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ABSTRACT

Human knowledge can naturally be organized as multimodal graphs, with prime
examples including research papers or Wikipedia pages. However, identifying
information inconsistencies within such knowledge-intensive documents remains
challenging. These inconsistencies can be explicit, such as numerical discrepancies
between tables and their textual descriptions, or implicit, like differing conclusions
presented at the beginning and end of an article. Large Language Models (LLMs)
have shown great potential in detecting these types of inconsistencies. Nevertheless,
their practical deployment is often hindered by limitations such as restricted context
windows and high inference costs. Additionally, standard Retrieval-Augmented
Generation (RAG) approaches struggle to effectively capture intricate reference
relationships within multimodal graphs. To address these challenges, we propose
Knowledge Debugger, an efficient Graph Neural Network (GNN)-based framework
that can identify diverse types of knowledge inconsistencies in multimodal data.
To evaluate the effectiveness of our method, we built a Multimodal Knowledge
Debugging Benchmark (MKDB) including 3 modalities, 699 Wikipedia pages,
more than 10000 research papers, and more than 10000 knowledge-debugging tasks
with answers. With our approach, we leverage LLMs to generate high-quality labels
for training multimodal GNNs. The trained GNNs demonstrate strong performance
in consistency checking tasks on multimodal graphs. Specifically, we beat the best
RAG methods by 11% on node-level bug detection tasks. By employing GNNs,
we significantly enhance system efficiency and scalability, enabling effective and
practical inconsistency detection in complex multimodal knowledge structures.

1 INTRODUCTION

Human knowledge inherently possesses a multimodal structure where dense information is or-
ganized across multiple modalities with complex relational structures. Prime examples include
knowledge-intensive sources such as Wikipedia pages Wikipedia (2025) and academic papers |[Kinney
et al.| (2023) with rich text, figures, tables, and numerous hyperlinks and cross-references. Other
knowledge-intensive platforms such as autonomous vehicles |Cui et al.| (2023)); [Xiao et al.| (2022),
healthcare |Yildirim et al.|(2024); Krones et al.| (2024)), customer support automation|Liao et al.| (2018));
Saha et al.| (2018)), and anomaly detection|Wang et al.| (2023); |Liu et al.| (2025a), efc, are also highly
structured and multimodal. To ensure the effectiveness of this knowledge, a key research question
arises: Can we efficiently detect knowledge inconsistency within structured multimodal data?

Inconsistencies, while undesirable, are ubiquitous in knowledge databases. For instance, Wikipedia
pages often contain partially updated information, where certain sections reflect recent changes
while others still retain outdated content; in academic writing, researchers frequently struggle to
ensure consistency across statements in long-context, multimodal, and cross-referenced content; in
safety-critical systems, e.g., autonomous driving and healthcare, where inconsistencies can arise due
to malicious intent or naturally induced distribution shifts; these inconsistencies, if not identified, can
lead to dire consequences |Zhao et al.|(2024).

However, detecting knowledge inconsistency is a complex and challenging task, especially when
the data is multimodal and structured. First, there often lack ground-truth labels for inconsistencies,
making training and evaluations challenging. Second, inconsistencies are often subtle, where a
statement may appear plausible on its own, yet its inconsistency can only be detected when considering
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Convolutional Neural Networks (CNNs) rely on local receptive fields and weight
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Figure 1: Identifying inconsistencies in multimodal and structured content such as research
papers and Wikipedia pages is challenging, even for humans. Left: a claim about the method
is inconsistent with the information in the table, constituting a node-level inconsistency across 2
modalities. Right: the citation of “Attention is all you need” is inconsistent with a claim about MLP
in the paper, constituting an edge-level in consistency across papers.

the (ultra-)long context with its potential relational structure holistically. Lastly, while state-of-the-art
multimodal large language models (LLMs), e.g., GPT-40|OpenAl et al.|(2024)) or Claude 3.7 (Clal
may be used to diagnose multimodal content, the associated token cost could be prohibitive. For
instance, identifying reference inconsistencies in one paper requires inputting the full content of
multiple papers, which will exceed millions of tokens in a short time.

There are existing datasets and solutions that can be used for knowledge inconsistency detection, but
they have limitations in several aspects. First, although benchmarks on multimodal data, such as
WikiWeb2M on Wikipedia Burns et al.| (2023a)) exist, they focus on Question Answering tasks, which
can usually be answered well with strong LLMs that have sufficient external knowledge. Second,
there are existing solutions that can be used for knowledge inconsistency detection, but they are
often limited in effectiveness and/or efficiency. For example, retrieval-augmented generation (RAG)
models have been used to detect inconsistencies; however, these methods are solely based on the
semantic similarity between the content, without considering the relational information across the
content [Lewis et al.| (2021)). There currently lacks a comprehensive benchmark for multi-modal
knowledge inconsistency detection, and a detection algorithm that can fully leverage the relational
information among data, necessary for detecting subtle inconsistencies within a knowledge base.

In this paper, we propose Knowledge Debugger, a Graph Neural Network (GNN) based framework
designed for efficient training and inference in multi-modal knowledge inconsistency detection.
Our key insight is that multimodal knowledge-intensive data are naturally suited to graph-based
representations with entities, concepts, and their relations as nodes and edges. Moreover, we can
formulate inconsistency detection tasks as node classification tasks, where the content exhibits
inconsistency, or edge classification tasks, where there are erroneous relations among entities. At
its core, Knowledge Debugger trains a graph neural network-based retriever that learns to retrieve
structurally and contextually relevant content, enabling robust inconsistency detection across both
modalities and document relations.

To demonstrate the effectiveness of Knowledge Debugger, we construct a novel benchmark dataset
named as Multimodal Knowledge Debugging Benchmark (MKDB) that captures fine-grained knowl-
edge inconsistencies within Wikipedia articles and research papers. In this benchmark, we include
3 modalities (text, table, and image), more than 10,000 research papers, 699 Wikipedia pages, and
more than 10,000 knowledge debugging tasks. We introduce inconsistencies where different parts of
a document may appear semantically similar yet contain conflicting factual information, highlighting
the subtle and often overlooked nature of such inconsistencies. Concretely, we introduce four types
of debugging tasks in MKDB to simulate real-world knowledge debugging tasks: (1) node-level bug
detection, (2) node-level bug correction (3) edge-level bug detection, (4) edge-level bug correction.

Empirical results demonstrate that our approach outperforms traditional similarity-based baselines,
particularly in identifying fine-grained inconsistencies that prior methods fail to capture. Based on
our experimental results on our benchmark, our proposed GNN-based algorithm outperforms the best
RAG-based method by 11% while remaining efficient.
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2 RELATED WORKS

Factual inconsistency detection. Factual inconsistency is a critical challenge in various natural
language processing tasks. Traditional approaches often relied on training entailment or classification
models to detect contradictions between generated text and source knowledge (Cao et al.[ (2018);
Kryscinski et al.|(2019); Tang et al.|(2022)). Question answering has also been explored as a means
to evaluate consistency [Durmus et al.| (2020). Furthermore, researchers have the use of retrieval-
augmented generation (RAG) methods, where models dynamically retrieve external factual data to
solve the hallucination and inconsistencylJiang et al.|(2023)); Ma et al.| (2023)) Recent efforts in this
domain explore the use of LLMs for evidence retrieval and claim verification, often incorporating
techniques like chain-of-thought reasoning to improve performance Kojima et al.[(2022). Notably,
evaluating factual inconsistencies has been an open research question. Benchmarks like FEVER have
been instrumental in evaluating systems’ ability to verify claims against evidence [Thorne et al.[(2018)),
and more specialized datasets like SciFact focus on scientific claim verification|Wadden et al.| (2022).

Multimodal knowledge graph. Multimodal knowledge graphs offer a powerful way to represent
structured and unstructured information from diverse sources, such as webpages and academic
research papers Burns et al.[(2023a); |Galiano et al.|(2023)). These graphs integrate various modal-
ities, including text, tables, figures, and metadata into a unified representation, enabling a more
comprehensive understanding of the underlying knowledge |Chen et al.| (2023). In the context of
scientific articles, multimodal knowledge graphs can capture both structured information, such as
citations and references, and unstructured content, including the full text and visual elements |Zhang
et al. (2023). Recent advancements in this field have seen the application of LLMs for extracting
entities and relations from both textual and visual modalities within documents [Lee et al.| (2024). For
instance, LLMs can be used to understand the content of figures and their captions, linking them to
relevant parts of the text and other entities in the graph|Liu et al.|(2025b). Platforms are emerging that
leverage multimodal knowledge graphs to align different components of research papers, including
text, diagrams, and even code, facilitating complex queries and discovery of knowledge across modal-
ities [Kannan et al.| (2020). Similarly, in the context of Wikipedia, multimodal knowledge graphs
combine article text with information from infoboxes and images, enriching the graph with contextual
information |Yoon et al.| (2023)). These knowledge graphs support advanced applications in question
answering, fact-checking, and scientific discovery, allowing systems to retrieve and reason over
diverse types of evidence |Yao et al.|(2023)). Researchers are increasingly exploring the use of LLMs
not only to build but also reason over multimodal knowledge graphs, enabling more sophisticated
information retrieval and inference capabilities |Pan et al.| (2024)).

3  GRAPH STRUCTURE OF MULTIMODAL DATA

In knowledge-intensive and multimodal knowledge sources, e.g., Wikipedia articles and scientific
papers, identifying knowledge inconsistency within one modality or cross-modality is a significant
challenge as these sources contain implicit yet meaningful relationships across different content
modalities. These relationships are not purely semantic; rather, they emerge from the spatial arrange-
ment, document flow, and explicit cross-references within the source. To capture this, we model such
content using a multimodal graph, where each unit—text, image, table, or metadata is represented as
a node, and edges encode the spatial, referential, or sequential dependencies across these units.

Multimodal graph. We define a multimodal graph G = (V, £, M, L), where V is the node set,
E CV x V the directed edges, M : V — T UZ U B maps each node to a text/image/table attribute,
and L : £ — R labels edges with relation types. We instantiate R to reflect human reading flow—
next (sequential order within sections, e.g., paragraph — paragraph or text — caption), reference
(citing span — cited item, e.g., “Fig. 2” or “[12]”), and follow (claim/mention — its immediate
elaboration/result)}—so we target inconsistencies within a reader’s local attention range. Richer
cross-paragraph or logical relations can be added as extensions via L, but they typically require
heavier construction pipelines and are noisier.

Example: multimodal graph for Wikipedia. For Wikipedia pages, we focus on two primary
modalities: text and images. Each paragraph in a given article is treated as a text node (M (v) = T),
while each embedded image is represented as an image node (M (v) = Z). These node types arise
naturally from how Wikipedia articles are written where textual descriptions are often supported by
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relevant visual media, and each content block can be cleanly isolated into a graph node. We define
two edge types to model the relationships between these nodes. First, Follow edges (Follow(v;, v;))
capture the sequential ordering in an article where the ordering could be defined between adjacent text
paragraphs or between adjacent images. Second, Reference edges (Reference(v;, v;)) are introduced
when a paragraph references a nearby image (as shown in Figure [3) or when an image is spatially
adjacent to a paragraph and helps illustrate its content. These relationships allow the graph to reflect
both the document’s layout and its implicit multimodal dependencies.

Example: multimodal graph for academic papers.

Scientific papers contain richer multimodal structures. T

We decompose each paper into three types of nodes: i nvee. | [ Figuret
text nodes () for paragraphs, section headings, and | |
captions; image nodes (Z) for figures and visual di-
agrams; table nodes (B) for tabular data. These
distinctions emerge from the functional roles that
each modality plays in conveying scientific knowl-
edge—tables often summarize results, and figures
illustrate models or findings. The graph of a paper
contains several structurally motivated edge types. O Image modality () Table modality () Text modality
Like Wikipedia, Follow edges (Follow) connect adja-

cent nodes based on document order, enabling flow- Figure 2: Research papers or Wikipedia
based reasoning across sections. Reference edges pages can be formed as multimodal graphs.
(Reference) link paragraphs to figures or tables they Each node can represent part of the paper, and
mention (e.g., “see Table 27), capturing the inter- each edge can represent following, including,
play between textual explanation and visual evidence. referencing relationships that naturally exist
Finally, Cite edges (Cite(viext, Urer)) connect text pas- in the paper. Multiple papers are connected
sages to the references they cite, modeling scholarly through citation edges.

attribution and inter-document dependency.

4 MULTIMODAL KNOWLEDGE INCONSISTENCY

In a multimodal graph, where heterogeneous content units (e.g., text, images, tables) are intercon-
nected to represent structured knowledge, inconsistency refers to a structural bug that violates the
internal coherence of the graph. We define multimodal knowledge inconsistency as a contradiction,
misalignment, or erroneous linkage that disrupts the factual or logical integrity of the information
encoded in the graph. Such inconsistencies occur when the content of a node is incompatible with
information elsewhere in the graph, or when connections between nodes are semantically invalid.

Formally, given a multimodal graph G = (V, £, M), inconsistencies can take two primary forms:

Node-level inconsistency. A node v; € V is said to be inconsistent if its content contradicts or
conflicts with that of one or more other nodes {v; };en;, where N; C V \ {v;}. Examples include
contradictory claims between paragraphs, inconsistent numerical values between a text and a table,
or a caption that misinterprets an associated figure.

Edge-level inconsistency. An edge e; ; € E is inconsistent if it represents an incorrect or misleading
relationship, such as an invalid reference, an erroneous citation, or a structural link that falsely implies
semantic relevance. These edges should not exist in a logically coherent graph.

These inconsistencies may be subtle and span multiple modalities, as shown in Figure [I} making
them difficult to detect using unimodal or surface-level similarity methods. For instance, a table
may provide updated statistics that conflict with outdated textual claims, or an image may visually
contradict a paragraph that refers to it. The inconsistency of multimodal knowledge thus represents
a fundamental flaw—akin to a bug—in the structure of the graph. Identifying and correcting such
inconsistencies is crucial for enabling trustworthy multimodal reasoning and improving downstream
tasks such as fact verification, summarization, and knowledge retrieval.

5 BUILDING KNOWLEDGE DEBUGGER WITH GNNS

To detect and repair structural bugs in multimodal graphs, we introduce a Graph Neural Network
(GNN)-based approach named Knowledge Debugger, operating at both node and edge levels. We
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O Text paragraph in one paper O Table in one paper O Image in one paper
Node-level Bug Detection ~ Node-level Bug Correction  Edge-level Bug Detection Edge-level Bug Correction
B
A
Does paragraph A of the paper Is the paragraph B (node B) ISthe reference relat\onsmp Is(hereamlssmg reference
(node A) include contradictory conflicting with the (edge 1) between the flgure between image C and
information with outers? information in node A? C and paragraph A correct? paragraph D?

Figure 3: Four types of knowledge debugging tasks defined based on multimodal graphs.
Only the first type of knowledge debugging tasks is considered as the node classification tasks; the
remaining three types of debugging tasks can be understood as special forms of edge classification.

frame the debugging process in two distinct stages: (1) bug detection—identifying inconsistencies
and determining their types, and (2) bug correction—localizing and resolving these inconsistencies.
Our approach leverages the semantic information of multimodal content alongside the structural
context inherent in the graph topology, utilizing specialized models tailored for graph modeling tasks.

Semantic and structural representation in GNNs Capturing semantic context is crucial for
identifying inconsistencies in knowledge-intensive domains. Initially, we set each node’s hidden state
using embeddings from a pretrained multimodal encoder:

h{”) = MENC(v;) (1)

where MENC(-) denotes a modality-specific embedding extractor (e.g., voyage-multimodal-v3 Voy+
age Al (2024)). These multimodal embeddings encode semantic content, facilitating meaningful
message propagation in subsequent stages. At each GNN layer [/, node hidden states are updated by
aggregating messages from neighboring nodes:

h' = Aca (hﬁ.l*”, {Msc, (h;l*”) L € /\/’(vi)}) )

Here, MSG(+) computes messages based on neighbor states, and AGG(-) combines these messages

with the node’s previous state. After L layers, the final hidden state th) captures a rich combination
of semantic and structural context suitable for downstream debugging tasks.

Training node-level debugger At the node level, debugging involves two subtasks: (1) bug
detection—deciding if a node v; has inconsistent information, and (2) bug correction—identifying
other nodes that conflict with the target node. For detection, given v; in graph G, we train a
binary classifier fy(v;; G) € {0, 1} with ground-truth consistency labels y;. For correction, once
an inconsistency at v; is detected, we further identify relevant supporting nodes by classifying
candidates v; € N (v;) using another binary classifier f};’“(vi, v;) € {0,1}; this is essentially an
edge-classification task between the bug node v; and remaining candidate nodes v;. Concretely, we
minimize

Laet(0) = Z Lucr(fo(vi), vi) Leor(¢) = Z Lece(fy(vi,vy), zi5)  (3)

Vi € Virain (vi,v;)EP

where z;; = 1 indicates a conflict between v; and v; that requires resolution by adjusting the
information within these nodes. Based on the classification scores over v;, Knowledge Debugger can
be conveniently combined with RAG systems to resolve the bug in v; using the top-K supporting
nodes.

Training edge-level debugger Edge-level debugging similarly involves two subtasks: (1) bug
detection—determining if an edge (v;, v;) is invalid, and (2) bug correction—suggesting correct
alternative target nodes. This debugging process checks whether the connected information is
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accurately referenced or cited. For detection, we train an edge classifier fo*(v;,v;) € {0,1};
for correction, we train another edge classifier f;""(vi,v;) € {0, 1} to suggest proper connections.
Concretely, we minimize

L@ = D Leoe(fy™ i) vis)  LoE@)= Y Lecr(fi (vi,v)), 2i5)
(vi,v5) EEmain (vi,v;)EP
4

where y;; denotes edge validity and z;; = 1 if v; is a correct node to which v; should connect.
Notably, edge-level bug correction is often more convenient than node-level correction, since the
predicted proper connections from f°*(-) can be directly taken as the corrected edges without relying
on additional RAG systems.

Inference procedure for knowledge debugging Both node-level and edge-level models follow
a two-stage inference pipeline: (1) Detection, where models identify inconsistencies based on
supervised signals; and (2) Correction, where detected inconsistencies are localized and corrected
using contrastive or ranking-based objectives. By integrating semantic embeddings and graph-aware
reasoning, Knowledge Debugger effectively identifies and corrects subtle multimodal inconsistencies,
enhancing robustness in knowledge verification and repair tasks.

6 MULTIMODAL KNOWLEDGE DEBUGGING BENCHMARK (MKDB)

To systematically evaluate Knowledge Debugger, we construct a comprehensive benchmark com-
prising two representative types of knowledge-intensive materials: Wikipedia articles and research
papers. Within this benchmark, we include two types of tasks mentioned in Section §|i.e., bug
detection and bug correction. In this section, we provide details about the benchmark as well as its
construction process and evaluation metrics.

6.1 DATA COLLECTION AND GRAPH CONSTRUCTION

Benchmark corpus details. Table|1} shows the size and scale of our multimodal benchmark dataset
and constructed knowledge debugging tasks. In our benchmark, we provide two types of data: (i)
multimodal data source with constructed multimodal graphs from research papers and Wikipedia
pages; and (ii) knowledge debugging tasks with questions and answers for both node-level and
edge-level bug detection and bug correction. For multi-modalities, for the Wikipedia pages, we have
700 image nodes, 7,776 text nodes. For the research papers, we have 1,402,305 text nodes, 30,812
image nodes, and 33,024 table nodes.

Collection of multimodal knowledge. To construct multimodal graphs and build tasks on the
edges and nodes, we require fine-grained, high-quality data from both Wikipedia and research
papers. For Wikipedia, we utilize the WikiWeb2M |Burns et al.[| (2023b) dataset, which provides
paragraph-level splitting of text together with its surrounding words. For research papers, however, no
comparable dataset exists, so we self-collect 10,000 computer science papers from arXiVE], parsing
and preprocessing the source files along with their figures and tables to obtain texts, tables, images,
citations, and metadata.

Graph construction with multimodal knowledge. Building on these resources, the MKDB bench-
mark is constructed through several steps: (1) we collect raw content from Wikipedia and arXiv
papers; (2) we parse this content into nodes such as paragraphs, images, and captions using rule-based
methods; (3) we add edges based on reading order and reference links; and (4) we connect sections
and subsections with their corresponding content to capture structural coherence. Importantly, no
content is altered during this process—ensuring full reversibility to the original material—and we
rely solely on rule-based preprocessing without additional annotation or external supervision. Since
both Wikipedia articles and research papers are generally high-quality and knowledge-dense, we
expect relatively few inherent inconsistencies in the raw sources.

"https://arxiv.org/
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Table 1: Dataset and benchmark statistics. Left: statistics of multimodal data sources (#Documents
indicates the number of raw documents; #Node and #Edge indicate the constructed graph structure).
Right: size of the proposed MKDB benchmark (number of datapoints for node/edge-level tasks).
Each node-level or edge-level task can be converted to a bug detection and a bug correction sub-task.

#Documents #Node #Edge Node-level task  Edge-level task
Wikipedia 700 8,476 11,865 Wikipedia 4,987 4,381
Research 10,393 1,466,141 4,804,388 Research 4,567 5,003

6.2 TASK AND EVALUATION DESIGN

Construction of edge-debugging tasks. For a fixed node u, we generate edge-level bugs by
replacing its entire set of neighbors with new nodes drawn from a weighted neighborhood distribution.
Concretely, for each original neighbor v € N (u), we sample a replacement v' € N (u) \ N (u)
according to

w(u, x)

qu(z) = 5 &)

yeN ) W ) W (1Y)’
where w(u, x) is a weight function (e.g., based on positional distance or semantic similarity). The
corrupted neighborhood NV (u) = {v}, ... s Vg(uy} then replaces the original N (u), yielding edges
(u,v}) that preserve local degree but induce controlled inconsistencies.

Construction of node-debugging tasks. For a fixed node u, we also apply weighted neighborhood
sampling, but instead of rewiring edges, we perturb its attributes. Specifically, for each sampled
neighbor, we prompt an LLM to generate conflicting information, which is then injected back into
u’s attributes. This produces a perturbed representation of « that intentionally conflicts with multiple
related nodes, yielding realistic node-level inconsistencies.

Evaluation metrics. Since bug detection and correction address different stages of knowledge
debugging, we evaluate them with tailored metrics: detection is assessed using binary classification
measures (precision, recall, and F1), while correction is treated as a retrieval task and judged by
ranking metrics (Recall@k, MRR, MAP, and NDCG @k) to capture the quality of the top candidates.

7 EXPERIMENTAL SETTING

Baseline settings. To comprehensively evaluate our proposed methods, we compare against sev-
eral baselines that utilize large language models (LLMs). Given their robust in-context learning
capabilities, LLMs are expected to detect inconsistencies within textual domains automatically. In
addition to the standard Retrieval-Augmented Generation (RAG) approaches that leverage either
text-based or multimodal embeddings, we explore retrievers based on graph structure, specifically
employing personalized PageRank (PPR). Furthermore, to thoroughly assess model capabilities,
we introduce hybrid retrievers that combine scores from text-based retrievers and PPR-based graph
structure retrievers through a linear weighting scheme. All experimental results reported in Table 2]
and Table 3| are derived from a fixed test set of 400 examples within the knowledge debugging
benchmark separately on the wiki graph and the paper graph. Notably, retrievers and LLMs are
utilized without further training, while the GNN model is specifically trained on the remainder of the
benchmark data.

Model settings. In our retrieval-augmented generation (RAG) experiments, we select Qwen2.5-7B-
Instruct—TurboE]as the foundational language model. For textual retrieval, we employ the sentence
transformer all-MiniLM-L6-v2 E] as a benchmark. For multimodal retrieval scenarios, we utilize
voyage-multimodal-3 E]and AItCLIP (Chen et al., [2022), both of which are recognized for achieving
state-of-the-art performance in multimodal understanding tasks. The graph neural network component
in our experiments is implemented using GATv2Conv. Additional technical details and experimental
parameters are elaborated upon in the Appendix.

'We utilize Qwen2.5-7B-Instruct-Turbo from TogetherAl https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
Zhttps://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
*https://blog.voyageai.com/2024/11/12/voyage-multimodal-3/
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Table 2: MKDB benchmark results on bug detection tasks. RAG (oracle) indicates that we directly
provide the ground-truth node to the LLM for generation. Additionally, RAG (hybrid retriever)
indicates that this retriever utilizes a combination of a text retriever and a structural retriever.

Node-level Edge-level
Method Precisiont RecallT F171 PrecisiontT RecallT F171
Research
RAG (oracle) 82.3 95.0 88.2 — — —
LLM (w/o retrieval) 65.3 55.5 60.0 53.1 21.5 30.6
RAG (structural retrieval) 66.5 60.5 634 4.2 2.0 2.7
RAG (text retrieval) 81.8 40.5 54.2 50.3 41.0 45.2
RAG (multimodal retrieval) 66.3 55.0 60.1 57.6 57.2 574
RAG (hybrid retrieval) 77.4 56.5 65.3 46.6 45.0 45.8
Wikipedia
RAG (oracle) 69.3 95.0 80.2 — — —
LLM (w/o retrieval) 68.2 67.5 67.8 59.9 48.5 53.6
RAG (structural retrieval) 64.6 52.0 57.6 52.9 18.5 27.4
RAG (text retrieval) 68.2 87.0 76.5 514 64.5 57.2
RAG (multimodal retrieval) 65.1 82.0 72.6 54.2 74.5 62.7
RAG (hybrid retrieval) 69.8 90.0 78.6 53.2 50.0 51.6
Ours (GNN-based) 84.1 90.0 87.0 57.7 82.1 67.8

8 EXPERIMENTAL RESULTS

We conduct comprehensive experiments on both the paper and wikipedia graphs for node-level and
edge-level knowledge debugging. Our main findings are:

Knowledge Debugger outperforms LLM-based methods on both detection and correction tasks.
As shown in Table[2] our GNN-based approach achieves the highest F1 scores on both node-level
and edge-level bug detection. In particular, on node-level detection, it attains an F1 of 0.870—nearly
matches the performance of the LLM with an oracle retriever. This improvement stems from the
GNN’’s ability to model structural perturbations: when the graph structure changes, the semantic
relationships among document components shift, and a GNN can learn to propagate and detect these
inconsistencies across the graph.

Similarity-based retrieval alone fails to spot subtle inconsistencies. Our benchmark is designed so
that knowledge inconsistencies are often subtle and require careful reading to detect. Consequently,
even state-of-the-art text-based and multimodal retrievers fall short, as evidenced by their low scores
in Table 2] Simple similarity measures cannot reliably capture the nuanced contradictions that occur
within a single document graph.

Hybrid retrievers that combine structure and semantics yield better results. Table 2| also
shows that hybrid retrieval—integrating both text-based and structure-based signals—consistently
outperforms methods that rely solely on one or the other. This demonstrates that leveraging structural
context alongside semantic similarity is crucial for effectively identifying knowledge inconsistencies
in both paper and wiki graphs.

9 DISCUSSION

RQ1: What does the Knowledge Debugger learn during training? Each node in our multimodal
graph is initialized using embeddings from state-of-the-art models such as voyage-multimodal-v3.
Consequently, at the start of training, our Graph Neural Network (GNN) primarily leverages semantic
similarity between nodes for message passing. Throughout the training process, the GNN learns
to discern semantic similarity structures within subgraphs, particularly identifying when nodes
present conflicting information or when nodes maintain consistent and coherent information within a
subgraph. This supervision enables the GNN to recognize and internalize patterns associated with
"buggy" nodes. Our experiments further reveal that even when applying only scalar-based similarity
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Table 3: MKDB benchmark results on bug correction tasks. R@5 represents Recall@5. The
correction task directly utilizes the retriever without asking LLMs for an answer.

Node-level Edge-level
Method MRRT MAP{1 R@51 NDCG@51 MRRT MAPT R@51 NDCG@51
Research
Structure 229 12.6 214 16.5 95.8 74.5 80.0 83.3
Text 344 14.7 19.0 19.2 84.1 54.5 61.8 66.7
Multimodal 13.7 55 8.6 6.9 23.8 8.3 13.5 13.9
Hybrid 26.3 15.0 24.3 19.0 84.5 73.4 85.5 80.7
Wikipedia
Structure 73.8 45.9 49.8 52.1 40.8 18.1 19.9 234
Text 85.8 50.1 53.4 57.8 66.8 53.6 62.8 56.7
Multimodal 87.3 57.5 60.7 64.8 70.3 62.8 79.1 67.5
Hybrid 86.3 50.8 54.4 58.9 68.0 532 60.6 56.8
Ours 81.8 60.8 60.5 61.8 89.2 85.6 99.1 90.2

scores for nodes, the GNN effectively identifies graph structures indicative of problematic nodes.
Furthermore, employing higher-dimensional features contributes to more stable training.

RQ2: How cheap and efficient is the Knowledge Debugger? Compared to LLM baselines, our
GNN-based Knowledge Debugger is far smaller and substantially faster, enabling efficient batch
inference at scale. Concretely, we use a 3-layer GATv2Conv encoder with 4 attention heads and
128 hidden units, yielding <10M parameters—orders of magnitude below the 7B-parameter LLMs
used in prior baselines. This compact model fits easily on a single commodity GPU and supports
high-throughput, paragraph-level inference, which is critical for large-scale bug scanning across
papers and wiki pages. In contrast, running an LLM on every paragraph would incur prohibitive
latency and cost, making end-to-end scanning impractical; the GNN therefore provides a practical,
cost-effective backbone for this workload.

10 ABLATION STUDY

Embedding initialization. To assess the importance of semantic initialization, we replaced the
initial hidden states provided by voyage-multimodal-3 embeddings with randomly initialized hidden
states. After training, the model achieved an F1 score around 0.5 or lower for edge classification,
significantly below our best results. This clearly indicates that semantic initialization plays a crucial
role in enabling our Knowledge Debugger to identify buggy nodes effectively.

GNN layer number. We experimented with different numbers of layers in the GNN architecture
to determine their influence on performance. With only 1 layer, the model reached an F1 score of
0.5845, which improved slightly to 0.5959 with 2 layers. The performance peaked at 0.6957 with 3
layers but decreased to 0.6570 when we further extended to 4 layers. This suggests that adding more
layers beyond a certain point does not provide additional performance benefits.

GNN backbone. Lastly, we tested the impact of various GNN backbone architectures on the overall
performance. Replacing our chosen GATv2Conv backbone, we experimented with standard GCN,
original GATConv, and TransformerConv layers. These changes resulted in comparable F1
scores—0.6901 for GATConv and 0.6960 for TransformerConv—indicating that the specific
graph convolution operator does not significantly affect the final performance.

11 CONCLUSION

In this paper, we introduce Knowledge Debugger, a GNN-based framework for detecting inconsisten-
cies in multimodal and structured content. By modeling knowledge as graphs, Knowledge Debugger
surpasses traditional similarity-based and RAG approaches, achieving 11% higher F1 with lower
retrieval cost on a benchmark built from Wikipedia and research papers. This work advances reliable
knowledge systems and paves the way for applications in domains such as autonomous vehicles,
healthcare, and observability systems.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. The construction of the MKDB
dataset is documented in Section [6] and Appendix [B] with detailed preprocessing pipelines and
synthetic perturbation procedures further described in Appendix [B] Model architectures, hyperparam-
eters, and training settings are provided in Appendix [D] Comprehensive evaluation metrics and task
definitions are given in Section[5] Appendix [C|and Appendix [D] We will release anonymous source
code and scripts as supplementary material to reproduce dataset construction, training, and evaluation.
All baseline models and encoders are either open-source or referenced with precise versions, and
random seeds are fixed for experiments where applicable.

ETHICS STATEMENT

This work develops Knowledge Debugger (Knowledge Debugger) and the Multimodal Knowledge
Debugging Benchmark (MKDB) to study the detection and correction of inconsistencies in multi-
modal knowledge graphs. All data come from publicly available sources: Wikipedia (CC BY-SA 4.0)
and arXiv papers released under a non-commercial license (CC BY-NC). We do not process sensitive
personal data or involve human subjects, and no additional ethical approval was required.

We recognize potential risks, including misuse of inconsistency detection to generate more convincing
fabricated content, as well as biases stemming from English-centric Wikipedia and computer science
arXiv corpora. To mitigate these risks, we (i) clearly separate synthetic perturbations from original
data, (ii) release provenance and usage guidelines, (iii) encourage human-in-the-loop review, and
(iv) recommend evaluation across diverse domains. Our model is lightweight (<10M parameters),
reducing environmental impact compared to large-scale LLM baselines.

Overall, this research aims to advance the trustworthiness and auditability of knowledge-intensive
systems while being mindful of limitations and dual-use concerns.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the Al-generated writing and coding
components are manually checked and modified. There is no full Al-generated content in the paper.

B ASSETS DETAILS

B.1 CODE AND DATA OPEN-SOURCE

We release our MKDB benchmark for knowledge debugging anonymously via https://osfl
i0/df92g/?view_only=3657b0d249bed40ef9754f4c46717e283. We will release the
codebase and dataset once our paper gets accepted.

B.2 DATASET INFORMATION

Details about the benchmark corpus statistics, collection process, construction of debugging tasks,
and evaluation metrics we rely on are available in Section E]in the main content. In this section, we
provide more technical details about dataset splitting and dataset construction prompts.

Dataset split For node-level tasks, the dataset includes a total of 4,987 tasks for Wikipedia and
4,567 tasks for research papers. Each task contains one positive and one negative node. For edge-level
tasks, we include 4,381 tasks for Wikipedia and 5,003 tasks for research papers. Each task includes
one positive and one negative edge. For bug detection tasks at both node-level and edge-level, we
allocate 200 tasks (200 positive examples, 200 negative examples for 400 classification tasks) as
the test set, with the remaining used for training. For bug correction tasks at both node-level and
edge-level, following the same protocol, 400 tasks that are randomly selected from the dataset (400
rewired edges for 400 retrieval tasks) are reserved for testing, and the rest are used for training.

Dataset construction prompt For node-level task generation, we rely on prompting GPT-4o0 to
construct false examples of the nodes. As shown in Table[d] we utilize such a prompt to rewrite the
original content of one target node with its sampled neighborhoods.

Role Content

System  You are a creative research assistant.
Task:
1. For each of the first £ source texts, invent exactly one false but plausible
statement.
2. Then rewrite the final text so that it coherently combines in all of those false
statements.

Output only valid JISON with two fields:

 "fabrications": an array of the & false statements, in order
¢ "final_node": the rewritten version of the final text

User Here are the node texts:
1. Text 1: "(first prefix text)"
2. Text 2: "(second prefix text)"

k+1. Final text that needs to be rewritten k + 1: "(final text)"
Please perform the task as described.

Table 4: Full chat prompt for fabricating and rewriting node texts

B.3 DATASET LICENSE

The dataset comprises two components: research papers and Wikipedia content. To ensure the dataset
is used solely for non-commercial purposes, we will release the research paper portion under the
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Creative Commons Attribution-NonCommercial (CC BY-NC) license. For the Wikipedia portion,
our data is sampled from the WikiWeb2M dataset, which was originally released under the Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. In compliance with this,
we will retain the same license for the Wikipedia-derived content in our dataset.

B.4 MODEL INFORMATION

We utilize multiple models during our experiments, including text-based and multi-
modal retriever models (a11-MiniLM-L6-v2, voyage—-multimodal-3, BAAT/A1tCLIP),
LLM-based generation models (Qwen/Qwen2.5-7B-Instruct-Turbo), and GNN mod-
els (GATConv2). Typically, for all-MiniLM-L6-v2, we rely on the package of
sentence-transformers for usage. For BAAT /A1t CLIP, we utilize the checkpoint on Hug-
gingface and utilize transformers package for inference. For voyage-multimodal-3,
and Qwen/Qwen2.5-7B-Instruct-Turbo, we rely on the API of voyage-ai and
together—ai for inference calling. For GATConv2, we rely on the implementation of PyG
for usage, and we train from scratch without relying on existing model checkpoints.

B.5 MODEL LICENSE

Qwen2.5-7B-Instruct-Turbo: Apache 2.0 License
voyage-multimodal-3: close-source, no available license

C BENCHMARK CONSTRUCTION DETAILS

We build the benchmark in four deterministic stages:

1. Collect raw documents from Wikipedia and research papers.

2. Parse each document into nodes (paragraphs, images, captions) using rule-based procedures.
3. Connect reading-flow edges (follow, reference) according to document order.
4.

Link structure by connecting sections and subsections to their corresponding content using
the document hierarchy.

No content is altered; the graph can be losslessly reverted to the original material. The entire
preprocessing is rule-based—no manual annotation or external supervision is required. Because
Wikipedia articles and research papers are generally high-quality and knowledge-dense, we expect
few inherent inconsistencies in the sources.

D EXPERIMENTAL DETAILS

D.1 COMPUTING RESOURCE

Since we focus on efficient training and usage of RAG and GNN experiments, all of our experiments
on training and inference rely on one single A100 80GB GPU.

D.2 PROMPT DETAILS FOR LLM BASELINES

The prompt for the LLM baseline is structured as follows:

Context: context

Query: Is the sentence consistent with other information in the relevant paragraph?
Sentence: sentence

Output: Return a JSON object in the format: "confidence": 1-5, "answer": "True" | "False" Context:
The entire paper, with inconsistent sentences embedded.
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The sentence is the target sentence under evaluation. And the output is a binary decision (True/False)
with a confidence score from 1 (low) to 5 (high).

This setup ensures the model evaluates each candidate sentence in the context of the full paper. A
sentence is consistent if it does not conflict with any part of the context, and inconsistent where there
is at least one conflicting part.

D.3 NODE-LEVEL BASELINES

Since node-level baselines do not require training, we exclude all training data for baseline results
and focus on the test set.

Bug correction task For the bug correction task, We evaluated four different retrievers to select the
top-k most relevant nodes using the fabrication content for each node:

* Structure Retriever: retrieves the top-k nodes based on Personalized PageRank (PPR)
scores computed from the seed node.

» Text Retriever: retrieves the top-k nodes based on cosine similarity with the embeddings
provided by al1-MiniLM-L6-v2.

* Multimodal Retriever: retrieves the top-k nodes based on cosine similarity with the
embeddings provided by voyage-multimodal-3 model to embed for the Wiki graph
and BAAT /A1t CLIP model to embed for the Paper graph.

* Hybrid Retriever: combines the scores of the text retriever and the structure retriever with
weights of 0.8 and 0.2 linearly in the Wiki graph, with weights of 0.2 and 0.8 linearly in the
Paper Graph, and selects the top-k results as the final retrieved ones. Different combination
values are selected for different datasets due the the different properties of graphs.

We reported the mean reciprocal rank (MRR), mean average precision (MAP), recall at £ = 5, and
normalized discounted cumulative gain (NDCG) at k£ = 5.

Bug detection task For the bug detection task, we generate three prompt variants: origi-
nal prompt, oracle prompt, and Retrieval-Augmented Generation (RAG) prompt. The original
prompt is used for LLM-based baseline, and the oracle prompt is used for testing the upper-
bound of the LLM-based method when given the ground-truth retrieved contents. We use the
Qwen/Qwen2.5-7B-Instruct-Turbo to generate the final answer based on the retrieved in-
formation. Table[5]compares these templates. We reported the precision, recall, F1, and set the k of
the retrieval process to be 5. The retriever used as part of the RAG pipeline for bug detection is the
same as the bug correction tasks.

Original Prompt

Oracle Prompt

RAG Prompt

You are given a statement. Based
on your knowledge, evaluate if
this statement contains any fac-
tual errors.

Statement: . ..

Respond with "Yes’ if it does, oth-
erwise "No’. Just say Yes or No.
Do not add any other text.

You are given a statement and
multiple contents. Based on your
knowledge, evaluate if this state-
ment contains any very clear fac-
tual contradictary errors when
comparing with at least one of the
multiple contents, response Yes,
else No.

Statement: . . .

Multiple contents: ...

Respond with ’Yes’ if it does, oth-
erwise 'No’. Just say Yes or No.
Do not add any other text.

You are given a statement and
multiple contents. Based on your
knowledge, evaluate if this state-
ment contains any very clear fac-
tual contradictary errors when
comparing with at least one of the
multiple contents, response Yes,
else No.

Statement: . . .

Multiple contents: ...

Respond with ’Yes’ if it does, oth-
erwise 'No’. Just say Yes or No.
Do not add any other text.

Table 5: Comparison of the original, oracle, and Retrieval-Augmented Generation (RAG)
prompt templates. The multiple contents in the oracle prompt are the node-neighbors’ contents. The
multiple contents in the RAG prompt are the retrieval contents.
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D.4 EDGE-LEVEL BASELINES

Similar with node-level baselines, since edge-level baselines do not require training, we exclude all
training data for baseline results and directly use the test set.

Bug correction task For the rewired-neighbor edges, we removed the original edge and inserted the
rewired edge to form a modified graph. We evaluated four different retrievers to select the top-k most
relevant nodes, excluding nodes of type image. The retriever settings are similar to the node-level
tasks. We reported the mean reciprocal rank (MRR), mean average precision (MAP), recall at k = 5,
and normalized discounted cumulative gain (NDCG) at k = 5.

Bug detection task For the bug detection task, we keep the 200 edge-pairs (200 positive and 200
negative) for testing. For the original-neighbor edges, we retrieve in the original graph. For the
rewired-neighbor edges, we retrieve them in the modified graph as in the bug correction task. Then,
we retrieve it by following the same process. For each edge, we generated two prompt variants:
the original prompt and the Retrieval-Augmented Generation (RAG) prompt. The original prompt
is used as the LLLM baseline. We use the Qwen/Qwen2.5-7B-Instruct-Turbo to generate
the answer. Table[6|compares these templates. We report the precision, recall, and F1 and take the
retrieval number k = 5.

Original Prompt RAG Prompt
You are given two paragraphs. You are given two paragraphs and multiple refer-
Paragraph 1: ... ence paragraphs.
Paragraph 2: . .. Paragraph 1: ...

Based on the background information in the ref- | Paragraph 2: ...

erence paragraphs, do you think these two para- | References for Paragraph 1: ...

graphs are closely related? References for Paragraph 2: . ..

Respond with ‘Yes’ or ‘No’. Based on the background information in the ref-
erence paragraphs, do you think these two para-
graphs are closely related?

Respond with “Yes’ or ‘No’.

Table 6: Comparison of the original and Retrieval-Augmented Generation (RAG) prompt
templates. The original prompt is the baseline while the RAG is the augmented one.

D.5 GNN TRAINING DETAILS

We filter the training data by guaranteeing that the sub-graph we consider during training and testing
does not overlap to avoid any form of data leakage. Our GNN training includes a batch size of 16, a
GNN with 3 layers, each having 128 hidden units and 4 attention heads, a dropout rate of 0.2 between
layers, an AdamW optimizer with a learning rate of 1x10~3, and 20 training epochs.

D.6 SIGNIFICANT TEST

We run GNN-based training three times, and the performance indicates that our GNN-based models
are significantly better than baselines on node-level and edge-level bug detection and edge-level bug
correction, but not significantly better on edge-level bug detection.

E BROADER IMPACT

This paper introduces the knowledge debugger, a tool designed to detect multimodal automatically
information inconsistencies in real-world, knowledge-intensive materials such as research papers
and Wikipedia pages. Our method aims to improve the quality of factual content and reduce the
prevalence of incorrect information. However, if misused, it could also be exploited to generate highly
convincing fake content that is difficult to distinguish from authentic sources, potentially contributing
to the spread of misinformation.
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F LIMITATIONS

Our proposed knowledge debugger has several limitations. First, it focuses on only two represen-
tative types of source material—research papers and Wikipedia pages—for graph construction and
debugging analysis. Expanding to a broader range of structured materials, such as books, films, and
code repositories could enhance its generality. Second, our current task setting is limited to detecting
knowledge inconsistencies. Identifying an inconsistency does not necessarily imply the ability to
determine which source is correct. Finally, our bug correction task is formulated as a ranking problem:
successfully locating the source of an error does not guarantee the ability to correct it.
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