
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KNOWLEDGE DEBUGGER: DIAGNOSIS OF KNOWLEDGE
INCONSISTENCY WITH MULTIMODAL GRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

Human knowledge can naturally be organized as multimodal graphs, with prime
examples including research papers or Wikipedia pages. However, identifying
information inconsistencies within such knowledge-intensive documents remains
challenging. These inconsistencies can be explicit, such as numerical discrepancies
between tables and their textual descriptions, or implicit, like differing conclusions
presented at the beginning and end of an article. Large Language Models (LLMs)
have shown great potential in detecting these types of inconsistencies. Nevertheless,
their practical deployment is often hindered by limitations such as restricted context
windows and high inference costs. Additionally, standard Retrieval-Augmented
Generation (RAG) approaches struggle to effectively capture intricate reference
relationships within multimodal graphs. To address these challenges, we propose
Knowledge Debugger, an efficient Graph Neural Network (GNN)-based framework
that can identify diverse types of knowledge inconsistencies in multimodal data.
To evaluate the effectiveness of our method, we built a Multimodal Knowledge
Debugging Benchmark (MKDB) including 3 modalities, 699 Wikipedia pages,
more than 10000 research papers, and more than 10000 knowledge-debugging tasks
with answers. With our approach, we leverage LLMs to generate high-quality labels
for training multimodal GNNs. The trained GNNs demonstrate strong performance
in consistency checking tasks on multimodal graphs. Specifically, we beat the best
RAG methods by 11% on node-level bug detection tasks. By employing GNNs,
we significantly enhance system efficiency and scalability, enabling effective and
practical inconsistency detection in complex multimodal knowledge structures.

1 INTRODUCTION

Human knowledge inherently possesses a multimodal structure where dense information is or-
ganized across multiple modalities with complex relational structures. Prime examples include
knowledge-intensive sources such as Wikipedia pages Wikipedia (2025) and academic papers Kinney
et al. (2023) with rich text, figures, tables, and numerous hyperlinks and cross-references. Other
knowledge-intensive platforms such as autonomous vehicles Cui et al. (2023); Xiao et al. (2022),
healthcare Yildirim et al. (2024); Krones et al. (2024), customer support automation Liao et al. (2018);
Saha et al. (2018), and anomaly detection Wang et al. (2023); Liu et al. (2025a), etc, are also highly
structured and multimodal. To ensure the effectiveness of this knowledge, a key research question
arises: Can we efficiently detect knowledge inconsistency within structured multimodal data?

Inconsistencies, while undesirable, are ubiquitous in knowledge databases. For instance, Wikipedia
pages often contain partially updated information, where certain sections reflect recent changes
while others still retain outdated content; in academic writing, researchers frequently struggle to
ensure consistency across statements in long-context, multimodal, and cross-referenced content; in
safety-critical systems, e.g., autonomous driving and healthcare, where inconsistencies can arise due
to malicious intent or naturally induced distribution shifts; these inconsistencies, if not identified, can
lead to dire consequences Zhao et al. (2024).

However, detecting knowledge inconsistency is a complex and challenging task, especially when
the data is multimodal and structured. First, there often lack ground-truth labels for inconsistencies,
making training and evaluations challenging. Second, inconsistencies are often subtle, where a
statement may appear plausible on its own, yet its inconsistency can only be detected when considering

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 claim to be the state-of-the-art
2 indicates that Baseline A is the best at Recall.

3 indicates MLP is all you need.
4 indicates Attention is all you need

4

3

2

1

Figure 1: Identifying inconsistencies in multimodal and structured content such as research
papers and Wikipedia pages is challenging, even for humans. Left: a claim about the method
is inconsistent with the information in the table, constituting a node-level inconsistency across 2
modalities. Right: the citation of “Attention is all you need” is inconsistent with a claim about MLP
in the paper, constituting an edge-level in consistency across papers.

the (ultra-)long context with its potential relational structure holistically. Lastly, while state-of-the-art
multimodal large language models (LLMs), e.g., GPT-4o OpenAI et al. (2024) or Claude 3.7 Cla,
may be used to diagnose multimodal content, the associated token cost could be prohibitive. For
instance, identifying reference inconsistencies in one paper requires inputting the full content of
multiple papers, which will exceed millions of tokens in a short time.

There are existing datasets and solutions that can be used for knowledge inconsistency detection, but
they have limitations in several aspects. First, although benchmarks on multimodal data, such as
WikiWeb2M on Wikipedia Burns et al. (2023a) exist, they focus on Question Answering tasks, which
can usually be answered well with strong LLMs that have sufficient external knowledge. Second,
there are existing solutions that can be used for knowledge inconsistency detection, but they are
often limited in effectiveness and/or efficiency. For example, retrieval-augmented generation (RAG)
models have been used to detect inconsistencies; however, these methods are solely based on the
semantic similarity between the content, without considering the relational information across the
content Lewis et al. (2021). There currently lacks a comprehensive benchmark for multi-modal
knowledge inconsistency detection, and a detection algorithm that can fully leverage the relational
information among data, necessary for detecting subtle inconsistencies within a knowledge base.

In this paper, we propose Knowledge Debugger, a Graph Neural Network (GNN) based framework
designed for efficient training and inference in multi-modal knowledge inconsistency detection.
Our key insight is that multimodal knowledge-intensive data are naturally suited to graph-based
representations with entities, concepts, and their relations as nodes and edges. Moreover, we can
formulate inconsistency detection tasks as node classification tasks, where the content exhibits
inconsistency, or edge classification tasks, where there are erroneous relations among entities. At
its core, Knowledge Debugger trains a graph neural network-based retriever that learns to retrieve
structurally and contextually relevant content, enabling robust inconsistency detection across both
modalities and document relations.

To demonstrate the effectiveness of Knowledge Debugger, we construct a novel benchmark dataset
named as Multimodal Knowledge Debugging Benchmark (MKDB) that captures fine-grained knowl-
edge inconsistencies within Wikipedia articles and research papers. In this benchmark, we include
3 modalities (text, table, and image), more than 10,000 research papers, 699 Wikipedia pages, and
more than 10,000 knowledge debugging tasks. We introduce inconsistencies where different parts of
a document may appear semantically similar yet contain conflicting factual information, highlighting
the subtle and often overlooked nature of such inconsistencies. Concretely, we introduce four types
of debugging tasks in MKDB to simulate real-world knowledge debugging tasks: (1) node-level bug
detection, (2) node-level bug correction (3) edge-level bug detection, (4) edge-level bug correction.

Empirical results demonstrate that our approach outperforms traditional similarity-based baselines,
particularly in identifying fine-grained inconsistencies that prior methods fail to capture. Based on
our experimental results on our benchmark, our proposed GNN-based algorithm outperforms the best
RAG-based method by 11% while remaining efficient.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Factual inconsistency detection. Factual inconsistency is a critical challenge in various natural
language processing tasks. Traditional approaches often relied on training entailment or classification
models to detect contradictions between generated text and source knowledge Cao et al. (2018);
Kryściński et al. (2019); Tang et al. (2022). Question answering has also been explored as a means
to evaluate consistency Durmus et al. (2020). Furthermore, researchers have the use of retrieval-
augmented generation (RAG) methods, where models dynamically retrieve external factual data to
solve the hallucination and inconsistency.Jiang et al. (2023); Ma et al. (2023) Recent efforts in this
domain explore the use of LLMs for evidence retrieval and claim verification, often incorporating
techniques like chain-of-thought reasoning to improve performance Kojima et al. (2022). Notably,
evaluating factual inconsistencies has been an open research question. Benchmarks like FEVER have
been instrumental in evaluating systems’ ability to verify claims against evidence Thorne et al. (2018),
and more specialized datasets like SciFact focus on scientific claim verification Wadden et al. (2022).

Multimodal knowledge graph. Multimodal knowledge graphs offer a powerful way to represent
structured and unstructured information from diverse sources, such as webpages and academic
research papers Burns et al. (2023a); Galiano et al. (2023). These graphs integrate various modal-
ities, including text, tables, figures, and metadata into a unified representation, enabling a more
comprehensive understanding of the underlying knowledge Chen et al. (2023). In the context of
scientific articles, multimodal knowledge graphs can capture both structured information, such as
citations and references, and unstructured content, including the full text and visual elements Zhang
et al. (2023). Recent advancements in this field have seen the application of LLMs for extracting
entities and relations from both textual and visual modalities within documents Lee et al. (2024). For
instance, LLMs can be used to understand the content of figures and their captions, linking them to
relevant parts of the text and other entities in the graph Liu et al. (2025b). Platforms are emerging that
leverage multimodal knowledge graphs to align different components of research papers, including
text, diagrams, and even code, facilitating complex queries and discovery of knowledge across modal-
ities Kannan et al. (2020). Similarly, in the context of Wikipedia, multimodal knowledge graphs
combine article text with information from infoboxes and images, enriching the graph with contextual
information Yoon et al. (2023). These knowledge graphs support advanced applications in question
answering, fact-checking, and scientific discovery, allowing systems to retrieve and reason over
diverse types of evidence Yao et al. (2023). Researchers are increasingly exploring the use of LLMs
not only to build but also reason over multimodal knowledge graphs, enabling more sophisticated
information retrieval and inference capabilities Pan et al. (2024).

3 GRAPH STRUCTURE OF MULTIMODAL DATA

In knowledge-intensive and multimodal knowledge sources, e.g., Wikipedia articles and scientific
papers, identifying knowledge inconsistency within one modality or cross-modality is a significant
challenge as these sources contain implicit yet meaningful relationships across different content
modalities. These relationships are not purely semantic; rather, they emerge from the spatial arrange-
ment, document flow, and explicit cross-references within the source. To capture this, we model such
content using a multimodal graph, where each unit—text, image, table, or metadata is represented as
a node, and edges encode the spatial, referential, or sequential dependencies across these units.

Multimodal graph. We define a multimodal graph G = (V, E ,M,L), where V is the node set,
E ⊆ V × V the directed edges, M : V → T ∪ I ∪ B maps each node to a text/image/table attribute,
and L : E → R labels edges with relation types. We instantiate R to reflect human reading flow—
next (sequential order within sections, e.g., paragraph → paragraph or text → caption), reference
(citing span → cited item, e.g., “Fig. 2” or “[12]”), and follow (claim/mention → its immediate
elaboration/result)—so we target inconsistencies within a reader’s local attention range. Richer
cross-paragraph or logical relations can be added as extensions via L, but they typically require
heavier construction pipelines and are noisier.

Example: multimodal graph for Wikipedia. For Wikipedia pages, we focus on two primary
modalities: text and images. Each paragraph in a given article is treated as a text node (M(v) = T ),
while each embedded image is represented as an image node (M(v) = I). These node types arise
naturally from how Wikipedia articles are written where textual descriptions are often supported by

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

relevant visual media, and each content block can be cleanly isolated into a graph node. We define
two edge types to model the relationships between these nodes. First, Follow edges (Follow(vi, vj))
capture the sequential ordering in an article where the ordering could be defined between adjacent text
paragraphs or between adjacent images. Second, Reference edges (Reference(vi, vj)) are introduced
when a paragraph references a nearby image (as shown in Figure 3) or when an image is spatially
adjacent to a paragraph and helps illustrate its content. These relationships allow the graph to reflect
both the document’s layout and its implicit multimodal dependencies.

Paragraph3

Paragraph1

Paragraph2
Figure1

Table1

Based	on	Figure1,	
we	can	see	that	the	
function	about	…

As	mentioned	in	
Table1,	we	can	see	…	

We can show model
A in Table 1 is better

reference
follow

reference

Image modality Table modality Text modality

Figure 2: Research papers or Wikipedia
pages can be formed as multimodal graphs.
Each node can represent part of the paper, and
each edge can represent following, including,
referencing relationships that naturally exist
in the paper. Multiple papers are connected
through citation edges.

Example: multimodal graph for academic papers.
Scientific papers contain richer multimodal structures.
We decompose each paper into three types of nodes:
text nodes (T ) for paragraphs, section headings, and
captions; image nodes (I) for figures and visual di-
agrams; table nodes (B) for tabular data. These
distinctions emerge from the functional roles that
each modality plays in conveying scientific knowl-
edge—tables often summarize results, and figures
illustrate models or findings. The graph of a paper
contains several structurally motivated edge types.
Like Wikipedia, Follow edges (Follow) connect adja-
cent nodes based on document order, enabling flow-
based reasoning across sections. Reference edges
(Reference) link paragraphs to figures or tables they
mention (e.g., “see Table 2”), capturing the inter-
play between textual explanation and visual evidence.
Finally, Cite edges (Cite(vtext, vref)) connect text pas-
sages to the references they cite, modeling scholarly
attribution and inter-document dependency.

4 MULTIMODAL KNOWLEDGE INCONSISTENCY

In a multimodal graph, where heterogeneous content units (e.g., text, images, tables) are intercon-
nected to represent structured knowledge, inconsistency refers to a structural bug that violates the
internal coherence of the graph. We define multimodal knowledge inconsistency as a contradiction,
misalignment, or erroneous linkage that disrupts the factual or logical integrity of the information
encoded in the graph. Such inconsistencies occur when the content of a node is incompatible with
information elsewhere in the graph, or when connections between nodes are semantically invalid.

Formally, given a multimodal graph G = (V, E ,M), inconsistencies can take two primary forms:

Node-level inconsistency. A node vi ∈ V is said to be inconsistent if its content contradicts or
conflicts with that of one or more other nodes {vj}j∈Ni

, where Ni ⊆ V \ {vi}. Examples include
contradictory claims between paragraphs, inconsistent numerical values between a text and a table,
or a caption that misinterprets an associated figure.

Edge-level inconsistency. An edge ei,j ∈ E is inconsistent if it represents an incorrect or misleading
relationship, such as an invalid reference, an erroneous citation, or a structural link that falsely implies
semantic relevance. These edges should not exist in a logically coherent graph.

These inconsistencies may be subtle and span multiple modalities, as shown in Figure 1, making
them difficult to detect using unimodal or surface-level similarity methods. For instance, a table
may provide updated statistics that conflict with outdated textual claims, or an image may visually
contradict a paragraph that refers to it. The inconsistency of multimodal knowledge thus represents
a fundamental flaw—akin to a bug—in the structure of the graph. Identifying and correcting such
inconsistencies is crucial for enabling trustworthy multimodal reasoning and improving downstream
tasks such as fact verification, summarization, and knowledge retrieval.

5 BUILDING KNOWLEDGE DEBUGGER WITH GNNS

To detect and repair structural bugs in multimodal graphs, we introduce a Graph Neural Network
(GNN)-based approach named Knowledge Debugger, operating at both node and edge levels. We

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Node-level Bug Detection

Does paragraph A of the paper 
(node A) include contradictory 

information with outers?

Node-level Bug Correction

Is the paragraph B (node B) 
conflicting with the 

information in node A?

A A

B

Edge-level Bug Detection

Is the reference relationship 
(edge 1) between the figure 
C and paragraph A correct?

1

Edge-level Bug Correction

Is there a missing reference 
between image C and 

paragraph D?

C

D

C

?A

Text paragraph in one paper Table in one paper Image in one paper

Figure 3: Four types of knowledge debugging tasks defined based on multimodal graphs.
Only the first type of knowledge debugging tasks is considered as the node classification tasks; the
remaining three types of debugging tasks can be understood as special forms of edge classification.

frame the debugging process in two distinct stages: (1) bug detection—identifying inconsistencies
and determining their types, and (2) bug correction—localizing and resolving these inconsistencies.
Our approach leverages the semantic information of multimodal content alongside the structural
context inherent in the graph topology, utilizing specialized models tailored for graph modeling tasks.

Semantic and structural representation in GNNs Capturing semantic context is crucial for
identifying inconsistencies in knowledge-intensive domains. Initially, we set each node’s hidden state
using embeddings from a pretrained multimodal encoder:

h
(0)
i = MENC(vi) (1)

where MENC(·) denotes a modality-specific embedding extractor (e.g., voyage-multimodal-v3 Voy-
age AI (2024)). These multimodal embeddings encode semantic content, facilitating meaningful
message propagation in subsequent stages. At each GNN layer l, node hidden states are updated by
aggregating messages from neighboring nodes:

h
(l)
i = AGG

(
h
(l−1)
i ,

{
MSG

(
h
(l−1)
j

)
: vj ∈ N (vi)

})
(2)

Here, MSG(·) computes messages based on neighbor states, and AGG(·) combines these messages
with the node’s previous state. After L layers, the final hidden state h

(L)
i captures a rich combination

of semantic and structural context suitable for downstream debugging tasks.

Training node-level debugger At the node level, debugging involves two subtasks: (1) bug
detection—deciding if a node vi has inconsistent information, and (2) bug correction—identifying
other nodes that conflict with the target node. For detection, given vi in graph G, we train a
binary classifier fθ(vi;G) ∈ {0, 1} with ground-truth consistency labels yi. For correction, once
an inconsistency at vi is detected, we further identify relevant supporting nodes by classifying
candidates vj ∈ N (vi) using another binary classifier f loc

ϕ (vi, vj) ∈ {0, 1}; this is essentially an
edge-classification task between the bug node vi and remaining candidate nodes vj . Concretely, we
minimize

Ldet(θ) =
∑

vi∈Vtrain

LBCE

(
fθ(vi), yi

)
Lcorr(ϕ) =

∑
(vi,vj)∈P

LBCE

(
f loc
ϕ (vi, vj), zij

)
(3)

where zij = 1 indicates a conflict between vi and vj that requires resolution by adjusting the
information within these nodes. Based on the classification scores over vj , Knowledge Debugger can
be conveniently combined with RAG systems to resolve the bug in vi using the top-K supporting
nodes.

Training edge-level debugger Edge-level debugging similarly involves two subtasks: (1) bug
detection—determining if an edge (vi, vj) is invalid, and (2) bug correction—suggesting correct
alternative target nodes. This debugging process checks whether the connected information is

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

accurately referenced or cited. For detection, we train an edge classifier f edge
θ (vi, vj) ∈ {0, 1};

for correction, we train another edge classifier f corr
ψ (vi, vj) ∈ {0, 1} to suggest proper connections.

Concretely, we minimize

Ledge
det (θ) =

∑
(vi,vj)∈Etrain

LBCE

(
f edge
θ (vi, vj), yij

)
Ledge

corr (ψ) =
∑

(vi,vj)∈P

LBCE

(
f corr
ψ (vi, vj), zij

)
(4)

where yij denotes edge validity and zij = 1 if vj is a correct node to which vi should connect.
Notably, edge-level bug correction is often more convenient than node-level correction, since the
predicted proper connections from f corr(·) can be directly taken as the corrected edges without relying
on additional RAG systems.

Inference procedure for knowledge debugging Both node-level and edge-level models follow
a two-stage inference pipeline: (1) Detection, where models identify inconsistencies based on
supervised signals; and (2) Correction, where detected inconsistencies are localized and corrected
using contrastive or ranking-based objectives. By integrating semantic embeddings and graph-aware
reasoning, Knowledge Debugger effectively identifies and corrects subtle multimodal inconsistencies,
enhancing robustness in knowledge verification and repair tasks.

6 MULTIMODAL KNOWLEDGE DEBUGGING BENCHMARK (MKDB)

To systematically evaluate Knowledge Debugger, we construct a comprehensive benchmark com-
prising two representative types of knowledge-intensive materials: Wikipedia articles and research
papers. Within this benchmark, we include two types of tasks mentioned in Section §5 i.e., bug
detection and bug correction. In this section, we provide details about the benchmark as well as its
construction process and evaluation metrics.

6.1 DATA COLLECTION AND GRAPH CONSTRUCTION

Benchmark corpus details. Table 1, shows the size and scale of our multimodal benchmark dataset
and constructed knowledge debugging tasks. In our benchmark, we provide two types of data: (i)
multimodal data source with constructed multimodal graphs from research papers and Wikipedia
pages; and (ii) knowledge debugging tasks with questions and answers for both node-level and
edge-level bug detection and bug correction. For multi-modalities, for the Wikipedia pages, we have
700 image nodes, 7,776 text nodes. For the research papers, we have 1,402,305 text nodes, 30,812
image nodes, and 33,024 table nodes.

Collection of multimodal knowledge. To construct multimodal graphs and build tasks on the
edges and nodes, we require fine-grained, high-quality data from both Wikipedia and research
papers. For Wikipedia, we utilize the WikiWeb2M Burns et al. (2023b) dataset, which provides
paragraph-level splitting of text together with its surrounding words. For research papers, however, no
comparable dataset exists, so we self-collect 10,000 computer science papers from arXiv 1 , parsing
and preprocessing the source files along with their figures and tables to obtain texts, tables, images,
citations, and metadata.

Graph construction with multimodal knowledge. Building on these resources, the MKDB bench-
mark is constructed through several steps: (1) we collect raw content from Wikipedia and arXiv
papers; (2) we parse this content into nodes such as paragraphs, images, and captions using rule-based
methods; (3) we add edges based on reading order and reference links; and (4) we connect sections
and subsections with their corresponding content to capture structural coherence. Importantly, no
content is altered during this process—ensuring full reversibility to the original material—and we
rely solely on rule-based preprocessing without additional annotation or external supervision. Since
both Wikipedia articles and research papers are generally high-quality and knowledge-dense, we
expect relatively few inherent inconsistencies in the raw sources.

1https://arxiv.org/

6

https://arxiv.org/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Dataset and benchmark statistics. Left: statistics of multimodal data sources (#Documents
indicates the number of raw documents; #Node and #Edge indicate the constructed graph structure).
Right: size of the proposed MKDB benchmark (number of datapoints for node/edge-level tasks).
Each node-level or edge-level task can be converted to a bug detection and a bug correction sub-task.

#Documents #Node #Edge

Wikipedia 700 8,476 11,865

Research 10,393 1,466,141 4,804,388

Node-level task Edge-level task

Wikipedia 4,987 4,381

Research 4,567 5,003

6.2 TASK AND EVALUATION DESIGN

Construction of edge-debugging tasks. For a fixed node u, we generate edge-level bugs by
replacing its entire set of neighbors with new nodes drawn from a weighted neighborhood distribution.
Concretely, for each original neighbor v ∈ N (u), we sample a replacement v′ ∈ N (K)(u) \ N (u)
according to

qu(x) =
w(u, x)∑

y∈N (K)(u)\N (u) w(u, y)
, (5)

where w(u, x) is a weight function (e.g., based on positional distance or semantic similarity). The
corrupted neighborhood Ñ (u) = {v′1, . . . , v′d(u)} then replaces the original N (u), yielding edges
(u, v′i) that preserve local degree but induce controlled inconsistencies.

Construction of node-debugging tasks. For a fixed node u, we also apply weighted neighborhood
sampling, but instead of rewiring edges, we perturb its attributes. Specifically, for each sampled
neighbor, we prompt an LLM to generate conflicting information, which is then injected back into
u’s attributes. This produces a perturbed representation of u that intentionally conflicts with multiple
related nodes, yielding realistic node-level inconsistencies.

Evaluation metrics. Since bug detection and correction address different stages of knowledge
debugging, we evaluate them with tailored metrics: detection is assessed using binary classification
measures (precision, recall, and F1), while correction is treated as a retrieval task and judged by
ranking metrics (Recall@k, MRR, MAP, and NDCG@k) to capture the quality of the top candidates.

7 EXPERIMENTAL SETTING

Baseline settings. To comprehensively evaluate our proposed methods, we compare against sev-
eral baselines that utilize large language models (LLMs). Given their robust in-context learning
capabilities, LLMs are expected to detect inconsistencies within textual domains automatically. In
addition to the standard Retrieval-Augmented Generation (RAG) approaches that leverage either
text-based or multimodal embeddings, we explore retrievers based on graph structure, specifically
employing personalized PageRank (PPR). Furthermore, to thoroughly assess model capabilities,
we introduce hybrid retrievers that combine scores from text-based retrievers and PPR-based graph
structure retrievers through a linear weighting scheme. All experimental results reported in Table 2
and Table 3 are derived from a fixed test set of 400 examples within the knowledge debugging
benchmark separately on the wiki graph and the paper graph. Notably, retrievers and LLMs are
utilized without further training, while the GNN model is specifically trained on the remainder of the
benchmark data.

Model settings. In our retrieval-augmented generation (RAG) experiments, we select Qwen2.5-7B-
Instruct-Turbo 1 as the foundational language model. For textual retrieval, we employ the sentence
transformer all-MiniLM-L6-v2 2 as a benchmark. For multimodal retrieval scenarios, we utilize
voyage-multimodal-3 3 and AltCLIP (Chen et al., 2022), both of which are recognized for achieving
state-of-the-art performance in multimodal understanding tasks. The graph neural network component
in our experiments is implemented using GATv2Conv. Additional technical details and experimental
parameters are elaborated upon in the Appendix.

1We utilize Qwen2.5-7B-Instruct-Turbo from TogetherAI: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
3https://blog.voyageai.com/2024/11/12/voyage-multimodal-3/

7

https://api.together.ai/models/Qwen/Qwen2.5-7B-Instruct-Turbo
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://blog.voyageai.com/2024/11/12/voyage-multimodal-3/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: MKDB benchmark results on bug detection tasks. RAG (oracle) indicates that we directly
provide the ground-truth node to the LLM for generation. Additionally, RAG (hybrid retriever)
indicates that this retriever utilizes a combination of a text retriever and a structural retriever.

Node-level Edge-level

Method Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑
Research

RAG (oracle) 82.3 95.0 88.2 — — —

LLM (w/o retrieval) 65.3 55.5 60.0 53.1 21.5 30.6
RAG (structural retrieval) 66.5 60.5 63.4 4.2 2.0 2.7
RAG (text retrieval) 81.8 40.5 54.2 50.3 41.0 45.2
RAG (multimodal retrieval) 66.3 55.0 60.1 57.6 57.2 57.4
RAG (hybrid retrieval) 77.4 56.5 65.3 46.6 45.0 45.8

Wikipedia

RAG (oracle) 69.3 95.0 80.2 — — —

LLM (w/o retrieval) 68.2 67.5 67.8 59.9 48.5 53.6
RAG (structural retrieval) 64.6 52.0 57.6 52.9 18.5 27.4
RAG (text retrieval) 68.2 87.0 76.5 51.4 64.5 57.2
RAG (multimodal retrieval) 65.1 82.0 72.6 54.2 74.5 62.7
RAG (hybrid retrieval) 69.8 90.0 78.6 53.2 50.0 51.6

Ours (GNN-based) 84.1 90.0 87.0 57.7 82.1 67.8

8 EXPERIMENTAL RESULTS

We conduct comprehensive experiments on both the paper and wikipedia graphs for node-level and
edge-level knowledge debugging. Our main findings are:

Knowledge Debugger outperforms LLM-based methods on both detection and correction tasks.
As shown in Table 2, our GNN-based approach achieves the highest F1 scores on both node-level
and edge-level bug detection. In particular, on node-level detection, it attains an F1 of 0.870—nearly
matches the performance of the LLM with an oracle retriever. This improvement stems from the
GNN’s ability to model structural perturbations: when the graph structure changes, the semantic
relationships among document components shift, and a GNN can learn to propagate and detect these
inconsistencies across the graph.

Similarity-based retrieval alone fails to spot subtle inconsistencies. Our benchmark is designed so
that knowledge inconsistencies are often subtle and require careful reading to detect. Consequently,
even state-of-the-art text-based and multimodal retrievers fall short, as evidenced by their low scores
in Table 2. Simple similarity measures cannot reliably capture the nuanced contradictions that occur
within a single document graph.

Hybrid retrievers that combine structure and semantics yield better results. Table 2 also
shows that hybrid retrieval—integrating both text-based and structure-based signals—consistently
outperforms methods that rely solely on one or the other. This demonstrates that leveraging structural
context alongside semantic similarity is crucial for effectively identifying knowledge inconsistencies
in both paper and wiki graphs.

9 DISCUSSION

RQ1: What does the Knowledge Debugger learn during training? Each node in our multimodal
graph is initialized using embeddings from state-of-the-art models such as voyage-multimodal-v3.
Consequently, at the start of training, our Graph Neural Network (GNN) primarily leverages semantic
similarity between nodes for message passing. Throughout the training process, the GNN learns
to discern semantic similarity structures within subgraphs, particularly identifying when nodes
present conflicting information or when nodes maintain consistent and coherent information within a
subgraph. This supervision enables the GNN to recognize and internalize patterns associated with
"buggy" nodes. Our experiments further reveal that even when applying only scalar-based similarity

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: MKDB benchmark results on bug correction tasks. R@5 represents Recall@5. The
correction task directly utilizes the retriever without asking LLMs for an answer.

Node-level Edge-level

Method MRR ↑ MAP ↑ R@5 ↑ NDCG@5 ↑ MRR ↑ MAP ↑ R@5 ↑ NDCG@5 ↑
Research

Structure 22.9 12.6 21.4 16.5 95.8 74.5 80.0 83.3
Text 34.4 14.7 19.0 19.2 84.1 54.5 61.8 66.7
Multimodal 13.7 5.5 8.6 6.9 23.8 8.3 13.5 13.9
Hybrid 26.3 15.0 24.3 19.0 84.5 73.4 85.5 80.7

Wikipedia

Structure 73.8 45.9 49.8 52.1 40.8 18.1 19.9 23.4
Text 85.8 50.1 53.4 57.8 66.8 53.6 62.8 56.7
Multimodal 87.3 57.5 60.7 64.8 70.3 62.8 79.1 67.5
Hybrid 86.3 50.8 54.4 58.9 68.0 53.2 60.6 56.8

Ours 81.8 60.8 60.5 61.8 89.2 85.6 99.1 90.2

scores for nodes, the GNN effectively identifies graph structures indicative of problematic nodes.
Furthermore, employing higher-dimensional features contributes to more stable training.

RQ2: How cheap and efficient is the Knowledge Debugger? Compared to LLM baselines, our
GNN-based Knowledge Debugger is far smaller and substantially faster, enabling efficient batch
inference at scale. Concretely, we use a 3-layer GATv2Conv encoder with 4 attention heads and
128 hidden units, yielding <10M parameters—orders of magnitude below the 7B-parameter LLMs
used in prior baselines. This compact model fits easily on a single commodity GPU and supports
high-throughput, paragraph-level inference, which is critical for large-scale bug scanning across
papers and wiki pages. In contrast, running an LLM on every paragraph would incur prohibitive
latency and cost, making end-to-end scanning impractical; the GNN therefore provides a practical,
cost-effective backbone for this workload.

10 ABLATION STUDY

Embedding initialization. To assess the importance of semantic initialization, we replaced the
initial hidden states provided by voyage-multimodal-3 embeddings with randomly initialized hidden
states. After training, the model achieved an F1 score around 0.5 or lower for edge classification,
significantly below our best results. This clearly indicates that semantic initialization plays a crucial
role in enabling our Knowledge Debugger to identify buggy nodes effectively.

GNN layer number. We experimented with different numbers of layers in the GNN architecture
to determine their influence on performance. With only 1 layer, the model reached an F1 score of
0.5845, which improved slightly to 0.5959 with 2 layers. The performance peaked at 0.6957 with 3
layers but decreased to 0.6570 when we further extended to 4 layers. This suggests that adding more
layers beyond a certain point does not provide additional performance benefits.

GNN backbone. Lastly, we tested the impact of various GNN backbone architectures on the overall
performance. Replacing our chosen GATv2Conv backbone, we experimented with standard GCN,
original GATConv, and TransformerConv layers. These changes resulted in comparable F1
scores—0.6901 for GATConv and 0.6960 for TransformerConv—indicating that the specific
graph convolution operator does not significantly affect the final performance.

11 CONCLUSION

In this paper, we introduce Knowledge Debugger, a GNN-based framework for detecting inconsisten-
cies in multimodal and structured content. By modeling knowledge as graphs, Knowledge Debugger
surpasses traditional similarity-based and RAG approaches, achieving 11% higher F1 with lower
retrieval cost on a benchmark built from Wikipedia and research papers. This work advances reliable
knowledge systems and paves the way for applications in domains such as autonomous vehicles,
healthcare, and observability systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. The construction of the MKDB
dataset is documented in Section 6 and Appendix B, with detailed preprocessing pipelines and
synthetic perturbation procedures further described in Appendix B. Model architectures, hyperparam-
eters, and training settings are provided in Appendix D. Comprehensive evaluation metrics and task
definitions are given in Section 5, Appendix C and Appendix D. We will release anonymous source
code and scripts as supplementary material to reproduce dataset construction, training, and evaluation.
All baseline models and encoders are either open-source or referenced with precise versions, and
random seeds are fixed for experiments where applicable.

ETHICS STATEMENT

This work develops Knowledge Debugger (Knowledge Debugger) and the Multimodal Knowledge
Debugging Benchmark (MKDB) to study the detection and correction of inconsistencies in multi-
modal knowledge graphs. All data come from publicly available sources: Wikipedia (CC BY-SA 4.0)
and arXiv papers released under a non-commercial license (CC BY-NC). We do not process sensitive
personal data or involve human subjects, and no additional ethical approval was required.

We recognize potential risks, including misuse of inconsistency detection to generate more convincing
fabricated content, as well as biases stemming from English-centric Wikipedia and computer science
arXiv corpora. To mitigate these risks, we (i) clearly separate synthetic perturbations from original
data, (ii) release provenance and usage guidelines, (iii) encourage human-in-the-loop review, and
(iv) recommend evaluation across diverse domains. Our model is lightweight (<10M parameters),
reducing environmental impact compared to large-scale LLM baselines.

Overall, this research aims to advance the trustworthiness and auditability of knowledge-intensive
systems while being mindful of limitations and dual-use concerns.

REFERENCES

Claude 3.7 sonnet system card. URL https://api.semanticscholar.org/CorpusID:
276612236.

Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A Plummer, Kate Saenko,
Jianmo Ni, and Mandy Guo. Wikiweb2m: A page-level multimodal wikipedia dataset. arXiv
preprint arXiv:2305.05432, 2023a.

Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A. Plummer, Kate Saenko,
Jianmo Ni, and Mandy Guo. Wikiweb2m: A page-level multimodal wikipedia dataset, 2023b.
URL https://arxiv.org/abs/2305.05432.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. Faithful to the original: Fact aware neural abstractive
summarization. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Yong Chen, Xinkai Ge, Shengli Yang, Linmei Hu, Jie Li, and Jinwen Zhang. A survey on multimodal
knowledge graphs: Construction, completion and applications. Mathematics, 11(8):1815, 2023.
URL https://www.mdpi.com/2227-7390/11/8/1815.

Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, and Ledell Wu. Alt-
clip: Altering the language encoder in clip for extended language capabilities. arXiv preprint
arXiv:2211.06679, 2022.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu,
Zichong Yang, Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng Cao, Tong Zhou, Ao Liu,
Xinrui Yan, Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao Zheng. A survey on multimodal large
language models for autonomous driving, 2023. URL https://arxiv.org/abs/2311.
12320.

Esin Durmus, He He, and Mona Diab. Feqa: A question answering evaluation framework for
faithfulness assessment in abstractive summarization. arXiv preprint arXiv:2005.03754, 2020.

10

https://api.semanticscholar.org/CorpusID:276612236
https://api.semanticscholar.org/CorpusID:276612236
https://arxiv.org/abs/2305.05432
https://www.mdpi.com/2227-7390/11/8/1815
https://arxiv.org/abs/2311.12320
https://arxiv.org/abs/2311.12320


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Santiago Galiano, Rafael Muñoz, Yoan Gutiérrez, Andrés Montoyo, Jose Ignacio Abreu, and Luis Al-
fonso Ureña. T2KG: Transforming multimodal document to knowledge graph. In Proceedings
of the 14th International Conference on Recent Advances in Natural Language Processing, pp.
385–391. INCOMA Ltd., Shoumen, Bulgaria, 2023. URL https://aclanthology.org/
2023.ranlp-1.43/.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation, 2023. URL https:
//arxiv.org/abs/2305.06983.

Amar Viswanathan Kannan, Dmitriy Fradkin, Ioannis Akrotirianakis, Tugba Kulahcioglu, Ar-
quimedes Canedo, Aditi Roy, Shih-Yuan Yu, Arnav Malawade, and Mohammad Abdullah Al
Faruque. Multimodal knowledge graph for deep learning papers and code. In Proceedings of the
29th ACM International Conference on Information and Knowledge Management (CIKM 2020),
pp. 3417–3420. ACM, 2020. URL https://dl.acm.org/doi/10.1145/3340531.
3417439.

Rodney Kinney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan Bragg, Alexandra Bu-
raczynski, Isabel Cachola, Stefan Candra, Yoganand Chandrasekhar, Arman Cohan, et al. The
semantic scholar open data platform. arXiv preprint arXiv:2301.10140, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. URL https:
//arxiv.org/abs/2205.11916.

Felix Krones, Umar Marikkar, Guy Parsons, Adam Szmul, and Adam Mahdi. Review of multimodal
machine learning approaches in healthcare, 2024. URL https://arxiv.org/abs/2402.
02460.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard Socher.
Neural text summarization: A critical evaluation. arXiv preprint arXiv:1908.08960, 2019.

Junlin Lee, Yequan Wang, Jing Li, and Min Zhang. Multimodal reasoning with multimodal knowledge
graph. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 10767–10782, 2024. URL https://aclanthology.org/
2024.acl-long.579/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Lizi Liao, Yunshan Ma, Xiangnan He, Richang Hong, and Tat-Seng Chua. Knowledge-aware
multimodal dialogue systems. In Proceedings of the 26th ACM International Conference on
Multimedia, MM ’18, pp. 801–809, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356657. doi: 10.1145/3240508.3240605. URL https://doi.org/
10.1145/3240508.3240605.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-mmd: Multi-domain multimodal dataset for time series analysis, 2025a. URL https:
//arxiv.org/abs/2406.08627.

Junming Liu, Siyuan Meng, Yanting Gao, Song Mao, Pinlong Cai, Guohang Yan, Yirong Chen, Zilin
Bian, Botian Shi, and Ding Wang. Aligning vision to language: Text-free multimodal knowledge
graph construction for enhanced llms reasoning, 2025b. URL https://arxiv.org/abs/
2503.12972.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for retrieval-
augmented large language models, 2023. URL https://arxiv.org/abs/2305.14283.

11

https://aclanthology.org/2023.ranlp-1.43/
https://aclanthology.org/2023.ranlp-1.43/
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2305.06983
https://dl.acm.org/doi/10.1145/3340531.3417439
https://dl.acm.org/doi/10.1145/3340531.3417439
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2402.02460
https://arxiv.org/abs/2402.02460
https://aclanthology.org/2024.acl-long.579/
https://aclanthology.org/2024.acl-long.579/
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1145/3240508.3240605
https://doi.org/10.1145/3240508.3240605
https://arxiv.org/abs/2406.08627
https://arxiv.org/abs/2406.08627
https://arxiv.org/abs/2503.12972
https://arxiv.org/abs/2503.12972
https://arxiv.org/abs/2305.14283


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh
Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
URL https://arxiv.org/abs/2410.21276.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 36(7):3580–3599, July 2024. ISSN 2326-3865. doi: 10.1109/tkde.2024.3352100.
URL http://dx.doi.org/10.1109/TKDE.2024.3352100.

Amrita Saha, Mitesh M. Khapra, and Karthik Sankaranarayanan. Towards building large scale
multimodal domain-aware conversation systems. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Liyan Tang, Tanya Goyal, Alexander R Fabbri, Philippe Laban, Jiacheng Xu, Semih Yavuz, Wojciech
Kryściński, Justin F Rousseau, and Greg Durrett. Understanding factual errors in summarization:
Errors, summarizers, datasets, error detectors. arXiv preprint arXiv:2205.12854, 2022.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 809–819. Association for Computational Linguistics, June
2018. doi: 10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074/.

Voyage AI. Voyage multimodal: Bridging vision and language, November 2024. URL https://
blog.voyageai.com/2024/11/12/voyage-multimodal-3/. Accessed: 2025-05-
16.

David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan, Iz Beltagy, Lucy Lu Wang, and Hannaneh
Hajishirzi. SciFact-open: Towards open-domain scientific claim verification. In Findings of the
Association for Computational Linguistics: EMNLP 2022, pp. 4719–4734, Abu Dhabi, United
Arab Emirates, December 2022. doi: 10.18653/v1/2022.findings-emnlp.347. URL https:
//aclanthology.org/2022.findings-emnlp.347/.

Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao Wang, and Chengjie Wang. Multimodal
industrial anomaly detection via hybrid fusion, 2023. URL https://arxiv.org/abs/2303.
00601.

Wikipedia. The Free Encyclopedia, 2025. URL https://www.wikipedia.org/.

Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M. Lopez. Multimodal
end-to-end autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 23
(1):537–547, January 2022. ISSN 1558-0016. doi: 10.1109/tits.2020.3013234. URL http:
//dx.doi.org/10.1109/TITS.2020.3013234.

Barry Menglong Yao, Aditya Shah, Lichao Sun, Jin-Hee Cho, and Lifu Huang. End-to-end multi-
modal fact-checking and explanation generation: A challenging dataset and models. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’23, pp. 2733–2743. ACM, July 2023. doi: 10.1145/3539618.3591879. URL
http://dx.doi.org/10.1145/3539618.3591879.

Nur Yildirim, Hannah Richardson, Maria Teodora Wetscherek, Junaid Bajwa, Joseph Jacob,
Mark Ames Pinnock, Stephen Harris, Daniel Coelho De Castro, Shruthi Bannur, Stephanie
Hyland, Pratik Ghosh, Mercy Ranjit, Kenza Bouzid, Anton Schwaighofer, Fernando Pérez-García,
Harshita Sharma, Ozan Oktay, Matthew Lungren, Javier Alvarez-Valle, Aditya Nori, and Anja

13

https://arxiv.org/abs/2410.21276
http://dx.doi.org/10.1109/TKDE.2024.3352100
https://aclanthology.org/N18-1074/
https://blog.voyageai.com/2024/11/12/voyage-multimodal-3/
https://blog.voyageai.com/2024/11/12/voyage-multimodal-3/
https://aclanthology.org/2022.findings-emnlp.347/
https://aclanthology.org/2022.findings-emnlp.347/
https://arxiv.org/abs/2303.00601
https://arxiv.org/abs/2303.00601
https://www.wikipedia.org/
http://dx.doi.org/10.1109/TITS.2020.3013234
http://dx.doi.org/10.1109/TITS.2020.3013234
http://dx.doi.org/10.1145/3539618.3591879


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Thieme. Multimodal healthcare ai: Identifying and designing clinically relevant vision-language
applications for radiology. In Proceedings of the CHI Conference on Human Factors in Com-
puting Systems, CHI ’24, pp. 1–22. ACM, May 2024. doi: 10.1145/3613904.3642013. URL
http://dx.doi.org/10.1145/3613904.3642013.

Minji Yoon, Jing Yu Koh, Bryan Hooi, and Ruslan Salakhutdinov. Multimodal graph learning for
generative tasks, 2023. URL https://arxiv.org/abs/2310.07478.

Jingdan Zhang, Jiaan Wang, Xiaodan Wang, Zhixu Li, and Yanghua Xiao. Aspectmmkg: A multi-
modal knowledge graph with aspect-aware entities, 2023. URL https://arxiv.org/abs/
2308.04992.

Tianyi Zhao, Liangliang Zhang, Yao Ma, and Lu Cheng. A survey on safe multi-modal learning
system, 2024. URL https://arxiv.org/abs/2402.05355.

14

http://dx.doi.org/10.1145/3613904.3642013
https://arxiv.org/abs/2310.07478
https://arxiv.org/abs/2308.04992
https://arxiv.org/abs/2308.04992
https://arxiv.org/abs/2402.05355


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the AI-generated writing and coding
components are manually checked and modified. There is no full AI-generated content in the paper.

B ASSETS DETAILS

B.1 CODE AND DATA OPEN-SOURCE

We release our MKDB benchmark for knowledge debugging anonymously via https://osf.
io/df92q/?view_only=3657b0d249be40ef9754f4c46717e283. We will release the
codebase and dataset once our paper gets accepted.

B.2 DATASET INFORMATION

Details about the benchmark corpus statistics, collection process, construction of debugging tasks,
and evaluation metrics we rely on are available in Section 6 in the main content. In this section, we
provide more technical details about dataset splitting and dataset construction prompts.

Dataset split For node-level tasks, the dataset includes a total of 4,987 tasks for Wikipedia and
4,567 tasks for research papers. Each task contains one positive and one negative node. For edge-level
tasks, we include 4,381 tasks for Wikipedia and 5,003 tasks for research papers. Each task includes
one positive and one negative edge. For bug detection tasks at both node-level and edge-level, we
allocate 200 tasks (200 positive examples, 200 negative examples for 400 classification tasks) as
the test set, with the remaining used for training. For bug correction tasks at both node-level and
edge-level, following the same protocol, 400 tasks that are randomly selected from the dataset (400
rewired edges for 400 retrieval tasks) are reserved for testing, and the rest are used for training.

Dataset construction prompt For node-level task generation, we rely on prompting GPT-4o to
construct false examples of the nodes. As shown in Table 4, we utilize such a prompt to rewrite the
original content of one target node with its sampled neighborhoods.

Role Content
System You are a creative research assistant.

Task:
1. For each of the first k source texts, invent exactly one false but plausible
statement.
2. Then rewrite the final text so that it coherently combines in all of those false
statements.
Output only valid JSON with two fields:
• "fabrications": an array of the k false statements, in order
• "final_node": the rewritten version of the final text

User Here are the node texts:
1. Text 1: "⟨first prefix text⟩"
2. Text 2: "⟨second prefix text⟩"
. . .
k+1. Final text that needs to be rewritten k + 1: "⟨final text⟩"
Please perform the task as described.

Table 4: Full chat prompt for fabricating and rewriting node texts

B.3 DATASET LICENSE

The dataset comprises two components: research papers and Wikipedia content. To ensure the dataset
is used solely for non-commercial purposes, we will release the research paper portion under the

15

https://osf.io/df92q/?view_only=3657b0d249be40ef9754f4c46717e283
https://osf.io/df92q/?view_only=3657b0d249be40ef9754f4c46717e283


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Creative Commons Attribution-NonCommercial (CC BY-NC) license. For the Wikipedia portion,
our data is sampled from the WikiWeb2M dataset, which was originally released under the Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. In compliance with this,
we will retain the same license for the Wikipedia-derived content in our dataset.

B.4 MODEL INFORMATION

We utilize multiple models during our experiments, including text-based and multi-
modal retriever models (all-MiniLM-L6-v2, voyage-multimodal-3, BAAI/AltCLIP),
LLM-based generation models (Qwen/Qwen2.5-7B-Instruct-Turbo), and GNN mod-
els (GATConv2). Typically, for all-MiniLM-L6-v2, we rely on the package of
sentence-transformers for usage. For BAAI/AltCLIP, we utilize the checkpoint on Hug-
gingface and utilize transformers package for inference. For voyage-multimodal-3,
and Qwen/Qwen2.5-7B-Instruct-Turbo, we rely on the API of voyage-ai and
together-ai for inference calling. For GATConv2, we rely on the implementation of PyG
for usage, and we train from scratch without relying on existing model checkpoints.

B.5 MODEL LICENSE

Qwen2.5-7B-Instruct-Turbo: Apache 2.0 License
voyage-multimodal-3: close-source, no available license

C BENCHMARK CONSTRUCTION DETAILS

We build the benchmark in four deterministic stages:

1. Collect raw documents from Wikipedia and research papers.

2. Parse each document into nodes (paragraphs, images, captions) using rule-based procedures.

3. Connect reading-flow edges (follow, reference) according to document order.

4. Link structure by connecting sections and subsections to their corresponding content using
the document hierarchy.

No content is altered; the graph can be losslessly reverted to the original material. The entire
preprocessing is rule-based—no manual annotation or external supervision is required. Because
Wikipedia articles and research papers are generally high-quality and knowledge-dense, we expect
few inherent inconsistencies in the sources.

D EXPERIMENTAL DETAILS

D.1 COMPUTING RESOURCE

Since we focus on efficient training and usage of RAG and GNN experiments, all of our experiments
on training and inference rely on one single A100 80GB GPU.

D.2 PROMPT DETAILS FOR LLM BASELINES

The prompt for the LLM baseline is structured as follows:

Context: context

Query: Is the sentence consistent with other information in the relevant paragraph?

Sentence: sentence

Output: Return a JSON object in the format: "confidence": 1-5, "answer": "True" | "False" Context:
The entire paper, with inconsistent sentences embedded.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The sentence is the target sentence under evaluation. And the output is a binary decision (True/False)
with a confidence score from 1 (low) to 5 (high).

This setup ensures the model evaluates each candidate sentence in the context of the full paper. A
sentence is consistent if it does not conflict with any part of the context, and inconsistent where there
is at least one conflicting part.

D.3 NODE-LEVEL BASELINES

Since node-level baselines do not require training, we exclude all training data for baseline results
and focus on the test set.

Bug correction task For the bug correction task, We evaluated four different retrievers to select the
top-k most relevant nodes using the fabrication content for each node:

• Structure Retriever: retrieves the top-k nodes based on Personalized PageRank (PPR)
scores computed from the seed node.

• Text Retriever: retrieves the top-k nodes based on cosine similarity with the embeddings
provided by all-MiniLM-L6-v2.

• Multimodal Retriever: retrieves the top-k nodes based on cosine similarity with the
embeddings provided by voyage-multimodal-3 model to embed for the Wiki graph
and BAAI/AltCLIP model to embed for the Paper graph.

• Hybrid Retriever: combines the scores of the text retriever and the structure retriever with
weights of 0.8 and 0.2 linearly in the Wiki graph, with weights of 0.2 and 0.8 linearly in the
Paper Graph, and selects the top-k results as the final retrieved ones. Different combination
values are selected for different datasets due the the different properties of graphs.

We reported the mean reciprocal rank (MRR), mean average precision (MAP), recall at k = 5, and
normalized discounted cumulative gain (NDCG) at k = 5.

Bug detection task For the bug detection task, we generate three prompt variants: origi-
nal prompt, oracle prompt, and Retrieval-Augmented Generation (RAG) prompt. The original
prompt is used for LLM-based baseline, and the oracle prompt is used for testing the upper-
bound of the LLM-based method when given the ground-truth retrieved contents. We use the
Qwen/Qwen2.5-7B-Instruct-Turbo to generate the final answer based on the retrieved in-
formation. Table 5 compares these templates. We reported the precision, recall, F1, and set the k of
the retrieval process to be 5. The retriever used as part of the RAG pipeline for bug detection is the
same as the bug correction tasks.

Original Prompt Oracle Prompt RAG Prompt
You are given a statement. Based
on your knowledge, evaluate if
this statement contains any fac-
tual errors.
Statement: . . .
Respond with ’Yes’ if it does, oth-
erwise ’No’. Just say Yes or No.
Do not add any other text.

You are given a statement and
multiple contents. Based on your
knowledge, evaluate if this state-
ment contains any very clear fac-
tual contradictary errors when
comparing with at least one of the
multiple contents, response Yes,
else No.
Statement: . . .
Multiple contents: . . .
Respond with ’Yes’ if it does, oth-
erwise ’No’. Just say Yes or No.
Do not add any other text.

You are given a statement and
multiple contents. Based on your
knowledge, evaluate if this state-
ment contains any very clear fac-
tual contradictary errors when
comparing with at least one of the
multiple contents, response Yes,
else No.
Statement: . . .
Multiple contents: . . .
Respond with ’Yes’ if it does, oth-
erwise ’No’. Just say Yes or No.
Do not add any other text.

Table 5: Comparison of the original, oracle, and Retrieval-Augmented Generation (RAG)
prompt templates. The multiple contents in the oracle prompt are the node-neighbors’ contents. The
multiple contents in the RAG prompt are the retrieval contents.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.4 EDGE-LEVEL BASELINES

Similar with node-level baselines, since edge-level baselines do not require training, we exclude all
training data for baseline results and directly use the test set.

Bug correction task For the rewired-neighbor edges, we removed the original edge and inserted the
rewired edge to form a modified graph. We evaluated four different retrievers to select the top-k most
relevant nodes, excluding nodes of type image. The retriever settings are similar to the node-level
tasks. We reported the mean reciprocal rank (MRR), mean average precision (MAP), recall at k = 5,
and normalized discounted cumulative gain (NDCG) at k = 5.

Bug detection task For the bug detection task, we keep the 200 edge-pairs (200 positive and 200
negative) for testing. For the original-neighbor edges, we retrieve in the original graph. For the
rewired-neighbor edges, we retrieve them in the modified graph as in the bug correction task. Then,
we retrieve it by following the same process. For each edge, we generated two prompt variants:
the original prompt and the Retrieval-Augmented Generation (RAG) prompt. The original prompt
is used as the LLM baseline. We use the Qwen/Qwen2.5-7B-Instruct-Turbo to generate
the answer. Table 6 compares these templates. We report the precision, recall, and F1 and take the
retrieval number k = 5.

Original Prompt RAG Prompt
You are given two paragraphs.
Paragraph 1: . . .
Paragraph 2: . . .
Based on the background information in the ref-
erence paragraphs, do you think these two para-
graphs are closely related?
Respond with ‘Yes’ or ‘No’.

You are given two paragraphs and multiple refer-
ence paragraphs.
Paragraph 1: . . .
Paragraph 2: . . .
References for Paragraph 1: . . .
References for Paragraph 2: . . .
Based on the background information in the ref-
erence paragraphs, do you think these two para-
graphs are closely related?
Respond with ‘Yes’ or ‘No’.

Table 6: Comparison of the original and Retrieval-Augmented Generation (RAG) prompt
templates. The original prompt is the baseline while the RAG is the augmented one.

D.5 GNN TRAINING DETAILS

We filter the training data by guaranteeing that the sub-graph we consider during training and testing
does not overlap to avoid any form of data leakage. Our GNN training includes a batch size of 16, a
GNN with 3 layers, each having 128 hidden units and 4 attention heads, a dropout rate of 0.2 between
layers, an AdamW optimizer with a learning rate of 1×10−3, and 20 training epochs.

D.6 SIGNIFICANT TEST

We run GNN-based training three times, and the performance indicates that our GNN-based models
are significantly better than baselines on node-level and edge-level bug detection and edge-level bug
correction, but not significantly better on edge-level bug detection.

E BROADER IMPACT

This paper introduces the knowledge debugger, a tool designed to detect multimodal automatically
information inconsistencies in real-world, knowledge-intensive materials such as research papers
and Wikipedia pages. Our method aims to improve the quality of factual content and reduce the
prevalence of incorrect information. However, if misused, it could also be exploited to generate highly
convincing fake content that is difficult to distinguish from authentic sources, potentially contributing
to the spread of misinformation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F LIMITATIONS

Our proposed knowledge debugger has several limitations. First, it focuses on only two represen-
tative types of source material—research papers and Wikipedia pages—for graph construction and
debugging analysis. Expanding to a broader range of structured materials, such as books, films, and
code repositories could enhance its generality. Second, our current task setting is limited to detecting
knowledge inconsistencies. Identifying an inconsistency does not necessarily imply the ability to
determine which source is correct. Finally, our bug correction task is formulated as a ranking problem:
successfully locating the source of an error does not guarantee the ability to correct it.

19


	Introduction
	Related Works
	Graph Structure of Multimodal Data
	Multimodal Knowledge Inconsistency
	Building Knowledge Debugger with GNNs
	Multimodal Knowledge Debugging Benchmark (MKDB)
	Data collection and graph construction
	Task and evaluation design

	Experimental Setting
	Experimental Results
	Discussion
	Ablation Study
	Conclusion
	The Use of Large Language Models (LLMs)
	Assets Details
	Code and Data Open-source
	Dataset Information
	Dataset License
	Model Information
	Model License

	Benchmark Construction Details
	Experimental Details
	Computing Resource
	Prompt Details for LLM Baselines
	Node-Level Baselines
	Edge-level Baselines
	GNN Training Details
	Significant Test

	Broader Impact
	Limitations

