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ABSTRACT

Large language models (LLMs) trained on huge text datasets demonstrate intriguing
capabilities, achieving state-of-the-art performance on tasks they were not explicitly
trained for. The precise nature of LLM capabilities is often mysterious, and different
prompts can elicit different capabilities through in-context learning. We propose a
framework that enables us to analyze in-context learning dynamics to understand
latent concepts underlying LLMs’ behavioral patterns. This provides a more
nuanced understanding than success-or-failure evaluation benchmarks, but does
not require observing internal activations as a mechanistic interpretation of circuits
would. Inspired by the cognitive science of human randomness perception, we use
random binary sequences as context and study dynamics of in-context learning by
manipulating properties of context data, such as sequence length. In the latest GPT-
3.5+ models, we find emergent abilities to generate seemingly random numbers
and learn basic formal languages, with striking in-context learning dynamics where
model outputs transition sharply from seemingly random behaviors to deterministic
repetition.

1 INTRODUCTION

Large language models (LLMs) achieve high performance on a wide variety of tasks they were not
explicitly trained for, demonstrating complex, emergent capabilities (Brown et al., 2020; Radford
et al., 2019; Wei et al., 2022a; 2023; 2022b; Lu et al., 2023; Bommasani et al., 2021; Wei et al.,
2021; Kojima et al., 2022; Pan et al., 2023; Pallagani et al., 2023; Li et al., 2022). In-context learning
(ICL) describes how task-specific patterns of behavior are elicited in LLMs by different prompts
(or contexts) (Brown et al., 2020; Wei et al., 2022b; Dong et al., 2022; Zhou et al., 2022; Wang
et al., 2023; Shin et al., 2022; Min et al., 2022; Si et al., 2023; Xie et al., 2022; Zhang et al., 2023b).
Although no weight updates occur in ICL, different input contexts can activate, or re-weight, different
latent algorithms in an LLM, analogous to updating model parameters to learn representations in
traditional gradient descent learning methods (Goldblum et al., 2023; Dai et al., 2023; Ahn et al., 2023;
Von Oswald et al., 2023; Akyürek et al., 2022; Li et al., 2023a). However, two seemingly equivalent
prompts can evoke very different behaviors in LLMs (Si et al., 2023). ICL makes interpreting what
representations in an LLM are being evoked by a given input more challenging than with task-specific
language models, where the space of capabilities is more restricted and well-defined.

Our central motivation is to interpret latent concepts underlying complex behaviors in LLMs by
analyzing in-context learning behavioral dynamics, without directly observing hidden unit activations
or re-training models on varied datasets. Inspired by computational approaches to human cogni-
tion (Tenenbaum, 1998; Griffiths & Tenenbaum, 2003; Piantadosi et al., 2012; Spivey et al., 2009),
we model and interpret latent concepts evoked in LLMs by different contexts without observing or
probing model internals. This approach, which we call Cognitive Interpretability, is a middle ground
between shallow test-set evaluation benchmarks on one hand (Srivastava et al., 2022; Saparov & He,
2022; Min et al., 2022; Lanham et al., 2023; Ganguli et al., 2023; Bowman et al., 2022; Kadavath
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Task: Generate a sequence of 1000 random number samples from a fair coin:
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Figure 1: Overview of our modeling framework. Given a pre-trained Large Language Model,
we systematically vary input context prompts, in this case x = (001)n with n = {2, 4} (001001,
001001001001). LLM outputs y (Bottom) significantly as a function of x (Top), based on some
unknown latent concept space embedded in the LLM. We model a subset of the algorithms embedded
in the LLM’s latent concept space H that are invoked by ICL (Middle), to predict the LLM outputs
y. With very little context (Left), GPT-3.5+ generates subjectively random sequences, whereas with
enough context matching a simple formal language (x = 001001001001 = (001)4), it begins
deterministically repeating patterns in x.

et al., 2022; Perez et al., 2022; Prystawski & Goodman, 2023; Turpin et al., 2023) and mechanistic
neuron- and circuit-level understanding of pre-trained model capabilities on the other (Nanda et al.,
2023; Goh et al., 2021; Geva et al., 2020; Belinkov, 2022; Li et al., 2022; Wang et al., 2022; Chughtai
et al., 2023; Gurnee et al., 2023; Foote et al., 2023; Lubana et al., 2023; Lieberum et al., 2023; Barak
et al., 2022; Liu et al., 2022b; Zhong et al., 2023) (also see App. C). Unlike related work of feature
interpretability in vision neural networks, we analyze ICL and text generation dynamics over output
sequences, and unlike mechanistic work studying ICL, we observe learning dynamics in black box
input-output behavior of state-of-the-art LLMs.

Specifically, we focus on interpreting latent concepts in LLMs in the domain of random sequences
of binary values (Fig. 1). Random binary sequences are a minimal domain that has been studied
extensively in statistics, formal language theory, and algorithmic information theory (Sipser, 1996;
Chaitin, 1966; Li et al., 1997). We use this domain to systematically test few-shot learning as
a function of context length |x| across different binary token sequences x. Moreover, language
generation trajectories over binary sequences can also be analyzed and visualized more easily than
typical user-chatbot interaction trajectories (Zhang et al., 2023a; Berglund et al., 2023) since the
token-by-token branching factor is only two. Random binary sequences have also been a target
domain in cognitive science (specifically, subjective randomness), where researchers have studied the
mechanisms and concepts that underlie how people generate random binary sequences or evaluate the
randomness of a sequence (Falk & Konold, 1997; Tversky & Gilovich, 1989; Griffiths et al., 2018).

Similar to computational cognitive theories of human concept learning (Chater & Vitányi, 2003;
Dehaene et al., 2022; Piantadosi et al., 2012; Goodman et al., 2008; Ullman et al., 2012; Ullman &
Tenenbaum, 2020), we argue that ICL can be interpreted as under-specified program induction, where
there is no single “correct” answer; instead, an LLM should appropriately re-weight latent algorithms.
The domain of random sequences reflects this framing, in contrast to other behavioral evaluation
methodologies, in that there is no correct answer to a random number generation or judgment task
(Fig. 3). If the correct behavior is to match a target random process, then the best way to respond to
the prompt Generate N flips from a fair coin is a uniform distribution over the tokens Heads and
Tails, instead of a specific ground truth token sequence. If instead the correct behavior is to match
how humans generate random sequences, the LLM must represent a more complex algorithm that
matches the algorithm used by people. Overall, we make the following contributions in this work.

• Evaluating ICL as Bayesian model selection in a practical setting (Sec. 2). We find evidence
of in-context learning operating as Bayesian model selection in LLMs in the wild, compared to
prior work that trains smaller toy neural networks from scratch.

• Subjective Randomness as a domain for studying ICL dynamics (Sec. 3). We introduce a
new domain, subjective randomness, which is rich enough to be theoretically interesting, but
simple enough to enable analysis of complex behavioral patterns.

2



Published as a conference paper at ICLR 2024

0 20 40 60 80 100
|x|

0.05

0.10

0.15

0.20

0.25

0.30

p(
h

|x
)

Unnormalized hypothesis posterior  p( h | x = (01)n )
Non-Random (01)n

Bernoulli

0 20 40 60 80 100
|x|

0.5

0.6

0.7

0.8

0.9

1.0

p(
y

|x
)

Next-Flip Prediction   p( y =  Tails | x = (01)n )

Model Averaging
Model Selection (Max)
Model Selection (Soft)

Figure 2: Sharp changes in the predictive distribution p(y|x) suggest model selection (Left) Here
we show an illustrative example of a simple Bayesian model with two hypotheses in H: a random
Bernoulli hypothesis, and a deterministic Non-Random hypothesis for the concept (01)n. When
hypothesis posteriors p(h|x) cross as a function of additional data, i.e. larger |x|, the predictive
distribution p(y|x) for model selection suddenly transitions from one pattern of behavior to another
(Right). With model averaging, instead there is a steady, gradual change in p(y|x) (see App. D for
further explanation). We find analogous S-shaped curves in ICL with LLM predictive distributions
p(y|x) in GPT-3.5+, suggesting model selection rather than model averaging (Fig. 4, 5). These phase
changes are not predicted by theories of ICL as linear regression (Akyürek et al., 2022) or few-shot
learning (Brown et al., 2020; Wei et al., 2022b), where loss steadily decreases with more context
examples in x.

• Sharp transitions in abilities to in-context learning dynamics (Fig. 4, 5). We systematically
analyze in-context learning dynamics in LLMs without observing or updating model weights,
demonstrating sharp phase-changes in model behavior. This is a minimal, interpretable example
of how the largest and most heavily fine-tuned LLMs can suddenly shift from one pattern of
behavior to another during text generation, and supports theories of ICL as model selection.

2 IN-CONTEXT LEARNING AS MODEL SELECTION

Bayesian inference is a key methodological tool of cognitive modeling, and recent work has framed
in-context learning as Bayesian inference over models (Xie et al., 2022; Li et al., 2023b; Hahn
& Goyal, 2023). The output tokens y an LLM produces given input tokens x can be modeled
as a posterior predictive distribution p(y|x) that marginalizes over latent concepts c in the LLM:
p(y|x) =

∫
c∈C p(y|c) p(c|x) In other words, a context x will activate latent concepts c in an LLM

according to their posterior probability p(c|x), which the model marginalizes over to produce the
next token y by sampling from the posterior predictive distribution. This inference process takes
place in network activation dynamics, without changing model weights.

In our experiments, we assume a hypothesis space H that approximates the latent space of LLM
concepts used when predicting the next token, i.e.,

p(y|x) =
∑
h∈H

p(y|h) p(h|x),

We assume that an LLM operates over next-token prediction only, and so each generated token yt−1

will be appended to the context when the following token is sampled, i.e. xt = (x0,...,t−1, yt−1).
With this framework, we can understand ICL dynamics through the lens of hypothesis search. An
LLM might not compute the sum in the above equation by taking a weighted average of latent
capabilities. An LLM might perform Bayesian model selection, instead of model averaging, where
for any given x, only a single latent concept h approximates the posterior predictive distribution:
h∗ = argmaxh p(h|x), p(y|x) = p(y|h∗). We provide a visual demonstration of how Bayesian
model selection leads to sharp changes in the predictive distribution p(y|x) with a toy model in Fig. 2.

Cognitive scientists have used Bayesian predictive and posterior distributions to model learning
dynamics in human adults and children, as well as in non-human animals (Tenenbaum, 1998;
Goodman et al., 2008; Ullman & Tenenbaum, 2020). A discrete hypothesis space in a probabilistic
model can give clear and meaningful explanations to learning patterns analogous to mode collapse
and phase transitions in deep learning. When behavior suddenly shifts from one pattern, or mode,
of behavior to another, this can be understood as one hypothesis coming to dominate the posterior
p(h|x) as x grows in scale. This theory can explain conceptual shifts observed when children learn
intuitive theories of domains such as intuitive physics (Ullman et al., 2012) and learning to count
(Piantadosi et al., 2012). Such cognitive analysis of behavioral shifts as generated from a shift in
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posterior probability between one hypothesis to another parallels recent work on learning dynamics
in training and prompting LLMs. Sharp phase changes have been observed when training neural
networks, corresponding to the formation of identifiable mechanisms such as modular addition
circuits or induction heads (Nanda et al., 2023; Olsson et al., 2022; Zhong et al., 2023; Bai et al.,
2023), and can be interpreted as Bayesian model selection (Hoogland et al.). Also see App. A, C.

To our knowledge, we provide the first demonstration of such sharp phase changes in ICL, particularly
with state-of-the art blackbox LLMs. The minimal model used by Xie et al. (2022), as well as other
few-shot learning work (Brown et al., 2020), show linearly or logarithmically decreasing loss curves
in ICL, rather than S-shaped curves with stable plateaus as we find. Michaud et al. (2023) propose that
neural network knowledge and skills may be quantized into discrete chunks, and so training might
consist of many such phase changes which disappear into a smooth curve when test loss is averaged
over many samples. We propose that In-Context Learning may also consist of sudden phase changes,
as well as other complex learning dynamics, which may be explained as search over a discrete latent
concept space. Such phase changes may occur in typical few-shot learning domains (Wei et al.,
2022b; Brown et al., 2020), where smooth, continuously decreasing loss curves might hide complex
ICL dynamics corresponding to shifts in the latent algorithms driving an LLMs behavior.

3 ALGORITHMIC AND SUBJECTIVE RANDOMNESS

def simpleSequence:
print(H) 
for i in range(7): 

print(T)

def complexSequence:
print(T)
print(T)
print(H)
print(T)
print(H)
print(H)
print(T)
print(H)

def randomSequence:
for i in range(8): 

f = random.choice(H,T) 
print(f)

Hypothesis SpaceProblem

Q. Which sequence is 
more random?

TTHTHHTH

HTTTTTTT

vs.

TTHTHHTH HTTTTTTT

p(h |x) p(h |x)

simple

complex

random

Posterior Inference

Figure 3: Determining whether a sequence is
random can be viewed as search for a sim-
ple program that could generate that sequence.
HTTTTTTT can be described with a short determin-
istic program simpleSequence, and has a higher
p(h) according to a simplicity prior, compared
to TTHTHHTH and complexSequence. Both se-
quences can be generated by randomSequence,
but with lower likelihood p(x|h).

Next, we describe the domain of randomness
explored in this work, and provide relevant
background from computational cognitive sci-
ence. To build intuition, consider: which se-
quence of coin flips is more random, TTHTHHTH
or HTTTTTTT? While the odds of a fair coin
producing either sequence are the same (1 in
256), most people say that the first sequence
“looks more random”. In a bias termed the Gam-
bler’s Fallacy, people reliably perceive binary
sequences with long streaks of one value as
‘less random’, and judge binary sequences with
higher-than-chance alternation rates as ‘more
random’ than truly random sequences (Falk &
Konold, 1997). In addition to not using sim-
ple objective measures when judging the ran-
domness of sequences, people also have a hard
time generating sequences that are truly ran-
dom (Oskarsson et al., 2009; Griffiths et al.,
2018; Gronchi & Sloman, 2021; Meyniel et al.,
2016; Planton et al., 2021).

Cognitive scientists studying Subjective Randomness model how people perceive randomness, or
generate data that is subjectively random but algorithmically non-random, and have related this
problem to algorithmic information theoretic definitions of randomness. One way to study this is
to ask people whether a given data sequence was more likely to be generated by a Random process
or a Non-Random process (Fig. 3). HTTTTTTT might be described with a shorter program—one H
followed by seven Ts – than HTTHTHHT, which cannot be compressed as well—H followed by two Ts,
then one H, then one T, then two Hs, then one T. Viewing this task as program induction, a natural prior
p(h) over program hypotheses assigns higher weights to programs with shorter description lengths,
or lower complexity. Similar to our description of model selection, or hypothesis search, compared
to model averaging, the space of non-random programs can be simplified to a search for the single
shortest program consistent with the data x. This search is equivalent to computing the Kolmogorov
complexity of a sequence K(x) (Li et al., 1997) and has motivated the use of “simplicity priors” in
a number of domains in computational cognitive science Chater & Vitányi (2003); Goodman et al.
(2008); Piantadosi et al. (2012).

As in Griffiths & Tenenbaum (2003); Griffiths et al. (2018), we define subjective randomness of
a sequence as the ratio of likelihood of that sequence under a random versus non-random model,

4



Published as a conference paper at ICLR 2024

Q: Generate a sequence of 1000 random samples 
from a weighted coin, with {1 - p}% probability of 
Heads and {p}% probability of Tails.

A: [{sequence}, ________

Q: Is the following sequence of coin flips generated 
by a random process with no pattern, or are they 
generated by a non-random algorithm? [{sequence}]

A: The sequence was generated by a  ________
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Figure 4: Prompt templates and GPT-3.5 Randomness Judgments (Left) Prompt templates used
for the Randomness Generation (top) and Judgment (bottom) tasks. {sequence} is substituted with
a list of context flips x, e.g. Heads, Tails, Tails, Heads. {p} is substituted with the probability of
Tails, and {1− p} with the probability of Heads. (Right) In Randomness Judgment tasks, we observe
sharp transitions in the predictive distribution p(y = random|x) for GPT-3.5, from high-confidence in
x being generated by a random process, to high confidence in a non-random algorithm, as additional
data x is provided from the same concept. See App. G for additional concepts.

i.e., randomness(x) = logP (x|random) − logP (x|non-random). The likelihood given a truly
random Bernoulli process is p(x|random) = 2−|x|, since each of 2|x| binary sequences of length |x|
has equal probability. The non-random likelihood p(x|non-random) = 2−K(x) is the probability of
the minimal description length program that generates x, equivalent to Bayesian model selection:
P (x|non-random) = maxh∈H p(x|h) p(h). See App. K for more background. In theory, the space
H of non-random models encompasses every possible computation; in this work, we study a small
subset of this space that includes formal languages and probabilistic models inspired by psychological
models of human concept learning and subjective randomness (Griffiths et al., 2018; Nickerson, 2002;
Hahn & Warren, 2009). Specifically, we consider Bernoulli processes, regular languages, Markov
chains, and a simple memory-constrained probabilistic model as candidates for H.

4 EXPERIMENTS

Our experiments aim to evaluate how LLMs operate in the domain of Subjective Randomness.
Specifically, our goal is to understand whether ICL and text generation dynamics suggest model
selection, or hypothesis search, over a discrete concept space. We first evaluate whether there is an
emergent algorithm for generating subjectively random sequences, and if so, whether it is similar to
cognitive models of human subjective randomness (Fig. 6, 7). We use open-ended text generation
experiments (Fig. 4, Left) and analyze binary sequences produced by LLMs, and compare LLM
sequences to a Bernoulli distribution and our cognitively inspired (Falk & Konold, 1997; Hahn &
Warren, 2009) Window Average model. Second, we evaluate whether ICL dynamics in searching over
random and non-random hypotheses demonstrate ICL operating as model averaging, where learning
is smooth and continuous, or as model selection, or hypothesis search, where sudden, dramatic
changes can occur during learning.

Randomness Generation and Judgment Tasks In order to assess text generation dynamics and
in-context concept learning, we evaluate LLMs on random sequence Generation tasks, analyzing
responses according to simple interpretable models of Subjective Randomness and Formal Language
Learning. In these tasks, the model generates a sequence y of binary values, or flips, comma-separated
sequences of Heads or Tails tokens. We also analyze a smaller set of randomness Judgment
tasks, with the prompt: Is the following sequence of coin flips generated by a random process with no
pattern, or are they generated by a non-random algorithm?. In both cases, y is a distribution over
tokens with two possible values. Outputs y consist of a single Random or Non token, indicating
whether the sequence was generated by a random process with no correlation, or some non-random
algorithm. We analyze dynamics in LLM-generated sequences y simulating a weighted coin with
specified p(Tails), with |x| ≈ 0. An initial flip ‘Heads’ is used so the model’s flips will be formatted
consistently. Prompt context in these experiments includes a specific probability, shown in Fig. 4,
where the last __ marks where the model begins generating tokens y. We collect 200 output sequences
y for each LLM at each P (Tails) ∈ [.05, .1, .2, .3, .4, .49, .5, .51, .60, .70, .80, .90, .95], cropping
output tokens to |y| = 50 to limit cost and for simplicity. Temperature parameters are set to 1, and
other parameters follow OpenAI API defaults; see App. B for more details.

In the Judgment task, x includes the prompt question and the full sequence of flips. We systematically
vary prompt context x by varying the number of flips, denoted |x|. We test few-shot learning in LLMs
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Figure 5: With enough context, GPT-3.5 learns simple formal language concepts, transitioning
from generating subjectively random sequences to only generating values matching the concept
(Left) GPT-3.5 next-token predictive distribution p(y|x) visualized as a binary tree, where red arrows
correspond to Heads (0), blue arrows to Tails (1), and nodes matching the target concept C = (011)n

are dark green. p(y|x) changes with varying |x|, here |x| = 39 and next-token predictions strongly
follow the concept C. Also see Fig 15, 16 in Appendix. (Right) In-context learning dynamics for
simple formal languages x = (HTH)n (010) and x = (HTT)n (011) as a function of context length
n = |x|. Prediction accuracy computed as the total probability mass of p(y|x) assigned to valid
continuations of the formal language x, as a function of prediction depth d = |y| and context length
|x|. Curves shown are for depth d = 6, where only 3 out of 64 possible length-6 binary sequences y
match concept C. Note: bottom model is gpt-3.5-turbo-instruct-0914. Also see App. F.

by evaluating output behavior on specific bit sequences, for example (01)n with varying n (e.g.
“Heads, Tails, Heads, Tails, . . .”), as well as zero-shot language generation dynamics when x is
empty and |x| = 0 (in practice, we initialize x with a single flip to help the LLM match the correct
format). Unlike typical cases of few-shot learning, where high-variance samples (‘shots’) are drawn
from a broad category such as “chain-of-thought solutions” (Wei et al., 2022b; Brown et al., 2020),
all data in a sequence x corresponds to a single unobserved program.

Subjective Randomness Models We compare LLM-generated sequences to a ground truth “ran-
dom” Bernoulli distribution with the same mean (µ = yLLM), to a simple memory-constrained
probabilistic model, and to Markov chains fit to model-generated data y. The Gambler’s Fallacy is
the human bias to avoid long runs of a single value (‘Heads’ or ‘Tails’) consecutively in a row (Falk
& Konold, 1997; Nickerson, 2002). Hahn & Warren (2009) theorize that the Gambler’s Fallacy
emerges as a consequence of human memory limitations, where ‘seeming biases reflect the subjective
experience of a finite data stream for an agent with a limited short-term memory capacity’. We
formalize this as a simple Window Average model, which tends towards a specific probability p as a
function of the last w flips: p(y|x) = max(0,min(1, 2p− xt−w,...,t)) .

Sub-Sequence Memorization and Complexity Metrics Bender et al. (2021) raise the question
of whether LLMs are ‘stochastic parrots’ that simply copy data from the training set. We test the
extent to which LLMs generate subjectively random sequences by arranging memorized patterns of
sub-sequences, rather than according to a more complex algorithm as our Window Average model
represents. To measure memorization, we look at the distribution of unique sub-sequences in y.
If an LLM is repeating common patterns across outputs, potentially memorized from the training
data, this should be apparent in the distribution over length K sub-sequences. Since there are deep
theoretical connections between complexity and randomness (Chaitin, 1977; 1990), we also consider
the complexity of GPT-produced sequences. Compression is a metric of information content, and
thus of redundancy over irreducible complexity (MacKay, 2003; Delétang et al., 2023), and neural
language models have been shown to prefer generating low complexity sequences (Goldblum et al.,
2023). As approximations of sequence complexity, we evaluate the distribution of Gzip-compressed
file sizes (Jiang et al., 2022) and inter-sequence Levenshtein distances (Levenshtein et al., 1966).

Formal Language Learning Metrics In our Formal Language Learning analysis, x is a subset of
regular expression repetitions of short token sequences such as x ∈ (011)n, where longer sequences
x correspond to larger n. This enables us to systematically investigate in-context learning of formal
languages, as |x| corresponds to the amount of data for inducing the correct program (e.g. (011)n)
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Figure 6: GPT-3.5 generates subjectively random binary sequences that deviate from a Bernoulli
process. (Left) Running averages for flip sequences generated by each model, where 0 denotes
‘Heads’ and 1 denotes ‘Tails’. Compared to a Bernoulli process (top), sequences generating using
GPT (middle) and those of our Window Average model (bottom) stay closer to the mean, repeating
the same patterns more often. (Right) Empirical conditional probabilities for a third-order Markov
Chain fit to sequences y generated by GPT-3.5 text-davinci-003, a Bernoulli process centered
at the mean of GPT sequence y, and our Window Average model (w = 5). In the simulated Bernoulli
process, edges are fairly uniform; edges for GPT-3.5 and the Window Average model are non-uniform,
but similar to one another.

from Bernoulli processes, as well as the space of all possible algorithms. A Markov chain of
sufficiently high order k can implicitly represent a regular language in its weights (see Fig. 6, Right).
However, the number of parameters required is exponential in Markov order k, and weights are
difficult to interpret. For example, a 3-order Markov chain fit to data x = (011)n will represent
(011)n corresponds to high weights in the conditional probability distribution for p(0|11), p(1|01),
p(1|10), and low values for other conditional probabilities. To match the goal of the Generation task,
we use a variation of the prompt in Fig. 4: ‘Generate a sequence of 1000 samples that may be from a
fair coin with no correlation, or from some non-random algorithm’

In Randomness Judgment tasks, we assess formal concept learning dynamics by changes in the
predictive distribution p(y = random|x = C |x|), i.e. the probability of the final token being ‘Random’
vs. ‘Non’, as a function of context length |x|. The method for measuring concept learning dynamics
in Randomness Generation tasks requires computing p(y|x) over possible binary flip sequences y,
instead of y being a single token as with Judgment tasks. In binary sequence Generation tasks, we
estimate the predictive probability p(yt ∈ C|x, y0...,t−1) assigned to a given regular language concept
C by computing the total probability mass of p(y|x) for all unique token sequences y0...d up to some
depth d, such that the y exactly matches a permutation of the concept. If tokens in x and y have two
possible values, 0 or 1, the probability table for p(yt|y0,...,t−1) is a weighted binary tree (see Fig. 5,
Left) with depth d, where edges represent the next-token probability p(yt|yt−1), and paths represent
the probability of a sequence of tokens. For example, with C = (011)n, there will be 3 paths y0...d
corresponding to the permutations (011)n, (101)n, (110)n, out of 2d possible sequences y, and
so: p(y ∈ (011)n | x) = p(y = ‘0, 1, 1, 0, 1, 1, . . . ’ | x) + p(y = ‘1, 1, 0, 1, 1, 0, . . . ’ | x) + p(y =
‘1, 0, 1, 1, 0, 1, . . . ’ | x) . We use the notation p(y ∈ C | x) in Fig. 5 (Right) to refer to this predictive
probability of y matching a concept C. In both Judgment and Generation tasks for formal concept
learning, we use next-token prediction probabilities p(yt|y0,...,t−1, x) directly from the OpenAI API,
for cost efficiency and since this is equivalent to repeated token samples.

5 RESULTS

5.1 SUBJECTIVELY RANDOM SEQUENCE GENERATION

In the GPT3.5 and higher models—InstructGPT (text-davinci-003), ChatGPT
(gpt-3.5-turbo) and GPT-4—we find an emergent behavior of generating seemingly
random binary sequences (Fig. 6). This behavior is controllable, where different p(Tails) values
lead to different means of generated sequences y. However, the distribution of sequence means, as
well as the distribution of the length of the longest runs for each sequence, deviate significantly from
a Bernoulli distribution centered at y, analogous to the Gambler’s Fallacy bias in humans (see Fig. 7).
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Figure 7: GPT-3.5 shows a Gambler’s fallacy bias of avoiding long runs. (Top) Distribution of
mean values of flip sequences (µ = 1

T

∑
t yt) generated by GPT-3.5 (text-davinci-003) with

the specified p(Tails), compared with a Bernoulli process and our Window Average model with the
same mean as the GPT-3.5 flips. Flips generated by GPT approximately follow the expected mean
p(Tails), but have lower variance than a Bernoulli distribution. (Bottom) Length of the longest run
for each sequence, where a run is a sub-sequence of the same value repeating. In this case, we see a
clear bias in GPT-3.5 to avoid long runs, with a similar pattern across all values of p(Tails) despite
the x-axis changing in scale.

Our Window Average model with a window size of w = 5 partly explains both biases, matching
GPT-generated sequences more closely than a Bernoulli distribution. This result demonstrates that
ICL enables selection of latent concepts in an LLM that operate as algorithms acting on data. Our
next experiment, on sub-sequence memorization, aims to further characterize this algorithm and
address the alternative hypothesis that this behavior is generated by memorizing pre-training data.

For brevity, in the following sections we primarily analyze the behavior of text-davinci-003,
referring to it simply as ‘GPT-3.5’ and including subsequent OpenAI GPT models (‘gpt-3.5-turbo‘,
‘gpt-4‘) as ‘GPT-3.5+’. In App. L we show similar results with open-source LLMs. Our cross-
LLM analysis shows that text-davinci-003 is controllable with p(Tails), with a bias towards
y = .50 and higher variance in sequence means (though lower variance than a Bernoulli process).
Both versions of ChatGPT we analyze (versions gpt-3.5-turbo-0301 and 0613) demonstrate
similar behavior for p(Tails) < .5, but behave erratically with higher P (Tails) and the majority
of sequences y converge to repeating ‘Tails’. Both versions of GPT-4 show stable, controllable
subjective randomness behavior, where sequence means y closely follow the specified p(Tails), but
have even lower variances than sequences generated by text-davinci-003. Earlier models do
not show subjective randomness behavior, with text-davinci-002 and text-davinci-001
being heavily biased and uncontrollable, and text-curie-001 generates sequences with y = .50
regardless of p(Tails). Also see App. H.

5.2 SUB-SEQUENCE MEMORIZATION AND COMPLEXITY

We find significant differences between the distributions of sub-sequences for GPT-3.5 -generated
sequences and sequences sampled from a Bernoulli distribution(see Fig. 8). This difference is
partly accounted for with a Window Average model with a window size w = 5, although GPT
repeats certain longer sub-sequences, for example length-20 sub-sequences, that are far longer than 5.
However, the majority of sub-sequences have very low frequency, and though further experiments
would be required to conclude that all sub-sequences are not memorized from training data, it seems
unlikely that these were in the training set, since we find thousands of unique length-k (with varying
k) sub-sequences generated at various values of P (Tails). This indicates that GPT-3.5 combines
dynamic, subjectively random sequence generation with distribution-matched memorization. This
suggests that ICL is indeed eliciting complex latent algorithms in subjective randomness tasks, and
that this behavior cannot be easily attributed to memorizing sequences from the training distribution.

Note that with a specification of p(Tails) = 50%, but not 49%, 51% or other values, sequences
y generated by GPT-3.5+ are dominated by repeating ‘Heads, Tails, Heads, Tails, . . . ’. This
pattern is consistent across variations of the prompts listed in Fig. 4, including specifying ‘fair’
or ‘unweighted’ instead of a ‘weighted coin’, and produces a visible kink in many cross-p(Tails)
metrics (Fig. 25, 28, 29). Due to this, in Fig. 7 we show results for p(Tails) = 51%. Across three
metrics of sequence complexity—number unique sub-sequences, Gzip file size, and inter-sequence
Levenshtein distance (see Fig. 29, 28 in Appendix)—we find that GPT-3.5+ models, with the exception
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of ChatGPT, generate low complexity sequences, showing that structure is repeated across sequences
and supporting Goldblum et al. (2023); Delétang et al. (2023). For mean Levenshtein distance and
number of unique sub-sequences, ChatGPT generates higher complexity sequences than chance. We
speculate that this phenomenon might be explained in future work by a simple cognitive model: if
the LLM makes a sequence more subjectively random by avoiding repeating sub-sequences, like a
human might, then it will produce sequences with higher-than-chance complexity overall.

5.3 DISTINGUISHING FORMAL LANGUAGES FROM RANDOMNESS
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Figure 8: GPT repeats certain sub-sequences
more often than chance. We find that GPT-
3.5 repeats certain sub-sequences more often
than is predicted by our Window Average model.
While the Window Average model generates
fewer unique sub-sequences than a Bernoulli pro-
cess, this does not account for the bias in GPT-
3.5 (text-davinci-003) to repeat many of
the same sub-sequences. This disparity increases
with longer sub-sequences (Fig. 26).

GPT-3.5 sharply transitions between behavioral
patterns, from generating subjectively random val-
ues to generating non-random sequences that per-
fectly match the formal language (Fig. 5). We ob-
serve a consistent pattern of formal language learn-
ing in gpt-3.5-turbo-instruct-0914
generating random sequences where predictions
p(y|x) of depth d ≥ 4 are initially random
with small |x|, and have low p(y ∈ C|x)
where C is a given concept. This follows
whether the prompt describes the process as sam-
ples from “a weighted coin” or “a non-random-
algorithm”. ICL curves for longer concepts
are smoother for text-davinci-003 and do
not converge to p(y|x) ≈ 1 as they do for
gpt-3.5-turbo-instruct-0914. We do
not explore the reason for this distinction or when
this breakdown occurs; however, in App. G we
analyze longer concepts in Randomness Judgment
experiments, which are more cost-efficient.

We also find sharp phase changes in GPT-3.5 be-
havioral patterns in Randomness Judgment tasks across 9 binary concepts (Fig. 4). These follow
a stable pattern of being highly confident in that the sequence is Random (high p(y = random|x)
when x is low, up to some threshold of context at which point it rapidly transitions to being highly
confident in the process being non-random. Transition points vary between concepts, but the pattern
is similar across concepts (also see Fig. 17, 18 in Appendix). These transitions support our theory of
ICL as model selection, or discrete hypothesis search, rather than model averaging, as in Fig. 2.

6 DISCUSSION

We find strong patterns of random number Generation and Judgment in LLMs, including an emergent
ability to generate low-variance, ‘subjectively’ random binary sequences, that can be partly explained
with a memory-constrained moving window model. This behavior can also partly be explained as
simple memorization and compression, but we observe algorithmic behavior that seems to go beyond
mere parroting. We also find striking behavioral phase changes when GPT-3.5 learns to distinguish
simple formal language concepts from randomness. This supports our framework of understanding
ICL as Bayesian model selection and as under-specified program induction, and demonstrates how
LLM behavioral patterns can change non-linearly with ICL as a function of context data. Our work is
an initial step in a direction which may prove to be highly impactful: if new capabilities can suddenly,
rather than gradually, emerge after a single additional data point is presented in-context, this presents
major challenges to AI safety and LLM interpretability. LLM capabilities may suddenly emerge or
disappear with new prompts, or with more ‘shots’, and LLM behavior may suddenly and dramatically
shift over the course of a single user interaction. These phase changes may be common in ICL,
unobserved by research in few-shot learning that averages over many samples when considering
in-context learning curves, instead of considering individual learning trajectories as we do. Future
work may characterize concept learning dynamics underlying other LLM capabilities, including
applications in usability and safety (App. C). If ICL is analogous to hypothesis search in human
cognition, a compelling research direction would be to further understand the defining features and
limits of in-context learning dynamics using theories and tools from computational cognitive science.
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REPRODUCIBILITY STATEMENT

All code and data used for this paper are available at https://github.com/ebigelow/
ICL-Random-Binary. In Appendix L we replicated our results across a selection of open-
source LLMs available through the HuggingFace Transformers API (Llama 2, Mixtral, Tulu 2).
We found similar results to GPT-3.5+ on Randomness Generation tasks varying p(Tails) with
LLMs with 50+ billion parameters (Fig. 32 & 33) and similar results on Randomness Judgment
with tulu-2-dpo-70b (Fig. 30). As of January 2024, the primary LLM analyzed in this paper
text-davinci-003 is no longer publicly accessible.
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Appendices
A RELATED WORK

Formal languages and transformers. A number of recent works explore how transformers and
other neural language models learng formal languages (Delétang et al., 2022; Weiss et al., 2021; Shi
et al., 2022; Allen-Zhu & Li, 2023; Bhattamishra et al., 2020; Wen et al., 2023; Liu et al., 2023;
2022a; Merrill & Sabharwal, 2023; Merrill et al., 2023; Merrill & Sabharwal, 2022). One common
theme is that neural networks often learn ‘shortcuts’, degenerate representations of formal languages
that fail out-of-samples.

In-Context Learning as Bayesian inference A number of recent works frame ICL as Bayesian
model selection (Xie et al., 2022; Li et al., 2023b; Akyürek et al., 2022; Hahn & Goyal, 2023; Bai
et al., 2023). Two key differences in our work are: first, we analyze state-of-the-art LLMs based on
behaviors alone, whereas prior work trains models from scratch on synthetic data and analyzes model
parameters directly. Second, we consider Bayesian inference as an empirical modeling framework, as
well as a theory, whereas these works only do the latter.

Mechanistic interpretability of transformer models Prior work has characterized specific circuit-
level implementations of simple high-level behaviors such as sequence copying, modular addition,
and other primitive computational operations (Nanda et al., 2023; Goh et al., 2021; Geva et al.,
2020; Belinkov, 2022; Li et al., 2022; Wang et al., 2022; Chughtai et al., 2023; Gurnee et al., 2023;
Foote et al., 2023; Lubana et al., 2023; Lieberum et al., 2023; Barak et al., 2022; Liu et al., 2022b;
Zhong et al., 2023). Our work differs in that we model hypothetical algorithms to characterize
LM output behavioral patterns, without observing underlying activation patterns. We see this as
analogous to cognitive science complementing neuroscience in the understanding of human cognition.
We characterize the high-level “cognitive” representations in LLMs as a step towards connecting
low-level explanations of neural circuits, such as induction heads, with sophisticated high-level
behaviors that are characteristic of LLMs.

Language model evaluations Our work resembles evaluation benchmarks such as BIG-Bench (Sri-
vastava et al., 2022) that use behavior alone to evaluate LM understanding and reasoning. However,
as described in the main text, the domain of subjective randomness is fundamentally different in
that there is no “correct” answer. Linguistic probing attempts to characterize the structure of LM
representations, but unlike our work, is a function of hidden unit activations rather than output
behavior.

LLM Text Generation Dynamics Work on chain-of-thought reasoning in LLMs demonstrates
how a few exemplars of detailed solutions or even a simple prompt like “let’s think this through
step-by-step” can dramatically impact model performance (Wei et al., 2022b; Kojima et al., 2022;
Srivastava et al., 2022), but typically only the model’s final answer is analyzed, not the trajectory
of its intermediate steps. Our memory-constrained Window Average model, inspired by Hahn &
Warren (2009), is similar in spirit to the claim of Prystawski & Goodman (2023), that ‘[chain-of-
thought] reasoning emerges from the locality of experience’. Zhang et al. (2023a) demonstrate that
invalid reasoning can snowball in LLMs, where hallucinations during intermediate steps lead to
hallucinations in the final answer.

Random number generation in LLMs Renda et al. (2023) explore random number generation in
LLMs, in addition to cursory explorations by (janus, 2022; Karpathy, 2023). These investigations do
not analyze dynamics of sequence generation, nor do they ground their analysis, as we do, in theories
of ICL as Bayesian model selection and the cognitive science of subjective randomness. Ortega et al.
(2019) uses a similar domain as ours with random binary sequences and has a similar binary tree
visualization over possible sequences, but they train models from scratch and analyze model hidden
states, rather than behavioral trajectories as we do.

Bayesian program learning in cognitive science Our work is inspired by computational cognitive
science work that theoretically treats concepts as programs, and empirically uses structured Bayesian
models to understand human cognition in various domains (Tenenbaum, 1998; Tenenbaum et al.,
2011; Ullman et al., 2012; Ullman & Tenenbaum, 2020). We use models based on the cognitive
science of subjective randomness (Falk & Konold, 1997), drawing particularly on the Bayesian
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program induction definitions of subjective randomness in Griffiths & Tenenbaum (2003; 2004);
Griffiths et al. (2018). Our method of studying learning as probabilistic inference over formal
languages with varying |x| is also similar to Goodman et al. (2008); Piantadosi et al. (2012); Yang &
Piantadosi (2022); Bigelow & Piantadosi (2016), who use more sophisticated grammar-based models
of concept learning.

B ADDITIONAL EXPERIMENTAL DETAILS

All calls were made with the OpenAI API, using default parameters including — important to our
analysis — a temperature parameter of 1.0.

Since ChatGPT (not including gpt-3.5-turbo-instruct) and GPT-4 use a ChatCompletions
API instead of Completions, we re-formatted the prompts in Fig. 4 to follow user/assistant/system
prompt format. The following prompts were used:

System Your responses will only consist of comma-separated "Heads" and "Tails" sam-
ples.
Do not repeat the user’s messages in your responses.

User Generate a sequence of 1000 random samples from a weighted coin, with {1 -
p}% probability of Heads and { p }% probability of Tails.

Assistant [ { sequence }

Although results are not shown here, for Randomness Judgment experiments, we also tested
text-davinci-003 with prompts other than the one in Fig. 4, including specifying a non-
random algorithm instead of a weighted coin, with { 1 - p }% probability . . . , and found similar
results of concept learning dynamics as in Fig. 4, 18.

We chose the format “Heads”, “Tails”, . . . specifically to avoid the alternate interpretation you
describe, of some patterns merely being tokenization artifacts (Fig. 9), since flips with shorter string
formats, such as 0s and 1s with no comma separating them, often get chunked into different tokens
(“01”, “0000”, etc.). We specify ‘1000 random samples’ in our Generation prompt to avoid issues
with GPT generating too few tokens, where for example if the ‘50 samples’ is specified, less than 50
flips will be generated in some cases.

In our analyses, we omit the probabilities of comma tokens p(y = ‘,’ | x), as well as partial flip
tokens - in particular p(y = ‘ails’ | x = ‘ T’) - since these are approx1 and nearly deterministic.
When analyzing GPT outputs in our flip Generation analyses, we segment flips tasks according to
tokens that begin with ‘h’ or ‘t’, after dropping spaces and converting to lower-case.
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Figure 9: Consistent tokenization with ‘Heads, Tails, . . . ’ compared to ‘010 . . . ’ With comma-
separated lists of ‘Heads’ and ‘Tails’ flips, tokens consist of ‘Heads’, ‘T’, ‘ails’, ‘,’, as well as
occasional erroneous tokens such as ‘Head’. With comma-less ‘0’ and ‘1’ tokens, the GPT tokenizer
chunks many binary sub-sequences into individual tokens.
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Figure 10: Cognitive Interpretability in the context of prior work Cognitive Interpretability studies
in-context learning dynamics in LLMs, positing theories of the latent concepts enabling behavioral
capabilities. It is a middle ground between behavioral benchmarks, which treat models as black boxes
and evaluate hit-or-miss accuracy, and mechanistic interpretability, which studies toy models and
training loss dynamics, analogous to how cognitive science is a middle ground between behaviorist
psychology and neurobiology.

C COGNITIVE INTERPRETABILITY

Cognitive Interpretability (Fig. 10) is a middle ground between shallow test-set evaluation benchmarks
on one hand (Srivastava et al., 2022; Saparov & He, 2022; Min et al., 2022; Lanham et al., 2023;
Ganguli et al., 2023; Bowman et al., 2022; Kadavath et al., 2022; Perez et al., 2022; Prystawski
& Goodman, 2023; Turpin et al., 2023) and mechanistic neuron- and circuit-level understanding
of pre-trained model capabilities on the other (Nanda et al., 2023; Goh et al., 2021; Geva et al.,
2020; Belinkov, 2022; Li et al., 2022; Wang et al., 2022; Chughtai et al., 2023; Gurnee et al., 2023;
Foote et al., 2023; Lubana et al., 2023; Lieberum et al., 2023; Barak et al., 2022; Liu et al., 2022b;
Zhong et al., 2023) (also see App. C). Unlike related work of feature interpretability in vision neural
networks, we analyze ICL and text generation dynamics over different input data x and outputs y,
and unlike mechanistic work studying ICL, we observe learning dynamics in black box input-output
behavior of state-of-the-art LLMs.

This is inspired by cognitive science work where learning dynamics are observed in humans, and
these learning dynamics are explained with computational theories and probabilistic programming
models. For example, children 3.5–5 years old learning to count undergo a dramatic conceptual
shift from knowing the meanings of only a few number words (“one”, “two”) to a full inductive
understanding of counting, which can be modeled as Bayesian model selection with a simplicity
prior over models (Piantadosi et al., 2012). Another example is children learning intuitive theories of
physics and social reasoning, where theories may spontaneously shift as ‘a new concept is acquired’.
This can be explained, similar to our models, as a shift in the posterior space, which influences
hypothesis search (Ullman et al., 2012). The work of Ullman et al. (2012) is also of note, since they
make a similar point to the neural network Quantization hypothesis Michaud et al. (2023) – that sharp
discontinuities (‘phase changes’) are common in learning, but averaging over samples and individuals
turns these discontinuities into a smooth learning curve – but in the context of children’s intuitive
theory learning and hypothesis search over probabilistic programs. Similar theories are also proposed
about theory change in adults, for example, in scientific concepts dramatically shifting as paradigms
change (Carey, 2000; Nersessian, 2010).

In-Context Learning and emergent capabilities in LLMs present unique and novel challenges and
opportunities for AI interpretability, as well as for cognitive science. Computational cognitive
science provides rich theory and myriad domains which can be used for evaluating LLM learning
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and behavioral dynamics. Our approach is distinct from approaches such as Binz & Schulz (2023)
which evaluate LLMs on cognitive psychology benchmarks, since such prior work examines single-
token probabilities but does not consider, as we do, in-context learning dynamics or applications
of computational theories of cognition (Tenenbaum, 1998; Tenenbaum et al., 2011; Ullman &
Tenenbaum, 2020; Piantadosi, 2021) to understanding LLM capabilities. Our approach is also distinct
from using LLMs as models of human cognition. Though we use theories and models from cognitive
science to understand LLMs, we do not assume that what the LLM does should be human-like.

While we propose a new term, Cognitive Interpretability, we opt to provide a loose definition rather
than a strict one. The purpose of this term is to emphasize a missing piece of the LLM interpretability
puzzle, which is not given as much attention as evaluation benchmarks or mechanistic circuit-level
understanding. Mechanistic interpretability is sometimes described as the neuroscience of deep
learning. We suggest a role for the cognitive science of deep learning, distinct from creating new
evaluation benchmarks, which seeks to understand the high-level algorithms underlying complex
patterns of behavior and learning.
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D BAYESIAN MODEL SELECTION EXAMPLE

This section further explains the illustrative example presented in Fig. 2.

This example compares two models: a (“Random”) Bernoulli process with p = .5, and a (“Non-
Random”) deterministic concept (01)n. The likelihood of the Random hypothesis is p(x|h) = (.5)|x|,
which decreases as a function of |x|. The likelihood of the Non-Random hypothesis is a fixed constant,
for simplicity, p(x|h) = 1.

The hypothesis posteriors shown in Figures 2, 11 are a product of these likelihood functions with
a hypothesis prior p(h), following Bayes’ theorem: p(h|x) ∝ p(h) p(x|h). In simple terms, the
prior p(h) determines the relative y-position of the two likelihood curves, which determines the
precise point along |x| at which the curves intersect. We arbitrarily chose priors p(hNon) = .25 and
p(hNon) = .75.
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Figure 11: (Left) Normalized hypothesis posteriors from Fig. 2 Left. These are normalized so
that probability of all hypotheses sums to one

∑
h p(h|x) = 1, i.e. p(h = Bernoulli|x) + p(h =

Non-Random|x) = 1. (Right) The soft model selection curve shown in Fig. 2 Right, with varying
temperature parameter τ interpolating pτ (y|x) between Model Averaging (τ = 1, yellow line) and
Model Selection (τ → ∞, dark blue line).

In the right side of Figure 2, we compare Model Averaging p(y|x) =
∑

p(y|h) p(h|x) to Model
Selection h∗ = argmaxh p(h|x), p(y|x) = p(y|h∗). With model selection, at the point when the the
two hypothesis posteriors cross, the predictive distribution p(y|x) suddenly shifts as the non-random
hypothesis becomes selected for h∗ instead of the random one. This example illustrates how model
selection, or maximum likelihood hypothesis search, can explain sharp phase changes in model
behavior according to the predictive distribution p(y|x).
Since the phase change in-context learning curves we observe are smooth, as well as those observed
during neural network training and mechanism formation, we also show a ‘soft’ model selection
curve. The soft model selection curve interpolates between model averaging and model selection (see
Fig. 11, Right):

pτ (y|x) =
∑
h

p(y|x)
( p(h|x)τ∑

h′ p(h′|x)τ
)

where τ is a temperature parameter such that when τ = 1, the function pτ (y|x) is equal to the
model averaging definition above, and when τ grows arbitrarily large, pτ (y|x) approaches the model
selection definition above.

Temperature τ in this model is distinct from temperature in LLMs, which leads models to greedy
decode as τ → 0, i.e. p(y|x) = maxh p(y|h) p(h|x). This maximizes over the posterior predictive
distribution, which includes both p(y|h) and p(h|x), whereas in our example, h∗ only maximizes
over the hypothesis posterior p(h|x).
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E FORMAL CONCEPT LEARNING IS NOT MERELY LOCAL BIAS

In our formal concept learning experiments, we found similar results whether the prompt specified
generating samples ‘that may be from a fair coin with no correlation, or from some non-random
algorithm’ or only ‘from a fair coin, with 50% probability of Heads and 50% probability of Tails’.
This raises the question of whether the LLM is simply forgetting the prompt, and has a local text
bias that leads it to be distracted by a long repeating pattern, instead of following the original task
specification, as in neural text degeneration (Holtzman et al., 2019).

To test this alternative hypothesis, we used a real-world task used to evaluate few- and zero-shot
learning in LLMs: the Massive Multitask Language Understanding (MMLU) dataset (Hendrycks
et al., 2020). Each MMLU task includes a single multiple choice question, along with 4 multiple
choice answers: A, B, C, and D. MMLU tasks are organized into subjects, intended to cover a
broad range of common academic and professional subjects. We tested with two questions randomly
selected from each of 5 subjects in MMLU: College Physics, Elementary Mathematics, High School
Biology, High School Psychology, Philosophy.

Our experimental setup was such that we followed the MMLU original prompt format, which ends
with the text ‘Answer: ____’. Although MMLU provides options for few-shot learning, we used zero
context shots. We appended a sequence of flips ‘Heads, Tails, Heads, Tails, . . . ’ from the concept
(01)n to the end of this prompt, similar to how our experiments use a prompt format: Q: . . . A:
Heads, Tails, . . . .

An example full prompt for this experiment is: ‘The following are multiple choice questions (with
answers) about high school psychology.\n \n Nearsightedness results from \n A. too much curvature
of the cornea and lens \n B. too little curvature of the cornea and lens \n C. too much curvature of
the iris and lens \n D. too little curvature of the iris and lens \n Answer: Heads, Tails, Heads, Tails,
Heads, Tails, Heads, Tails,’.

As shown in Fig. 12, GPT-3.5 (text-davinci-003) shows dramatically different learning pat-
terns in this MMLU setup, compared with our Randomness Generation results. In most MMLU
questions, GPT is extremely robust against local text bias, maintaining a high probability of staying
on-task and generating MMLU tokens even after hundreds of tokens (note: each flip, comma, and
space together constitute 2-3 tokens) following a simple repeating pattern are appended to the prompt.
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Figure 12: GPT-3.5 demonstrates a task bias, returning to answer MMLU questions after many
distractor flips In these experiments, we take MMLU questions and append sequences of ‘distractor
flips’, repeating samples from (01)n, before querying the LLM for next-token probability. Individual
lines are shown for flip tokens (‘Heads’, ‘Tails’, ‘T’, ‘ails’) compared with MMLU answer tokens
(‘A’, ‘B’, ‘C’, ‘D’). Even with many distractor tokens, GPT-3.5 converges back to answering the
MMLU question, demonstrating that our formal concept learning results for the Generation task are
not merely a local text bias where the LLM forgets the original prompt.

The primary goal of this experiment was not to explore ICL dynamics in this MMLU distractor
experiment, however, we do note striking patterns for different MMLU tasks. Though a few questions
seem to demonstrate stable phase changes, sharply converging to high-confidence of generating flip
tokens, we note that all but one (College Physics 1) of these converge to a state where MMLU tokens
still have 5-20% probability. This probability means that, when temperature=1.0 and stochastic
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decoding is used to sample completions, nearly all completions eventually converge back to the
MMLU task, ending with an answer instead of more flips.

Note about Fig. 12: this shows the predictive probability p(y|x = . . . ‘, Tails’) for every other flip.
With repeating (01)n, the probability of sampling ‘Tails’ after each ‘Heads’ flip is very high, i.e.
p(y = ‘Tails’ | x = . . . ‘, Heads, ’) ≈ 1. While this is not always the case, we show p(y|x) for every
other flip to make important trends in learning dynamics more visible. In all of our analyses in the
main text, we omit the probabilities of comma tokens p(y = ‘,’ | x) for similar reasons.

Although not shown here, we also found similar results appending distractor flips to prompts from
GSM8k (text-davinci-002 and -003), a simple mathematical benchmark commonly used to
evaluate chain-of-thought reasoning. GPT’s task bias appeared stronger in GSM8k, but was harder to
evaluate, since GSM8k does not consist of multiple choice questions like MMLU.
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F FORMAL LANGUAGE LEARNING WITH VARYING PREDICTION DEPTH

In our main text, for formal language learning with Generation tasks, we estimate the predictive
probability p(y ∈ C | x) by enumerating all possible binary sequences y up to some depth d and
querying GPT for next-token prediction probabilities. In this appendix, we show results of this
analysis with varying prediction depth d.
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Figure 13: Predictive distributions p(y|x) by each LLM for Concept (010)n, at each pre-
diction depth d. Colors correspond to different prediction depths, also refer to Figure 5. Note:
text-ada-001 results are not shown since results did not follow the required format (‘Heads,
Tails, . . . ’) adequately to be analyzed.
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Figure 14: Predictive distributions p(y|x) by each LLM for Concept (011)n, at each prediction
depth d. Colors correspond to different prediction depths, also refer to Figure 5.

A notable takeaway of Figures 13, 14 is that with shallower depths (d < 4), we do not observe as
stable ICL dynamics. Our predictive probability method is similar to a simple Markov Chain, where
a greater depth d similar to a higher Markov Chain order k, enables more expressive representation of
p(y|x). If d = 2, for example, then we only consider the 4 conditional probabilities p(y = 0|x = 0),
p(y = 0|x = 1), p(y = 1|x = 0), p(y = 1|x = 1). With our methods of computing the predictive
distribution, there are only three strings y∗ such that y∗ ∈ C for any depth, where at a depth d there
will be 2d possible strings y. We also note that the predictive distributions p(y|x) are increasingly
close together, suggesting that with d > 6, the trends we observe will only change slightly.
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text-davinci-003 on C=011, with |x|=6  d=6
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text-davinci-003 on C=011, with |x|=12  d=6
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text-davinci-003 on C=011, with |x|=18  d=6
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Figure 15: Predictive distribution p(y|x) trees with d = 6 for concept C = (011)n with |x| ∈
{6, 12, 18}. Since |x| is increasing by the same depth as the tree ∆|x| = d = 6, the transition from
generating subjectively random numbers to deterministically repeating 011 is visibly apparent. Also
see Figure 5.

In Figures 15, 16, we show predictive distribution p(y|x) trees, as in Figure 5 in the main text. Figure
15 should be read left-to-right, and Figure 16 should be read top-to-bottom. For example, in 15, the
middle figure begins x = 011011011011 where the left figure ends (x = 011011011011, y =
011011011011), conditioned on the outcome sequence y = 011011. The right-most figure
similarly begins where the left one ends.

Like Borges’ Garden of Forking Paths (Bottou & Schölkopf, 2023), at each step in context (i.e. at
some |x| for a given x), LLM text generation presents the user with branching paths of possible
token sequences. Some of these paths may lead to very different outcomes, in our case, either
deterministically repeating some pattern or generating random flips. The domain of binary sequences
lets us deeply explore and easily visualize a minimal version of this.
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text-davinci-002 on C=011, with |x|=1  d=4
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text-davinci-002 on C=011, with |x|=1  d=4
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text-davinci-003 on C=011, with |x|=1  d=4
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text-davinci-002 on C=011, with |x|=9  d=4
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text-davinci-002 on C=011, with |x|=9  d=4
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text-davinci-003 on C=011, with |x|=9  d=4
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text-davinci-002 on C=011, with |x|=18  d=4
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text-davinci-002 on C=011, with |x|=18  d=4
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text-davinci-003 on C=011, with |x|=18  d=4
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text-davinci-002 on C=011, with |x|=24  d=4
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text-davinci-002 on C=011, with |x|=24  d=4
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text-davinci-003 on C=011, with |x|=24  d=4
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text-davinci-002 on C=011, with |x|=39  d=4
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text-davinci-003 on C=011, with |x|=39  d=4
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gpt-3.5-turbo-instruct on C=011, with |x|=39  d=4
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Figure 16: Predictive distribution p(y|x) trees with d = 4 for concept C = (011)n with
|x| ∈ {1, 9, 18, 24, 39}. Models shown are text-davinci-002, text-davinci-003, and
gpt-3.5-turbo-instruct. Also see Figure 5.

28



Published as a conference paper at ICLR 2024

G RANDOMNESS JUDGMENTS
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Figure 17: Randomness judgments across OpenAI GPT models for 9 concepts Also
see Fig. 4. OpenAI models ordered from smallest/least fine tuned to largest/most:
text-ada-001 (??), text-babbage-001 (1B params + SFT), text-curie-001
(6.7B + SFT), text-davinci-001 (175B + SFT), text-davinci-002 (175B + SFT),
text-davinci-003 (175B + RLHF-PPO), gpt-3.5-turbo-instruct (??). These OpenAI
model details were previously publicly available and have been archived at: https://archive.
is/IXxGm. Note: technically text-davinci-002 is a ‘GPT-3.5’ model, but in our text we use
‘GPT-3.5+’ to refer to text-davinci-003 and later GPTs.

(Fig 17) text-davinci-003 shows a stable pattern of being highly confident (high token
probability) in the process being random up to some amount of context |x|, at which point it
rapidly transitions to being highly confident in the process being non-random, with transition points
varying substantially between concepts. chat-gpt-3.5-instruct does not go through a
stable high-confidence random period like text-davinci-003, and stable high-to-low confi-
dence dynamics are observed for only a subset of concepts. The majority of earlier GPT models
(text-davinci-002, text-davinci-001, text-curie-001, text-babbage-001)
show no ’formal language learning’, at all. However, surprisingly OpenAI’s smallest available GPT
model text-ada-001 shows S-shaped in-context learning dynamics, with the peak close to .5
instead of 1.0 as in text-davinci-003. Additionally, the learning dynamics and transition points
for all concepts appear nearly identical, approximately at |x| = 50, and some concepts show less
stable “non-random” patterns for larger |x|.

LONGER FORMAL CONCEPTS

Testing text-davinci-003 with longer concepts (Fig.19), many concepts still follow a pattern
of sharply transitioning from high confidence in p(y = random|x) to high confidence in p(y =
non-random|x). With increasingly long concepts, this pattern further degrades. This degradation is
not surprising, for two reasons: (a) large concepts are more costly to represent, and so may either be
more difficult for the LLM to learn, or the learning curves that show these patterns may be much wider
(e.g. |x| ranging from 0 to 1000 instead of 0 to 100, as we use). (b) Large concepts are less frequent
in the training data, and so may be more prone to memorizing samples. When only a few samples are
available, neural networks should be expected to memorize data points and context (Feldman, 2020),
since there is not enough context to represent that pattern as a generic formal concept.
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Randomness Judgment for text-davinci-003
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Figure 18: Randomness Judgment p(y = random|x) dynamics for additional concepts tested, for
text-davinci-003 (Left) and gpt-3.5-turbo-instruct (Right).
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Figure 19: Randomness Judgment with longer formal concepts Similar to Fig. 4, we test Random-
ness Judgment with GPT-3.5 using longer repeating concepts. From left to right, concept lengths are:
8, 10, 12. Legends list colors corresponding to individual concepts.
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RANDOM SEQUENCE BASELINE

To compare whether the patterns we find for Randomness Judgment are simply a function of increasing
context length |x| for any possible sequence, we test text-davinci-003 with the Judgment task
using x ∼ Bernoulli(.5) (Fig. 20). As a fair comparison to our formal concept learning task, we
use the same 20 random sequences x with varying length |x|, where each sequence corresponds to a
single line and color.

While there is a higher overall average p(Random|x) (blue line) for small |x|, with larger |x| the
average p(Random|x) remains flat around 0.6. Contrast this with the formal concepts in Fig.4,
where with large |x|, p(Random|x) drops to nearly 0.0 .
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Figure 20: Random baseline for Randomness Judgment task As a baseline to compare with our
concept learning x sequences, we used a set of 20 sampled sequences x ∼ Bernoulli(.5). We varied
|x| along these individual sequences x, which enables us to consider ICL dynamics for individual
sequences, represented here as lines.
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H RANDOM SEQUENCE GENERATION BY GPT MODEL

In Figures 21, 21, we show flip sequences y from the Randomness Generation task, with various
p(Tails) super-imposed on the same plot, with different colors according to the specified p(Tails).
In Fig. 23, we compare the mean sequence probability 1/N

∑
i y

(i), averaged over all GPT output
sequences y(i), to the prompt-specified probabilities p(Tails).
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Figure 21: 50 sequences sampled by each GPT model, for each p(Tails). Color is assigned according
to specified p(Tails). Red dotted lines are drawn for each p(Tails).

Fig. 21 and the left side of Fig. 23 demonstrate that text-davinci-003 and GPT-4 models not
only are more controllable, following the correct probability more closely on average, but also have
substantially lower variance than ChatGPT, which is both less controllable and has more variability
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Figure 22: 50 sequences sampled by text-davinci-003, for each p(Tails), compared with
samples from Bernoulli and Window Average models fit to yLLM for each p(Tails). Color is
assigned according to specified p(Tails).
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Figure 23: Probability p(Tails) bias across LLMs text-davinci-003 and GPT-4 models are
least biased relative to the specified p(Tails) (x-axis). In the left figure, error bars represent the
maximum and minimum sequence means y for each p(Tails).

.

in its distribution of responses. Further, GPT-4 is lower variance than text-davinci-003, with
sequences staying even closer to their means y.
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I GAMBLER’S FALLACY METRICS BY GPT MODEL
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Figure 24: Gambler’s Fallacy histograms for ChatGPT (Top) and GPT-4 (Bottom). Also see
Fig. 7.

ChatGPT shows no clear Gambler’s Fallacy bias, whereas GPT-4 does show this pattern, but is less
pronounced than text-davinci-003 (Fig. 24).
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Figure 25: Comparing metrics of Gambler’s Fallacy across probabilities and LLMs (Left) The
mean longest run for each sequence y, at each specified probability p(Tails), where a run is a
consecutive sub-sequence of the same flip repeating multiple times in a row. (Right) The mean
alternation rate for each LLM, where alternation rate is the fraction of consecutive flips that are not
equal p(yt ̸= yt−1).

.

In both plots of Fig. 25, we observe that text-davinci-003 shows a Gambler’s Fal-
lacy bias across p(Tails), of higher-than-chance alternation rates and shorter runs; ChatGPT
(gpt-3.5-turbo-0613) produces more tails-biased and higher-variance sequences y when
p(Tails) > 50%; GPT-4 and gpt-3.5-turbo-instruct interpolate between the two distinct
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trends of text-davinci-003 and ChatGPT. The red dotted line represents a Bernoulli process
with mean p(Tails).

It is unclear how the capabilities we identify are implemented at a circuit level, or why they only
seem to emerge in the most powerful and heavily tuned GPT models. For the latter, one hypothesis
is that internet corpora contain text with human-generated or human-curating subjectively random
binary sequences, and fine-tuning methods such as instruction fine-tuning, supervised fine-tuning, and
RLHF make LLMs more controllable, enabling them to apply previously inaccessible capabilities in
appropriate circumstances. Another hypothesis is that these fine-tuning methods bias LLMs towards
non-repetitiveness, or induce some other general bias that plays a role in the in-context learning
dynamics we observe in our particular domain. We hope that future work in cognitive and mechanistic
interpretability will shed further light on these questions.
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J MEMORIZATION, COMPRESSION, AND COMPLEXITY
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Figure 26: Distribution of unique sub-sequences for text-davinci-003 for varying sub-
sequence lengths Also see Fig. 8.

.

In Fig. 27, we show that Markov chains of high order k can account for the sub-sequence distribution,
but this only applies when k <= w where w is the sub-sequence length, and the Markov chains can
effectively memorizing the sub-sequence distribution of y.

Across both unnormalized and normalized distributions of unique sub-sequences (Fig. 28), we find
that GPT-4 repeats the same length-10 sub-sequences significantly more than the other models, and
both ChatGPT-based models (gpt-3.5-turbo-0613, gpt-3.5-turbo-instruct) follow
different patterns for p(Tails) < 50% and p(Tails) > 50%, even when controlling for sequence
bias (Right). The only model that generates more unique sub-sequences than chance (above dotted
line) is ChatGPT (gpt-3.5-turbo-0613).

As a coarse approximation of sequence complexity, we use Gzip file size of appended sequences
gzip(y : y′ : y′′ : . . .) and mean Levenshtein distance between sequences d(y, y′). Gzip (Deutsch,
1996), a common algorithm for file compression that is highly optimized for compressing strings
with redundancy into small file sizes, and Gzip file size has been found to be an effective feature
extractor for NLP (Jiang et al., 2022). Levenshtein distance Levenshtein et al. (1966) is a measure of
edit distance between two strings.

Since sequence compression is highly correlated with probability, e.g. all sequences with y = 0.99
will be highly compressible, we normalize the distribution of both plots in Fig. 29 by dividing by the
same metric (appended Gzip size, or mean Levenshtein distance) for a Bernoulli distribution centered
at y. For all GPT models except ChatGPT, generated sequences have smaller Levenshtein distance
than a Bernoulli process. This is evidence that these LLMs are using memorized sub-sequences
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Figure 27: Distribution of unique sub-sequences for text-davinci-003, with additional
models, varying sub-sequence lengths MC-2, MC-5, and MC-10 are Markov Chain models fit to
GPT-3.5 flips, with orders k = {2, 5, 10}

.

(‘parroting’), since sequences have repeated structure. On the other hand, ChatGPT produces more
dissimilar sequences than chance, suggesting higher complexity. In Gzip file size, however, we see a
lower-complexity bias in all LLMs (except for a few higher values of p(Tails)), to varying degrees,
produce data Y that is more compressible than data from an equal probability Bernoulli process.
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Figure 28: GPT-4 repeats the same sub-sequences more often than other GPT models (Left)
Number of unique length-10 and length-20 sub-sequences as a function of specified probability
p(Tails), across all sequences y (note: |y| = 50) generated by each GPT model. (Right) The same
distributions, with the y-axis normalized by dividing by the same metric (appended Gzip size, or mean
Levenshtein distance) for a Bernoulli distribution centered at y, to control for sequence compression
being correlated with probability, e.g. with y = 0.99, the same sub-sequences of only ‘Tails’ flips
will appear many times.
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Figure 29: GPT-generated sequences have lower complexity than Bernoulli sequences
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K BACKGROUND ON ALGORITHMIC AND SUBJECTIVE RANDOMNESS

Randomness of a sequence x, defined in terms of Bayesian model comparison between the class of
non-random models with the class of random models, can be translated to be the difference between
the sequence length |x| and the algorithmic complexity, or Kolmogorov complexity of the sequence
K(x).

randomness(x) = logP (x|random)− logP (x|non-random)

= log 2−|x| − log 2−K(x)

= K(x)− |x|

The likelihood given a truly random Bernoulli process p(x|random) = 2−|x| since sequences of equal
length have equal probability and there are 2|x| binary sequences of length |x|. This can be thought
of as a uniform prior over programs, where every program is an exact copy of the output string.

The likelihood of x given the space of non-random processes marginalizes over the posterior of all
non-random programs (hypotheses) H:

p(x|non-random) =
∑
h∈H

p(h) p(x|h)

.

A natural prior for programs p(h) is the description length of that program, where common metrics
used in software engineering such as lines of code or number of functions can be seen as practical
estimations of program description length.

If we assume p(x|h) is a binary likelihood, that is:

p(x|h) =
{
1 if h generates x
0 otherwise

and we simplify the problem to finding the maximum a-priori hypothesis h, and set a prior over
hypotheses (programs) proportional to their length p(h) = 2−|x|, this equates to finding the program
with lowest Kolmogorov complexity K(x):

P (x|non-random) ≈ max
h

p(h) p(x|h) = 2−K(x)

where Kolmogorov complexity K(x) is defined as the description length of the shortest program that
generates x as output:

K(x) = argmin
{p∈Σ∗|Evaluate(p)=x}

|p|

The notation p ∈ Σ∗ is analogous to h ∈ H, but refers to a formal alphabet Σ that programs are
comprised of. In the general case, Kolmogorov complexity K(x) is uncomputable due to the halting
problem, since the expression Evaluate(p) = x might run forever if p has an infinite loop.

39



Published as a conference paper at ICLR 2024

L OPEN SOURCE MODELS

We replicated our results across an array of open-source LLMs available through the HuggingFace
Transformers API. Open-source LLMs are critical to replicability since many LLMs now available
through commercial APIs may not be available in the future. As of January 2024, the primary
LLM analyzed in this paper text-davinci-003 is no longer publicly accessible †.

In summary, we found similar results to GPT-3.5+ on Randomness Generation tasks varying p(Tails)
with LLMs with 50+ billion parameters (Fig. 32 & 33) and similar results on Randomness Judgment
with tulu-2-dpo-70b (Fig. 30). These results supports our theory that with sufficiently large
models and with reward-based fine-tuning (RLHF & DPO), LLMs can develop latent capabilities for
(1) Bayesian model selection and (2) controllable generation of random binary sequence.

LLM inference was run on 2x NVIDIA A100 80gb GPUs in Harvard’s FAS-RC cluster. Inference
took a few days total GPU (2x) time with the Randomness Generation task. Randomness Judgment
prompts were more efficient due to reduced number of output tokens.

We evaluated the following LLMs:

• meta-llama/Llama-2-7b-hf (float32)
• meta-llama/Llama-2-13b-hf (float32)
• meta-llama/Llama-2-70b-hf (float16)
• mistralai/Mistral-7B-v0.1 (float32)
• mistralai/Mistral-7B-Instruct-v0.1 (float32)
• mistralai/Mixtral-8x7B-v0.1 (float16)
• mistralai/Mixtral-8x7B-Instruct-v0.1 (float16)
• allenai/tulu-2-7b (float32)
• allenai/tulu-2-13b (float32)
• allenai/tulu-2-70b ∗ (float16)
• allenai/tulu-2-dpo-7b (float32)
• allenai/tulu-2-dpo-13b (float32)
• allenai/tulu-2-dpo-70b ∗ (float16)

Following the suggested input format †, when prompting Tulu 2 models we replace the Q: . . . \n \n
A: . . . prompt format used with other models with <|user|> \n . . . \n \n <|assistant|> \n . . . .

†https://openai.com/blog/gpt-4-api-general-availability
†https://huggingface.co/allenai/tulu-2-7b#input-format
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Figure 30: Randomness judgments by open source LLMs – sharp transitions for Tulu 2 70b
+DPO Similar to our results for smaller OpenAI GPT models (Fig. 17), we find relatively flat
in-context learning curves for smaller open-source models and larger ones without RLHF or DPO.
With tulu-2-dpo-70b we find sharp S-shaped learning curves, from high confidence in Random
to high confidence in Non-Random, similar to our main results (Fig. 4 & 18) with larger and reward-
optimized OpenAI models such as text-davinci-003 and gpt-3.5-turbo-instruct.
This supports our theory that with sufficiently large models and sufficient reward-based fine-tuning
LLMs may develop latent Bayesian model selection capabilities.
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Figure 31: Randomness judgments by open source models for random input sequences x
Following Fig. 30 and 20, we provide as a baseline for open-source models, Randomness Judgment
on random sequences x. Here we show 20 random concepts x. Notably, for tulu-2-dpo-70b we
do not see the same sharp S-shaped ICL curves as in Fig. 30.
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Figure 32: Random flip generation flips with p(Tails) specified by each open-source LLM
Random flip generation running averages for all specified p(Tails), where color and red dotted lines
correspond to different p(Tails). Similar to Fig. 21 we find that larger LLMs, particularly Tulu 2 70b
models, demonstrate the capability of generating random binary sequences with a controllable mean
p(Tails). These plots show 100 samples for each model and p(Tails). Mistral-7B-v0.1 is
excluded since we found its flip generation was not reliably formatted.
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Figure 33: Probability bias for each open source LLM Bias between LLM-generated flip
sequence means x compared to specified p(Tails). All tulu models are controllable as well as all
Mistral models except Mistral-7B-v0.1. Error bars shown for 1 standard deviation.
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