is not uniform across benchmarks. For function-synthesis tasks like HumanEval
and HumanEval+, a small 3 of 0.01, which allows for greater policy exploration, yields the best re-
sults. Conversely, benchmarks like MBPP and CodeForces appear to benefit from slightly stronger
regularization (8 = 0.05). This variance suggests that the optimal regularization strength is task-
dependent. We selected 8 = 0.01 for our main experiments as it proved most effective on our
primary evaluation benchmarks.

Impact of Training Temperature The sampling temperature manages the exploration-
exploitation trade-off during training. The results, presented in Figure [6] indicate that a higher
temperature of 1.0, which encourages greater exploration of diverse solutions, is optimal for Hu-
manEval and HumanEval+. However, other benchmarks show different trends; MBPP, for example,
peaks at a more conservative temperature of 0.7. This highlights that the optimal degree of ex-
ploration is also task-specific, and suggests that task-adaptive temperature scheduling could be a
potential area for future work.

E IMPACT OF MAXIMUM COMPLETION TOKENS AT INFERENCE TIME

We analyzed the impact of the maximum completion token limit during inference on the fine-tuned
Qwen3-4B model, with results presented in Figure The findings reveal a clear, benchmark-
dependent dichotomy. On function-completion tasks like HumanEval and HumanEval+, perfor-
mance generally degrades as the token limit increases beyond 4,096. In stark contrast, benchmarks
like MBPP and MBPP+ benefit from a larger generation space, with optimal results often found at
8,192 or 16,384 tokens.

This divergence suggests that for tasks requiring concise solutions, such as those in HumanEval, a
larger token limit may encourage verbose and error-prone code. Conversely, the nature of MBPP
problems may necessitate a longer generation process to fully develop the correct logic. This anal-
ysis underscores a critical point for standardized evaluation: the ideal setting for maximum comple-
tion tokens is highly contingent on the characteristics of the target benchmark.

17

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS ON GEMMA2-2B-IT

This appendix provides the full curriculum comparison for Gemma2-2B-IT as in Table [} Unlike
larger or stronger models, Gemma2-2B-IT exhibits curriculum fragility: most curricula depress
performance, consistent with the observation in the main text that sparse reward signals can cause
collapse for less-capable models. In contrast, Basic Only—a fundamentals-first schedule—yields
the most reliable gains among the tested strategies.

These results reinforce our capability-dependent view of curriculum design: for weaker models,
emphasizing simpler tiers is a prerequisite for successful fine-tuning, whereas complex-focused or
mixed curricula can be harmful.

Table 6: Performance comparison for Gemma2-2B-IT across all curriculum strategies. Scores are
colored and bolded based on their deviation from the Base strategy (blue for higher, red for lower).

Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBvS CruxEval

Base 42.07% 34.76% 41.20% 47.09% 2.21% 430% 37.50/26.88%
Uniform 39.02% 31.09% 33.80% 39.95% 0.22% 3.58% 33.00/26.63%
B/I Weighted 35.98% 32.32% 35.60% 42.06% 0.22% 430% 38.63/27.25%
C/E Weighted 41.46% 34.15% 39.20% 48.41% 0.22% 3.94% 36.63/26.75%
C/E Weighted (Rev) 40.86% 35.37% 40.20% 44.44% 0.44% 3.94% 35.63/26.75%
Basic Only 44.51% 37.20% 38.60% 46.83% 1.77% 3.94% 39.88/27.88%
Edge Only 39.63% 35.37% 38.00% 46.03% 0.22% 430% 39.00/28.13%
Complex Only 42.07% 36.59% 37.00% 45.77% 2.21% 2.87% 35.63/27.55%

G FULL BENCHMARK TABLES (QWEN2.5 & QWEN3-4B)

We report the complete benchmark results for all curriculum strategies on Qwen2.5 family
(1.5B/3B/7B, including Coder variants) and Qwen3-4B-Instruct-2507. These tables expand the main
figures by listing pass@1 on HumanEval, HumanEval+, MBPP, MBPP+, and average accuracy of
CodeForces, LiveCodeBench v5, and CruxEval for every strategy in Table[8|and[7]

Consistent with the main text, the C/E Weighted strategy tends to be the top performer for the more-
capable Qwen3-4B model, improving over the base across all four code-function benchmarks. The
full per-strategy breakdowns here allow exact comparison across OOD benchmarks as well.

H TRAINING DYNAMICS ANALYSIS

The Limits of the Reward Signal. Figure [§] (a) shows that the training reward increases stably
and is clearly separated by model capacity, indicating a stable optimization process. Note that
initial rewards are relatively low even for capable models; this is due to strict output formatting

Table 7: Comprehensive performance evaluation of all curriculum strategies on Qwen3-4B-Instruct-
2507. The highest score on each benchmark is highlighted in bold. The performance of Qwen3-
Coder-30B-A3B-Instruct is included to enable comparison against a leading code-specialized model.

Model Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Qwen3-Coder-30B-A3B-Instruct
Base 94.51% 86.59% 73.80% 75.13% 29.65% 37.63% 81.75/79.25%
Qwen3-4B-Instruct-2507
Base 89.02% 78.66% 52.60% 56.61% 33.63% 32.02% 78.25/77.75%
Uniform 88.41% 80.09% 35.30% 53.70% 31.86% 31.96% 79.37/75.75%
B/T Weighted 89.63% 81.09% 28.00% 52.38% 33.04% 33.81% 79.50/75.38%
C/E Weighted 91.46% 82.92% 55.20% 58.73% 31.79% 31.54% 81.12/75.25%
C/E Weighted (Rev) 89.63% 80.48% 36.20% 35.98% 34.66 % 31.66% 79.50/76.00%
Basic Only 89.63% 79.87% 39.80% 56.34% 33.11% 31.90% 78.50/75.00%
Edge Only 89.63% 79.88% 4720% 56.61% 31.86% 30.59% 80.25/74.00%
Complex Only 90.85% 80.48% 28.60% 51.85% 30.61% 31.30% 80.37/76.37%

18

Under review as a conference paper at ICLR 2026

Table 8: Comprehensive performance evaluation of all curriculum strategies across Qwen2.5-
Instruct and Qwen2.5-Coder-Instruct models (1.5B, 3B, 7B). For each model size, the highest score
on each benchmark is highlighted in bold.

Model Strategy HumanEval HumanEval+ MBPP MBPP+ CodeForces LCBv5 CruxEval
Qwen2.5-7B-Instruct
Base 82.93% 75.61% 63.20% 67.46% 8.54% 14.10% 57.75/58.00%
Uniform 82.93% 73.78% 67.40% 67.46% 12.36% 14.93% 57.88/59.38%
B/I Weighted 78.05% 76.83% 67.60% 69.58% 11.56% 15.89% 57.25/59.25%
C/E Weighted 79.27% 73.78% 66.20% 70.37% 10.89% 1577% 57.13/55.50%
C/E Weighted (Rev) 84.15% 77.44% 69.00% 70.11% 8.24% 15.41% 57.88/56.38%
Basic Only 82.32% 75.61% 66.20% 68.52% 12.29% 19.12% 55.63/57.50%
Edge Only 83.54% 76.22% 67.60% 70.63% 11.11% 17.08% 56.13/57.75%
Complex Only 84.15% 75.61% 69.00% 69.05% 12.95% 17.80% 57.25/56.38%
Qwen2.5-3B-Instruct
Base 69.51% 61.59% 58.40% 64.81% 4.34% 5.02% 38.75/44.63%
Uniform 71.34% 63.41% 59.40% 63.49% 6.92% 8.72% 42.00/42.50%
B/I Weighted 69.51% 62.20% 59.00% 63.49% 7.21% 9.44% 42.38/46.75%
C/E Weighted 69.51% 62.80% 56.60% 63.76% 7.21% 7.17% 43.75/44.50%
C/E Weighted (Rev) 70.12% 62.80% 57.00% 63.49% 6.92% 8.00% 43.63/42.50%
Basic Only 66.46% 59.15% 59.40% 64.02% 6.33% 6.09% 40.50/44.13%
Edge Only 71.34% 64.02% 58.20% 62.70% 6.11% 7.05% 43.13/42.63%
Complex Only 67.68% 60.37% 59.00% 64.81% 6.84% 6.33% 41.25/42.88%
Qwen2.5-1.5B-Instruct
Base 58.54% 54.88% 46.80% 52.91% 2.65% 5.02% 38.63/30.88%
Uniform 60.98 % 54.88% 50.00% 57.14% 3.68% 526% 37.13/33.75%
B/I Weighted 59.15% 54.27% 51.80% 57.94% 3.83% 4.54% 36.00/29.75%
C/E Weighted 60.98 % 55.49% 49.40% 56.08% 3.61% 5.02% 34.75/32.38%
C/E Weighted (Rev) 56.71% 52.44% 50.40% 58.20% 4.49% 490% 34.00/31.75%
Basic Only 57.32% 53.05% 50.60% 58.20% 4.05% 4.66% 40.25/33.00%
Edge Only 55.49% 50.61% 50.20% 56.08% 3.75% 442% 35.50/31.50%
Complex Only 59.76% 54.88% 51.80% 55.29% 3.46% 4.54% 36.13/33.38%
Qwen2.5-Coder-7B-Instruct
Base 85.98% 79.27% 75.60% 69.05% 10.89% 13.86% 66.38/66.13%
Uniform 85.76% 79.27% 7720% 72.49% 13.98% 17.68% 66.50/66.38%
B/I Weighted 84.76% 78.66% 77.60% 71.96% 13.32% 17.44% 68.38/65.88%
C/E Weighted 87.80% 82.32% 76.20% 70.90% 14.94% 19.24% 66.25/67.13%
C/E Weighted (Rev) 88.41% 81.10% 75.00% 71.42% 13.98% 19.12% 68.63/65.00%
Basic Only 85.98% 79.88% 76.20% 71.96% 14.86% 19.47% 67.50/66.38%
Edge Only 79.02% 81.07% 7720% 71.96% 12.14% 19.12% 68.75/66.00%
Complex Only 87.80% 80.49% 76.60% 70.90% 14.35% 18.16% 67.75/66.50%
Qwen2.5-Coder-3B-Instruct
Base 79.27% 75.00% 62.20% 66.93% 3.90% 9.80% 53.38/53.75%
Uniform 81.10% 76.83% 62.00% 67.20% 7.21% 10.75% 54.00/54.75%
B/I Weighted 81.71% 78.05% 61.40% 66.93% 6.70% 9.80% 54.25/53.38%
C/E Weighted 79.88% 76.83% 61.00% 67.46% 8.02% 10.51% 56.75/53.50%
C/E Weighted (Rev) 82.32% 77.44% 62.00% 68.52% 8.17% 10.75% 52.63/55.13%
Basic Only 80.49% 76.22% 62.80% 66.67% 7.95% 13.14% 55.88/55.88%
Edge Only 79.27% 75.00% 62.60% 66.14% 7.21% 10.63% 53.75/53.25%
Complex Only 78.05% 73.78% 63.00% 67.72% 7.65% 10.63% 53.13/55.25%
Qwen2.5-Coder-1.5B-Instruct
Base 68.29% 63.41% 52.60% 63.49% 2.06% 3.46% 44.38/36.38%
Uniform 71.34% 65.24% 52.80% 62.96% 4.56% 442% 44.75/36.38%
B/I Weighted 72.56% 64.02% 55.80% 62.70% 4.19% 4.66% 45.13/35.75%
C/E Weighted 71.34% 66.65% 54.60% 62.96% 3.46% 4.42% 45.13/38.00%
C/E Weighted (Rev) 72.56% 64.20% 5420% 62.96% 3.38% 4.18% 45.25/37.00%
Basic Only 70.12% 64.02% 54.00% 64.76% 4.49% 4.66% 43.25/36.00%
Edge Only 72.56% 67.10% 53.60% 62.17% 4.56% 5.02% 44.86/35.63%
Complex Only 71.34% 66.46% 53.20% 63.49% 3.31% 4.54% 43.75/37.36%

19

Under review as a conference paper at ICLR 2026

Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct
Qwen2.5-Coder-1.5B-Instruct Qwen2.5-Coder-3B-Instruct Qwen2.5-Coder-7B-Instruct
0.6 CodeForces
05 LCBvV5
To0.4
H MBPP+
203
() MBPP
€02
HumanEval+
0.1
0.0 HumanEval
0 2500 5000 7500 10000 12500 15000 17500 -0.5 0.0 0.5
= (a) reward curves during training (c) r: final reward vs. scores
L4
o
c 1000 CodeForces
3
c LCBvV5
° 800
=] MBPP+
9
2 600 MBPP
£
o
O 400 HumanEval+
[
[} HumanEval
[
s 200
0 2500 5000 7500 10000 12500 15000 17500 -0.5 0.0 0.5
(b) Mean completion length curves during training (d) r: length vs. scores

Figure 8: Training dynamics vs. downstream performance. (a) and (b) show the reward and the mean
completion length curves during reinforcement fine-tuning, and the annotations mark the curriculum
strategy with the best average downstream performance. (c) and (d) show the Pearson correlation
coefficient r of the final rewards vs. benchmark scores and the mean completion length vs. bench-
mark scores, respectively. Light, semi-transparent lines represent alternative curriculum strategies,
while the solid, annotated lines correspond to the best-performing strategy for each model. Some
trajectories terminate earlier than others because different model sizes utilize varying batch sizes
and gradient accumulation steps under a fixed total compute budget.

requirements and execution timeouts enforced by the sandbox, which the models quickly adapt
to during the early stages of fine-tuning. This pattern suggests that the policy learns the training
distribution well and that stronger models achieve higher reward levels under the same curriculum.
However, the reward observed during training does not reliably anticipate downstream benchmark
outcomes. As shown in Figure[§](c), the final reward has only a weak Pearson correlation coefficient
with benchmark scores, which means that runs with similar rewards can still deliver very different
levels of task performance.

Conciseness as a Proxy for Advanced Reasoning. A different perspective comes from analyzing
completion length. Figure [§] (b) shows that models with greater capability tend to produce shorter
solutions as training progresses, and this tendency becomes more pronounced for stronger configu-
rations. Importantly, Figure[§](d) indicates that mean completion length exhibits a stronger negative
correlation with benchmark scores than the reward does, implying that conciseness aligns better
with final solution quality. Shorter programs are more likely to capture the essential reasoning steps
without unnecessary detours, whereas longer outputs often reflect uncertainty or inefficient search.
These observations support using solution conciseness as a practical secondary proxy for advanced
reasoning quality, complementing the reward based perspective and providing a more informative
early indicator of downstream performance.

I SAMPLE TIERED TEST CASES

Table 9} 18] present concrete examples of the four-tiered test cases generated for several problems
in the TAROT dataset. These samples illustrate a clear and intentional progression in difficulty and
scope, which is a cornerstone of our framework.

20

Under review as a conference paper at ICLR 2026

The tiers are generally designed to validate different aspects of a solution. Basic tiers focus on
the core logic of a problem with simple, straightforward inputs. Following this, intermediate and
complex tiers introduce greater difficulty through larger inputs, more intricate scenarios, or patterns
requiring more sophisticated algorithmic reasoning. Finally, edge tiers are designed to test for ro-
bustness by probing boundary conditions, constraints, and performance-intensive cases such as large
numbers or long strings. This tiered structure exemplifies the intra-problem difficulty gradient that
forms the basis of our capability-adaptive curriculum.

21

Under review as a conference paper at ICLR 2026

Table 9: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, complex,
and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:
You are given (change order) of
the digits of
and/or output

two positive integer numbers a and b. Permute
a to construct maximal number not exceeding b. No number in input
can start with the digit 0.

It is allowed to leave a as it is.

Input

The first line contains integer a (1 <a < 1018). The second line contains integer
b (1 < b < 10'®). Numbers don’t have leading zeroes. It is guaranteed that answer
exists.

Output

Print the maximum possible number that is a permutation of digits of a and is
not greater than b. The answer can’t have any leading zeroes. It is guaranteed
that the answer exists. The number in the output should have exactly the same
length as number a. It should be a permutation of digits of a.

Examples
Input
123 222

Output

213

Input

3921 10000
Output
9321

Input

4940 5000

Output
4940

The input
your code.

will be given via stdin and the output should be printed to stdout by

Now solve the problem by providing the code.

Test cases Basic Intermediate Complex Edge

Input 21 3051 98761230 111222333444555666
12 5310 98765000 1000000000000000000

Output 12 5310 98763210 666555444333222111

Reason A simple 2-digit A 4-digit case An 8-digit case An extreme

case where
swapping the digits
yields the only valid
permutation <
bound, illustrating
the happy path.

including zero,
requiring the
algorithm to match
the upper bound
exactly with a
permutation of the
digits.

where matching the
bound fails at a later
position, forcing
backtracking and a
maximal tail fill.

boundary case with
an 18-digit input and
a longer 19-digit
bound, where any
valid permutation
fits, so the result is
the digits sorted in
descending order.

22

Under review as a conference paper at ICLR 2026

Table 10: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

Winter is here at the North and the White Walkers are close. John Snow has an
army consisting of n soldiers. While the rest of the world is fighting for the
Iron Throne, he is going to get ready for the attack of the White Walkers.

He has created a method to know how strong his army is. Let the i-th soldier’s
strength be a;. For some k, we call the indices 141,42,...,ix a clan if i1 < i3 <

< i and ged(aqy,@iy,---5a4,) > 1. The strength of that clan is defined as
k . ged(asy @iy, -5 05,). The strength of the army is defined by the sum of the
strengths of all possible clans.

Your task is to find the strength of his army. As the number may be very large,
you have to print it modulo 1000000007 (109 +7).

Greatest common divisor (gcd) of a sequence of integers is the maximum possible
integer so that each element of the sequence is divisible by it.

77777 Input-—----
The first line contains integer n (1 < mn < 200000) — the size of the army. The
second line contains n integers ai,a2,..,an (1 < a; < 1000000) — denoting the

strengths of his soldiers.

Print one integer — the strength of John Snow’s army modulo 1000000007

Output
12

Input

2346

In the first sample the clans are {1},{2},{1,2} so the answer will be 1-3+1-342-3 =

12

The input will be stdin and you should print your solution to stdout

Now solve

the problem and return the code.

Test cases Basic Intermediate Complex Edge
Input 4 6 7 5
2357 248396 2222222 11111
Output 17 119 896 0
Reason All strengths are Mix of primes and Uniform strengths All strengths are 1,

prime, so only
single-soldier clans
contribute.

composites yields
clans of various
sizes and gcds.

where every
nonempty subset is a
valid clan (ged=2).

so no clan has
gedg 1; result is zero.

23

(10° + 7).

Under review as a conference paper at ICLR 2026

Table 11: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

A permutation — is a sequence of length n integers from 1 to n, in which all the numbers
occur exactly once. For example, [1], [3, 5, 2, 1, 41, [1, 3, 2] — permutations, and [2, 3,
21, [4, 3, 11, [0] — no.

Polycarp was recently gifted a permutation a[l ...n] of length n. Polycarp likes trees more

than permutations, so he wants to transform permutation a into a rooted binary tree. He
transforms an array of different integers into a tree as follows:

¢ The maximum element of the array becomes the root of the tree;

* All elements to the left of the maximum — form a left subtree (which is built
according to the same rules but applied to the left part of the array), but if there
are no elements to the left of the maximum, then the root has no left child;

e All elements to the right of the maximum — form a right subtree (which is built
according to the same rules but applied to the right side of the array), but if there
are no elements to the right of the maximum, then the root has no right child.

For example, if he builds a tree by permutation a = [3, 5, 2, 1, 4], then the root will
be the element a2 = 5, and the left subtree will be the tree that will be built for the
subarray a[l ...1] = [3], and the right one — for the subarray a3 ...5] = [2, 1, 4]. As a

result, the following tree will be built:
<image> The tree corresponding to the permutation a=[3, 5, 2, 1, 4].

Another example: let the permutation be a=[1, 3, 2, 7, 5, 6, 4]. In this case, the tree
looks like this:

<image> The tree corresponding to the permutation a=[1, 3, 2, 7, 5, 6, 4].

Let us denote by d, the depth of the vertex a,, that is, the number of edges on the path
from the root to the vertex numbered a,. Note that the root depth is zero. Given the
permutation a, for each vertex, find the value of d,.

Input

The first line contains one integer t (1 < ¢t < 100) — the number of test cases. Then t test
cases follow. The first line of each test case contains an integer n (1 < n < 100) — the
length of the permutation. This is followed by n numbers aji,a2,...,a, — permutation a.

Output

For each test case, output n values — di,d2,...,d,.

Output
10231

0
0132
The input will be stdin and you should print your solution to stdout

Now solve the problem and return the code.

Test cases Basic Intermediate Complex Edge
Input 1 2 1 1
3 4 10 15
123 2143 382510917 12345678
5 4 6 9 10 11 12 13 14
54321 15
()utput 210 1201 21320132 14 13 12 11 10 9
01234 4 3 87654321
0
Reason Simple ascending Includes a mixed Complex permutation Maximum ascending
permutation forming a permutation and a of length 10 to test chain of length 15 to
left-skewed tree under strictly decreasing multiple recursion test deep recursion and
normal conditions. permutation to test levels and both left and large boundary
right-skewed tree and right subtrees. condition.

boundary values.

24

Under review as a conference paper at ICLR 2026

Table 12: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:
Princess’Marriage

Marriage of a princess

English text is not available in this practice contest.

A brave princess in a poor country, knowing that gambling payouts are determined by the parimutuel
method, felt more familiar with gambling and was convinced of her victory in gambling. As a
result, he spent more money than ever before and lost enough to lose all the taxes paid by

the people. The King, who took this situation seriously, decided to marry the princess to the
neighboring country. By doing this, I thought that I would like the princess to reflect on her
daily activities and at the same time deepen her friendship with neighboring countries and receive
financial assistance.

The princess and the prince of the neighboring country liked each other, and the kings of both
countries agreed on a political marriage. The princess triumphantly went to the neighboring
country with a little money in her hand. On the other hand, the motive for the princess to marry
is to pursue the unilateral interests of the king, and the aide of the prince of the neighboring
country who thinks that it is not pleasant shoots countless thugs along the way to make the
princess dead. It was.

The path the princess will take has already been decided. There are a total of L post stations

on the path of the princess. For convenience, the departure and arrival points are also set as
post stations, and each post station is called S1, S2, ...SL. The princess shall be in S1 first,
visit the post station in ascending order (S2, S3 ...in that order), and finally go to SL. At

the post station, you can pay money to hire an escort, and as long as you have the money, you

can contract for as long as you like to protect the princess. The cost of hiring an escort is 1
gold per distance. Note that the princess can also partially protect the section through which she
passes. The distance between Si and Si + 1 is given by Di, and the expected value of the number of
times a thug is attacked per distance between Si and Si + 1 is given by Pi.

Find the expected number of thugs to reach your destination when the princess has a budget of M
and hires an escort to minimize the expected number of thugs.

Input
The input consists of multiple datasets. Each dataset has the following format.

N M
D1 P1
D2 P2

vV VVYVYV

DN PN

Two integers are given in the first row of each dataset, representing the number of intervals N

(1 < N < 10,000 and the budget M (0 < M < 1,000,000,000 of the princess difference, respectively.
The next N lines show information about the path the princess takes. Each line contains two
integers, and the i-th line is the expected value of the interval Di (1 < Di < 10,000) and the
number of attacks when moving one unit distance between them Pi (0 < Pi < 10)). The end of the
input is represented by a data set with N = 0 and M = 0. Do not output the calculation result for
this data set.

Output
For each dataset, output the expected number of times the princess will be attacked by thugs to
your destination.

Sample Input
2 8

6
5
1
10
10

10
0

cCUUIU Wk U

Output for the Sample Input
Five
140

The input will be given via stdin and the output should be printed to stdout by your code.

Test cases Basic Intermediate Complex Edge
Input 47 6 12 10 30 30
32 53 10 1 52
4 1 20 55 10 4
15 72 8 5 73
22 3 3 6 3 4 100
00 4 1 12 2 52
6 2 4 5 10 4
00 73 73
9 4 8 0
30 2 1000
11 2 100 O
00 200 0
00
Output 3 22 83 71
0
0
Reason Simple scenario with Moderate number of Larger set of segments Edge conditions
multiple segments and segments including Pi=0, with ties in Pi values and including zero budget,
straightforward positive ensuring segments with varied distances, budget exceeding total
Pi values; tests basic no attacks are ignored requiring correct sorting distance, and segments
greedy coverage under a and budget partially and partial coverage with Pi=0 to verify
limited budget. covers higher-Pi among equal-Pi no-protection and
segments. segments. full-protection behaviors.

25

Under review as a conference paper at ICLR 2026

Table 13: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:
Valera loves his garden, where n fruit trees grow.

This year he will enjoy a great harvest! On the i-th tree b; fruit grow, they will ripen

on a day number a;. Unfortunately, the fruit on the tree get withered, so they can only be
collected on day a; and day a; + 1 (all fruits that are not collected in these two days,
become unfit to eat).

Valera is not very fast, but there are some positive points. Valera is ready to work every
day. In one day, Valera can collect no more than v fruits. The fruits may be either from
the same tree, or from different ones. What is the maximum amount of fruit Valera can
collect for all time, if he operates optimally well?

The first line contains two space-separated integers n and v (1 < n,v < 3000) — the number
of fruit trees in the garden and the number of fruits that Valera can collect in a day.

Next n lines contain the description of trees in the garden. The i-th line contains two
space-separated integers a; and b; (1 < a;,b; < 3000) — the day the fruits ripen on the i-th
tree and the number of fruits on the i-th tree.

Input
10
20
20
20
20
20

g PN WO

In the first sample, in order to obtain the optimal answer, you should act as follows.

On the first day collect 3 fruits from the 1-st tree. On the second day collect 1 fruit
from the 2-nd tree and 2 fruits from the 1-st tree. On the third day collect the remaining
fruits from the 2-nd tree.

In the second sample, you can only collect 60 fruits, the remaining fruit will simply
wither.

The input will be stdin and you should print your solution to stdout

Now solve the problem and return the code.

Test cases Basic Intermediate Complex Edge
Input 25 31 55 2 1000
13 12 14 2999 1500
34 22 26 3000 2500
32 23
5 10
6 2
Output 7 4 25 3000
Reason No overlapping Capacity is only 1 per Multiple trees ripen on Ripening on the

ripening days and

capacity exceeds daily
fruits; collect all fruits
on their ripening days.

day with overlapping
two-day windows;
requires optimal
scheduling across
consecutive days.

the same days, gaps
between ripening days,
and moderate capacity
to stress multi-day
planning.

maximum allowed days
(2999 and 3000) tests
boundary handling and
two-day collection
windows at the end of
the range.

26

Under review as a conference paper at ICLR 2026

Table 14: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

Bessie the cow has just intercepted a text that Farmer John sent to Burger Queen!
However, Bessie 1is sure that there is a secret message hidden inside.

The text is a string s of lowercase Latin letters. She considers a string t as

hidden in string s if t exists as a subsequence of s whose indices form an arithmetic
progression. For example, the string aab is hidden in string aaabb because it occurs
at indices 1, 3, and 5, which form an arithmetic progression with a common difference
of 2. Bessie thinks that any hidden string that occurs the most times is the secret
message. Two occurrences of a subsequence of S are distinct if the sets of indices
are different. Help her find the number of occurrences of the secret message!

For example, in the string aaabb, a is hidden 3 times, b is hidden 2 times, ab is
hidden 6 times, aa is hidden 3 times, bb is hidden 1 time, aab is hidden 2 times, aaa
is hidden 1 time, abb is hidden 1 time, aaab is hidden 1 time, aabb is hidden 1 time,
and aaabb is hidden 1 time. The number of occurrences of the secret message is 6.

The first line contains a string s of lowercase Latin letters (1 < |s| < 10°) | the text
that Bessie intercepted.

Input
aaabb

Output
6

Input
usaco

Output
1

Input
lol

Output

In the first example, these are all the hidden strings and their indice sets: a
occurs at (1), (2), (3) b occurs at (4), (5) ab occurs at (1,4), (1,5), (2,4), (2,5), (3,4),
(3,5) aa occurs at (1,2), (1,3), (2,3) bb occurs at (4,5) aab occurs at (1,3,5), (2,3,4)
aaa occurs at (1,2,3) abb occurs at (3,4,5) aaab occurs at (1,2,3,4) aabb occurs at
(2,3,4,5) aaabb occurs at (1,2,3,4,5) Note that all the sets of indices are arithmetic
progressions.

In the second example, no hidden string occurs more than once.
In the third example, the hidden string is the letter 1.
The input will be stdin and you should print your solution to stdout

Now solve the problem and return the code.

Test cases Basic Intermediate Complex Edge
Input abab abacaba abababab z
Output 3 6 10 1
Reason A simple alternating Mixed letters and Longer alternating Minimal input length

pattern to validate repeating patterns to pattern to stress test boundary case.

basic subsequence test moderately counting of many

counting. complex arithmetic-

subsequences. progression
subsequences.

27

Under review as a conference paper at ICLR 2026

Table 15: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

The ZCO scholarship contest offers scholarships to first time ZCO participants. You are participating in
it for the first time. So you want to know the number of participants who’1ll get the scholarship. You know
that the maximum number of scholarships offered is R and there are a total of N participants numbered
from 1 to N. Out of these, you know the set of people (denoted by X) who you know, had participated in
previous year ZCOs and hence, they shall not get the scholarship. Further, as the world isn’t free from
plagiarism, so is the case with the scholarship contest. And from your secret sources, you also know

the set of people (denoted by set Y) who were involved in plagiarism and therefore aren’t eligible for
scholarship either.

Find out the number of participants who shall get the scholarship.

PS: Don’t ask how so many scholarships are being offered when you see the constraints on R. You never
questioned it when in mathematics classes, some person bought 80 watermelons twice just to compare them
and save 1.

- The first line will contain a single integer, T, the number of testcases. Then the testcases follow.
- The first line of each test case contains four integers; N, R, |X| and |Y| denoting the number of

participants, maximum number of scholarships offered, number of old participants, and the number of
participants involved in plagiarism, respectively.
- The second line of each test case contains |X| space separated integers z1,z2 . S TIX| denoting the

indices of people who participated in previous years. If X is empty,
line is in the input.
- The third line of each test case contains |Y| space separated integers Y1, Y2 - Y|y | denoting the indices

If Y is empty, this line is skipped and no empty line is in

this line is skipped and no empty

of people who are involved in plagiarism.
input.

77777 Output :-—--——
For each testcase,
the scholarship.

print a single integer in a new line, denoting the number of participants who shall get

77777 Constraints—----—

- 1< T <1000

< N < 10'®

- 0< R<10%

- 0<|X|,|Y| < min(N,2 % 10%)
S e,y S N

- All xz; are
- All y; are
- Sum of |X|

1Y

distinct
distinct

over all test cases does not exceed 5 % 10°

- Sum of over all test cases does not exceed 5 x 10°
————— Subtasks----— a 3
- 20 points : 1 < N <10°, and the sum of N over all test cases does not exceed 3 x* 10

- 30 points 1< N<2x% 105, and the sum of N over all test cases does not exceed 5 % 10°
— 50 points: Original constraints

77777 Sample

Output:————-

77777 EXPLANATION:—————
— In the first testcase, only participant 4 is involved in plagiarism, and thus not eligible for the
scholarship. No user has participated in previous years, and so no empty line is there in the sample. All
participants except participant 4 are eligible for the scholarship, but only three of them get it because
R =3.

- Both second and third testcases are the same,
10 are eligible for scholarships.

- In the second testcase, since the maximum number of scholarships is 2,
scholarships.

— In the third testcase,

except for R. In both samples, only participants 2, 8 and
only 2 participants get

all three eligible participants get scholarships.

The input will be stdin and you should print your solution to stdout

Basic Intermediate Complex

Test cases Edge

3

1000000000000

5 1000000000000 2 3
1 1000000000000
500000000000 1
999999999999

20 15 5 5
12345
45678

50 100 3 2

10 20 30

30 40

Input

1 2

4211 1000000000000000 ©
1 0

4

033

[FREININEENY
G oov s
W,
ININETYSY

3
5

w

999999999996
1 12
46

Output 2

oo

Reason

Basic test with a single test
case, non-empty X and Y
sets without overlap,
validating core
functionality.

Medium complexity with
multiple test cases,
overlapping X and Y in the
first, and an empty X set in
the second.

High complexity with very
large N and R values,
moderate X and Y sizes,
and multiple test cases to
stress-test the
implementation.

Edge case with maximum
boundary values and zero
scholarships in the first, and
X and Y covering all
participants in the second,
testing empty sets and full
exclusion.

28

Under review as a conference paper at ICLR 2026

Table 16: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

Polycarp has recently got himself a new job. He now earns so much that his old wallet can’t even store all
the money he has. Berland bills somehow come in lots of different sizes. However, all of them are shaped as
rectangles (possibly squares). All wallets are also produced in form of rectangles (possibly squares).

A bill x X y fits into some wallet h X w if either # < h and y < w or y < h and < w. Bills can overlap
with each other in a wallet and an infinite amount of bills can fit into a wallet. That implies that all
the bills Polycarp currently have fit into a wallet if every single one of them fits into it independently
of the others.

Now you are asked to perform the queries of two types:

+ x y | Polycarp earns a bill of size = X y; 7T hw
earned to this moment fit into a wallet of size h X w.

Polycarp wants to check if all the bills he has

It is guaranteed that there is at least one query of type 1 before the first query of type 2 and that there
is at least one query of type 2 in the input data. For each query of type 2 print "YES" if all the bills he
has earned to this moment fit into a wallet of given size. Print "NO" otherwise.

The first line contains a single integer n (2<n <5- 10%) | the number of queries.

Each of the next m lines contains a query of one of these two types:

+zy (1 <z,y < 10%) | Polycarp earns a bill of size & X y; ? h w (1 < h,

w Polycarp wants to
check if all the bills he has earned to this moment fit into a wallet of size h

< 10%) |
X

w.

It is guaranteed that there is at least one query of type 1 before the first query of type 2 and that there
is at least one query of type 2 in the input data.

For each query of type 2 print "YES" if all the bills he has earned to this moment fit into a wallet of
given size. Print "NO" otherwise.

-
=}

g

o

s

CWwwNwN
o

+ 0 0w+ O
o
=
o

PR ERERDWENW

=,

Output
NO
YES
YES
YES
NO

The queries of type 2 of the example:

Neither bill fits; Both bills fit (just checking that you got that bills can overlap); Both bills fit (both
bills are actually the same); All bills fit (too much of free space in a wallet is not a problem); Only
bill 1 X 5 fit (all the others don’t, thus it’s "NO").

The input will be stdin and you should print your solution to stdout

Test cases Basic Intermediate Complex Edge
Input 4 7 13 8
+45 + 27 +55 + 1000000000 1
? 54 +33 + 64 + 1 1000000000
? 44 +72 +91 + 500000000
? 64 ? 37 ? 55 500000000
? 46 2 91 ? 1000000000
+10 1 ? 49 1000000000
? 105 +28 ? 999999999
? 89 1000000000
+ 77 ? 1000000000
2 77 499999999
? 87 + 1000000000
? 10 8 1000000000
? 66 ? 1000000000
1000000000
Output YES YES NO YES
NO NO NO YES
YES YES NO NO
YES YES
NO
NO
YES
NO
Reason Single bill with queries Multiple bills including Complex interleaving of Extreme boundary values

testing orientation and size
validation under
straightforward conditions.

duplicates and interleaved
adds and queries testing
correct global dimension
tracking.

many adds and queries with
varying dimensions to
stress test global maximum
computations.

testing maximum limits and
strict comparison edge
where one dimension is just
below requirement.

29

Under review as a conference paper at ICLR 2026

Table 17: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:

Valera had an undirected connected graph without self-loops and multiple edges consisting
of n vertices. The graph had an interesting property: there were at most k edges adjacent
to each of its vertices. For convenience, we will assume that the graph vertices were
indexed by integers from 1 to n.

One day Valera counted the shortest distances from one of the graph vertices to all other
ones and wrote them out in array d.

Thus, element d[i] of the array shows the shortest distance from the vertex Valera chose to
vertex number 1i.

Then something irreparable terrible happened. Valera lost the initial graph. However, he
still has the array d. Help him restore the lost graph.

Input

The first line contains two space-separated integers n and k (1 < k < 105). Number n shows
the number of vertices in the original graph. Number k shows that at most k edges were
adjacent to each vertex in the original graph.

The second line contains space-separated integers d[1], d[2], ..., d[n] (0 <d[i] < n). Number
d[i] shows the shortest distance from the vertex Valera chose to the vertex number i.

Output

If Valera made a mistake in his notes and the required graph doesn’t exist, print in the
first line number -1. Otherwise, in the first line print integer m (0 < m < 106) — the
number of edges in the found graph.

In each of the next m lines print two space-separated integers ai and bi (1 < ai, bi <
n; at # bi), denoting the edge that connects vertices with numbers ai and bi. The graph
shouldn’t contain self-loops and multiple edges. If there are multiple possible answers,

print any of them.
Examples

Input

32

011

Output

WP W
N W N

Input
4 2
2013

Output
3
13
1 4
2 3
Input
31
000

Output
-1

The input will be given via stdin and the output should be printed to stdout by your code.

Test cases Basic Intermediate Complex Edge
Input 42 73 10 3 53
0112 0122123 01112222 02233
2 3
Output 3 6 9 -1
12 12 12
13 15 13
2 4 23 14
2 4 25
56 2 6
37 37
38
4 9
5 10
Reason Simple BFS tree with Moderately sized tree Larger tree with No vertices at distance
one level-2 vertex. with branching and multiple branches and 1, invalid distance
various depths. depth-3 leaf. sequence

30

Under review as a conference paper at ICLR 2026

Table 18: A sample from TAROT dataset comprising 4-tiered test cases: basic, intermediate, com-
plex, and edge. The Reason column details the rationale for each tier assignment.

Solve the following coding problem using the programming language python:
The game of Berland poker is played with a deck of m cards, m of which are jokers. k
players play this game (n is divisible by k).

At the beginning of the game, each player takes % cards from the deck (so each card
is taken by exactly one player). The player who has the maximum number of jokers is
the winner, and he gets the number of points equal to =z — y, where z is the number of
jokers in the winner’s hand, and y is the maximum number of Jjokers among all other
players. If there are two or more players with maximum number of jokers, all of them
are winners and they get 0 points.

Here are some examples: n = 8, m = 3, k = 2. If one player gets 3 jokers and 1 plain
card, and another player gets 0 jokers and 4 plain cards, then the first player is
the winner and gets 3 —0 = 3 points; n =4, m =2, k=4. Two players get plain cards,
and the other two players get jokers, so both of them are winners and get 0 points;
n=9, m=6, k=3. If the first player gets 3 jokers, the second player gets 1 joker
and 2 plain cards, and the third player gets 2 jokers and 1 plain card, then the first
player is the winner, and he gets 3—2 =1 point; n =42, m =0, k=7. Since there are
no jokers, everyone gets 0 jokers, everyone is a winner, and everyone gets 0 points.
calculate the maximum number of points a player can get for winning

Given n, m and k,

the game.

The first line of the input contains one integer t the number of test

cases.

(1 < t < 500) |

Then the test cases follow. Each test case contains three integers n, m and k

(2<n<50, 0<m<n, 2<k<n, k is a divisors of n).

For each test case, print one integer | the maximum number of points a player can get

for winning the game.

Test cases of the example are described in the statement.
The input will be stdin and you should print your solution to stdout

Now solve the problem and return the code.

Test cases Basic Intermediate Complex Edge
Input 3 5 7 6
92 3 20 10 5 50 25 25 202
12 5 4 15 3 5 49 49 7 22 2
65 3 10 10 2 48 20 6 50 0 25
14 7 7 30 0 5 50 50 50
18 17 3 32 16 4 50 25 5
45 23 9 50 1 2
28 14 7
Output 2 2 1 0
2 3 0 0
0 0 5 0
1 0 0
0 5 6
2 1
2
Reason Simple small cases Moderate-sized Varied larger values Extreme boundary

covering scenarios
where jokers are
fewer than, equal to,
or exceed the
per-player limit.

inputs, testing exact
division of jokers, no
jokers, and tied
maximum
distributions.

including big decks,
testing heavy
distributions and
zero-joker scenarios.

conditions with
minimal and maximal
n, k, and m values to
test edge handling.

31

	Introduction
	Related works
	Curriculum Learning for Code
	Reinforcement Fine-Tuning for Code LLMs

	TAROT Framework
	TAROT Dataset
	TAROT Training Mechanism

	Experiments
	Experimental Settings
	Experimental Results
	In-depth Analysis

	Conclusion
	Test Case Generation Prompts
	Implementation Details
	Generation and Execution Environment
	Hyperparameter Sensitivity Analysis
	Impact of Maximum Completion Tokens at Inference Time
	Additional Results on Gemma2-2B-IT
	Full Benchmark Tables (Qwen2.5 & Qwen3-4B)
	Training Dynamics Analysis
	Sample Tiered Test Cases

